文档库 最新最全的文档下载
当前位置:文档库 › 证明圆的切线经典例题

证明圆的切线经典例题

证明圆的切线经典例题
证明圆的切线经典例题

证明圆的切线方法及例题

证明圆的切线常用的方法有:

一、若直线l 过⊙O 上某一点A ,证明l 是⊙O 的切线,只需连OA ,证明OA ⊥l 就行了,简称“连半径,证垂直”,难点在于如何证明两线垂直.

例1 如图,在△ABC 中,AB=AC ,以AB 为直径的⊙O 交BC 于D ,交AC 于E ,B 为切点的切线交OD 延长线于F.

求证:EF 与⊙O 相切.

证明:连结OE ,AD.

∵AB 是⊙O 的直径,

∴AD ⊥BC.

又∵AB=BC ,

∴∠3=∠4.

∴BD=DE

,∠1=∠2. 又∵OB=OE ,OF=OF ,

∴△BOF ≌△EOF (SAS ).

∴∠OBF=∠OEF.

∵BF 与⊙O 相切,

∴OB ⊥BF.

∴∠OEF=900.

∴EF 与⊙O 相切.

说明:此题是通过证明三角形全等证明垂直的

⌒ ⌒

例2 如图,AD 是∠BAC 的平分线,P 为BC 延长线上一点,且PA=PD.

求证:PA 与⊙O 相切.

证明一:作直径AE ,连结EC.

∵AD 是∠BAC 的平分线,

∴∠DAB=∠DAC.

∵PA=PD ,

∴∠2=∠1+∠DAC.

∵∠2=∠B+∠DAB ,

∴∠1=∠B.

又∵∠B=∠E ,

∴∠1=∠E

∵AE 是⊙O 的直径,

∴AC ⊥EC ,∠E+∠EAC=900.

∴∠1+∠EAC=900.

即OA ⊥PA.

∴PA 与⊙O 相切.

证明二:延长AD 交⊙O 于E ,连结OA ,OE.

∵AD 是∠BAC 的平分线, ∴BE=CE ,

∴OE ⊥BC.

∴∠E+∠BDE=900.

∵OA=OE ,

∴∠E=∠1.

∵PA=PD ,

∴∠PAD=∠PDA.

又∵∠PDA=∠BDE,

⌒ ⌒

∴∠1+∠PAD=900

即OA⊥PA.

∴PA与⊙O相切

说明:此题是通过证明两角互余,证明垂直的,解题中要注意知识的综合运用. 例3 如图,AB=AC,AB是⊙O的直径,⊙O交BC于D,DM⊥AC于M

求证:DM与⊙O相切.

证明一:连结OD.

∵AB=AC,

∴∠B=∠C.

∵OB=OD,

∴∠1=∠B.

∴∠1=∠C.

∴OD∥AC.

∵DM⊥AC,

∴DM⊥OD.

∴DM与⊙O相切

证明二:连结OD,AD.

∵AB是⊙O的直径,

∴AD⊥BC.

又∵AB=AC,

∴∠1=∠2.

∵DM⊥AC,

∴∠2+∠4=900

∵OA=OD,

∴∠1=∠3.

∴∠3+∠4=900

.

D

即OD ⊥DM. ∴DM 是⊙O 的切线

说明:证明一是通过证平行来证明垂直的.证明二是通过证两角互余证明垂直的,解题中注意充分利用已知及图上已知.

例4 如图,已知:AB 是⊙O 的直径,点C 在⊙O 上,且∠CAB=300,BD=OB ,D 在AB 的延长线上.

求证:DC 是⊙O 的切线

证明:连结OC 、BC.

∵OA=OC ,

∴∠A=∠1=∠300.

∴∠BOC=∠A+∠1=600.

又∵OC=OB ,

∴△OBC 是等边三角形.

∴OB=BC.

∵OB=BD ,

∴OB=BC=BD.

∴OC ⊥CD. ∴DC 是⊙O 的切线. 说明:此题是根据圆周角定理的推论3证明垂直的,此题解法颇多,但这种方法较好.

例5 如图,AB 是⊙O 的直径,CD ⊥AB ,且OA 2=OD ·OP.

求证:PC 是⊙O 的切线.

证明:连结OC

∵OA 2=OD ·OP ,OA=OC ,

∴OC 2=OD ·OP ,

OC

OP OD OC . 又∵∠1=∠1,

∴△OCP ∽△ODC.

∴∠OCP=∠ODC.

∵CD ⊥AB ,

∴∠OCP=900.

∴PC 是⊙O 的切线.

说明:此题是通过证三角形相似证明垂直的

例6 如图,ABCD 是正方形,G 是BC 延长线上一点,AG 交BD 于E ,交CD 于F.

求证:CE 与△CFG 的外接圆相切.

分析:此题图上没有画出△CFG 的外接圆,但△CFG 是直角三角形,圆心在斜边FG 的中点,为此我们取FG 的中点O ,连结OC ,证明CE ⊥OC 即可得解.

证明:取FG 中点O ,连结OC.

∵ABCD 是正方形,

∴BC ⊥CD ,△CFG 是Rt △

∵O 是FG 的中点,

∴O 是Rt △CFG 的外心.

∵OC=OG ,

∴∠3=∠G ,

∵AD ∥BC ,

∴∠G=∠4.

∵AD=CD ,DE=DE ,

∠ADE=∠CDE=450,

∴△ADE ≌△CDE (SAS )

∴∠4=∠1,∠1=∠3.

∵∠2+∠3=900,

∴∠1+∠2=900.

即CE⊥OC.

∴CE与△CFG的外接圆相切

二、若直线l与⊙O没有已知的公共点,又要证明l是⊙O的切线,只需作OA⊥l,A为垂足,证明OA是⊙O的半径就行了,简称:“作垂直;证半径”

例7 如图,AB=AC,D为BC中点,⊙D与AB切于E点.

求证:AC与⊙D相切.

证明一:连结DE,作DF⊥AC,F是垂足.

∵AB是⊙D的切线,

∴DE⊥AB.

∵DF⊥AC,

∴∠DEB=∠DFC=900.

∵AB=AC,

∴∠B=∠C.

又∵BD=CD,

∴△BDE≌△CDF(AAS)

∴DF=DE.

∴F在⊙D上.

∴AC是⊙D的切线

证明二:连结DE,AD,作DF⊥AC,F是垂足.

∵AB与⊙D相切,

∴DE⊥AB.

∵AB=AC,BD=CD,

∴∠1=∠2.

∵DE ⊥AB ,DF ⊥AC ,

∴DE=DF.

∴F 在⊙D 上. ∴AC 与⊙D 相切.

说明:证明一是通过证明三角形全等证明DF=DE 的,证明二是利用角平分线的性质证明DF=DE 的,这类习题多数与角平分线有关.

例8 已知:如图,AC ,BD 与⊙O 切于A 、B ,且AC ∥BD ,若∠COD=900. 求证:CD 是⊙O 的切线.

证明一:连结OA ,OB ,作OE ⊥CD ,E 为垂足.

