文档库 最新最全的文档下载
当前位置:文档库 › ADAMS二次开发技术在分布式仿真中的应用

ADAMS二次开发技术在分布式仿真中的应用

ADAMS二次开发技术在分布式仿真中的应用
ADAMS二次开发技术在分布式仿真中的应用

液压挖掘机工作装置在ADAMS中的运动仿真解析

液压挖掘机工作装置在ADAMS中的运动 仿真解析 姓名:XXX 部门:XXX 日期:XXX

液压挖掘机工作装置在ADAMS中的运动仿真解析虚拟样机技术在使用过程中为液压挖掘机设计提供了有效的方法 和手段,在使用过程中受到了条件限制,较少的单位会对运行学进行仿真研究,降低了色剂方案可行性。文章基于动力学仿真软件ADAMS建立起了挖掘机工作装置虚拟系统,更好的完成了前期处理工作,使得建模正确性更高。 液压缸顺序工作的运动仿真分析 1.1.基于尺寸确定 当液压的挖掘机工作装置尺寸以及基本结构都确定下来之后,该挖掘机的工作范围也基本确定下来。简单理解就是挖掘机铲斗齿尖轨迹的包络图得以确定。在包括图中,有些部分区间靠近的比较紧密,有的会深入到挖掘机停点底部下,这一个位置虽然还可以挖掘到,但是在挖掘过程中会引起土壤坍塌,从而影响机械运行稳定,使得施工安全性受到影响。在以上动臂液压缸、斗杆液压缸和铲斗液压缸运动仿真分析过程中,选择的挖掘机工作顺序和方式一般都是在装置范畴内,这里讲解的顺序指的是,挖掘工作进行时,各个油缸都是根据一定顺序进行收缩或者伸出。例如:挖掘进行时,需要先下降动动臂,再收回斗杆,这个动作完成之后,在使用铲斗进行挖掘。 1.2.顺序工作运动仿真实现的路线 仿真路线是,在斗杆液压缸、动臂液压缸、铲斗液压缸上进行设置,一般在不同的时间段内,它的运动驱动函数都不同,需要进行调节处理,使得各缸在相应的工作极限范围内相互运行,这样就可以获得挖掘机的工作范围。可以在液压缸移动副约束处添加移动驱动,改变运动方式, 第 2 页共 5 页

将其更换成位移运动方式。运动的函数输入时,需要注意相匹配的的STEP函数。对液压缸进行STEP函数值设置时,应该满足运动函数需求。当完成了函数值输入之后,在运行状态下可以启动ADAMS软件的仿真模块。 1.3.仿真过程 当工作面从最初的范围逐渐移动时,一般最初的指的是停机状态下。可以适当的对斗杆、铲斗液压缸进行调整,将其保持在全缩的状态中,逐渐对动臂液压缸拉伸,将其缩小到CD弧线上。这个伸缩过程需要得到弧线支撑,基于保障弧线运动轨迹基础上做好控制工作。其中在进行一次姿态调整之后,作业范围会缩小,而且包络图中的各个点会逐渐深入挖掘机的底部,在这个范围上可以实现挖掘,但是可能出现塌陷实现,导致机械无法正常施工。因此,一般除了有条件的挖沟作业之外进行使用,其他施工一般都不会使用。可以在模型中建立起一个处于回转中心轴的三维坐标,将坐标点确定为(608,.0,0.0,1254.3306),这样就可以测量出方向移动值,可以得出这个位置的位移,这样便可以达到最大高度值,其实这个测量方法比较简单,也比较容易掌握。根据曲线变化得出,从得到的曲线中得出最终的数值,可以查看到最大值,平均值以及最小值等。 工作装置模型的运动学仿真分析 2.1.参数范围 运动学仿真中的参数范围确定一般都包含速度、位移以及加速度,这些参数会有一个变化范围。在进行运动学仿真分析中,需要基于ADAMS/Solver求解,就可以得出代数方程。因此,在进行仿真系统自由度确认时,一般自由度的必须为零。如果这个时候会考虑到物体的惯性 第 3 页共 5 页

ADAMS分析实例 超值

ADAMS 分析实例-定轴轮系和行星轮系传动模拟 有一对外啮合渐开线直齿圆柱体齿轮传动.已知ο20,4,25,5021====αmm m z z ,两个齿轮的厚度都是 50mm 。 ⒈ 启动ADAMS 双击桌面上ADAMS/View 的快捷图标,打开ADAMS/View 。在欢迎对话框中选择“Create a new model ”,在模型名 称(Model name )栏中输入:dingzhouluenxi ;在重力名称(Gravity )栏中选择“Earth Normal (-Global Y)”;在单位名称(Units )栏中选择“MMKS –mm,kg,N,s,deg ”。如图1-1所示。 图1-1 欢迎对话框 ⒉ 设置工作环境 对于这个模型,网格间距需要设置成更高的精度以满足要求。在ADAMS/View 菜单栏中,选择设置(Setting )下拉菜单中的工作网格(Working Grid )命令。系统弹出设置工作网格对话框,将网格的尺寸(Size )中的X 和Y 分别设置成750mm 和500mm ,间距(Spacing )中的X 和Y 都设置成50mm 。然后点击“OK ”确定。如图2-1所表示。 用鼠标左键点击选择(Select )图标,控制面板出现在工 具箱中。 用鼠标左键点击动态放大(Dynamic Zoom )图标,在 模型窗口中,点击鼠标左键并按住不放,移动鼠标进行放大或缩小。 ⒊创建齿轮 在ADAMS/View 零件库中选择圆柱体 (Cylinder )图标 ,参数选择为“New Part ”,长度(Length )选择50mm (齿轮的厚度),半径 ( Radius ) 选 择 100mm (1002 5042z m 1=?=?) 。如图3-1所示。 图 2-1 设 置工作网格对话框 图3-1设置圆柱体选项 在ADAMS/View 工作窗口中先用鼠标任意左键选择点(0,0,0)mm ,然后选择点(0,50,0)。则一个圆柱体(PART_2)创建出来。如图3-2所示。 图3-2 创建圆柱体(齿轮) 在ADAMS/View 中位置/方向库中选择位置旋转(Position: Rotate …)图标,在角度(Angle )一栏中输入 90,表示将对象旋转90度。如图3-3所示。 在ADAMS/View 窗口中用鼠标左键选择圆柱体,将出来一个白 色箭头,移动光标,使白色箭头的位置和指向如图3-4所示。 然后点击鼠标左键,旋转后的圆柱体如图3-5所示。

