文档库 最新最全的文档下载
当前位置:文档库 › 工业催化之第10章工业催化剂的设计

工业催化之第10章工业催化剂的设计

催化剂的设计

存檔日期:存檔編號: 北京化工大學 研究生課程論文 課程名稱:_____________ 課程代號:_____________ 任課教師:_____________ 完成日期:____年___月___日 專業:_____________ 學號:_____________ 姓名:_____________ 成績:_____________

提高中光催化水分解光催化材料效率的半導體異質結型催化劑CaFe2O4–PbBi2Nb1.9W0.1O9設計 一、設想的描述 1、光催化水分解的目的及應用價值。 氫能已被普遍認為是一種理想、無污染的綠色能源,其燃燒值高且燃燒後唯一的產物是水,對環境不會造成任何污染,因此,氫能開發是解決能源危機和環境問題的理想途徑。在眾多氫能開發的手段和途徑中,通過光催化劑,利用太陽能光催化分解水制氫是最為理想和最有前途的手段之一;而開發高效、廉價的實用光催化劑是實現這一過程的關鍵,也成為當前國際能源材料領域的研究熱點之一。 2、光催化分解水反應機理 像其他的催化反應一樣,光催化水的分解開始當一個半導體催化劑開始吸收比它的帶隙能量強的光子。這些吸收使得處於導帶的電子被激發並且在半導體的價電子帶產生了空穴就像圖1展示的那樣。[1]光電子和空穴氧化和還原水,產生了2:1混合著的氫氣和氧氣通過以下的反應。 氧化反應:H2O + 2h+→2H+ + 1/2O2(1) 還原反應:2H+ + 2e?→H2 (2) 總的反應方程式:H2O →H2 + 1/2O2 (3) 總的反應方程包括四個電子轉移(每生成摩爾氧氣)通常是通過金屬和金屬氧化物助催化劑(在圖中用cat1和cat2表示)附著在半導體表面。這些助催化劑為催化反應提供電子和反應的活性中心。[2]這個反應包括標準Gibbs自由能變化△G=237KJ/mol(1.23eV每轉移一個電子)。實際上,一些超電勢可以加速

催化剂设计

存档日期:存档编号: 北京化工大学 研究生课程论文 课程名称:_____________ 课程代号:_____________ 任课教师:_____________ 完成日期:____年___月___日 专业:_____________ 学号:_____________ 姓名:_____________ 成绩:_____________

提高中光催化水分解光催化材料效率的半导体异质结型催化剂CaFe O4–PbBi2Nb1.9W0.1O9设计 2 一、设想的描述 1、光催化水分解的目的及应用价值。 氢能已被普遍认为是一种理想、无污染的绿色能源,其燃烧值高且燃烧后唯一的产物是水,对环境不会造成任何污染,因此,氢能开发是解决能源危机和环境问题的理想途径。在众多氢能开发的手段和途径中,通过光催化剂,利用太阳能光催化分解水制氢是最为理想和最有前途的手段之一;而开发高效、廉价的实用光催化剂是实现这一过程的关键,也成为当前国际能源材料领域的研究热点之一。 2、光催化分解水反应机理 像其他的催化反应一样,光催化水的分解开始当一个半导体催化剂开始吸收比它的带隙能量强的光子。这些吸收使得处于导带的电子被激发并且在半导体的价电子带产生了空穴就像图1展示的那样。[1]光电子和空穴氧化和还原水,产生了2:1混合着的氢气和氧气通过以下的反应。 氧化反应:H2O + 2h+→ 2H+ + 1/2O2(1) 还原反应:2H+ + 2e?→ H2 (2) 总的反应方程式:H2O → H2 + 1/2O2 (3) 总的反应方程包括四个电子转移(每生成摩尔氧气)通常是通过金属和金属氧化物助催化剂(在图中用cat1和cat2表示)附着在半导体表面。这些助催化剂为催化反应提供电子和反应的活性中心。[2]这个反应包括标准Gibbs自由能变化△G=237KJ/mol(1.23eV每转移一个电子)。实际上,一些超电势可以加速反应,所以半导体能承受的电压应该大于等于1.6-1.8eV在水的分解中。为了吸收更多的可见光的照射,半导体的电压应该小于2.2eV。除此之外,为了还原和氧化水,导带应该位于一个比水的还原电势更负的位置(0V NHE),然而价电子带应该比水的氧化态更正(1.23V NHE)如图1。因此,可见光下水分解的催化材料应该满足这两个关于带隙能量(1.6-1.8eV

