文档库 最新最全的文档下载
当前位置:文档库 › 干热岩供热介绍

干热岩供热介绍

干热岩供热介绍
干热岩供热介绍

干热岩供热介绍

绿色环保。无废气、废液、废渣等任何排放,能量来自地热,治污减霾成效显著。

如果进行规模化推广,在一个采暖季(4个月),以100万平米建筑为例,与燃煤锅炉相比,采用干热岩供热技术:

保护水资源。系统与地下水隔离,仅通过换热器管壁与高温岩层换热,不抽取地下热水,也不使用地下水。

安全可靠。孔径小(200毫米),深度在2000米以下,对建筑地基无任何影响,地下无运动部件;利用地下高温热源供热,系统稳定。

系统寿命长。地下换热器采用J55特种钢材制造,耐腐蚀、耐高温、耐高压,寿命与建筑寿命相当。

高效节能。专用的吸热导热装置与新材料的使用提高了地下吸热导热效率;一个换热孔可以解决1-1.3万平米建筑的供暖。

投资与运行经济。向地下中、深层取热,增加单孔取热量,扩大供热面积,可减少钻孔数,降低开发成本。目前按照一个取热深孔可解决1万~1.3万平方米建筑的供热计算,其运行成本不超过燃煤集中供热的50%。同时地面供暖设备占用空间小,运行灵活,控制简单,维护费用低,使用寿命长,还可一机多用,制冷、供热、供热水。

以长安信息大厦住宅、商场供热项目为例:

项目基本信息:总建筑面积38000平米,其中住宅25000平米,商业13000平米。

(1)钻孔数: 3个,钻孔深: 2000m。

(2)技术特点:在钻孔中放入超长密闭金属换热器,将地下热能导出。

(3)功能:冬季供热。

干热岩技术与熔盐储能技术结合互补供暖方案

干热岩技术与熔盐储能技术结合互补供暖方案 一、各供暖技术说明 1、干热岩供暖技术 干热岩是埋藏于距地表大约2~6k m深处、温度为150℃~650℃、没有水或蒸气的热岩体。干热岩的热能赋存于各种变质岩或 结晶岩类岩体中,较常见的岩石有黑云母片麻岩、花岗岩、花岗闪 长岩等。一般干热岩上覆盖有沉积岩或土等隔热。它所储存的热能 约为已探明的地热资源总量的30%。地壳中“干热岩”所蕴含的能 量相当于全球所有石油、天然气和煤炭所蕴藏能量的30倍。 干热岩供暖的原理比较简单,根据地质情况打出两口深约 2000m至6000m的井,两井相距数百米至千余米。将两井用水力压 裂技术使地下裂隙连通。用高压注水泵向一井内注水,水通过干热 岩层,将干热岩中的热量吸收后,从另一口井中喷出,进入换热器 进行热量交换,换热后的温水再回到注水井中。这样就好象把一个 锅炉放在深部的地下,水在这个系统中不停的循环就可以取出热能 加以利用。 2、熔盐储能供暖技术 熔盐:熔盐也称作熔融盐,通常指无机盐的熔融体。广义的熔 融盐还包括氧化物熔体及熔融有机物。它是世界上公认的最佳高温 传热储热介质,具有储热密度大、价格低、放热工况稳定易调节等 优点。熔盐蓄热供热技术所用的是多种无机盐按不同比例配制而成。 熔盐蓄热:熔盐蓄热式电加热集中供热技术是一项具有自主知 识产权的创新专利技术。该技术利用弃风弃光或谷电加热,通过熔盐 蓄热实现全天的供热,是一种不烧煤不烧气的绿色供热技术,可实 现弃风弃光的就地消纳和电力削峰填谷。项目的核心是掌握熔盐技

术。该项目的工作原理是利用弃风弃光的电能或夜间廉价的低谷电,通过熔盐电加热器将冷盐罐抽出的低温熔盐加热,携带有大量热能 的高温熔盐储存在高温罐中。供热时,热盐泵将高温熔盐输送至熔 盐蒸汽发生器,高温熔盐将热量传递给循环热水,从而产生蒸汽, 蒸汽被送至板式热交换器,实现供暖。换热后的熔盐回流到低温罐,在下一个弃风弃光或低谷电时段经冷盐泵输送至熔盐电加热器进行 蓄热,并完成一个热循环。“尽管国外已经实现了熔盐蓄热在太阳 能热发电中的大规模应用,但将其用于电加热集中供热领域还未见 相关公开报道,我公司提供的“熔盐储能供热”属于国际首创。设 备组成:熔盐储能罐、换热器、自控系统、节能变频控制柜组成。 电能熔盐蓄热在电力低谷期全负荷运行,制得所需要的全部热量。在电力高峰期,热水机组不需要运行,所需热负荷全部由储热 槽来满足。 此策略适于空调使用期短但热负荷量大的场合,如体育场馆、 教堂、舞厅等。 3、干热岩供热和熔盐供热的优缺点比较

干热岩供热介绍

干热岩供热介绍 技术实现 通过钻机向地下一定深度高温干热岩层钻孔,在钻孔中安装一种密闭的金属换热器,借助换热器传导,将地下深处的热能导出,并通过专用设备系统向地面建筑物供热。 特点 普遍适用。钻孔位置的选定比较灵活,一般不受场地条件制约,每个建筑物下都有地热能,开发地热能在地面上具有普遍性。 绿色环保。无废气、废液、废渣等任何排放,能量来自地热,治污减霾成效显著。 如果进行规模化推广,在一个采暖季(4个月),以100万平米建筑为例,与燃煤锅炉相比,采用干热岩供热技术:

保护水资源。系统与地下水隔离,仅通过换热器管壁与高温岩层换热,不抽取地下热水,也不使用地下水。 安全可靠。孔径小(200毫米),深度在2000米以下,对建筑地基无任何影响,地下无运动部件;利用地下高温热源供热,系统稳定。 系统寿命长。地下换热器采用J55特种钢材制造,耐腐蚀、耐高温、耐高压,寿命与建筑寿命相当。 高效节能。专用的吸热导热装置与新材料的使用提高了地下吸热导热效率;一个换热孔可以解决1-1.3万平米建筑的供暖。 投资与运行经济。向地下中、深层取热,增加单孔取热量,扩大供热面积,可减少钻孔数,降低 开发成本。目前按照一个取热深孔可解决1万~1.3万平方米建筑的供热计算,其运行成本不超过燃煤集中供热的50,。同时地面供暖设备占用空间小,运行灵活,控制简单,维护费用低,使用寿命长,还可一机多用,制冷、供热、供热水。 以长安信息大厦住宅、商场供热项目为例: 项目基本信息:总建筑面积38000平米,其中住宅25000平米,商业13000平米。

(1)钻孔数: 3个,钻孔深: 2000m。 (2)技术特点:在钻孔中放入超长密闭金属换热器,将地下热能导出。 (3)功能:冬季供热。 本计算采用《实用供热空调设计手册(第二版)》第18章中提出的当量满负荷运行时间法,计 算只对比冬季供暖时系统的总能耗。 总建筑面积38000平方米,能耗计算针对其25000平方米住宅。冬季供暖采用干热岩供热技术,干热岩机组累计运行时间TB=16×30×4=1920h/a。 (1)根据《实用供热空调设计手册(第二版)》上册第1432页表18.3-1,可知住宅当量满负荷运行时间。因此负荷率为:

干热岩在辽沈地区冬季供暖技术分析_赵俭斌

干热岩在辽沈地区冬季供暖技术分析 赵俭斌1,冯晓燕1,晏可奇2,闫燕燕1 (1.沈阳建筑大学土木工程学院,沈阳 110168;2.辽宁地质工程勘察施工集团公司,沈阳 110032) 摘要:辽沈地区供暖是一个永恒的需求,以往的传统供暖方式不利于资源的可持续发展,本文立足于干热岩能 源的优势初步研究设计出开发深层地热有利的采热系统,同时对干热岩利用过程中的关键技术进行分析,高温 高压下岩石的导热性能及岩石和水的热交换能力、井管材料及保温技术是实现干热岩供暖的关键。因此,如果 干热岩供暖关键技术得以解决将对干热岩成功的用于寒区供暖带来技术上的突破。 关键词:岩土工程;干热岩;寒区供暖;关键技术;岩石导热性 The Technical Analysis on the Hot Dry Rock in LiaoShen Area ZHAO Jianbin1,2, FENG Xiaoyan2, YAN Keqi 3, YAN Yanyan2 (1.Shenyang Jianzhu University, Shenyang 110168, China; 2.Geological Prospecting Construction Project Group of Liaoning, Shenyang 110032, China) Abstract: Based on its advantages the paper will design a heated system more effective than the technology of shallow ground source heat pump, meanwhile analysis the key technology during exploiting Hot Dry Rock progress, then the thermal conductivity of rock under high temperature and high pressure and the heat transfer ability between rock and water as well as pipe material and insulation technology, all of which will realize the key technology about Hot Dry Rock heating. In conclusion, if the key technology on heated system would be settled, it will bring breakthrough about using Hot Dry Rock on heated supply in cold areas. Keywords: Hot Dry Rock (HDR), heating in cold area, key technology, high temperature high pressure, rock thermal conductivity 1 引言 目前,我国北方地区冬季采暖主要有三种形式:第一是基于热电联产的热网;第二是独立的小区锅炉房供暖;第三是近年来兴起的地源热泵采暖。而其它一些小的方式如燃油、电取暖等应用的不多。但是,不管哪种方式都以消耗煤、电、油等资源为前提,特别是煤、油资源为化石能源,为不可再生资源,在燃烧这些化石资源的同时,排放的二氧化碳和粉尘将对大气造成污染。这与国家倡导的建设“资源节约型、环境友好型”社会的方针格格不入,而寒区冬季供暖是必不可少的。 基金项目:2010沈阳市重大开发策划项目(SFGW10-5)建设部项目。 作者简介:赵俭斌,男,沈阳建筑大学土木工程学院教授,从事岩土工程研究;E-mail: cejbzhao@https://www.wendangku.net/doc/4510597048.html,

第十一章 集中供热系统的热源 第一节

济南铁道职业技术学院 教师授课教案 20____/20____学年第____学期课程供热工程 1、了解热电厂的分类、基本原理; 2、掌握区域锅炉房分类、特点; 3、掌握集中供热系统的其它热源型式,特点。 旧知复习:换热站、换热器 重点难点: 重点:集中供热系统的其它热源型式,特点。 教学过程:(包括主要教学环节、时间分配) 一、复习(5分钟) 二、新课 1、热电厂(15分钟) 2、区域锅炉房(25分钟) 3、集中供热系统的其他热源型式(40分钟) 三、小结及作业(5分钟) 课后作业: 集中供热系统的热源型式的特点,适用范围。 教学后记: 只介绍一些分类形式及特点等,对原理性内容不介绍。 任课教师教研室主任