ADAMS二次开发及实例

第11章ADAMS二次开发及实例 ADAMS具有很强的二次开发功能,包括ADAMS/View界面的用户化设计,利用cmd语言实现自动建模和仿真控制,通过编制用户子程序满足用户的某些特定需求,甚至可以拓展ADAMS的功能。 本章主要介绍如何定制用户化界面、宏命令的用法和条件循环命令的用法,以及综合以上功能的应用实例。由于用户子程序的主要内容已在第9章进行了详细介绍,因此本章只对所涉及到的用户子程序编译联接操作过程进行简单介绍。 11.1 定制用户界面 ADAMS/View的界面对象都是以层次结构存储在模型数据库中,类似于零件模型的层次结构。所有定制的界面对象都存储在名为GUI的数据库中,该数据库可以很方便地管理所有的标准界面对象。如图11-1所示。

图11-1 界面对象的层次结构 最上层的界面对象是窗口和对话框。如果主要建模窗口起名为main的话,其数据库全名应为.gui.main。 尽管窗口和对话框看起来很相似,但它们却是很不相同的。窗口通常是在用户工作的时候在屏幕上停留一段时间,而对话框通常是在用户输入数据或是进行访问控制时才会出现。窗口有工具条和菜单栏,窗口和对话框也包含其他的界面对象如按钮,标签等等。 大多数用户化操作涉及到创建对话框或者修改标准对话框。但若不用创建一个完整的用户化界面时,则通常只用修改菜单条和工具栏。

ADAMS所包含界面对象属性如表11-1所示。

在大多数情况下,用户定制界面是指制作用户自己的菜单和对话框。

通常可使用菜单编辑器和对话框编辑器来定制界面,通过它们可以很快地访问并改变大多数界面对象和功能。下面就这两方面的内容作简单介绍。11.1.1 定制菜单 1。菜单编辑器 通过以下菜单路径可以调出菜单编辑器窗口: Main menu==》Tools==》Menu==》Modify…… 菜单编辑器窗口如图11-2所示: 图11-2 菜单编辑窗口 在菜单编辑器窗口中显示的是ADAMS菜单文件,菜单文件是按照一定的语法书写的解释性程序文件,在默认情况下,菜单编辑器窗口里显示的是描述ADAMS标准菜单的菜单文件,通过按照一定的语法规则修改该菜

adams应用实例

牵引制动系统性能的问题 机车车辆的牵引制动性能是关系到车辆运行安全与否的一个重要因素。机车车辆的牵引制动系统的牵引制动性能除了要考虑牵引电机、传动系统、制动系统之外,还要考虑轮轨接触的影响。通过MSC.ADAMS/Rail可以对机车车辆的牵引制动性能进行精确的仿真。利用ADAMS/Rail的模板建模方式可以很方便的建立牵引制动系统的模板,然后建立牵引制动子系统,再与转向架和车体等其它子系统组装成整车模型。在ADAMS/Rail中可以定义轮轨之间非线性的摩擦特性,随着蠕滑率的变化而变化的摩擦系数是进行牵引或制动性能分析至关重要的特性。同时,还可以定义随着轨道长度方向变化的摩擦系数,这样可以分析钢轨表面干燥/潮湿的影响。下面是这方面的应用实例。 实例1:Voith Turbo是德国铁道车辆传动系统的一级供应商,主要开发、制造并组装机械、液压及电动系统。他们提供铁道动车的驱动系统,可使机械系统运转更有效,使车辆运营速度更高,更舒适,并节省能源,减少噪音。(摘自:https://www.wendangku.net/doc/4a5287085.html,) Voith Turbo公司的分析部门需要研究驱动系统和动车系统之间在牵引或制动时的相互耦合作用,如在牵引/制动时的轴系的谐振问题。ADAMS/Rail、ADAMS/Flex、ADAMS/Exchange使得Voith Turbo实现了在其产品开发流程内虚拟产品开发的技术。ADAMS/Rail的模版建模方式使得Voith Turbo能够将其建立的驱动系统模型与其他的供应商提供的车辆模型(包括转向架和车身子系统)联合起来建立一个包含驱动系统的整车模型,非常容易测试配臵不同驱动系统的车辆的动力学性能。其意义在于可以对驱动系统的谐振和稳定性进行研究,并进行优化,以使驱动系统的悬挂装臵所受的冲击加速度不超过许可的范围。 上图所示为考虑传动系统的整车模型在通过湿滑轨面启动时牵引电机的输出扭矩随着仿真时间的变化过程,通过仿真发现了由于轨面的湿滑而导致输出扭矩的振动现象,这一现象是由于机车经过湿滑轨面时产生了打滑现象,引起了传动系统的扭振,所以电机的输出扭矩出现了上下的波动。