催化剂工程设计论文

催化剂工程进展评述 杨闯 (北京化工大学,北京 102200) 摘要:催化剂工程是一门比较前言的新学科,在推动化学产业及其他工业产业的发展中有举足轻重的地位。在基于工业催化剂的生产制造、评价测试、设计开发和操作使用上,它涉及到多学科的交叉渗透。随着现代物理手段和电子计算机的介入,已经取得了新的发展。为了更好地认识和掌握该学科,促进催化剂在工业中应用,有必要研究其当前的的发展状况。 关键字:催化剂工程;评价测试;设计开发;操作使用;工业催化剂 The Reviewed of Catalyst Engineering Progress Yang Chuang (Beijing University of Chemical Technology,Beijing 102200,China) Abstract:Catalyst engineering is a comparative introduction of new discipline,and has a pivotal position in the development of the chemical industry and other industries .Based on the industrial catalyst evaluation test,design and development, and the use of operation,catalyst engineering involves multi-discipline cross penetration.With the intervention of modern physical means and computer,it has made a new development.In order to better understand and master the discipline,and promote the application of catalyst in industry ,it is necessary to study its current development situation. Key words:catalyst engineering;evaluation test;design and development;the use of operation;industrial catalyst 引言 20世纪下半叶以来,催化剂科学和技术飞速发展,催化剂的更新换代日新月异,新型催化剂已经渗透到石油炼制工业、化学工业、高分子材料工业、生物化学工业、食品工业、医药工业以及环境保护产业的绝大部分工艺过程中[1]。 经典的催化科学涵盖面广,然而,应用于化工生产的催化科学适于将其研究领域划分为工业催化剂和催化剂工程两个不同层次的子领域。前者偏重于工艺和普及,后者重于工艺和提高。目前,催化剂工程仍然是一门前言新学科,它立足于经典催化剂科学和化学动力学、化学反应工程学、计算机应用化学以及表面物理化学等多学科的交界面上,以工业催化剂的制造生产、评价测试、设计开发、操作使用等工程问题为其研究对象[2],是化工行业专门人才所必备的基本知识。由于现代物理手段的介入,以及电子计算机用于化工催化,已经大大帮助了人们认清催化剂现象背后的物理化学本质,从而充实了催化剂理论的准确性以及预见性,并且大大提高了工业催化剂设计开发的速度、质量和效益,同时使之由长期以来的盲目定型试探,向精确的定量计算转化,进而由技艺型向科学型转化,这一发展形式已使人们看到了化工催化这一革命性转变的前兆。 需要指出的是,催化剂工程与我们所熟悉的化学反应工程既有联系又有区别。前者以研究反应器中运转的催化剂为主,后者则以研究工业反应器为主。一旦定型的工业反应器,其结构往往相对稳定,更新较慢。然而,催化剂定型生产后,换代开发却相当的频繁,随之而来的装置扩容、挖潜、节能、增效等成果就源源而来,而若将两者有机的结合起来,将会产生更多更好的研究成果来。 在本文中将从催化剂的制造生产、评价测试、设计开发和操作使用等方面的进展对催化剂工程进行简单评述。

脱硝催化剂的选型与设计(优.选)

脱硝催化剂的选型与设计 1)、在高钙工况下,CaO会导致催化剂失活速率加快,因此需要较大的设计裕量。当煤质或飞灰中的CaO含量小于5%时,其对催化剂的设计影响不大,催化剂的设计用量主要取决于SCR系统入口NOX浓度、烟气流量、要求的脱硝效率等参数。当CaO含量超过5%以后,其对催化剂的设计影响开始变得显著,在同样的工况条件下,催化剂用量受CaO含量影响很大。随着CaO含量的增加,催化剂用量呈线性递增,特别是当CaO含量在30%左右时,催化剂用量比低钙工况下的用量增加25%左右。 2)、在高飞灰工况下,应选用孔径大、截距大、烟气通过性好的催化剂型号,减少积灰堵塞的风险。当烟气中飞灰浓度在50~60 g/Nm3,甚至更高时,此时平板式催化剂由于其烟气通道截面较蜂窝式大,高