十一章 集中供热系统的热源 在热能供应范畴中,凡是将天然或人造的含能形态转化为符合供热系统要求参数的热能设备与装置,通称为热源。 目前采用的热源型式有:热电厂、区域锅炉房、核能、地热、工业余热和太阳能等,最广泛应用的热源形式是热电厂和区域锅炉房。 第一节 热电厂 热电厂是联合生产电能和热能的发电厂。 联合生产电能和热能的方式,取决于采用供热汽轮机的型式。 供热汽轮机主要主要分两大类型: 1. 背压式汽轮机 排气压力高于大气压力的汽轮机称为背压式汽轮机。 2. 抽汽式汽轮机 从汽轮机中间抽汽对外供热的汽轮机称为抽汽式汽轮机。这种类型的机组,有带一个可调式抽汽口的机组(通称为单抽式供热汽轮机)和带高、低压可调式抽汽口的机组(通称为双抽式供热汽轮机)两种型式。 第二节 区域锅炉房 区域锅炉房是城镇集中供应热能的热源。 虽然它的效率低于热电厂的热能利用效率,但区域锅炉房中使用燃煤锅炉的热效率也能达到80%以上,比分散的小型锅炉房的热效率(50%-60%)高得多。 区域锅炉房与热电厂相比,其投资低,建设周期短,厂址选择容易。 区域锅炉房根据其制备热媒的种类不同,分为蒸汽锅炉房和热水锅炉房。 一、 蒸汽锅炉房 可分为两种主要型式。 1. 向集中供热系统的所有热 用户供应蒸汽的型式。 2. 在蒸汽锅炉房内同时制备 蒸汽和热水热媒的型式。 通常蒸汽供应生产工艺用热,热 水作为热媒,供应供暖、通风等热用户。 根据在蒸汽锅炉房集中制备热水的方式不同,有: 水管

我国地热供暖的现状及展望_郭森

第48卷第4期2015年(总198期) 西 北 地 质 NORTHWESTERN GEOLOGY Vol.48 No.4 2015(Sum198 ) 收稿日期:2015-04-20;修回日期:2015-07- 01 基金项目: 国家自然基金项目“沉积盆地深层孔隙型地下热水回灌堵塞机理研究”(41472221) 作者简介:郭森(1990-),男,山东菏泽人,硕士,主要从事地热、同位素水文地球化学研究。E-mail:1101941239@qq .com我国地热供暖的现状及展望 郭森,马致远, 李劲彬,裴蓓,郑磊,李修成,张雪莲(长安大学环境科学与工程学院,陕西西安 71 0054)摘 要:地热资源作为一种重要的清洁能源,在治污降霾、改变能源结构、提倡生态文明的今天的作用日益凸显。我国大部分地区主要利用化石燃料供暖,污染较严重,供暖形势严峻。而利用地热能供暖是地热资源最直接的利用方式。我国利用地热供暖已有30多年的历史,在天津、咸阳等地利用地热供暖已经初具规模。但是受限于技术、成本等条件制约,地热供暖在我国总供暖面积中占的比例依然很小,而且在利用过程中浪费比较严重,利用地热供暖在我国还有很大的发展空间。目前,北方地区地热供暖以地热流体供暖为主,地源热泵供暖发展迅速,干热岩供暖虽然还处于实验阶段但是前景广阔。笔者在对地热流体、地源热泵、干热岩供暖的历史、现状及前景分析的基础上,提出了我国未来利用地热供暖思考及建议。关键词:地热能;供暖;水热型地热;地源热泵;干热岩 中图分类号:P641.12 文献标志码:A 文章编号:1009-6248(2015)04-0204- 06Status and Prospects of Geothermal Heating  in ChinaGUO Sen,MA Zhiyuan,LI Jinbin,PEI Bei,ZHENG Lei,LI Xiucheng ,ZHANG Xuelian(College of Environmental Science and Engineering ,Chang'an University,Xi’an 710054,Shaanxi,China)Abstract:As an important kind of clean energy,the application of geothermal resources is be-coming more and more widely in China,especially in the case of heating.Using geothermal re-sources to heating can reduce the pollution and help to change the energy structure.Most areas inChina mainly use of fossil fuels for heating,but the pollution is serious and the heating situationis grim.But,the geothermal heating is the most direct using ways of geothermal resources.Thehistory of using geothermal heating is more than 30years in China,and the using of geothermalheating has begun to take shape in Tianjin and Xianyang.But it is limited by technical and costconstraints,the geothermal heating accounts for China's total heating area is still small.And thewaste is serious in the process of using,so there is big development space for the using of geo-thermal heating in ourcountry.At present,the geothermal fluid heating(hot water heating)isthe main heating way in China,the heating method of using ground-source heat pump is becomingpopular.Although the hot dry rock heating is still in experimental stage,but it has a great spreadfuture.After analyzing  the history,current situation and prospects of geothermal fluid heating,

柏乡干热岩供热方案及经济分析

柏乡县干热岩开发利用方案及经济分析 一、干热岩供暖发展背景及应用概况 国内干热岩技术开发最初主要是用于发电。由于干热岩发电系统技术难度大,对地质条件要求苛刻,目前全球只有少数几个干热岩发电厂,利用干热岩发电仍处在探索阶段。因此,我国从2015年开始研究干热岩的综合利用,其中利用干热岩供暖是研究方向之一。 国内研究干热岩供暖系统较为领先的高校为清华大学和西安交通大学,实际应用的案例主要在陕西西安。 二、干热岩供暖系统简介 1多井连通式 从地表往地下干热岩中打一眼井(注入井),通过人工高压注水到井底,高压水流使岩层中原有的微小裂隙强行张开或受冷水冷缩产生新的裂隙,随着低温水的不断注入,裂缝不断增加、扩大,并相互连通,最终形成一个大致呈面状的人工干热岩热储构造,在距注入井合理的位置处钻几口井(一般为两口)并贯通人工热储构造,生产井的地上部分连接真空泵使其产生负压,热交换后的高温水沿着生产井上升到地面通过换热器后实现供暖。 2.单井取热式 通过钻机向地下一定深度高温干热岩层钻孔,在钻孔中安装一种密闭的金属换热器(地下换热器采用J55特种钢材制造,耐腐蚀、耐高温、耐高压),借助换热器传导,将地下深处的热能导出,配合热泵提升温度后到用户端供暖。 干热岩系统1图例干热岩系统2图例 第一种技术难度大并且不成熟,技术研发目的主要是针对发电,因此目前基本都是采用第二种技术进行供暖,即利用套管将深层地下热量带上来,用热泵提升到合适温度后进行供暖。 地埋管系统的出水温度及流量需要根据井的相关参数确定,最终以单口井的取热功率最大为目的进行设计。 三、供热方案: 根据目前柏乡县县城内需供暖面积及热力规划(尚未编制,暂做方案),除生物质热电联产低真空供热外,拟用干热岩供热方式作为补充热源。以保障柏乡县城区供热连续性及达标供热。具体方案:

(完整版)干热岩及其开发利用(1)

干热岩及其开发利用(1) 胡经国 一、寻找新能源——干热岩 1、人类积极寻找新能源 为了解决能源短缺问题世界各国都在积极寻找新能源。人们因地制宜,在地势平坦的地区建设核电站;在沿海城市推进潮汐发电;在偏远山区架设风力发电机;在阳光充足的地方安装一片片太阳能电池板实施光伏发电,等等。这些新型能源大家似乎已经耳熟能详。但是实际上,在地球深处还隐藏着一种巨大的能源。它存在于那些不起眼的岩石之中。这种利用岩石中的热能发电的技术被称为干热岩发电。 中国从1993年起就从能源净出口国变成了净进口国。也就是说,中国国内能源产出已经供不应求,从此走上了从别的国家进口能源的不归路。 2、干热岩发电技术的提出 人类在目睹了火山喷发的巨大能量之后,就一直在寻找开发这种古老而巨大的能量的方法。经过多年的寻寻觅觅,人们终于找到了一种利用干热岩发电的技术。它是在1970年由美国人莫顿和史密斯提出;但是,它的提出并没有引起多少人的注意。甚至到了科学技术迅猛发展的2018年,它的潜在价值也没有被很好地发掘。 3、石化和常规清洁能源的局限性 随着日本地震引发福岛核电站事故,核电发展在全球降温,而采用化石能源也越来越受到碳减排的制约。发展清洁能源成为各国加快发展的关键。在中国,随着国民经济高速发展,目前碳排放量已居世界首位。继续增大碳排放量必然受到西方大国的反制。因此,发展清洁能源是为中国经济高速发展提供能源保障的必由之路。目前,虽然太阳能、风能、水能都是清洁能源,但是水能经过几十年持续开发,继续发展潜力有限;而风能、光能的高成本仍是制约其进一步发展的关键。在这种形势下,开发地热资源成为一种相对经济、可行的途径。在地热能中,干热岩是一种分布最为广泛、热储量最大的一类能源载体。 随着人类对能源需求的不断增长,全世界的人们越来越担心传统矿物能源大量使用带来的资源枯竭问题和对环境的污染问题,并开始关注可再生且无污染的能源,如太阳能、风能、水能等。但是,这些可再生能源的开发利用受诸如气候等外界环境制约,不能稳定生产。尤其是资源丰富的水力发电,不仅受降雨量变化影响,而且还对流域生态环境产生不同程度的破坏。因此,各国科学家都在不断探索,努力寻找各种不受外界环境影响、又对环境破坏和污染很小的新能源。发达国家试验研究表明,利用资源极为丰富的干热岩发电,几乎不受外界环境影响,几乎不对人类环境产生污染和破坏。而且干热岩这种能源取之不尽、用之不竭,被证明是对人类十分友好的未来洁净新能源。目前,国

我国北方地热供暖的现状、问题及展望

我国地热供暖的现状、问题及展望 马致远1,郭森1,李劲彬1,裴蓓1,郑磊1,李修成1,张雪莲1 (1. 长安大学环境科学与工程学院,西安 710054) 摘要;地热资源作为一种重要的清洁能源,在治污降霾,改变能源结构,提倡生态文明的今天,在我国北方供暖方面的作用日益凸显。目前我国北方地区地热供暖以地热流体供暖为主,同时利用地源热泵和干热岩供暖也逐渐普及。本文在对地热流体、地源热泵、干热岩供暖的历史、现状及前景分析的基础上提出了我国北方未来利用地热供暖思考及建议。 关键词:地热能,供暖,地热流体,地源热泵,干热岩 0引言 雾霾加重,化石能源的枯竭,使清洁可再生能源的应用出现了一个新的高潮。党的十八大报告中已将生态环境建设纳入五位一体的国家战略层面。地热一个非常重要的清洁能源,却一度被忽视[1]。地热能分为浅热(地源热泵)、水热和干热(干热岩)3种主要类型[2]中国是地热资源最丰富的国家,中国地热资源占世界的六分之一,但是目前开发利用程地热资源度较低,开发潜力巨大,发展地热刻不容缓。而利用地热资源进行供暖,是对地热资源最直接的利用方式。利用地热采暖,供热,不仅能优化产业结构并且能大量减少有害物质的排放,减轻雾霾污染有着非常重要的作用[3]。鉴于此,本文将归纳总结迄今为止我国地热供暖的现状及问题,为将来地热能的可持续开发提供一些建议。1我国水热型地热供暖的现状、问题和前景 1.1我国水热型地热供暖现状 水热型地热供暖是指利用开采井抽取地下热水,通过换热站,将热量传递给供热管网循环水,输送至用户。我国开发利用水热型地热供暖已有上千年的历史,改革开放以后尤其是近年来,水热型地热供暖的开发利用在规模、深度和广度上都有很大发展,目前我国水热型地热采暖的利用总量已位居世界首位[3]。天津和咸阳是利用水热型地热进行供暖的典型城市。目前,天津是我国利用地热供暖规模最大的城市,全市140个地热站,天津每年地热水开采量为2600万吨、地热供暖面积达到1200万平方米,约占全市集中供暖总面积的10%,占全国地热供暖总面积的50%[4]。咸阳市孔隙热储处于陕西关中断陷型沉积盆地北部,开采1600-4000米深度新近系蓝田灞河组地下热水,曾被命名为全国首家“中国地热城”及“国家级地热资源开发利用示范区”。截至目前,已开凿深层孔隙型地热井45眼,地热水年开采量400万立方米,地热供暖面积达到260万平方米[5-6]。在技术层面上我们从最直接的简单利用,设备陈旧,腐蚀严重,到如今的梯级利用配套专用设备,完善的回灌系统,先进的测试手段,网络化自动管理信息系统,以及资源保证和评价体系的建立,使得我国在地热资源开发利用水平在不断的与世界水平靠近。 1.2水热型地热供暖的优势 ①水热型地热供暖供热量稳定,供热面积大,单井供暖面积在20万平米左右。 ②初始费用与运营费用要远低于集中供暖和燃气 锅炉供暖。其初始投资在100元/m2,运营成本在12元/m2。 ③环境效益巨大,尤其是在污染严重的今天,利用地热供暖可以有效地减少CO 2 的排放,降低雾霾污染,以咸阳为例咸阳每年减少煤燃烧30万吨,减少排放废气18000吨[7]。 1.3我国水热型地热供暖的问题及解决方法 由于地热水的过量开采,造成地下热水水位、水温、水压下降甚至部分开采井变成干井。地热水利用不充分,例如咸阳部分地热井的尾水排放温度在60℃以上不仅造成了资源的巨大浪费,同时会造成环境污染。地热水开发利用规范较少,部分地区盲目打井,破坏了地下热水赋存环境,严重干扰地下热水的自然更新。 解决这些问题的关键措施就是进行地热尾水回灌,地热尾水回灌不仅能够避免地热尾水排放污染,还能够提高地下热水水位,实现地下热水可持续开采,形成地下热水开发的良性循环[6-8]。中国目前的地热尾水回灌可分为两种,一种为基岩裂隙型热储回灌,包括灰岩和白云岩;另一种为孔隙型砂岩热储,主要为新近纪和古近纪[9]。基岩裂隙型热储地热尾水回灌效果普遍较好,以天津为例其主要开采层层舞迷山组地热回灌率为33.4%,而奥陶系热储层由于有异层采灌致使年度回灌量大于开采量,2006年至2008年的回灌率分别为122.5%,147.9%,138.8%,在回灌井附近热储层水位埋深明显高于其他区域,且水位年降幅呈逐年减小之势[4]。较之基岩裂隙型地热尾水回灌,孔隙型砂岩地下热水的回灌面临地压增