∵AC ,BD 与⊙O 相切,

∴AC ⊥OA ,BD ⊥OB.

∵AC ∥BD ,

∴∠1+∠2+∠3+∠4=1800.

∵∠COD=900, ∴∠2+∠3=900,∠1+∠4=900.

∵∠4+∠5=900.

∴∠1=∠5.

∴Rt △AOC ∽Rt △BDO.

∴OD OC

OB AC =.

∵OA=OB ,

∴OD OC

OA AC

=.

又∵∠CAO=∠COD=900,

∴△AOC ∽△ODC ,

∴∠1=∠2.

又∵OA ⊥AC ,OE ⊥CD,

O

∴OE=OA.

∴E点在⊙O上.

∴CD是⊙O的切线.

证明二:连结OA,OB,作OE⊥CD于E,延长DO交CA延长线于F.

∵AC,BD与⊙O相切,

∴AC⊥OA,BD⊥OB.

∵AC∥BD,

∴∠F=∠BDO.

又∵OA=OB,

∴△AOF≌△BOD(AAS)

∴OF=OD.

∵∠COD=900,

∴CF=CD,∠1=∠2.

又∵OA⊥AC,OE⊥CD,

∴OE=OA.

∴E点在⊙O上.

∴CD是⊙O的切线.

证明三:连结AO并延长,作OE⊥CD于E,取CD中点F,连结OF.

∵AC与⊙O相切,

∴AC⊥AO.

∵AC∥BD,

∴AO⊥BD.

∵BD与⊙O相切于B,

∴AO的延长线必经过点B.

∴AB是⊙O的直径.

∵AC∥BD,OA=OB,CF=DF,

∴OF ∥AC ,

∴∠1=∠COF.

∵∠COD=900,CF=DF ,

∴CF CD OF ==21.

∴∠2=∠COF.

∴∠1=∠2.

∵OA ⊥AC ,OE ⊥CD ,

∴OE=OA.

∴E 点在⊙O 上. ∴CD 是⊙O 的切线

说明:证明一是利用相似三角形证明∠1=∠2,证明二是利用等腰三角形三线合一证明∠1=∠2.证明三是利用梯形的性质证明∠1=∠2,这种方法必需先证明A 、O 、B 三点共线.

以上介绍的是证明圆的切线常用的两种方法供同学们参考.

圆的切线专题证明题

1、.已知:如图,CB 是⊙O 的直径,BP 是和⊙O 相切于点B 的切线,⊙O 的弦AC 平行于OP . (1)求证:AP 是⊙O 的切线.(2)若∠P=60°,PB=2cm ,求AC . 2、⊿ABC 中,AB=AC ,以AB 为直径作⊙O 交BC 于D ,D E ⊥AC 于E.求证:DE 为⊙O 的切线 3、、如图,AB=BC ,以AB 为直径的⊙O 交AC 于D ,作D E ⊥BC 于E 。(1)求证:DE 为⊙O 的切线(2)作DG ⊥AB 交⊙O 于G ,垂足为F ,∠A=30°.AB=8,求DG 的长 4、如图,AB 为⊙O 的直径,BC 切⊙O 于B ,AC 交⊙O 于P ,CE=BE ,E 在BC 上. 求证:PE 是⊙O 的切线. 5、如图,D 是⊙O 的直径CA 延长线上一点,点 B 在⊙O 上, 且AB =AD =AO .求证:BD 是⊙O 的切线; 6 .如图,在中, ,以 为直径的分别交、于点、,点在的延长 线上,且 求证:直线 是⊙0的切线; O A B P E C

7、如图 9,直线n切⊙O于A,点P为直线n上的一点,直线PO交⊙O于C、B,D在线段AP上, 连接DB,且AD=DB。(1)判断DB与⊙O的位置关系,并说明理由。(2)若AD=1,PB=BO,求弦AC的长 8、如图10,⊙O直径AB=4,P在AB的延长线上,过P作⊙O切线,切点为C,连接AC。(1)若∠CPA=30°,求PC的长(2)若P在AB的延长线上运动,∠CPA的平分线交AC于点M,你认为∠CMP的大小是否发生变化?若变化,请说明理由;若不变化,求出∠CMP的值。 9.如图,MN为⊙O的切线,A为切点,过点A作AP⊥MN,交⊙O的弦BC于点P. 若PA=2cm,PB=5cm,PC=3cm,求⊙O的直径. 10.已知:如图,同心圆O,大圆的弦AB=CD,且AB是小圆的切线,切点为E.求证:CD是小圆的切线. 11、如图,AB为⊙O的直径,AD平分∠BAC交⊙O于点D,DE⊥AC交AC的延长线于点E,FB是⊙O 的切线交AD的延长线于点F. (1)求证:DE是⊙O的切线; (2)若DE=3,⊙O的半径为5,求BF的长. F E D A C O B P M B D C O N

(完整版)证明圆的切线经典例题

证明圆的切线方法及例题 证明圆的切线常用的方法有: 一、若直线I过O O上某一点A,证明I是O O的切线,只需连OA,证明OA丄I 就行了,简称“连半径,证垂直”,难点在于如何证明两线垂直? 例1 如图,在厶ABC中,AB=AC ,以AB为直径的O O交BC于D ,交AC于E, B为切点的切线交0D延长线于F. 求证:EF与O 0相切. 证明:连结OE, AD. ?/ AB是O 0的直径, ??? AD 丄BC. 又??? AB=BC , ???/ 3= / 4. —— ? BD=DE,/ 1 = / 2. 又??? OB=OE , OF=OF , ???△ BOF ◎△ EOF ( SAS) ???/ OBF= / OEF. ??? BF与O O相切, ?OB 丄BF. ???/ OEF=9O°. ?EF与O O相切. 说明:此题是通过证明三角形全等证明垂直的

例2 如图,AD 是/ BAC 的平分线, 求证:PA 与O O 相切. 证明一:作直径AE ,连结EC. ?/ AD 是/ BAC 的平分线, ???/ DAB= / DAC. ?/ PA=PD , ???/ 2= / 1+ / DAC. ???/ 2= / B+ / DAB , ???/ 1 = / B. ?/ AE 是O O 的直径, ? AC 丄 EC ,/ E+ / EAC=90°. ???/ 1 + / EAC=90°. 即OA 丄PA. ? PA 与O O 相切. ?/ PA=PD , ???/ PAD= / PDA. 又???/ PDA= / BDE, 证明二:延长AD 交O O 于E ,连结 ?/ AD 是/ BAC 的平分线, ? BE=CE , ? OE 丄 BC. ???/ E+/ BDE=90 0. ?/ OA=OE , ???/ E=/ 1. P P 为BC 延长线上一点,且 PA=PD.