Aview使用入门要求

英文资料翻译:ADAMS/View 使用入门
欢迎浏览 MDI 的网址
https://www.wendangku.net/doc/4a5287085.html,

目 录

弹簧挂锁设计问题介绍 1 总论 1 你将学习的内容 1 你将创建的模型 2 设计要求 3 弹簧挂锁的工作原理 3 第二章 建 模 总论 5 建造曲柄和手柄 5 启动 ADAMS/View 并建立一个新的数据文件 熟悉 ADAMS/View 的界面 6 设置工作环境 7 创建设计点 8 建造曲柄(pivot) 9 重新命名曲柄(pivot) 9 建造手柄(handle) 9 用转动副连接各个构件 9 模拟模型的运动 10 观察参数化的效果 10 建造钩子(Hook)和连杆(Slider) 10 建造钩子和连杆 11 用铰链连接各构件 12 模型运动仿真 12 存储你的数据文件 12 第三章 测试初始模型 总论 13 生成地块(Ground Block) 14 加一个 Inplane 虚约束 14 加一个拉压弹簧 15 加一个手柄力 16 弹簧力的测试 16 角度测试 17 生成一个传感器 18 存储模型 18 模型仿真 18 第四章 验证测试结果 总论 20 输入物理样机试验数据 20 用物理样机试验数据建立曲线图 21 编辑曲线图 22 用仿真数据建立曲线图 22 存储模型 23 第一章

6
═════════════════════════════════════════════════════ ADAMS/View 使用入门练习 i

目 录
细化模型 总论 24 建立设计变量 24 重新设置设计变量的值 25 第六章 深化设计 总论 26 人工做一次的方案研究 26 运行 Design Study 26 检查方案研究结果 28 第七章 最优化设计 总论 30 调整设计变量 30 运行最优化设计程序 31 第八章 设计过程自定义 总论 34 建立设计变量 34 制作自定义的对话框 34 给对话框填充内容 34 给滑动条赋予命令 35 测试对话框 36 存储对话框 36 修改手柄力值 36 结束语 37 第五章
═════════════════════════════════════════════════════ ADAMS/View 使用入门练习 ii

adams振动分析实例中文版

1.问题描述 研究太阳能板展开前和卫星或火箭分离前卫星的运行。研究其发射振动环境及其对卫星各部件的影响。 2.待解决的问题 在发射过程中,运载火箭给敏感部分航天器部件以高载荷。每个航天器部件和子系统必学设计成能够承受这些高载荷。这就会带来附加的质量,花费高、降低整体性能。 更好的选择是设计运载火箭适配器(launch vehicle adapter)结构。 这部分,将设计一个(launch vehicle adapter)的隔离mount,以在有效频率范围降低发射震动传到敏感部件的部分。关心的敏感部件在太阳能板上,对70-100HZ的输入很敏感,尤其是垂直于板方向的。 三个bushings将launch vehicle adapter和火箭连接起来。Bushing的刚度和阻尼影响70-100HZ范围传递的震动载荷。所以设计问题如下: 找到运载火箭适配器系统理想刚度和阻尼从而达到以下目的: 传到航天器的垂直加速度不被放大; 70-100HZ传递的水平加速度最小。 3.将要学习的 Step1——build:在adams中已存在的模型上添加输入通道和振动执行器来时系统振动,添加输出通道测量响应。 Step2——test:定义输入范围并运行一个振动分析来获得自由和强迫振动响应。 Step3——review:对自由振动观察模态振型和瞬态响应,对强迫振动,观察整体响应动画,传递函数。 Step4——improve:在横向添加力并检查传递加速度,改变bushing的刚度阻尼并将结果作比较。添加频域测量供后续设计研究和优化使用。 需创建的东西:振动执行器、输入通道、输出通道 完全非线性模型 打开模型在install dir/vibration/examples/tutorial satellite 文件夹下可将其复制到工作木录。 加载Adams/vibration模块:Tools/ plugin Manager. 仿真卫星模型:仿真看其是否工作正常,仿真之前关掉重力,这个仿真太阳能板在太空中的位置。 关掉重力:Settings——Gravity ; 仿真:tool面板——simulation ,设置仿真时间是15s,步长为500;点击,将停在仿真后mode 返回最初的模型状态:点击,把重力打开,这时模型回到振动分析准确的发射状态。 创建输入通道:payload adapter中心创建两个输入通道(全局x和y方向)并为其创建振动执行器。 输入通道给系统提供通道,可以用来:plot频率响应,使用振动执行器 (加载力、位移、速度、加速度)驱动系统。 当以PSD形式输入时一个典型的设计可能需要输入加速度水平是g2/Hz, 我们将采用一个等效力normalized to a value of 1的输入,因为我们只对 不同频率的相对加速度感兴趣。