飞灰工况下烟气和飞灰的通过性好等优点,选用平板式催化剂不易积灰堵塞,运行安全性较高。当飞灰浓度小于50 g/Nm3 时,由于板式催化剂几何比表面积比蜂窝式小,同样的工程条件下,板式催化剂用量要比蜂窝式多约20~40%。通常,当蜂窝式催化剂的孔数每增加一级,如从18×18孔向上增加为19×19孔时,对于同一工程项目,催化剂的设计用量可以减少在5%以上,由此可以节约催化剂采购成本5%以上。但是,孔径变小后,烟气通过性差,在高飞灰条件下,极易发生飞灰的架桥堵灰,催化剂一旦发生飞灰架桥,就会发生“累积”效应,即当催化剂部分孔道发生堵塞时,相对的使其他未堵塞的孔道通过的飞灰量急剧增大,再运行不长的时间,整个催化剂都会发生严重堵塞。 3)、在飞灰硬度较大的工况,选用标准壁厚催化剂可以提高运行安全性;催化剂壁厚的选择与飞灰的浓度及飞灰的硬度有关。研究表明,

《工业催化基础》课件(2011)-5

第五章石油化工催化过程 主要内容:催化裂化 催化重整 催化加氢和脱氢 烃类选择氧化 烷基化和歧化反应 烃类异构化和芳构化 催化水合和脱水反应 烯烃的二聚和齐聚 工业聚烯烃催化反应 均相催化反应等 工业催化过程的反应特征和规律 第一节催化裂化 一、裂化反应 1、烷烃裂化为烯烃和较小的烷烃; C n H2n+2 C m H2m(烯烃) + C p H2p+2(烷烃)n=m+p 2、烯烃裂化为较小的烯烃; C n H2n C m H2m(烯烃) + C p H2p(烯烃)n=m+p 、烷基芳烃脱烷基为芳烃和烯烃; ArC n H2n+1 ArH(芳烃) + C n H2n(烯烃) 第一节催化裂化 4、芳烃侧链的断裂; ArC n H2n+1 ArC m H2m-1(带有烯烃侧链的芳烃) + C p H2p+1(烷烃)n=m+p 5、环烷烃裂解为烯烃; C n H2n C m H2m(烯烃) + C p H2p(烯烃)n=m+p 6、氢转移; 环烷烃 + 烯烃芳烃 + 烷烃 7、异构化; 烯烃异构烯烃 烷烃异构烷烃 第一节催化裂化 8、烷基转移; C6H4(CH3)2 + C6H6 C6H5(CH3) + C6H5(CH3) 9、低分子量烯烃的歧化 2H2C=CHCH2CH3 H2C=CHCH3 + H2C=CHCH2CH2CH3 第一节催化裂化 二、催化裂化反应机理 烃与催化剂表面酸中心反应生成活泼碳正离子,活泼碳正离子引发烃的链式反应 碳正离子经过氢转移步骤生成 碳正离子可分解为较小的正碳离子和一个烯烃分子 生成的烯烃比初始的烷烃原料易于变为正碳离子,裂化速度也较快 由于C-C键断裂一般发生在碳正离子的β位置,所以催化裂化可生成大量的C3~C4烃类气体,只有少量的甲烷和乙烷生成。新正碳离子或裂化,或夺得一个氢负离子而生成烷烃分子,或发生异构化、芳构化等反应。 第一节催化裂化

催化剂的制备方法与成型技术简汇

\催化剂的制备方法与成型技术1314100125 13化工本一万立之 摘要:本文介绍了固体催化剂的组成,催化剂制备的一般方法、催化剂制备的新技术,以及催化剂常用成型技术。 关键词:固体催化剂;制备方法;成型技术 目录 摘要 (1) 1 固体催化剂的组成: (1) 2 催化剂的一般制备方法 (1) 2.1 浸渍法 (1) 2.2 沉淀法 (2) 2.3 混合法 (2) 2.4 滚涂法 (3) 2.5 离子交换法 (3) 2.6 热熔融法 (3) 2.7锚定法 (4) 3 催化剂成型技术 (4) 3.1喷雾成型 3.2油柱成型 3.3转动成型 3.4挤条成型 3.5压片成型 4 小结 (5) 参考文献 (6)