切线长定理典型练习题

切线长定理典型练习题 一、填空题 1、如图AB 为⊙O 的直径,CA 切⊙O 于点A ,CD=1cm ,DB=3cm ,则AB=______cm 。 2、已知三角形的三边分别为 3、 4、5,则这个三角形的内切圆半径是 。 3、三角形的周长是12,面积是18,那么这个三角形的内切圆半径是 。 二、选择题 1、△ABC 内接于圆O ,AD ⊥BC 于D 交⊙O 于E ,若BD=8cm , CD=4cm ,DE=2cm ,则△ABC 的面积等于( ) A.248cm B.296cm C.2108cm D.232cm 2、正方形的外接圆与内切圆的周长比为( ) A. 1:2 B. 2:1 C. 4:1 D. 3:1 3、在三角形内,与三角形三条边距离相等的点,是这个三角形的 ( ) A.三条中线的交点, B.三条角平分线的交点, C.三条高的交点, D.三边的垂直平分线的交点。 4、△ABC 中,内切圆I 和边BC 、CA 、AB 分别相切于点D 、E 、F ,则∠FDE 与∠A 的关系 是 ( ) A. ∠FDE=21∠A B . ∠FDE+21∠A=180° C . ∠FDE+2 1∠A=90° D . 无法确定 三、解答题: 1、如图,AB 、CD 分别与半圆O 切于点A 、D ,BC 切⊙O 于点E ,若AB =4,CD =9,求⊙O 的半径。 2、等腰三角形的腰长为13cm ,底边长为10 cm ,求它的内切圆的半径。 3、如图,在△ABC 中,∠C=90°,以BC 上一点O 为圆心,以OB 为半径的圆交AB 于点M ,交BC 于点N 。 (1)求证:B A ·BM=BC ·BN ; (2)如果CM 是⊙O 的切线,N 为OC 的中点。当AC=3时,求AB 的值。

圆证明切线的练习题

圆证明切线的练习题 1. 如图,AB是⊙O的直径,⊙O交BC的中点 于D,DE⊥AC,E是垂足. 求证:DE是⊙O的切线;如果AB=5,tan∠B=的长. 2.如图,△ABC中,AB=AE,以AB为直径作⊙O交BE 于C,过C作CD⊥AE于D, 1C ,求CE B DC的延长线与AB的延长线交于点P . 求证:PD是⊙O的切线;若AE=5,BE=6,求DC的长. 3.在Rt△ABC 中,∠C=90 ? , BC=9, CA=12,∠ABC的平分线 BD交AC于点D, DE⊥DB交AB于点E,⊙O是△BDE的外接圆, 交BC于点F 求证:AC是⊙O的切线; 联结EF,求 4.已知:如图,△ABC中,AB=AC=5,BC=6,以AB为直径作⊙O交AC于点D,交BC于点E,EF⊥AC于F交AB的延长线于G. 求证:FG是⊙O的切线;求AD的长.

证明: 1 A EF 的值. AC 5.如图,点A、B、F在?O上,?AFB?30?,OB的延长线交直线AD于点D,过点 B作BC?AD于C,?CBD?60?,连接AB. 求证:AD是?O 的切线; 若AB?6,求阴影部分的面积. 6.已知:如图,AB是⊙O的直径,E是AB延长线上的一点,D是⊙O上的一点,且AD平分∠FAE,ED⊥AF交AF 的延长线于点C.判断直线CE与⊙O的位置关系,并证明你的结论; A 若AF∶FC=5∶3,AE=16,求⊙O的直径AB的长. 7.如图,以等腰?ABC中的腰AB为直径作⊙O,交底边BC于点D.过点D作DE?AC,垂足为E.求证:DE为⊙O的切线; 8.如图,已知R t△ABC,∠ABC=90°,以直角边 AB为直径作O,交斜边AC于点D,连结BD.

《切线性质与判定》练习题

《切线性质与判定》练习题 一.选择题(共12小题) 1.如图,AB是⊙O的弦,PA是⊙O的切线,若∠PAB=40°,则∠AOB=() A.80° B.60° C.40° D.20° 2.如图,AB、AC是⊙O的两条弦,∠A=35°,过C点的切线与OB的延长线交于点D,则∠D的度数为() A.20° B.30° C.35° D.40° 第1题图第2题图第3题图 3.如图,AB是⊙O的直径,点D在AB的延长线上,DC切⊙O于点C,若∠A=25°,则∠D等于()A.20° B.30° C.40° D.50° 4.如图,PA、PB切⊙O于A、B两点,∠APB=80°,C是⊙O上不同于A、B的任一点,则∠ACB等于() A.80° B.50°或130° C.100° D.40° 第4题图第5题图第6题图 5.如图,在平面直角坐标系中,点在第一象限,⊙P与x轴相切于点Q,与y轴交于M(2,0),N(0,8)两点,则点P的坐标是() A.(5,3) B.(3,5)C.(5,4)D.(4,5) 6.如图,PC是⊙O的切线,切点为C,割线PAB过圆心O,交⊙O于点A、B,PC=2,PA=1,则PB的长为() A.5 B.4 C.3 D.2 7.如图,在同心圆中,大圆的弦AB切小圆于点C,AB=8,则圆环的面积是() A.8 B.16 C.16π D.8π 8.如图,PA、PB、CD是⊙O的切线,切点分别是A、B、E,CD分别交PA、PB于C、D两点,若∠APB=60°,则∠COD的度数() A.50° B.60° C.70° D.75° 9.如图,AB是⊙O的直径,下列条件中不能判定直线AT是⊙O的切线的是() A.AB=4,AT=3,BT=5 B.∠B=45°,AB=A T C.∠B=55°,∠TAC=55° D.∠A TC=∠B 第7题图第8题图第9题图 11.如图,AB是⊙O的直径,⊙O交BC的中点于D,DE⊥AC于点E,连接AD,则下列结论正确的个数是() ①AD⊥BC;②∠EDA=∠B;③OA=AC;④DE是⊙O的切线.

中考数学专题圆的切线精华习题

中考数学专题圆的位置关系 第一部分真题精讲 【例1】已知:如图,AB为⊙O的直径,⊙O过AC的中点D,DE⊥BC于点E.(1)求证:DE为⊙O的切线; (2)若DE=2,tan C=1 2 ,求⊙O的直径. A 【思路分析】本题和大兴的那道圆题如出一辙,只不过这两个题的三角形一个是躺着一个是立着,让人怀疑他们是不是串通好了…近年来此类问题特别爱将中点问题放进去一并考察,考生一定要对中点以及中位线所引发的平行等关系非常敏感,尤其不要忘记圆心也是直径的中点这一性质。对于此题来说,自然连接OD,在△ABC中OD就是中位线,平行于BC。所以利用垂直传递关系可证OD⊥DE。至于第二问则重点考察直径所对圆周角是90°这一知识点。利用垂直平分关系得出△ABC是等腰三角形,从而将求AB转化为求BD,从而将圆问题转化成解直角三角形的问题就可以轻松得解。 【解析】(1)证明:联结OD.∵ D为AC中点, O为AB中点, A ∴ OD为△ABC的中位线.∴OD∥BC. ∵ DE⊥BC,∴∠DEC=90°. ∴∠ODE=∠DEC=90°. ∴OD⊥DE于点D. ∴ DE为⊙O的切线. (2)解:联结DB.∵AB为⊙O的直径, ∴∠ADB=90°.∴DB⊥AC.∴∠CDB=90°. ∵ D为AC中点,∴AB=AC. 在Rt△DEC中,∵DE=2 ,tanC=1 2 ,∴EC=4 tan DE C =. (三角函数的意义要记牢) 由勾股定理得:DC= 在Rt △DCB 中, BD=tan DC C ?= BC=5. ∴AB=BC=5. ∴⊙O的直径为5. 【例2】已知:如图,⊙O为ABC ?的外接圆,BC为⊙O的直径,作射线BF,使得BA平分CBF ∠,过点A作AD BF ⊥ 于点D.(1)求证:DA为⊙O的切线;(2)若1 BD=, 1 tan 2 BAD ∠=,求⊙O的半径.