地球能量与干热岩型地热能

地球能量与干热岩型地热能 胡经国 一、地球的能量 地球并不是一个封闭体系,它每时每刻都在宇宙中运动着。同时,它也在宇宙中进行着能量与物质的交换,而且能量与物质总是紧密地联系在一起的,伴随着物质的获得或丧失,地球系统也同时获得或丧失能量。 1、地球能量的产生 ⑴、地球的内能 地球的内能包括热能、动力能和重力能。不同种类的能量可以互相转换,如重力能可以转换成热能,而热能又以可转换成动力能等。 ①、热能 地球内部是一个庞大的热库,放射性元素衰变是地球热能的主要来源。 联合国有关新能源报告显示,全球地热能资源总量相当于全球资源总消耗量的45万倍。 地球从地面至地心,随着深度的增加,温度也在不断地升高。据地球物理资料及数据推断,整个地球的平均温度约为2000℃;地核的温度约为6000℃,其炙热程度可与太阳表面相媲美。 ②、动力能 地球是太阳系的九大行星之一。它除了围绕太阳进行公转以外,本身还在不停地自转。地球自转产生的惯性离心力,能够给予地球体巨大的能量,这种能量就称为旋转能,或叫做动力能。据计算,这种能为 2.1×1029焦耳。如果换算成电能,那么它相当于全球发电总量的数亿倍。 ③、重力能 地心引力给予地球体本身的能量叫做重力能。它可以转换为热能或动力能。 ⑵、地球的外能 地球的外能包括太阳辐射能、引力、人类活动及其它能量。 ①、太阳辐射能 太阳辐射能是地球表面最主要的能源,也是地表水和大气运动的主要动力。它能使地球表面发生风化、剥蚀而改变其原来的外貌。 ②、引力 日、月的吸引力对地球产生作用力,这种作用力本身也可以转化为能量。 ③、人类活动及其它能量

另外,地球上数以万计不停地奔腾流淌的河流,将流域内的大量泥沙冲向异处;人类大规模开采矿藏,每年有数亿立方米的岩石、矿物被搬动。这些同样可改变区域性地壳平衡,并与之相伴产生一定的能量。 2、地球能量的传递 地热能传递的方式有传导、对流、辐射。其中,地幔对流是热量由地心向地表传输的主要途径。 地球内部高温熔融的地核使其周围的地幔被加热熔化,产生上升热流;这种上升热流在遇到地壳降温以后,向四周分流,密度增大,又向地幔下部沉降;在地核附近再遇热上升,如此往复便形成地幔对流。 地幔对流带动了其上方的地壳大陆板块或海洋板块的上升、下沉与平移,形成山脉、海洋、大陆,形成大洋中脊裂谷和大陆裂谷;同时地幔对流也是地表热点的分布、地震和火山活动以及某些矿产行成的重要因素。 地幔热对流就像运动的传送带,被认为是地球演化变迁最可能的原始驱动力。 3、地球能量的释放 在地球46亿年历史长河中,运动着的地球不断地蓄积和释放能量。地球释放能量的形式多样,其中主要有以下4种: ⑴、热传导 大地通过岩石向外传导热能是地球热能释放的主要渠道,称为大地热流。地球每年通过热传导从地球表面散失的热量约为1.399×1021焦耳。 ⑵、火山喷发 地下的岩浆沿着地壳的薄弱带(如断裂带)上升,若喷出地表即形成火山喷发,使地球内部积聚的热能得到释放,其后再形成新的能量平衡。地球每年通过火山喷发释放的热量大约为3.3×1019焦耳。 ⑶、地震 地震是指地壳在快速释放能量过程中造成振动并产生地震波的一种自然现象。据不完全统计,地球上每年发生大大小小500万次地震.其中,能对一个地区造成巨大灾难的大地震约有10来次。地球每年通过地震活动释放的热量大约为5×1017焦耳。 ⑷、温泉 地球每年通过地热带温泉释放的热量估计约为2×1018焦耳。 4、清洁热源地热能 ⑴、地热能概述 地热资源是一种无污染的清洁能源。随着石油、天然气、煤炭等传统能源逐渐枯竭,地热资源将成为未来能源的一个重要组成部分。 目前,国际上有100多个国家在开发利用地热资源,并以每年12%的速度递增。预计到2100年,地热利用将在世界能源总值中占30%~80%。