(完整版)Adams运动仿真例子--起重机的建模和仿真

1起重机的建模和仿真,如下图所示。 1)启动ADAMS 1. 运行ADAMS,选择create a new model; 2. modal name 中命名为lift_mecha; 3. 确认gravity 文本框中是earth normal (-global Y),units文本框中是MKS;ok 4. 选择setting——working grid,在打开的参数设置中,设置size在X和Y方向均为20 m,spacing在X和Y方向均为1m;ok 5. 通过缩放按钮,使窗口显示所有栅格,单击F4打开坐标窗口。 2)建模 1. 查看左下角的坐标系为XY平面 2. 选择setting——icons下的new size图标单位为1

3. 在工具图标中,选择实体建模按钮中的box按钮 4. 设置实体参数; On ground Length :12 Height:4 Depth:8 5. 鼠标点击屏幕上中心坐标处,建立基座部分 6. 继续box建立Mount座架部件,设置参数: New part Length :3 Height:3 Depth: 3.5 设置完毕,在基座右上角建立座架Mount部件 7. 左键点击立体视角按钮,查看模型,座架Mount不在基座中间,调整座架到基座中间部位:

①右键选择主工具箱中的position按钮图标中的move按钮 ②在打开的参数设置对话框中选择Vector,Distance项中输入3m,实现Mount 移至基座中间位置 ③设置完毕,选择座架实体,移动方向箭头按Z轴方向,Distance项中输入2.25m,完成座架的移动 右键选择座架,在快捷菜单中选择rename,命名为Mount 8. 选择setting—working grid 打开栅格设置对话框,在set location中,选择pick 选择Mount.cm座架质心,并选择X轴和Y轴方向,选择完毕,栅格位于座架中心

ADAMS入门详解与实例-第03章 添加约束

第3章添加约束 ∑本章主要内容 (1)定义运动副 (2)创建运动副 (3)添加驱动 ∑本章重点 (1)定义运动副 (2)创建运动副 一个系统通常由多个构件组成,各个构件之间通常存在某些约束关系,即一个构件限制另一个构件的运动,这种约束关系成为运动副或铰链。要模拟系统真实的运动情况,需要根据实际情况抽象出相应的运动副,并在构件之间定义运动副,并在构件间定义运动副。要使系统运动起来,需要在运动副上添加驱动和载荷,以及在构件之间施加载荷。驱动的本质也是一种约束,只不过这种约束是约束两个构件按照确定的规律运动,而运动副约束两个构件的运动规律是相对静止的,系统根据运动副建立的约束方程的右边等于零,而根据驱动建立的约束方程的右边等于驱动规律。 3.1 定义运动副 运动副关联两个构件,并限制两个构件之间的相对运动。定义运动副时,一般都需要选择两个构件,即使在只选择一个构件的情况下,也需要将另一个构件默认为大地,而且是第一个构件相对于第二个构件运动。 在ADAMS/View中的运动分为低副(Joints)、高副(Higher Pair Constraints)和基本副(Joint Primitives)3类。如图3-1所示。 图3-1 运动副及驱动的按钮 3.1.1 低副的定义 低副通常具有的物理意义的约束副其两构件通过面接触而构成的运动副。 在ADAMS中低副分为旋转副、滑移副、圆柱副、球绞副、平面副、万向节(胡克副)、螺杆副、齿轮副、耦合副和固定副。其中齿轮副和耦合副是复合副,是在低副的基础上,将两个低副的运动关联起来的运动副,其余的都是非复合副。两个构件在空间中有6个相对自由度,即3个平面自由度和3个旋转自由度,在两个构件之间加了约束副后。运动副所关联的两个构件之间相对自由就有所减少,表3-1所列是低副约束关系的说明。 表3-1 低副的约束关系

Matlab及adams联合仿真 仿真结果动画的保存及后处理

Matlab与adams联合仿真实例 本实例以matlab为外部控制程序,使用PID算法控制偏心杆的摆动,使偏心杆平衡到指定位置。 1.在adams/view中建立偏心杆模型 图1 偏心杆模型 1)新建模型 如图所示,将Units设置为MMKS。设置自己的Working Directory,这里设置为C:\adams\exercise。点击OK按钮。 图2 新建模型对话框 2)创建连杆 设置连杆参数为Length=400,Width=20,Depth=20,创建如图所示的连杆。 图3 创建连杆 3)创建转动幅 在连杆质心MARKER点处创建转动幅,旋转副的参数设置为1Location和Normal To grid将连杆与大地相连。

图4 创建转动幅 4)创建球体 球体选项设置为Add to part,半径设置为20,单击连杆右侧Marker点,将球体添加到连杆上 图5 创建球体 5)创建单分量力矩 单击Forces>Create a Torque(Single Component)Applied Forces,设置为Space Fixed,Normal to Grid,将Characteristic设置为Constant,勾选Torque并输入0,单击连杆,再点击连杆左侧的Marker点,在连杆上创建一个单分量力矩。 图6 创建单分量力矩

2.模型参数设置 1)创建状态变量 图7 新建状态变量 点击图上所示得按钮,弹出创建状态变量对话框,创建输入状态变量Torque,将Name 修改为.MODEL_1.Torque。 图8 新建输入状态变量Torque 再分别创建状态变量Angel和Velocity(后面所设计控制系统为角度PID控制,反馈变量为Angel,Velocity为Angel对时间求导,不需要变量Velocity,这里设置Velocity是为了展示多个变量的创建)。设置Angel的函数AZ(MARKER_3,MARKER_4)*180/PI,Velocity 的函数为WZ(MARKER_3,MARKER_4)*180/PI。(MARKER_3为连杆上的点,MARKER_4为地面上固定的点)AZ(MARKER_i,MARKER_j)表示MARKER_i绕MARKER_j的Z轴旋转的角度,WZ表示MARKER_i绕MARKER_j的Z轴旋转的角速度。