圆的切线判定证明题电子教案

圆的切线判定证明题

仅供学习与交流,如有侵权请联系网站删除 谢谢2 1.如图,在平面直角坐标系xOy 中,⊙O 交x 轴于A 、B 两点,直线FA ⊥x 轴于点A ,点D 在 FA 上,且DO 平行于⊙O 的弦MB ,连DM 并延长交x 轴于点C . (1)判断直线DC 与⊙O 的位置关系,并给出证明; (2)设点D 的坐标为(-2,4),试求MC 的长及直线DC 的解析式. 2.在Rt △ABC 中,BC =9, CA =12,∠ABC 的平分线BD 交AC 与点D , DE ⊥DB 交AB 于点E . (1)设⊙O 是△BDE 的外接圆,求证:AC 是⊙O 的切线; (2)设⊙O 交BC 于点F ,连结EF ,求EF AC 的值. (1)证明: (2)解: 3.如图,AB 是⊙O 的直径,AD 是弦,∠DAB =22.5o,延长AB 到点C ,使得∠ACD =45o. (1)求证:CD 是⊙O 的切线; (2)若AB =22,求BC 的长. 4.如图,四边形ABCD 内接于⊙O ,BD 是O 的直径,AE CD ⊥,垂足为E ,DA 平分 BDE ∠.

仅供学习与交流,如有侵权请联系网站删除 谢谢3 5. 如图,⊙O 是△ABC 的外接圆,且AB =AC ,点D 在弧BC 上运动,过点D DE 交AB 的延长线于点E ,连结AD 、BD . (1)求证:∠ADB =∠E ; (2)当点D 运动到什么位置时,DE 是⊙O 的切线?请说明理由. (3)当AB =5,BC =6时,求⊙O 的半径. 6. 如图,已知AB 为⊙O 的直径,CD 是弦,且AB ⊥CD 于点E .连接AC 、OC 、BC . (1)求证:∠ACO =∠BCD . (2)若E B =8cm ,CD =24cm ,求⊙O 的直径. 7. 如图,AB 是⊙O 的直径,BD 是⊙O 的弦,延长BD 到点C ,使DC =BD ,连结AC ,过点D 作DE ⊥ AC ,垂足为E . (1)求证:AB =AC ; (2)求证:DE 为⊙O 的切线; (3)若⊙O 的半径为5,∠BAC =60°,求DE 的长. E C A

切线长定理—知识讲解

切线长定理—知识讲解 【学习目标】 1.了解切线长定义,掌握切线长定理; 2.了解圆外切四边形定义及性质; 3. 利用切线长定理解决相关的计算和证明. 【要点梳理】 要点一、切线长定理 1.切线长: 经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长. 要点诠释: 切线长是指圆外一点和切点之间的线段的长,不是“切线的长”的简称.切线是直线,而非线段. 2.切线长定理: 从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角. 要点诠释: 切线长定理包含两个结论:线段相等和角相等. 要点二、圆外切四边形的性质 1.圆外切四边形 四边形的四条边都与同一个圆相切,那这个四边形叫做圆的外切四边形. 2.圆外切四边形性质 圆外切四边形的两组对边之和相等. 【典型例题】 类型一、切线长定理 1.(2015秋?湛江校级月考)已知PA、PB分别切⊙O于A、B,E为劣弧AB上一点,过E点的切线交PA于C、交PB于D. (1)若PA=6,求△PCD的周长. (2)若∠P=50°求∠DOC. 【答案与解析】 解:(1)连接OE, ∵P A、PB与圆O相切, ∴PA=PB=6, 同理可得:AC=CE,BD=DE, △PCD的周长=PC+PD+CD=PC+PD+CE+DE=PA+PB=12;

(2)∵PA PB与圆O相切, ∴∠OAP=∠OBP=90°∠P=50°, ∴∠AOB=360°﹣90°﹣90°﹣50°=130°, 在Rt△AOC和Rt△EOC中, , ∴Rt△AOC≌Rt△EOC(HL), ∴∠AOC=∠COE, 同理:∠DOE=∠BOD, ∴∠COD=∠AOB=65°. 【总结升华】本题考查的是切线长定理和全等三角形的判定和性质,掌握切线长定理是解题的关键. 2.如图,△ABC中,∠ACB=90°,以AC为直径的⊙O交AB于D,E为BC中点. 求证:DE是⊙O切线. 【答案与解析】 连结OD、CD,AC是直径,∴OA=OC=OD,∴∠OCD=∠ODC, ∠ADC=90°,∴△CDB是直角三角形. ∵E是BC的中点,∴DE=EB=EC,∴∠ECD=∠EDC,∠ECD+∠OCD=90°, ∴∠EDC+∠ODC=90°,即OD⊥ED, ∴DE是⊙O切线. 【总结升华】自然连接OD,可证OD⊥DE. 举一反三: 【变式】已知:如图,⊙O为ABC ?的外接圆,BC为⊙O的直径,作射线BF,使得BA平分CBF ∠,过点A作AD BF ⊥于点D.求证:DA为⊙O的切线. F C F C 【答案】连接AO. ∵ AO BO =,∴ 23 ∠=∠.

圆的切线专题复习

2、如图,AB 是O O 的直径,/ A = 30°,延长 OE 到D,使BD= OB (OCB 是否是等边三角形?说明你的理由; 圆与特殊角度 1.已知,如图,在△ ADC 中, 长线 上,连接BF,交AD 于点E (1)求证:BF 是eO 的切线; ADC 90,以DC 为直径作半圆eO ,交边AC 于点F ,点B 在CD 的延 BED 2 C . (2)若BF FC , AE 3,求eO 的半径. 3 .如图,AB 是O O 的直径,点 D 在O O 上,OC/ AD 交O O 于E , (1)求证: ; 2)求证:CD 是O O 的切线? 证明: 点F 在CD 延长线上,且 BOC ADf =90 . 4.如图,在O O 中,弦 AE BC 于 D, BC 6 , AD 7 , BAC 45 (1) 求O O 的半径。 (2) 求DE 的长。 19.如图,已知直线 PA 交O O 于A 、B 两点,AE 是O O 的直径,C 为O O 上一 点, 且AC 平分/ PAE 过点C 作CDL PA 于D. (1) 求证:CD 是O O 的切线; (2) 若 AD DG 1: 3, AB=8,求O O 的半径. C B O P ZI C O D A B E