干热岩科普

干热岩科普 近日,《中国国土资源报》一则有关《我国第一口干热岩科学钻探深井开钻》的新闻引起了人们的广泛关注。 5月21日,由中国地质调查局组织实施的我国首个干热岩科学钻探深井,在福建省漳州龙海市东泗乡清泉林场开钻,钻探深度将达4000米,这标志着我国干热岩勘查开发进入实践探索阶段。据悉,实施干热岩科学钻探,在我国尚属首次。那究竟什么是干热岩?干热岩有什么用途?本期,小编给您简略介绍一些有关干热岩的知识。 一、干热岩的定义和特点 干热岩是一种没有水或蒸汽的热岩体,主要是各种变质岩或结晶岩类岩体,埋藏于距地表2~6公里的深处,其温度范围很广,在150~350℃之间。干热岩的热能赋存于岩石中,较常见的岩石有黑云母片麻岩、花岗岩、花岗闪长岩等。一般干热岩上覆盖有沉积岩等隔热层。 图一地球内部推测温度分布曲线 干热岩是一种地热资源。在学术界,干热岩有时被称为“热干岩”,其英文名称为“Hot Dry Rock”。干热岩的分布几乎遍及全球,用一些科学家的话说,它是无处不在的资源。从理论上说,随着地球向深部的地热增温,任何地区达到一定深度都可以开发出干热岩,因此干热岩又被称为是无处不在的资源。但就现阶段来看,由于技术和手段等限制,干热岩资源专指埋深较浅、温度较高、有开发经济价值的热岩体。目前干热岩开发利用潜力最大的地方,是新火山活动区,或地壳已经变薄的地区,这些地区主要位于全球板块或构造地体的边缘。 二、干热岩的用途 1、干热岩可用于发电 目前,人们对干热岩的开发利用,主要是发电。利用干热岩发电技术可大幅降低温室效应和酸雨对环境的影响,且不受季节、气候制约。而且将来利用干热岩发电的成本仅为风力发电的一半,只有太阳能发电的十分之一。 干热岩发电的基本原理是:通过深井将高压水注入地下2000~6000米的岩层,使其渗透进入岩层人工压裂造出的缝隙并吸收地热能量;再通过另一个专用深井(相距约200~600米左右)将岩石裂隙中的高温水、汽提取到地面;取出的水、汽温度可达150~200℃,通过热交换及地面循环装置用于发电;冷却后的水再次通过高压泵注入地下热交换系统循环使用。整个过程都是在一个封闭的系统内进行。

西咸新区中深层地热能无干扰清洁供热技术成效显著

西咸新区建筑工地现场 “当前铁腕治霾已进入关键阶段,各级各部门要把铁腕治霾当作一项重大政治任务、重大发展命题、重大民生工程,以铁的决心、铁的手腕、铁的行动,坚决打赢蓝天保卫战,为新区追赶超越营造良好生态环境。”6月6日下午2时40分,西安市全市铁腕治霾工作推进会议结束后,西咸新区下午3时30分迅速组织召开全区铁腕治霾工作推进会,传达会议精神,安排部署新区相关工作。大力推广应用新型地热能源 2020年将实现约2000万平米覆盖 “中深层地热能无干扰清洁供热技术比传统浅层地热能热泵技术节能30%以上,无污染,不受地面气候等条件的影响,能有效保

护地下水资源,实现地热能资源的清洁、高效、持续利用,是一种更加优质的地热能利用技术,随着日后的广泛普及将大大解决北方地区冬季采暖的大气污染问题。”谈及西咸新区推广的中深层地热能无干扰清洁供热技术时,中国工程院院士、清华大学建筑节能研究中心主任、国家能源委员会专家咨询委员江亿院士如是说。 记者了解到,中深层地热能无干扰清洁供热技术是通过钻机向地下2000米至3000米深处的干热岩层钻孔,在钻孔中安装密闭的金属换热器,通过换热器传导,将地下深处的温度70℃至120℃的中深层地热能进行“取热不取水”无干扰转换,并通过专用设备系统向地面建筑物供热的新技术。该技术具有取热持续稳定、地温恢复快、环境影响低的特点,已成为全球公认极具应用价值和利用潜力的清洁能源。 西咸新区自2015年起在沣西新城开始中深层地热能无干扰清洁供热技术试点,积极探索新型供热模式,破解城市清洁供热难题。以同德佳苑为实验区域,创新实现了全国首个中深层地热能无干扰清洁供热PPP项目,供热面积5.6万平方米。以沣西新城一个采暖季为例,与传统供热相比,干热岩技术应用可代替标准煤3.2万吨,减少排放二氧化碳约8.6万吨,减少排放二氧化硫约272吨,减少排放氮氧化物约500吨,减少排放粉尘约310吨。 新型清洁能源供热技术在陕西、西安市率先进行推广使用,是值得陕西骄傲的一件事。“关中地区是一个地热梯队相对比较高的