0 引言 催化剂又叫触媒。根据国际纯粹与应用化学联合会(IUPAC)于1981年提出的定义,催化剂是一种物质,它能够改变反应的速率而不改变该反应的标准Gibbs自由焓变化。这种作用称为催化作用。涉及催化剂的反应为催化反应。催化作用是指改变化学反应的速度,控制反应方向和产物构成。催化剂具有加快化学反应的速度,但不进入化学反应计量,对反应的选择性,只能加速热力学上可能的反应,且不改变化学平衡的位置的特点。催化剂是催化工艺的灵魂,它决定着催化工艺的水平及其创新程度。因此研究工业催化剂的制备方法以及成型技术具有重要的实际意义。 1 固体催化剂的组成: 固体催化剂主要有活性组分、助剂和载体三部分组成: 1.活性组分:主催化剂,是催化剂中产生活性的部分,没有它催化剂就不能产生催化作用。 2.助剂:本身没有活性或活性很低,少量助剂加到催化剂中,与活性组分产生作用,从而显著改善催化剂的活性和选择性等。 3.载体:载体主要对催化活性组分起机械承载作用,并增加有效催化反应表面、提供适宜的孔结构;提高催化剂的热稳定性和抗毒能力;减少催化剂用量,降低成本。 目前,国内外研究较多的催化剂载体有:SiO2,Al2O3、玻璃纤维网(布)、空心陶瓷球、有机玻璃、光导纤维、天然粘土、泡沫塑料、树脂、活性炭,Y、β、ZSM-5分子筛,SBA-15、MCM-41、LaP04等系列载体。 2 催化剂的一般制备方法 2.1 浸渍法 将含有活性组分(或连同助催化剂组分)的液态(或气态)物质浸载在固态载体表面上。此法的优点为:可使用外形与尺寸合乎要求的载体,省去催化剂成型工序;可选择合适的载体,为催化剂提供所需的宏观结构特性,包括比表面、孔半径、机械强度、导热系数等;负载组分仅仅分布在载体表面上,利用率高,用量少,成本低。广泛用于负载型催化剂的制备,尤其适用于低含量贵金属催化剂。 影响浸渍效果的因素有浸渍溶液本身的性质、载体的结构、浸渍过程的操作条件等。浸渍方法有:①超孔容浸渍法,浸渍溶液体积超过载体微孔能容纳的体积,常在弱吸附的情况下使用;②等孔容浸渍法,浸渍溶液与载体有效微孔容积相等,无多余废液,可省略过滤,便于控制负载量和连续操作;③多次浸渍法,浸渍、干燥、煅烧反复进行多次,直至负载量足够为止,适用于浸载组分的溶解

催化剂设计实例

存档日期:存档编号: 辽宁石油化工大学 专业课程设计 课程名称:_____________ 任课教师:_____________ 完成日期:____年___月___日 专业:_____________ 学号:_____________ 姓名:_____________ 成绩:_____________

提高中光催化水分解光催化材料效率的半导体异质结型催化剂CaFe O4–PbBi2Nb1.9W0.1O9设计 2 一、设想的描述 1、光催化水分解的目的及应用价值。 氢能已被普遍认为是一种理想、无污染的绿色能源,其燃烧值高且燃烧后唯一的产物是水,对环境不会造成任何污染,因此,氢能开发是解决能源危机和环境问题的理想途径。在众多氢能开发的手段和途径中,通过光催化剂,利用太阳能光催化分解水制氢是最为理想和最有前途的手段之一;而开发高效、廉价的实用光催化剂是实现这一过程的关键,也成为当前国际能源材料领域的研究热点之一。 2、光催化分解水反应机理 像其他的催化反应一样,光催化水的分解开始当一个半导体催化剂开始吸收比它的带隙能量强的光子。这些吸收使得处于导带的电子被激发并且在半导体的价电子带产生了空穴就像图1展示的那样。[1]光电子和空穴氧化和还原水,产生了2:1混合着的氢气和氧气通过以下的反应。 氧化反应:H2O + 2h+→ 2H+ + 1/2O2(1) 还原反应:2H+ + 2e?→ H2 (2) 总的反应方程式:H2O → H2 + 1/2O2 (3) 总的反应方程包括四个电子转移(每生成摩尔氧气)通常是通过金属和金属氧化物助催化剂(在图中用cat1和cat2表示)附着在半导体表面。这些助催化剂为催化反应提供电子和反应的活性中心。[2]这个反应包括标准Gibbs自由能变化△G=237KJ/mol(1.23eV每转移一个电子)。实际上,一些超电势可以加速反应,所以半导体能承受的电压应该大于等于1.6-1.8eV在水的分解中。为了吸收更多的可见光的照射,半导体的电压应该小于2.2eV。除此之外,为了还原和氧化水,导带应该位于一个比水的还原电势更负的位置(0V NHE),然而价电子带应该比水的氧化态更正(1.23V NHE)如图1。因此,可见光下水分解的催化材料应该满足这两个关于带隙能量(1.6-1.8eV