32?已知:如图,AB 是O O 的直径,BD 是O O 的弦,延长BD 到点C,使DGBR 连结AC 过点D 作D 巳 AC,垂足为E . 21?如图,已知 △ ABC ,以BC 为直径,O 为圆心的半圆交 AC 于点F ,点E 为弧CF 的中点,连接BE 交AC 于点 M , AD ABC 勺角平分线,且 AD BE ,垂足为点H . (1) 求证:AB 是半圆O 的切线; (2) 若 AB 3, BC 4,求 BE 的长. 圆与三角函数 22.如图,在△ ABC 中,/ 0=90° , AD 是/ BAC 的平分线, (1) 求证:B0是O O 切线; (2) 若 BB 5, DO3,求 AC 的长. 解: O 是AB 上一点,以OA 为半径的O O 经过点D (1)求证:ABAC ⑵求证:DE 为O O 的切线; A A A

中考复习专题_圆切线证明

中考复习专题 --------圆的切线的判定与性质 知识考点: 1、掌握切线的判定及其性质的综合运用,在涉及切线问题时,常连结过切点的半径,切线的判定常用以下两种方法:一是连半径证垂直,二是作垂线证半径。

2、掌握切线长定理的灵活运用,掌握三角形和多边形的内切圆,三角形的内心。 精典例题: 一、若直线l过⊙O上某一点A,证明l是⊙O的切线,只需连OA,证明OA⊥l就行了,简称“连半径,证垂直”,难点在于如何证明两线垂直. 例1如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于D,交AC于E,B为切点的切线交OD延长线于F. 求证:EF与⊙O相切. 例2 如图,AD是∠BAC的平分线,P为BC延长线上一点,且PA=PD. 求证:PA与⊙O相切. 例3 如图,AB=AC,AB是⊙O的直径,⊙O交BC于D,DM⊥AC于M 求证:DM与⊙O相切.

例4 如图,已知:AB是⊙O的直径,点C在⊙O上,且∠CAB=300,BD=OB,D在AB的延长线上.求证:DC是⊙O的切线 例5 如图,AB是⊙O的直径,CD⊥AB,且OA2=OD·OP. 求证:PC是⊙O的切线. 例6 如图,ABCD是正方形,G是BC延长线上一点,AG交BD于E,交CD于F. 求证:CE与△CFG的外接圆相切.

二、若直线l 与⊙O 没有已知的公共点,又要证明l 是⊙O 的切线,只需作OA ⊥l ,A 为垂足,证明OA 是⊙O 的半径就行了,简称:“作垂直;证半径” 例7 如图,AB=AC ,D 为BC 中点,⊙D 与AB 切于E 点. 求证:AC 与⊙D 相切. 例8 已知:如图,AC ,BD 与⊙O 切于A 、B ,且AC ∥BD ,若∠COD=900 . 求证:CD 是⊙O 的切线. [习题练习] 例1如图,AB 是⊙O 的弦(非直径),C 、D 是AB 上两点,并且OC=OD ,求证:AC=BD . 例2已知:如图,在△ABC 中,AB=AC ,以AB 为直径的⊙O 与BC 交于点D ,与AC?交于点E ,求证:△ DEC

切线长定理及其应用

切线长定理及其应用 一、基础知识总结 1.内切圆和内心 定义: 与三角形各边都相切的圆叫做三角形的内切圆.内切圆的圆心是三角形三条角平分 线的交点,叫做三角形的内心. 总结:判断一个多边形是否有内切圆,就是判断能否找到一个点到各边距离都 相等。 2.直角三角形的内切圆半径与三边关系 (1)一个基本图形; (2)两个结论: 1)四边形OECF 是正方形 2)r=(a+b-c)∕2或r=ab ∕(a+b+c) (3)两个方法 代数法(方程思想);面积法 3.切线长定义:过圆外一点作圆的切线,该点和切点之间的线段长叫做切线长。 4.切线长定理: 从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的交角。 二、典型例题解析 【例1】如图△ABC 的内切圆⊙O 与BC 、CA 、AB 分别相交于点D 、E 、F ,且AB=9 cm,BC=14 cm ,CA=13 cm ,求AF 、BD 、CE 的长 D E F O C B A 112 12902 a b c A B C A B C S s r p a b c p C r a b c ?∠∠∠==++∠=?=+-设、、分别为中、、的对边,面积为,则内切圆半径(),其中(); (),则()

【例2】如图,已知⊙O是△ABC的内切圆,切点为D、 E、F,如果AE=1, CD=2,BF=3,且△ABC的面积为6.求内切圆的半径r. 【例3】如图,以等腰ABC ?中的腰A B为直径作⊙O,交底边BC于点D.过点D作⊥,垂足为E. D E A C (I)求证:D E为⊙O的切线; (II)若⊙O的半径为5,60 ∠= ,求D E的长. B A C 【例4】如上图等边三角形的面积为S,⊙O是它的外接圆,点P是⌒BC的中点.(1)试判断过C所作的⊙O的切线与直线AB是否相交,并证明你的结论;(2)设直线 CP与AB相交于点D,过点B作BE⊥CD垂足为E,证明BE是⊙O的切线,并求△ BDE的面积.

圆切线证明的方法

切线证明法 切线的性质定理: 圆的切线垂直于经过切点的半径 切线的性质定理的推论1: 经过圆心且垂直于切线的直线必经过切点. 切线的性质定理的推论2: 经过切点且垂直于切线的直线必经过圆心 切线的判定定理: 经过半径的外端并且垂直于这条半径的直线是圆的切线. 切线长定理: 从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角。 一、要证明某直线是圆的切线,如果已知直线过圆上的某一个点,那么作出过这一点的半径,证明直线垂直于半径. 【例1】如图1,已知AB 为⊙O 的直径,点D 在AB 的延长线上,BD = OB ,点C 在圆上,∠CAB =30o.求证:DC 是⊙O 的切线. 思路:要想证明DC 是⊙O 的切线,只要我们连接OC ,证明∠OCD =90o即可. 证明:连接OC ,BC . ∵AB 为⊙O 的直径,∴∠ACB =90o. ∵∠CAB =30o,∴BC =21 AB =OB . ∵BD =OB ,∴BC =2 1 OD .∴∠OCD =90o. ∴DC 是⊙O 的切线. 【评析】一定要分清圆的切线的判定定理的条件与结论,特别要注意“经过半径的外端”和“垂直于这条半径”这两个条件缺一不可,否则就不是圆的切线. 【例2】如图2,已知AB 为⊙O 的直径,过点B 作⊙O 的切线BC ,连接 OC ,弦AD ∥OC .求证:CD 是⊙O 的切线. 图1 图2

