文档库

最新最全的文档下载
当前位置:文档库 > 二次函数知识点

二次函数知识点

一、二次函数的解析式有三种常见形式:

①一般式:y=a x2+bx+c(a,b,c是常数,a≠0),该形式的优势是能直接根据解析式知道抛物线与y轴的交点坐标是(0,c);

②顶点式:y=a(x-h)2+k(a,h,k是常数,a≠0),其中(h,k)为顶点坐标,该形式的优势是能直接根据解析式得到抛物线的顶点坐标为(h,k);

③交点式:y=a(x-x1)(x-x2)(a,b,c是常数,a≠0),该形式的优势是能直接根据解析式得到抛物线与x轴的两个交点坐标(x1,0),(x2,0).

二、待定系数法求二次函数解析式

(1)二次函数的解析式有三种常见形式:

①一般式:y=ax2+bx+c(a,b,c是常数,a≠0);②顶点式:y=a(x-h)2+k(a,h,k是常数,a≠0),其中(h,k)为顶点坐标;③交点式:y=a(x-x1)(x-x2)(a,b,c是常数,a≠0);

(2)用待定系数法求二次函数的解析式.

在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.

三、二次函数图象与系数关系

二次函数y=ax2+bx+c(a≠0)

①二次项系数a决定抛物线的开口方向和大小.

当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;IaI还可以决定开口大小,IaI越大开口就越小.

②一次项系数b和二次项系数a共同决定对称轴的位置.

当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)

③.常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c).

④抛物线与x轴交点个数.

△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac <0时,抛物线与x轴没有交点.

四、二次函数图象上点的坐标特征

二次函数y=ax2+bx+c(a≠0)的图象是抛物线,顶点坐标是(-b2a,4ac-b24a).

①抛物线是关于对称轴x=-b2a成轴对称,所以抛物线上的点关于对称轴对称,且都满足函数函数关系式.顶点是抛物线的最高点或最低点.

②抛物线与y轴交点的纵坐标是函数解析中的c值.

③抛物线与x轴的两个交点关于对称轴对称,设两个交点分别是(x1,0),(x2,0),则其对称轴为x=x1+x22.

五、二次函数图像与几何变换

由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一

是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.

六、二次函数的最值

(1)当a>0时,抛物线在对称轴左侧,y随x的增大而减少;在对称轴右侧,y随x的增大而增大,因为图象有最低点,所以函数有最小值,当x=-b2a时,y=4ac-b24a.

(2)当a<0时,抛物线在对称轴左侧,y随x的增大而增大;在对称轴右侧,y随x的增大而减少,因为图象有最高点,所以函数有最大值,当x=-b2a时,y=4ac-b24a.

(3)确定一个二次函数的最值,首先看自变量的取值范围,当自变量取全体实数时,其最值为抛物线顶点坐标的纵坐标;当自变量取某个范围时,要分别求出顶点和函数端点处的函数值,比较这些函数值,从而获得最值.

七、二次函数与X轴交点问题

求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标,令y=0,即ax2+bx+c=0,解关于x的一元二次方程即可求得交点横坐标.

(1)二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的交点与一元二次方程ax2+bx+c=0根之间的关系.

△=b2-4ac决定抛物线与x轴的交点个数.

△=b2-4ac>0时,抛物线与x轴有2个交点;

△=b2-4ac=0时,抛物线与x轴有1个交点;

△=b2-4ac<0时,抛物线与x轴没有交点.

(2)二次函数的交点式:y=a(x-x1)(x-x2)(a,b,c是常数,a≠0),可直接得到抛物线与x轴的交点坐标(x1,0),(x2,0).

八、图象法求一元二次方程的近似根

利用二次函数图象求一元二次方程的近似根的步骤是:

(1)作出函数的图象,并由图象确定方程的解的个数;

(2)由图象与y=h的交点位置确定交点横坐标的范围;

(3)观察图象求得方程的根(由于作图或观察存在误差,由图象求得的根一般是近似的).

九、二次函数与不等式(组)

二次函数y=ax2+bx+c(a、b、c是常数,a≠0)与不等式的关系

①函数值y与某个数值m之间的不等关系,一般要转化成关于x的不等式,解不等式求得自变量x 的取值范围.

②利用两个函数图象在直角坐标系中的上下位置关系求自变量的取值范围,可作图利用交点直观求解,也可把两个函数解析式列成不等式求解.

十、二次函数的应用

(1)利用二次函数解决利润问题

在商品经营活动中,经常会遇到求最大利润,最大销量等问题.解此类题的关键是通过题意,确定出二次函数的解析式,然后确定其最大值,实际问题中自变量x的取值要使实际问题有意义,因此在求二次函数的最值时,一定要注意自变量x的取值范围.

(2)几何图形中的最值问题

几何图形中的二次函数问题常见的有:几何图形中面积的最值,用料的最佳方案以及动态几何中的最值的讨论.

(3)构建二次函数模型解决实际问题

利用二次函数解决抛物线形的隧道、大桥和拱门等实际问题时,要恰当地把这些实际问题中的数据落实到平面直角坐标系中的抛物线上,从而确定抛物线的解析式,通过解析式可解决一些测量问题或其他问题.

十一、二次函数综合题

(1)二次函数图象与其他函数图象相结合问题

解决此类问题时,先根据给定的函数或函数图象判断出系数的符号,然后判断新的函数关系式中系数的符号,再根据系数与图象的位置关系判断出图象特征,则符合所有特征的图象即为正确选项.(2)二次函数与方程、几何知识的综合应用

将函数知识与方程、几何知识有机地结合在一起.这类试题一般难度较大.解这类问题关键是善于将函数问题转化为方程问题,善于利用几何图形的有关性质、定理和二次函数的知识,并注意挖掘题目中的一些隐含条件.

(3)二次函数在实际生活中的应用题

从实际问题中分析变量之间的关系,建立二次函数模型.关键在于观察、分析、创建,建立直角坐标系下的二次函数图象,然后数形结合解决问题,需要我们注意的是自变量及函数的取值范围要使实际问题有意义.