ADAMS仿真实例

A Report Submitted in Partial Fulfillment of the Requirements for SYDE 461

Contents Contents ii Table of Figures iv 1Project Summary 1 1.1 Problem statement (1) 1.2 Phase 1 goals (2) 2Design Process 4 3Results Achieved 8 3.1 PCB modifications (8) 3.2 Mechanical issues resolved (9) Limit switches (10) Hip motor encoders (11) 3.3 Gait research (12) 3.4 ADAMS simulation (13) 3.5 Communication testing (15) 4Future Plans 17

5Tentative Schedule 19 Appendix A C3 Meeting Minutes 22 C3 meeting #1 (22) C3 meeting #2 (25) C3 meeting #3 (29)

Table of Figures Figure 1: Black-Box System (4) Figure 2: Detailed System Diagram (5) Figure 3: Limit Switch Placement (10) Figure 4: Hip motor encoder (11) Figure 5: ADAMS model of Hexplorer (14)

ADAMS的入门例子---凸轮机构的建模

ADAMS 的入门例子---凸轮机构的建模 前面已经分别举例说明了连杆机构, 齿轮机构的建模,本篇列举一个凸轮机构建模的例 (1)准备。 打开ADAMS 新建模型,并更换模型窗口背景为白色。 * 广買 L, JR ■匚¥疊5 礁 *3 * Pmr" II J Dn.EipkailHn | Pluima | Smutrinn | 础皿’[ % -』丿 C 吨fn 轴C4E (2)创建凸轮。 这里用封闭的样条曲线创建凸轮。 选择样条曲线按钮。 子。 卜」冲 匚半:H 叭 *■潘 fiodn Cww^xi I Unlicna ' Fenn 淞庐看卞 匸3S [ 血偉 _ PiTiqim , [MOt>eLj 二 蛮苛了 [' fHSUfffl iFftSffl 1 h ea4m 4 CwvHrlns -P Motons ¥ -I- fivrnenrfi H UMrSUm. L VwAblEX h 兀* £r?EB h GA h 匸EH SftlDms -■ 卜 口叭曲事 ■+ MOdiar || StJrch * U. bl . I

] Mviiwf | Fmet | ] DewflftEiptoiaticin ] PI岬审| I 丿0UI c d 丐3莎口^护* L2L P J ?Q f o?(ur>i $圖;1,Fiexa^lt Carnirutnan Soolfiifiia 注意细节窗口,选中CLOSED. Gecmet y: Spline Ne>Af Pan H ? ?■ ■ H ■ .... ■、 F SCbsed^ 'i iiirnii imiiin-iiB! Create by picking: | Poirts ▼ 然后在屏幕中点击8个点,形成凸轮的轮廓。在点到8个点后,右键结束创建。注意第一个点是从坐标原点开始的,这样做的目的是为了方便创建后面的推杆。 推杆用一根线段来表示。选择下图所示的按钮,它是用于创建多条连续线段的。 UHiiif CwwiKiDH ■ iWflUflflB I Fnrctt | Elwnnrrif | Dcugn | Phigjn i|| ih ? * o a o 仮)沿y ? 2国由}cP m £4刖4 Fl"i曲B诃hH 匚如祖叫亡ti# F圈K E 注意细节视图,选择是ONE LINE。就是说创建一条直线。 然后在模型窗口中从坐标原点向上拉出一条线段,长短任意。

ADAMS基础知识讲解

新手上路:ADAMS 基础知识讲解(图文并茂) 经过不知道多少个日夜,终于出来一个雏形了,由于时间问题,内容还不全,以后将不断完善,请大家多多支持! 内容大纲如下: 软件介绍 学习书籍 3.软件安装问题 4.常见基础问题 一般问题 有关齿轮副 有关凸轮副 蜗轮蜗杆模拟 有关行星齿轮传动 5.常用函数 函数总体介绍 样条函数:akispl,cubspl 函数 函数 与bistop函数 和sforce函数 ,acf的应用 与CAD数据转换 其他CAD软件 相关 和ADAMS联合仿真篇