思路:本题中既有圆的切线是已知条件,又证明另一条直线是圆的切线.也就是既要注意运用圆的切线的性质定理,又要运用圆的切线的判定定理.欲证明 CD 是⊙O 的切线,只要证明∠ODC =90o即可. 证明:连接OD . ∵OC ∥AD ,∴∠1=∠3,∠2=∠4. ∵OA =OD ,∴∠1=∠2.∴∠3=∠4. 又∵OB =OD ,OC =OC , ∴△OBC ≌△ODC .∴∠OBC =∠ODC . ∵BC 是⊙O 的切线,∴∠OBC =90o.∴∠ODC =90o. ∴DC 是⊙O 的切线. 【例3】如图2,已知AB 为⊙O 的直径,C 为⊙O 上一点,AD 和过C 点的切线互相垂直,垂足为D .求证:AC 平分∠DAB . 思路:利用圆的切线的性质——与圆的切线垂直于过切点的半径. 证明:连接OC . ∵CD 是⊙O 的切线,∴OC ⊥CD . ∵AD ⊥CD ,∴OC ∥AD .∴∠1=∠2. ∵OC =OA ,∴∠1=∠3.∴∠2=∠3. ∴AC 平分∠DAB . 【评析】已知一条直线是某圆的切线时,切线的位置一般是确定的.在解决有关圆的切线问题时,辅助线常常是连接圆心与切点,得到半径,那么半径垂直 图3

圆的知识点总结及典型例题.

圆的知识点总结 (一)圆的有关性质 [知识归纳] 1. 圆的有关概念: 圆、圆心、半径、圆的内部、圆的外部、同心圆、等圆; 弦、直径、弦心距、弧、半圆、优弧、劣弧、等弧、弓形、弓形的高; 圆的内接三角形、三角形的外接圆、三角形的外心、圆内接多边形、多边形的外接圆;圆心角、圆周角、圆内接四边形的外角。 2. 圆的对称性 圆是轴对称图形,经过圆心的每一条直线都是它的对称轴,圆有无数条对称轴; 圆是以圆心为对称中心的中心对称图形; 圆具有旋转不变性。 3. 圆的确定 不在同一条直线上的三点确定一个圆。 4. 垂直于弦的直径 垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧; 推论1 (1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧; (3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。 垂径定理及推论1 可理解为一个圆和一条直线具备下面五个条件中的任意两个,就 可推出另外三个:①过圆心;②垂直于弦;③平分弦(不是直径); ④平分弦所对的优弧;⑤平分弦所对的劣弧。 1

推论2圆的两条平行弦所夹的弧相等。 5. 圆心角、弧、弦、弦心距之间的关系 定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等;所对的弦的弦心距相等。 推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。 此定理和推论可以理解成:在同圆或等圆中,满足下面四个条件中的任何一个就能推出另外三个:①两个圆心角相等;②两个圆心角所对的弧相等;③两个圆 心角或两条弧所对的弦相等;④两条弦的弦心距相等。 圆心角的度数等于它所对的弧的度数。 6. 圆周角 定理一条弧所对的圆周角等于它所对的圆心角的一半; 推论1同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧也相等; 推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径; 推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。 圆周角的度数等于它所对的弧的度数的一半。 7. 圆内接四边形的性质 圆内接四边形的对角互补,并且任何一个外角都等于它的内对角。 ※8. 轨迹 轨迹符合某一条件的所有的点组成的图形,叫做符合这个条件的点的轨迹。 (1)平面内,到一定点的距离等于定长的点的轨迹,是以这个定点为圆心,定长为半径的圆; (2)平面内,和已知线段两个端点的距离相等的点的轨迹,是这条线段的垂直平分线; (3)平面内,到已知角两边的距离相等的点的轨迹,是这个角的平分线。 [例题分析] 例1. 已知:如图1,在⊙O中,半径OM⊥弦AB于点N。 图1 ①若AB =,ON=1,求MN的长; ②若半径OM=R,∠AOB=120°,求MN的长。 解:①∵AB =,半径OM⊥AB,∴AN=BN = ∵ON=1,由勾股定理得OA=2 ∴MN=OM-ON=OA-ON=1 ②∵半径OM⊥AB,且∠AOB=120°∴∠AOM=60° 2

圆的切线的证明复习(教案)

专题复习----圆的切线证明教案 积石山县吹麻滩中学秦明礼 一、温习梳理 1、切线的定义:直线和圆有公共点时,这条直线叫圆的切线。 2、切线的性质:圆的切线于过切点的半径。 3、切线的判定:⑴和圆只有公共点的直线是圆的切线。 ⑵到圆心距离半径的直线是圆的切线。 ⑶经过半径的外端并且于这条半径的直线是圆的切线。 4、证明直线与圆相切,一般有两种情况: ⑴已知直线与圆有公共点,则连,证明。 ⑵不知直线与圆有公共点,则作,证明垂线段的长等于。

二、课前检测: 1.如图,AC为⊙O直径,B为AC延长线上的一点,BD交⊙O于点D, ∠BAD=∠B=30° (1)求证:BD是⊙O的切线; (2)请问:BC与BA有什么数量关系?写出这个关系式,并说明理 由。 三、活动于探究: 1.如图,已知CD是△ABC中AB边上的高,以CD为直径的⊙O分别交CA、CB于点E、F,点G是AD的中点.求证:GE是⊙O的切线.

2.已知:如图,在△ABC 中,AB =AC ,以AB 为直径作⊙O 交BC 于D , DE ⊥AC 于E .求证:DE 是⊙O 的切线. 3.如图,点O 在∠APB 的平分线上,⊙O 与PA 相切于点C . (1) 求证:直线PB 与⊙O 相切; (2) PO 的延长线与⊙O 交于点E .若⊙O 的半径为3,PC=4.求弦CE 的长.

4.如图,RT ?ABC 中,∠ABC=90O ,以 AB 为直径作⊙O 交边于点D ,E 是BC 边的中点,连接DE . (1)求证:直线DE 是⊙O 的切线; (2)连接OC 交DE 于点F ,若OF=CF , 求tan ∠ACO 的值. 四、反馈检测: 如图,AB 是⊙O 的直径,⊙O 交BC 的中点于D ,DE ⊥AC . 求证:DE 是⊙O 的切线. 五、小结回顾: 1、本节课我们学习了:圆的切线的判定。 2、证明圆的切线的基本思路是:如果切点已知,需连接圆心做半径,证明半径和要证的切线垂直即可。而要证明垂直则需三种方法——平行、互余、全等。 B C E B A O F D

圆切线证明题

圆切线证明题 1.如图,PA为O O的切线,A为切点,过A作OP的垂线AB,垂足为点C,交O O于点B,延长B0与O O交于点D,与PA的延长线交于点E, 求证:PB为O 0的切线; 2如图,AB=AC AB是O 0的直径,O O交BC于D, DML AC于M 求证:DM与O O相切.