催化剂开发与设计

如何利用组合技术设计和开发催化剂?这种技术易于开发新材料和过程优化,近年来将它应用于多相催化剂或催化材料的研究报道日益增多,目的在于发现具有工业应用价值的配方新材料或组合催化剂。 组合催化剂的研制与开发需要几方面的技术?1.设计和使用并行合成法,合成众多有希望的侯选物库;2.建立快速灵敏的鉴定方法,一较短的时间对众多候选物库进行分析评选;3.有希望候选物的优化和候选物库的改进。 绿色化学:又称环境友好化学,环境无害化学,清洁化学,使用化学的技术和方法去减少或消除有害物质的产生和使用。核心:利用化学原理从源头上减少和消除工业生产对环境的污染,按照绿色化学的原则,理想的化工生产方式是:反应物的原子全部转化为期待的最终产物。特点:1.充分利用资源和能源,采用无毒,无害的原料;2.在无毒无害的条件下进行反应,以减少向环境排放的废物;3.提高原子的利用率,力图使所有的原料的原子都被产品所消纳,实现零排放。4.生产出有利于环境保护,社区安全和人体健康的环境友好产品。 流化床反应器:是一种利用气体或液体通过颗粒状固体层而使固体颗粒出于悬浮运动状态,并进行气固相反应过程或液固反应过程的反应器,在有气相系统时,又称沸腾床反应器。 费米能级;衡量固体中电子逸出功的难易程度,它与电子的逸出功直接相关,是一个电子从固体内部拉到外部变成自由电子所需要的能量,此能量用以克服电子的平均位能,Ef就是这种平均位能,从Ef到导带顶间的能量差就是逸出功。 酸催化剂:酸强度越大,催化剂活性越高,酸度越大,催化剂活性也越高。酸强度越大,酸量越小,活性一般也会降低,不同的反应要求的酸中心强度也会不同。例如:c-c断裂,要求的酸中心强度大,此类反应有裂化,异构,烷基化等;c-H断裂:亚欧酸中心较弱,如丁烯:双键异构反应。 合成氨的发展历程:1900年,法国化学家勒夏特列在研究平衡移动的基础上通过理论计算,认为N2和H2在高压下可以直接化合生成氨,接着,他用实验来验证,但在实验过程中发生了爆炸。他没有调查事故发生的原因,而是觉得这个实验有危险,于是放弃了这项研究工作,他的合成氨实验就这样夭折了。后来才查明实验失败的原因,是他所用混合气体中含有O2,在实验过程中H2和O2发生了爆炸的反应。稍后,德国化学家能斯特通过理论计算,认为合成氨是不能进行的。因此人工合成氨的研究又惨遭厄运。后来才发现,他在计算时误用一个热力学数据,以致得到错误的结论。在合成氨研究屡屡受挫的情况下,哈伯知难而进,对合成氨进行全面系统的研究和实验,终于在1908年7月在实验室用N2和H2在600℃、200个大气压下合成氨,产率仅有2%,却也是一项重大突破。当哈伯的工艺流程展示之后,立即引起了早有用战争吞并欧洲称霸世界野心的德国军政要员的高度重视,为了利用哈伯,德国皇帝也屈尊下驾请哈伯出任德国威廉研究所所长之职。而恶魔需要正好迎合了哈伯想成百万富翁的贪婪心理。从1911年到1913年短短的两年内,哈伯不仅提高了合成氨的产率,而且合成了1000吨液氨,并且用它制造出3500吨烈性炸药TNT。1918年哈伯获得诺贝尔化学奖。 工业催化剂设计的三个层析;1.在原子、分子水平上设计催化剂的活性组分和活性位,主要设计催化材料和催化原理;2.在微观适度水平上设计催化剂的粒子大小、形貌和宏观结构;3.在宏观尺度上设计催化反应的传递过程和反应器。 均相络合催化剂:指通过配位作用而使反应物分子活化的催化剂。在这类催化剂中至少含有一个金属离子或原子,无论母体本身是否是络合物,但在起作用时,催化活性中心是以配位结构出现,通过改变金属配位数或配位基,最少有一种反应分子进入配位状态而被活化,从而促进反应的进行。均相络合催化剂在反应体系中可溶成均相的络合物催

相关文档