文档库 最新最全的文档下载
当前位置:文档库 › GGH积灰结垢成因简析

GGH积灰结垢成因简析

GGH积灰结垢成因简析
GGH积灰结垢成因简析

GGH 结垢成因简析

(××发电有限责任公司,浙江)

【摘 要】本文简介了××发电有限责任公司#1脱硫系统GGH 检修过程中碰到的受热面结垢情况,对其成因做了机理分析,并提出了相应的处理办法。 【关键词】GGH 积灰结垢

1. 前言

1.1设备状况简介

1.1.1××发电有限责任公司30MW 机组锅炉按引进的美国B&W 公司RB 锅炉技术标准设计制造,为亚临界参数、自然循环、一次中间再热、固态排渣、单炉膛单锅筒锅炉,露天戴帽布置。设计燃料为淮南烟煤。每台锅炉各配一套湿法烟气石灰石-石膏脱硫系统。烟气处理能力为一台锅炉100%BMCR 工况时的烟气量。

1.1.2 GGH 容克式烟气加热器: 30.5-V-SMRC、 波型:DNF 形式:搪瓷表面传热元件 气流布置:原烟气向下 转速(运行/清洗):1.12/0.25r/min

换热面积:23000m 2

,布置形式:主轴立式,旋转方向:逆时针,总泄漏量:<0.5%、 1.1.3吹灰器:戴蒙德

耗气量:20m 3

/ min,工作压力:0.7MPa,伸缩长度:2.3m,功率:0.75KW 1.1.4高压水泵:452~P45

常规流量:8.82t/h 最高工作压力:10.5MPa 电机功率:37KW 转速:750r/min

1.2 在烟气加热器(统称GGH)转子中,传热元件紧密排列在篮子框架中,传热元件具有一定的流通通道,原烟气和净烟气从传热元件的流通道通过。当转子转动到原烟气侧时,传热元件吸收原烟气的热量。当转子旋转到净烟气侧时,传热元件释放热量,并加热净烟气。用它将未脱硫的原烟气(一般为130~150℃)去加热已脱硫的净烟气,一般加热到80℃左右,然后排放,以避免低温湿烟气腐蚀烟道、烟囱内壁,并可提高烟气抬升高度。此种加热系统的主要缺点是烟气的泄漏、粉尘的黏附与堵塞,及热烟气会冷凝部分硫酸在蓄热板上并带到烟气中,因此需配套有密封装置和清洗装置(压缩空气、低/高压水)。

2. 积灰、结垢情况

图一 GGH 上部受热面 如图1所示,转子受

热面上部从中心筒开始向外分三个区域,正好对应吹灰器三个喷嘴的吹扫范围。其中间的区域采样为软垢,内侧区域为硬垢。消防水冲过后,中间区域的软垢被冲掉,传热元件表面的结垢情况可分为内侧1/3最硬区和外侧较硬区。结垢层从上到下只有

图3 GGH 下部原烟气侧

10cm 左右。转子受热面下部普遍比较干净。 GGH 框架篮子金属腐蚀严重。

3. 机理分析

3.1 在湿法烟气脱硫中,SO 2 的主要化学反应如下

3.1.1 金属氧化物,如MgO、ZnO、MnO、CuO 等,对SO 2均有吸收能力

→ → → H 2O+SO 2

← H 2SO 3 ← H +HSO 3 ← 2H +

+ SO 323.1.2 一般认为,SO 2溶于水形成亚硫酸, 温度升高时,

反应平衡

向左移动 SO 2同氧化剂反应生成SO 3 ,

在催化剂的作用下,可加速SO 2氧化成SO 3的反应。在水中,SO 2经催化剂作用被迅速氧化成SO 3,并生成H 2SO 4: 催化剂 SO 2+1/2O 2

─────→

SO 3 催化剂

SO 2+1/2O+H 2O

─────→ H 2SO 4

2MeOH +SO 2 ─→Me 2SO 3+H 2O

Me 2SO 3+SO 2+H 2O ─→ 2MeHSO 3

Me 2SO 3+MeOH ─→ Me 3.1.3 SO 2及易与碱性物质发生化学反应,形成亚硫酸

盐。碱过剩时生成正盐;SO 2过剩时形成酸式盐。亚硫酸盐不稳定,可被烟气中残留的氧气氧化成硫

酸盐: Me 2SO 3+1/2O 2─→MeSO 4

2SO 4+H 2O

3.1.4 亚硫酸钙/硫酸钙沉淀 CaSO 3·1

2H 2O 及CaSO 4·2H 2O 微溶,将作为固体沉淀出来

Ca

++

+SO 3+12H 2O→CaSO 3·1

2H 2O

亚硫酸钙-晶体,易碎“片晶”→形成树簇状物“花瓣形物”,硫酸钙-“粒状”晶体→比亚硫酸钙大

编号试验项目 单位1#炉GGH 进口烟道垢样 试验依据

1 酸不溶物 % 2.21 SD 202-86

2 450℃灼烧减(增)量% 5.92

3 900℃灼烧减(增)量% 6.31 SD202.5-86

4 Al 2O 3 % 12.17

5 CuO % 0

6 CaO % 21.30

7 Fe 2O 3 % 46.56

8 K 2O % 0.03

9 MgO % 4.07 10 MnO 2 % 0.47 11 Na 2O % 2.09 12 P 2O 5 % 0.45 13 TiO 2 % 0.29 14 SiO 2 % 4.91 15 ZnO % 0.03 16 合计 % 106.8 美国EPA