3如图,已知:AB是O 0的直径,点C在O O上,且/ CAB=30, BD=OB D在AB的延长线上 求证:DC是O 0的切线 3.已知:如图,A是LI 0上一点,半径0C的延长线与过点A的直线交于B点,OC=BC , 1 AC OB ? 2 (1)求证:AB是L O的切线;一一 (2 )若丄ACD=45°OC=2,求弦CD 的长. / \ 4.知:如图,在Rt A ABC中,? C=90〃,点O在AB上,以O为圆心,OA长为半径的

圆与AC, AB 分别交于点D, E ,且.CBD A . (1 )判断直线BD 与LI O 的位置关系,并证明你的结论; 已知:如图,在 △ ABC 中, D 是AB 边上一点,圆 0过D B C 三点,.DOC2. ACD 90。 (1) 求证:直线AC 是圆0的切线; ,如图,AB=AC D 为BC 中点,O D 与AB 切于E 点. 求证:AC 与O D 相切. 如图,等腰三角形 ABC 中,AC= BC= 10,AB= 12。以BC 为直径作O O 交AB 于点D,交AC C B

于点G DF 丄AC 垂足为F ,交CB 的延长线于点 E 。 ⑴求证:直线EF 是O O 的切线; 如图,Rt △ ABC 中,N ABC = 90°以AB 为直径作O O 交AC 边于点D ,E 是边BC 的中点,连接DE . (1)求证:直线DE 是O O 的切线; 如图,点 O 在/ APB 的平分线上,O O 与PA 相切于点 C. (1) 求证:直线 PB 与O O 相切; 23.(2008年南充市)如图,已知]的直径』垂直于弦二 于点二,过」点作’ 交;的延长线于点 」,连接并延长交J U 于点;,且_[「__[」 . E B

(完整)初三数学有关圆的经典例题

初三数学 有关圆的经典例题 1. 在半径为的⊙中,弦、的长分别为和,求∠的度数。132O AB AC BAC 分析:根据题意,需要自己画出图形进行解答,在画图时要注意AB 与AC 有不同的位置关系。 解:由题意画图,分AB 、AC 在圆心O 的同侧、异侧两种情况讨论, 当AB 、AC 在圆心O 的异侧时,如下图所示, 过O 作OD ⊥AB 于D ,过O 作OE ⊥AC 于E , ∵,,∴,AB AC AD AE = == = 32322 2 ∵,∴∠,OA OAD AD OA == =132 cos cos ∠OAE AE OA = = 22 ∴∠OAD=30°,∠OAE=45°,故∠BAC=75°, 当AB 、AC 在圆心O 同侧时,如下图所示, 同理可知∠OAD=30°,∠OAE=45°, ∴∠BAC=15° 点拨:本题易出现只画出一种情况,而出现漏解的错误。 例2. 如图:△ABC 的顶点A 、B 在⊙O 上,⊙O 的半径为R ,⊙O 与AC 交于D , 如果点既是的中点,又是边的中点,D AB AC ? (1)求证:△ABC 是直角三角形; ()22 求的值AD BC 分 析 : ()1由为的中点,联想到垂径定理的推论,连结交于,D AB OD AB F ? 则AF=FB ,OD ⊥AB ,可证DF 是△ABC 的中位线;

(2)延长DO 交⊙O 于E ,连接AE ,由于∠DAE=90°,DE ⊥AB ,∴△ADF ∽△,可得·,而,,故可求DAE AD DF DE DF BC DE R AD BC 2 2 122=== 解:(1)证明,作直径DE 交AB 于F ,交圆于E ∵为的中点,∴⊥,D AB AB DE AF FB ? = 又∵AD=DC ∴∥,DF BC DF BC = 12 ∴AB ⊥BC ,∴△ABC 是直角三角形。 (2)解:连结AE ∵DE 是⊙O 的直径 ∴∠DAE=90° 而AB ⊥DE ,∴△ADF ∽△EDA ∴ ,即·AD DE DF AD AD DE DF ==2 ∵,DE R DF BC ==21 2 ∴·,故AD BC R AD BC R 2 2 == 例3. 如图,在⊙O 中,AB=2CD ,那么( ) A A B CD B AB CD ..?>? ?

圆的切线之经典练习题

圆的切线之----- A 班经典练习题 班级 姓名 一、选择题: 1、“圆的切线垂直于经过切点的半径”的逆命题是( ) A 、经过半径外端点的直线是圆的切线; B 、垂直于经过切点的半径的直线是圆的切线; C 、垂直于半径的直线是圆的切线; D 、经过半径的外端并且垂直于这条半径的直线是圆的切线。 2、如图,在Rt △ABC 中,∠A =900,点O 在BC 上,以O 为圆心的⊙O 分别与AB 、AC 相切于E 、F , 若AB =a ,AC =b ,则⊙O 的半径为( ) A 、ab B 、 ab b a + C 、b a ab + D 、2 b a + 3、如图,正方形ABCD 中,AE 切以BC 为直径的半圆于E ,交CD 于F ,则CF ∶FD =( ) A 、1∶2 B 、1∶3 C 、1∶4 D 、2∶5 4、如图,过⊙O 外一点P 作⊙O 的两条切线PA 、PB ,切点分别为A 、B ,连结AB ,在AB 、PB 、PA 上分别取一点D 、E 、F ,使AD =BE ,BD =AF ,连结DE 、DF 、EF ,则∠EDF =( ) A 、900-∠P B 、900- 21∠P C 、1800-∠P D 、450-2 1 ∠P ? 第3题图 O F E D C B A ? 第4题图 P O F E D B A ?第6题图 C O E D B A 二、填空题: 5、已知PA 、PB 是⊙O 的切线,A 、B 是切点,∠APB =780,点C 是⊙O 上异于A 、B 的任一点,则∠ACB = 。 6、如图,AB ⊥BC ,DC ⊥BC ,BC 与以AD 为直径的⊙O 相切于点E ,AB =9,CD =4,则四边形ABCD 的面积为 。 7、如图,⊙O 为Rt △ABC 的内切圆,点D 、E 、F 为切点,若AD =6,BD =4,则△ABC 的面积为 。 8、如图,已知AB 是⊙O 的直径,BC 是和⊙O 相切于点B 的切线,过⊙O 上A 点的直线AD ∥OC , 若OA =2,且AD +OC =6,则CD = 。

证明圆地切线方法

证明圆的切线方法 我们学习了直线和圆的位置关系,就出现了新的一类习题,就是证明一直线是圆的切线.在我们所学的知识围,证明圆的切线常用的方法有: 一、若直线l过⊙O上某一点A,证明l是⊙O的切线,只需连OA,证明OA⊥l 就行了,简称“连半径,证垂直”,难点在于如何证明两线垂直. 例1如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于D,交AC于E,B为切点的切线交OD延长线于F. 求证:EF与⊙O相切. 证明:连结OE,AD. ∵AB是⊙O的直径, ∴AD⊥BC. 又∵AB=BC, ∴∠3=∠4. ⌒⌒ ∴BD=DE,∠1=∠2. 又∵OB=OE,OF=OF, ∴△BOF≌△EOF(SAS). ∴∠OBF=∠OEF. ∵BF与⊙O相切, ∴OB⊥BF.