一、软件介绍篇 ADAMS是Automatic Dynamics Analysis of Mechanical System缩写,为原MDI公司开发的著名虚拟样机软件。1973年Mr. Michael E. Korybalski取得密西根大学爱娜堡分校(University of Michigan,Ann Arbor)机械工程硕士学历后,受雇于福特汽车担任产品工程师,四年后(1977)与其它等人于美国密执安州爱娜堡镇创立MDI公司(Mechanical Dynamics Inc.)。密西根大学对ADAMS发展具有密不可分的关系,在ADAMS未成熟前,MDI与密西根大学研究学者开发出2D机构分析软件DRAMS,直到1980年第一套3D机构运动分析系统商品化软件,称为ADAMS。2002年3月18日公司并购MDI公司,自此ADAMS并入MSC 产品线名称为(本文仍简称ADAMS)。 ADMAS软件由若干模块组成,分为核心模块、功能扩展模块、专业模块、接口模块、工具箱5类,其中核心模块为ADAMS / View——用户界面模块、ADAMS / Solver——求解器和ADAMS/Postprocessor——专用后处理模块。 ADAMS / View是以用户为中心的交互式图形环境,采用PARASOLID作为实体建模的内核,给用户提供了丰富的零件几何图形库,并且支持布尔运算。同时模块还提供了完整的约束库和力/力矩库,建模工作快速。函数编辑器支持FORTRAN/77、FORTRAN/90中所有函数及ADAMS独有的240余种各类函数。使用ADAMS / View能方便的编辑模型数据,并将模型参数化;用户能方便地进行灵敏度分析和优化设计。ADAMS / View有自己的高级编程语言,具有强大的二次开发功能,用户可实现操作界面的定制。 ADMAS/Solver是ADAMS产品系列中处于心脏地位的仿真“发动机”,能自动形成机械系统模型地动力学方程,提供静力学、运动学和动力学的解算结果。ADMAS/Solver有各种建模和求解选项,可有效解决各种工程应用问题,可对由刚体和柔性体组成的柔性机械系统进行各种仿真分析。用户除输出软件定义的位移、速度、加速度和约束反力外,还可输出自己定义的数据。ADMAS/Solver具有强大的碰撞求解功能,具有强大的二次开发功能,可按用户需求定制求解器,极大满足用户的不同需要。 ADAMS/Postprocessor模块主要用来输出高性能的动画和各种数据曲线,使用户可以方便而快捷地观察、研究ADAMS的仿真结果。该模块既可以在ADAMS / View环境中运行,也可脱离ADAMS / View环境独立运行。 ADAMS是世界上应用广泛且最具有权威性的机械系统动力学仿真分析软件,其全球市场占有率一直保持在50%以上。工程师、设计人员利用ADAMS软件能够建立和测试虚拟样机,实现在计算机上仿真分析复杂机械系统的运动学和动力学性能。 利用ADAMS软件,用户可以快速、方便地创建完全参数化的机械系统几何模型。既可以是在ADMAS软件中直接建造的几何模型,也可以是从其它CAD软件中传过来的造型逼真的几何模型。然后,在几何模型上施加力、力矩和运动激励。最后执行一组与实际状况十分接近的运动仿真测试,所得的测试结果就是机械系统工作过程的实际运动情况。过去需要几星期、甚至几个月才能完成的建造和测试物理样机的工作,现在利用ADAMS软件仅需几个小时就可以完成,并能在物理样机建造前,就可以知道各种设计方案的样机是如何工作的。

基于Adams的凸轮机构运动仿真教程

基于adams的凸轮机构运动仿真 摘要:虚拟样机技术是一种崭新的产品开发技术,其中ADAMS软件是目前最著名的虚拟样机分析软件之一。本文阐述了虚拟样机技术和ADAMS软件的特点及其应用,以凸轮机构为研究对象,对其进行动力学分析。主要运用我们学习过的机械原理等理论知识对机构进行运动学和动力学的相关理论计算;利用ADAMS软件在图形显示方面的优势,采用其基本模块ADAMS/View(界面模块)进行一系列建模、运动分析和动态模拟仿真工作,验证模型的正确性,并对机构在整个周期内的可行性进行计算分析,记录相应信息,输出所需要的位置、速度、加速度等曲线与理论结果比较,充分展现虚拟样机技术的优越性,为虚拟样机技术的深入研究打下基础。 关键词:ADAMS;凸轮机构;运动学分析;仿真 引言 凸轮机构的应用十分广泛,在生产机械中应用凸轮机构可以较容易的实现不同的工作要求。特别是实现间歇式的运动过程!但是,目前对于该类模型的动态仿真很少。本例主要就推程、回程等要求进行预设。力图通过adams实现对该凸轮机构的构建以及后续的仿真,并尝试进行一定的机构优化。 1.研究内容 这里,我主要研究内容为理论凸轮设计在adams中的设计及其动态仿真。后续,根据输出的相应的速度、加速度曲线等将进行一定的设计优化。力图真实还原凸轮机构在设计中的真实过程。 2.工作原理 凸轮机构是由凸轮,从动件和机架三个基本构件组成的高副机构。凸轮是一个具有曲线轮廓或凹槽的构件,一般为主动件,作等速回转运动或往复直线运动。通过对凸轮轮廓进行不同的设计,可以实现从动件不同形式的运动。以此来满足机械设计中对于运动的精细控制过程。 3.动力学建模 (1)建模前期准备 情景设想:某公司需要设计一凸轮机构实现对物料的间歇夹紧过程。其给出相应数据如下。 注:其他的暂 不作要求。 (2)设计

【Adams应用教程】第11章ADAMS二次开发及实例

第11章 ADAMS二次开发及实例 ADAMS具有很强的二次开发功能,包括ADAMS/View界面的用户化设计,利用cmd语言实现自动建模和仿真控制,通过编制用户子程序满足用户的某些特定需求,甚至可以拓展ADAMS的功能。 本章主要介绍如何定制用户化界面、宏命令的用法和条件循环命令的用法,以及综合以上功能的应用实例。由于用户子程序的主要内容已在第9章进行了详细介绍,因此本章只对所涉及到的用户子程序编译联接操作过程进行简单介绍。 11.1 定制用户界面 ADAMS/View的界面对象都是以层次结构存储在模型数据库中,类似于零件模型的层次结构。所有定制的界面对象都存储在名为GUI的数据库中,该数据库可以很方便地管理所有的标准界面对象。如图11-1所示。 图11-1 界面对象的层次结构