我国干热岩勘查的有关技术问题

收稿日期:2010-09-10  作者简介:冉恒谦(1963-),男(汉族),重庆人,中国地质科学院勘探技术研究所地调科研处处长、教授级高级工程师,地质工程专业,博士,从事钻探装备研究工作,河北省廊坊市金光道77号,ranhq666@heinfo.net;冯起赠(1971-),男(汉族),吉林人,中国地质科学院勘探技术研究所高级工程师,钻探机械专业,从事全液压车装水井钻机及大直径套管钻机的研发工作,fengqizeng@126.com。 我国干热岩勘查的有关技术问题 冉恒谦,冯起赠 (中国地质科学院勘探技术研究所,河北廊坊065000) 摘要:干热岩作为一种可再生的新型能源,具有热能大、分布广、开发利用对环境影响小、不受季节等自然条件的影响等优势。而干热岩的勘查开发利用在我国还基本属于空白,因此对干热岩勘查关键技术开展研究有着非常现实的意义。在简述国内外对干热岩勘查开发利用研究现状的基础上,分析了干热岩开发利用的技术关键,并提出了主要的研究内容和需要做的工作。 关键词:干热岩;勘查;地热能;热交换;热发电;钻井 中图分类号:TD87;P634 文献标识码:A 文章编号:1672-7428(2010)10-0017-05SomeTechnicalIssuesonHotDryRockExplorationinChina/RANHeng-qian,FENGQi-zeng(TheInstituteofEx-plorationTechniques,CAGS,LangfangHebei065000,China) Abstract:Asarenewableenergyresource,hotdryrock(HDR)hasadvantagesofstrongheatenergy,widedistribution,environmentalprotectionandnotbeingaffectedbynaturalconditions,suchasseasons.Hotdryrockexplorationdevelop-mentandutilizationisbasicallyablankfieldinChina,thestudyonthiskeytechniquehasaveryrealisticsignificance.BasedontheintroductiononthecurrentsituationofhotdryrockexplorationdevelopmentandutilizationbothinChinaandabroad,thepaperanalyzedthekeytechnologyandputforwardthemainstudytargetandworktoberequired.Keywords:hotdryrock;exploration;geothermalenergy;heatexchange;thermalpower;drilling 1 干热岩的概念 干热岩(HDR-HotDryRock)是指埋深超过2000m、温度超过150℃的地下高温岩体,其特点是岩体中很少有地下流体存在。当然,这是比较宽泛的干热岩概念。干热岩的热能赋存于各种变质岩或结晶岩类岩体中,较常见的干热岩有黑云母片麻岩、花岗岩、花岗闪长岩等。干热岩上一般覆盖有沉积岩或土等隔热层。干热岩主要被用来提取其内部的热量,因此其主要的工业指标是岩体内部的温度。 一个温度超过150℃的地下高温岩体的存在,一定会给周围的地温环境带来很大的异常,所以许多研究人员也把地温梯度是否超异常来研究地下是否存在干热岩体。 2 干热岩的开发利用价值 目前,人们对干热岩的开发利用,主要是发电。美国、法国、德国、日本、意大利和英国等科技发达国家已经掌握了干热岩发电的基本原理和基本技术。 干热岩发电的基本原理是:通过深井将高压水注入地下2000~6000m的岩层,使其渗透进入岩层的缝隙并吸收地热能量;再通过另一个专用深井 (相距约200~600m左右)将岩石裂隙中的高温 水、汽提取到地面;取出的水、汽温度可达150~200℃,通过热交换及地面循环装置用于发电;冷却后的水再次通过高压泵注入地下热交换系统循环使用。整个过程都是在一个封闭的系统内进行。见图 1。 图1 干热岩地热发电系统 干热岩存在于地壳浅层的某些构造区,是一种清洁的新能源。全球干热岩蕴藏的热能十分丰富,比蒸汽型、热水型和地压型地热资源大得多,比煤炭、石油、天然气的热能总和还要大。 干热岩地热资源与核能(裂变和聚变)、太阳能

干热岩供热介绍

技术实现 通过钻机向地下一定深度高温干热岩层钻孔,在钻孔中安装一种密闭的金属换热器,借助换热器传导,将地下深处的热能导出,并通过专用设备系统向地面建筑物供热。 特点 普遍适用。钻孔位置的选定比较灵活,一般不受场地条件制约,每个建筑物下都有地热能,开发地热能在地面上具有普遍性。

绿色环保。无废气、废液、废渣等任何排放,能量来自地热,治污减霾成效显著。 如果进行规模化推广,在一个采暖季(4个月),以100万平米建筑为例,与燃煤锅炉相比,采用干热岩供热技术: 保护水资源。系统与地下水隔离,仅通过换热器管壁与高温岩层换热,不抽取地下热水,也不使用地下水。 安全可靠。孔径小(200毫米),深度在2000米以下,对建筑地基无任何影响,地下无运动部件;利用地下高温热源供热,系统稳定。 系统寿命长。地下换热器采用J55特种钢材制造,耐腐蚀、耐高温、耐高压,寿命与建筑寿命相当。 高效节能。专用的吸热导热装置与新材料的使用提高了地下吸热导热效率;一个换热孔可以解决1-1.3万平米建筑的供暖。

投资与运行经济。向地下中、深层取热,增加单孔取热量,扩大供热面积,可减少钻孔数,降低开发成本。目前按照一个取热深孔可解决1万~1.3万平方米建筑的供热计算,其运行成本不超过燃煤集中供热的50%。同时地面供暖设备占用空间小,运行灵活,控制简单,维护费用低,使用寿命长,还可一机多用,制冷、供热、供热水。 以长安信息大厦住宅、商场供热项目为例: 项目基本信息:总建筑面积38000平米,其中住宅25000平米,商业13000平米。 (1)钻孔数: 3个,钻孔深: 2000m。 (2)技术特点:在钻孔中放入超长密闭金属换热器,将地下热能导出。 (3)功能:冬季供热。