∴∠OEF=900. ∴EF与⊙O相切. 说明:此题是通过证明三角形全等证明垂直的 例2 如图,AD是∠BAC的平分线,P为BC延长线上一点,且PA=PD. 求证:PA与⊙O相切. 证明一:作直径AE,连结EC. ∵AD是∠BAC的平分线, ∴∠DAB=∠DAC. ∵PA=PD, ∴∠2=∠1+∠DAC. ∵∠2=∠B+∠DAB, ∴∠1=∠B. 又∵∠B=∠E, ∴∠1=∠E ∵AE是⊙O的直径, ∴AC⊥EC,∠E+∠EAC=900.

∴∠1+∠EAC=900. 即OA⊥PA. ∴PA与⊙O相切. 证明二:延长AD交⊙O于E,连结OA,OE. ∵AD是∠BAC的平分线, ⌒⌒ ∴BE=CE, ∴OE⊥BC. ∴∠E+∠BDE=900. ∵OA=OE, ∴∠E=∠1. ∵PA=PD, ∴∠PAD=∠PDA. 又∵∠PDA=∠BDE, ∴∠1+∠PAD=900 即OA⊥PA. ∴PA与⊙O相切 说明:此题是通过证明两角互余,证明垂直的,解题中要注意知识的综合运用. 例3 如图,AB=AC,AB是⊙O的直径,⊙O交BC于D,DM⊥AC于M 求证:DM与⊙O相切.

切线长定理、弦切角定理、切割线定理、相交弦定理

切线长定理、弦切角定理、切割线定理、相交弦定理 以及与圆有关的比例线段 [学习目标] 1.切线长概念 切线长是在经过圆外一点的圆的切线上,这点和切点之间的线段的长度,“切线长”是切线上一条线段的长,具有数量的特征,而“切线”是一条直线,它不可以度量长度。(PA 长) 2.切线长定理 对于切线长定理,应明确(1)若已知圆的两条切线相交,则切线长相等;(2)若已知两条切线平行,则圆上两个切点的连线为直径;(3)经过圆外一点引圆的两条切线,连结两个切点可得到一个等腰三角形;(4)经过圆外一点引圆的两条切线,切线的夹角与过切点的两个半径的夹角互补;(5)圆外一点与圆心的连线,平分过这点向圆引的两条切线所夹的角。 3.弦切角:顶点在圆上,一边和圆相交,另一边和圆相切的角。 直线AB 切⊙O 于P ,PC 、PD 为弦,图中几个弦切角呢?(四个) 4.弦切角定理:弦切角等于其所夹的弧所对的圆周角。 5.弄清和圆有关的角:圆周角,圆心角,弦切角,圆内角,圆外角。 6.遇到圆的切线,可联想“角”弦切角,“线”切线的性质定理及切线长定理。 7.与圆有关的比例线段 定理 图形 已知 结论 证法 相交弦定理 ⊙O 中,AB 、CD 为弦,交于P. PA·PB=PC·PD . 连结AC 、BD ,证:△APC∽△DPB . 相交弦定理的推论 ⊙O 中,AB 为直径,CD⊥AB 于P. PC 2 =PA·PB . (特殊情况) 用相交弦定理.

切割线定理 ⊙O 中,PT 切⊙O 于T ,割线PB 交⊙O 于A PT 2 =PA·PB 连结TA 、TB ,证:△PTB∽△PAT 切割线定理推论 PB 、PD 为⊙O 的两条割线,交⊙O 于A 、C PA·PB=PC·PD 过P 作PT 切⊙O 于T ,用两次切割线定理 (记忆的方法方法) 圆幂定理 ⊙O 中,割线PB 交⊙O 于A ,CD 为弦 P'C·P'D =r 2 -OP'2 PA·PB=OP 2-r 2 r 为⊙O 的半径 延长P'O 交⊙O 于M ,延 长OP'交⊙O 于N ,用相交 弦定理证;过P 作切线用切割线定理勾股定理证 8.圆幂定理:过一定点P 向⊙O 作任一直线,交⊙O 于两点,则自定点P 到两交点的两条线段之积为常数||(R 为圆半径),因为叫做点对于⊙O 的幂,所以将上述定理统称为圆幂定理。 【典型例题】 例1.如图1,正方形ABCD 的边长为1,以BC 为直径。在正方形内作半圆O ,过A 作半圆切线,切点为F ,交CD 于E ,求DE :AE 的值。 图1 解:由切线长定理知:AF =AB =1,EF =CE 设CE 为x ,在Rt△ADE 中,由勾股定理 ∴, ,

初中数学-证明圆的切线经典例题

初中数学-证明圆的切线方法及例题 证明圆的切线常用的方法有: 一、若直线l过⊙O上某一点A,证明l是⊙O的切线,只需连OA,证明OA⊥l 就行了,简称“连半径,证垂直”,难点在于如何证明两线垂直. 例1如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于D,交AC于E,B为切点的切线交OD延长线于F. 求证:EF与⊙O相切. 证明:连结OE,AD. ∵AB是⊙O的直径, ∴AD⊥BC. 又∵AB=BC, ∴∠3=∠4. ⌒⌒ ∴BD=DE,∠1=∠2. 又∵OB=OE,OF=OF, ∴△BOF≌△EOF(SAS). ∴∠OBF=∠OEF. ∵BF与⊙O相切, ∴OB⊥BF. ∴∠OEF=900. ∴EF与⊙O相切. 说明:此题是通过证明三角形全等证明垂直的

例2 如图,AD是∠BAC的平分线,P为BC延长线上一点,且PA=PD. 求证:PA与⊙O相切. 证明一:作直径AE,连结EC. ∵AD是∠BAC的平分线, ∴∠DAB=∠DAC. ∵PA=PD, ∴∠2=∠1+∠DAC. ∵∠2=∠B+∠DAB, ∴∠1=∠B. 又∵∠B=∠E, ∴∠1=∠E ∵AE是⊙O的直径, ∴AC⊥EC,∠E+∠EAC=900. ∴∠1+∠EAC=900. 即OA⊥PA. ∴PA与⊙O相切. 证明二:延长AD交⊙O于E,连结OA,OE. ∵AD是∠BAC的平分线, ⌒⌒ ∴BE=CE, ∴OE⊥BC. ∴∠E+∠BDE=900. ∵OA=OE, ∴∠E=∠1. ∵PA=PD, ∴∠PAD=∠PDA. 又∵∠PDA=∠BDE,

∴∠1+∠PAD=900 即OA⊥PA. ∴PA与⊙O相切 说明:此题是通过证明两角互余,证明垂直的,解题中要注意知识的综合运用. 例3 如图,AB=AC,AB是⊙O的直径,⊙O交BC于D,DM⊥AC于M 求证:DM与⊙O相切. 证明一:连结OD. ∵AB=AC, ∴∠B=∠C. ∵OB=OD, ∴∠1=∠B. ∴∠1=∠C. ∴OD∥AC. ∵DM⊥AC, ∴DM⊥OD. ∴DM与⊙O相切 证明二:连结OD,AD. ∵AB是⊙O的直径, ∴AD⊥BC. 又∵AB=AC, ∴∠1=∠2. ∵DM⊥AC, ∴∠2+∠4=900 ∵OA=OD, ∴∠1=∠3. ∴∠3+∠4=900. D C

相关文档
相关文档 最新文档