机械系统动力学分析及ADAMS应用 最上层的界面对象是窗口和对话框。如果主要建模窗口起名为main的话,其数据库全名应为.gui.main。 尽管窗口和对话框看起来很相似,但它们却是很不相同的。窗口通常是在用户工作的时候在屏幕上停留一段时间,而对话框通常是在用户输入数据或是进行访问控制时才会出现。窗口有工具条和菜单栏,窗口和对话框也包含其他的界面对象如按钮,标签等等。 大多数用户化操作涉及到创建对话框或者修改标准对话框。但若不用创建一个完整的用户化界面时,则通常只用修改菜单条和工具栏。 ADAMS所包含界面对象属性如表11-1所示。 表11-1 ADAMS所包含界面对象属性

第11章ADAMS二次开发及实例 在大多数情况下,用户定制界面是指制作用户自己的菜单和对话框。通常可使用菜单编辑器和对话框编辑器来定制界面,通过它们可以很快地访问并改变大多数界面对象和功能。下面就这两方面的内容作简单介绍。 11.1.1 定制菜单 1。菜单编辑器 通过以下菜单路径可以调出菜单编辑器窗口: Main menu==》Tools==》Menu==》Modify…… 菜单编辑器窗口如图11-2所示: 图11-2 菜单编辑窗口 在菜单编辑器窗口中显示的是ADAMS菜单文件,菜单文件是按照一定的语法书写的解释性程序文件,在默认情况下,菜单编辑器窗口里显示的是描述ADAMS标准菜单的菜单文件,通过按照一定的语法规则修改该菜单文件,就可以得到用户化的菜单。

Nastran生成adams柔性体mnf文件的方法

Nastran生成柔性体mnf文件的方法 (北京诺思多维科技有限公司内部资料https://www.wendangku.net/doc/4a5287085.html,,forengineer@https://www.wendangku.net/doc/4a5287085.html, 未经授权,严禁传播) Nastran软件只是有限元求解器,需要前处理软件生成提交给Nastran计算的模型文件,前处理软件有很多,不论用哪个前处理,输出的Nastran模型文件格式都相同。Nastran原来由多家公司所共同开发,所以有多个Nastran版本,如NEi Nastran、CSA/NASTRAN、UAI/NASTRAN、MSC NASTRAN、SAS/NASTRAN、COSMIC NASTRAN、VR/Nastran和NX/NASTRAN,其中就计算精度和计算速度来讲,NEi Nastran都要领先于其他版本的Nastran和有限元求解器。Nastran的求解功能如下所示: ●LINEAR STATIC(线性静力分析) ●PRESTRESS STATIC(线性预应力静力学分析) ●NONLINEAR STATIC(非线性静力学分析) ●MODAL(模态分析) ●MODAL COMPLEX EIGENVALUE(复特征值分析) ●LINEAR PRESTRESS MODAL(线性预应力模态分析) ●NONLINEAR PRESTRESS MODAL(非线性预应力模态分析) ●LINEAR PRESTRESS COMPLEX EIGENVALUE(线性预应力幅特征值分析) ●NONLINEAR PRESTRESS COMPLEX EIGENVALUE(非线性预应力复特征值分析) ●LINEAR BUCKLING(线性屈曲分析) ●NONLINEAR BUCKLING(非线性屈曲分析) ●DIRECT FREQUENCY RESPONSE(直接法频率响应分析) ●MODAL FREQUENCY RESPONSE(模态法频率响应分析) ●LINEAR PRESTRESS FREQUENCY RESPONSE(线性预应力频率响应分析) ●NONLINEAR PRESTRESS FREQUENCY RESPONSE(非线性预应力频率响应分析) ●DIRECT TRANSIENT RESPONSE(直接法瞬态响应分析) ●MODAL TRANSIENT RESPONSE(模态法瞬态响应分析) ●NONLINEAR TRANSIENT RESPONSE(非线性瞬态响应分析) ●LINEAR PRESTRESS TRANSIENT RESPONSE(线性预应力瞬态响应分析) ●NONLINEAR PRESTRESS TRANSIENT RESPONSE(非线性预应力瞬态响应分析) ●LINEAR STEADY STATE HEAT TRANSFER(线性稳态热传递分析) ●NONLINEAR STEADY STATE HEAT TRANSFER(非线性稳态热传递分析) ●NONLINEAR TRANSIENT HEAT TRANSFER(非线性瞬态热传递分析) Nastran的模型文件是文本文件,可以用文本编辑软件,如记事本、写字板等打开进行编辑,对Nastran 的详细使用可以参考本书作者所著的《Nastran快速入门与实例》一书。Nastran的模型文件有标准的格式,通常由3部分组成,如图5-40所示

工程案例—机器人Adams虚拟实验详细步骤(精)