关于干热岩

关于干热岩一、什么是干热岩 干热岩(HDR),也称增强型地热系统(EGS),或称工程型地热系统,是一般温度大于200℃,埋深数千米,内部不存在流体或仅有少量地下流体的高温岩体。这种岩体的成分可以变化很大,绝大部分为中生代以来的中酸 性侵入岩,但也可以是中新生代的变质岩,甚至是厚度巨大的块状沉积岩。干热岩主要被用来提取其内部的热量,因此其主要的工业指标是岩体内部的温度。 二、干热岩资源的成因类型 根据地壳结构和成因机制,中国干热岩资源主要可分为高放射性产热型、近代火山型、沉积盆地型及强烈构造活动带型。 1、高放射性产热型干热岩资源:类似于法国Soultz地区及澳大利亚Cooper盆地等高放射性花岗岩地区,中国东南沿海地区,地表及地壳浅部发育许多大型的中生代酸性花岗岩类岩体,该类岩体具有较高的放射性产热特征,在壳源产热和幔源产热均理想的情况下大地热流值可超过100μW/m2。在覆盖层理想的地方,可以获取理想的干热岩资源。高放射性产热干热岩资源主要集中在中国东南沿海,如广东、福建、江西、海南以及广西部分地区,以燕山期大范围形成的酸性岩体为赋存体形成干热岩资源区。 2、沉积盆地型干热岩资源:沉积盆地型干热岩资源具有基岩覆盖层较大、表层地温梯度较大、增温稳定的特点。深部热源向上传导到达覆盖层时,由于沉积覆盖层热导率小的特点,阻止了热量的散失。本类干热岩资源虽然地表热流值并不太高,但由于热量在浅部的聚集,其底部基岩岩体温度可以达到150℃以上。沉积盆地型干热岩资源主要分布在关中、咸阳、贵德、共

和、东北等白垩系形成盆地的下部,由于沉积覆盖层具有较高的地温梯度,通常与水热型地热田共生。 3、近代火山型干热岩资源:近代火山型干热岩资源和火山活动密切相关。国际上很多知名的干热岩资源区均属于这种类型。受底部未冷却岩浆的作用,地表具有明显的水热活动现象。通常在较浅的地方就可以获得较高的温度。近代火山型干热岩资源分布在中国腾冲、长白山、五大连池等地区。其热源特征与底部岩浆活动历史和岩浆活动特征密切相关。 4、强烈构造活动带型干热岩资源:强烈构造活动带型干热岩资源分布在青藏高原。受亚欧板块和印度样板块的挤压,新生代以来青藏高原逐渐隆升,局部有岩浆底侵的存在,在这些区域可能形成理想的干热岩资源。受构造活动的影响,自第四纪以来,西藏高原受到南北向强烈挤压,随着地质应力的变化,早期以东西向展布为主的构造格局逐渐遭受破坏,产生了一系列的北西向走滑断裂及近南北向的张性和张扭性的活动构造带。在这些近南北向断裂带内现代地热活动强烈,又以那曲—羊八井—多庆错活动构造带和查去俄—古堆—错那构造带最为显着。查去俄—古堆—错那构造带内由南往北有错那、古堆、日多、沃卡、松多、查去俄等中—高温地热显示区。这些地区可作为强烈构造活动带型干热岩资源的理想前景区。 三、寻找干热岩的勘查工作步骤 首先是收集地、物、化、遥、地热等各种区域性资料;通过对所收集资料进行分析,选择有远景的地区开展地质调查、物化探、深部钻探工作,然后对岩心进行采样、对钻孔进行测温,获取各种有用信息。最后通过实际工作成果,结合收集相关资料对干热岩资源进行评价。

热干岩供暖技术

编号:建议17320号 建议主题:干热岩采暖 建议类别:经济类 建议人:grycn 政治面貌:群众 提交时间:2012-01-29 15:41:20 内容:我的话题是关于地热能开发利用的问题。 一.地热能的一种——干热岩型地热能。干热岩型地热能遍布广泛。干热岩是指地表以下2000米至6000米的岩石层,干热岩的温度一般在70度至200度之间,干热岩中的温度一般是用水将它提上来。然后用于发电、采暖等。 二.干热岩型地热能取暖的原理比较简单,根据地质情况打出两口深约2000米左右的井,两井相距200米至600米。将两井连通。用高压注水泵向一井内注水,水通过干热岩层,将干热岩中的热量吸收后,从另一口井中喷出,进入换热器进行热量交换,换热后的温水再回到注水井中。这样就好像把一个锅炉放在2000米的地下,水在这个系统中不停的循环就达到了取暖的目的。 三.干热岩型地热能发电比较复杂,因为发电要求热水或者蒸汽的温度高,也就是钻井相对要深,技术要求要高,投资要大。并且发电设备也是一项很大的投资。所以干热岩发电项目一般为政府投资行为。 四.干热岩采暖与干热岩发电相比较: 1.采暖温度为50度或80度,暖气片方式供暖的,供水温度最高80度。低温辐射地板采暖方式供暖的,供水温度最高50度。这样钻井深度大大低于发电要求钻井深度。 2. 冷水在井底变热后可能最终会使岩石温度降低,因此一处热岩发电站也许只能工作20年左右。但在关闭几十年后,地心的炽热岩浆会重新加热这些花岗岩,那时这些热岩就又能重新发电。但采暖就不存在这个问题,因为我们北方一年的采暖期为四个月,其余八个月是停用的。 3. 干热岩采暖项目投资小,容易操作。例如一个10万平方米的住宅小区,用这种方式取暖,它的初安装费用是500万元到600万元之间。如果用热力公司的蒸汽,他的管道开口费就是68元/平方(这是山东省潍坊市的价格),也就是680万元,还有每年蒸汽费150多万元。所以说这种即不用烧煤,又节约投资的事情,容易被人们接受,易操作。这种采暖方式即可以单个小区为单位供,又可以集中供热。 五.干热岩采暖的几种方案; 1.两井连通法:这种方法有一个难点,就是连通点的寻找,据油田工作人员介绍,现在有

相关文档
相关文档 最新文档