一.ADAMS软件简介 虚拟样机仿真分析软件ADAMS(Automatic Dynamic Analysis of Mechanical Systems)是对机械系统的运动学与动力学进行仿真的商用软件,由美国MDI (Mechnical Dynamics Inc.)开发,在经历了12个版本后,被美国MSC公司收购。ADAMS集建模、计算和后处理于一体,ADAMS有许多个模块组成,基本模块是View模块和Postprocess模块,通常的机械系统都可以用这两个模块来完成,另外在ADAMS中还针对专业领域而单独开发的一些专用模块和嵌入模块,例如专业模块包括汽车模块ADAMS/Car、发动机模块ADAMS/Engine、火车模块ADAMS/Rail、飞机模块ADAMS/Aircraft等;嵌入模块如振动模块ADAMS/Vibration、耐久性模块ADAMS/Durability、液压模块ADAMS/Hydraulic、控制模块ADAMS/Control和柔性体模块ADAMS/AutoFlex等[3]。 1.1ADAMS软件概述 ADAMS是以计算多体系统动力学(Computational Dynamics of Multibody Systems)为基础,包含多个专业模块和专业领域的虚拟样机开发系统软件,利用它可以建立复杂机械系统的运动学和动力学模型,其模型可以是刚体的,也可以是柔性体,以及刚柔混合体模型。如果在产品的概念设计阶段就采取ADAMS 进行辅助分析,就可以在建造真实的物理样机之前,对产品进行各种性能测试,达到缩短开发周期、降低开发成本的目的。 ADAMS,即机械系统动力学自动分析(Automatic Dynamic Analysis of Mechanical Systems)该软件是美国MDI公司(Mechnical Dynamics Inc.)开发的虚拟样机分析软件。目前,ADAMS已经被全世界各行各业的数百家主要制造商采用。根据1999年机械系统动态分析软件国际市场份额的统计资料,ADAMS 软件销售总额近八千万美元、占据了51%的份额。 ADAMS软件使用交互式图形环境和零件库、约束库、力库,创建完全参数化的机械系统几何模型,其求解器采用多刚体系统动力学理论中的拉格朗日方程方法,建立系统动力学方程,对虚拟机械系统进行静力学、运动学和动力学分析,

液压挖掘机工作装置在ADAMS中的运动仿真解析

液压挖掘机工作装置在ADAMS中的运动仿真解析Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. 编订: ___________________ 审核: ___________________ 单位: ___________________

文件编号:KG-A0-4251-95 液压挖掘机工作装置在ADAMS中的 运动仿真解析 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 虚拟样机技术在使用过程中为液压挖掘机设计提 供了有效的方法和手段,在使用过程中受到了条件限 制,较少的单位会对运行学进行仿真研究,降低了色剂 方案可行性。文章基于动力学仿真软件ADAMS建立起 了挖掘机工作装置虚拟系统,更好的完成了前期处理工 作,使得建模正确性更高。 液压缸顺序工作的运动仿真分析 1. 基于尺寸确定 当液压的挖掘机工作装置尺寸以及基本结构都确 定下来之后,该挖掘机的工作范围也基本确定下来。简 单理解就是挖掘机铲斗齿尖轨迹的包络图得以确定。在 包括图中,有些部分区间靠近的比较紧密,有的会深入

到挖掘机停点底部下,这一个位置虽然还可以挖掘到,但是在挖掘过程中会引起土壤坍塌,从而影响机械运行稳定,使得施工安全性受到影响。在以上动臂液压缸、斗杆液压缸和铲斗液压缸运动仿真分析过程中,选择的挖掘机工作顺序和方式一般都是在装置范畴内,这里讲解的顺序指的是,挖掘工作进行时,各个油缸都是根据一定顺序进行收缩或者伸出。例如: 挖掘进行时,需要先下降动动臂,再收回斗杆,这个动作完成之后,在使用铲斗进行挖掘。 2?顺序工作运动仿真实现的路线 仿真路线是,在斗杆液压缸、动臂液压缸、铲斗液压缸上进行设置,一般在不同的时间段内,它的运动驱动函数都不同,需要进行调节处理,使得各缸在相应的工作极限范围内相互运行,这样就可以获得挖掘机的工作范围。可以在液压缸移动副约束处添加移动驱动,改变运动方式,将其更换成位移运动方式。运动的函数输入时,需要注意相匹配的的STEP函数。对液压缸进

ADAMS实例仿真解析

ADAMS大作业 姓名:柴猛

学号:20107064 目录 绪论 (1) 模型机构 (2) 模型建立 (3) 约束添

加 (9) 运动添加 (11) 模型仿真 (14) 小结 (17) 参考文献 (17)

绪论 大型旋挖钻机是我国近年来引进、发展的桩工机械, 逐步取代了对环境污染严重、效率低下的其它建筑工程桩孔施工机械。旋挖钻机的钻桅变幅机构对整机布局和操纵稳定性影响很大, 它是实现钻孔位置变化及改变钻桅位置状态的关键部件。钻桅是旋挖钻机主执行机构的重要支撑, 其为钻具、调整机构、加压系统等提供结构支撑, 整个桅杆对于保证整机的正常运行和工作质量起着至关重要的作用。 旋挖钻机主要是运用于灌注桩施工,功能为钻孔。而在当今灌注桩施工中旋挖钻机具有优于其它方式的优点: 1.钻井效率高; 2.成孔质量好; 3.环境污染小。 本文主要是对旋挖钻机的钻桅举升装置进行运动仿真分析。

模型机构 钻桅举升装置主要由钻头,钻杆,变幅机构,桅杆以及油缸组成, 工作过程:对孔,下钻,钻进,提钻,回转,卸土六个主要步骤。 对孔:为了保证钻桅的垂直度,采用了平行四边形平动机构,并结合液压杆及回转机构完成孔的定位; 下钻:由于钻具质量大,应控制其下降速度,将钢丝绳与钻杆通过回转接头连接,采用卷扬提升系统控制钻具的升降;钻进:通过动力头驱动扭矩并传递给钻杆,再由钻杆传递给钻钭以实现钻进;提钻:与下钻具有相同的控制系统和运动过程; 回转:由回转机构完成;卸土:通过卷扬系统和连杆的旋转来完成。

模型建立 把实际模型按比例缩 小 一.底座 因为底座不参与运动分析,所以可以用方块代替底座:

相关文档