method200.7

表1 电力试验研究所试验报告

3.2 垢样化验

GGH 是湿法脱硫工艺的一项重要设备,由于热端烟气含硫最高、温

度高,而冷端烟气温度低、含水率

大,故GGH 换热元件需用耐腐蚀材

料搪瓷钢。而换热元件框架(俗称

篮子)也应为考登钢或不锈钢。此

次检修匪夷所思的是篮子垢下腐

蚀严重,考虑到本单位化验能力,

因此取样交浙江省电力试验研究

所化验。主要想了解垢样的酸碱

度,主要化学成分,熔点特性,溶解性及溶解度特性,提供较佳的溶剂种类,该溶剂最好水溶,以方便在水洗受热面时加入。化验结果如表1所示。成分排在第二位的是Ca,这给分析结垢原因提供了突破

图4 软垢

口。

3.3 结垢成因分析

3.3.1 原烟气侧硫酸可能成因

煤燃烧时除生成SO 2以外,还生成少量的SO 3,烟气中SO 3的浓度为10~40ppm。由于烟气中含有水(4%~12%),生成的SO 3瞬间内形成硫酸雾。当温度低于酸露点时,硫酸雾凝结成硫酸附着在设备的内壁上。

3.3.2 净烟气侧硫酸可能成因

图5 硬垢 经湿法脱硫后的烟气从吸收塔出来一般在46~55℃

左右,含有饱和水汽、残余的SO2、SO3、HCl、HF、NOx,其携带的SO42-/sup>、SO32-盐等会结露。因此,被净化的气体在离开吸收塔之前要用折流板除雾器进行除雾。对于除雾器设置冲洗水,间歇冲洗除雾器。低温下含饱和水蒸气的净烟气很容易产生冷凝酸,据有关资料显示,在净烟道或烟囱中的凝结物PH 值约为1~2之间,硫酸浓度可达60%,具有很强的腐蚀性。 3.3.3 表面垢的形成

亚硫酸钙和硫酸钙在水中的溶解度很小,都会形

成高度过饱和溶液。亚硫酸钙和硫酸钙的种子晶

体按相关化学反应生成CaSO 3·1/2H 2O 软垢;烟气中的CO 2的再碳酸化,可能生成CaCO 3沉淀物。一

般烟气中,二氧化碳的浓度达到10%以上,是SO 2浓度的50~100倍。脱硫塔中部分SO 32-和HSO 3-被烟

气中剩余的氧气氧化为SO 42-,最终生成CaSO 4·2H 2O 沉淀。CaSO 4·2H 2O 的溶解度较小(0.223g/100g 水,0℃),易从溶解中结晶出来,在部件表面上形成很难处理的硬垢。可以说,GGH 的表面结垢和

堵塞,其原因是烟气中的氧气将CaSO 3氧化成为CaSO 4(石膏)

,并使石膏过饱和。 4. 处理

图6 消防水冲洗后

在湿法烟气脱硫中,GGH 发生结垢和堵塞,已成为FGD 能否正常长期运行的关键问题。为此,首先要弄清楚结垢的机理,影响结垢和造成堵塞的因素,然后有针对性地从工艺设计、设备结构、操作

控制等方面着手解决。 4.1 传热元件的清扫方法

在GGH 的上下部位可通过正常的吹灰、在线高压水冲洗、离线高压水冲洗、离线低压水冲洗,进行清洁传热元件。

4.1.1蒸汽/压缩空气清扫。绝大多数黏附物可以通过压缩空气清除。

4.1.2高压水冲洗。长期积累下来的、不能通过正常吹灰而清除的黏附物,导致了烟气阻力的升高。当烟气阻力升高值达到原设计值的50%时,可以进行在线

高压水冲洗。通过在线水冲洗可以将压降恢复到原设

计值。在线高压水冲洗的频率取决于净烟气中的水分含量和原烟气中残留的飞灰和氧化硫的含量。

冲洗水的压力为10MPa。

4.1.3低压水冲洗。在GGH 长期停机前,必须采用低压水冲洗,除去转子上沾附的酸性沉积物、水

冲洗可以冲走大量的酸性物。

图7 专业高压水冲洗后

4.2 2006年1月13日上午10点20分正式进行#1GGH 水冲洗。原定开除雾器冲洗水系统用低压水离线冲洗,发现水量不够,改用消防水反复冲洗。结果不满意,考虑消防水压力不够以及冲洗必需专用设备,联系北京高压水冲洗专业施工队。2006年1月17日下午16点进行#1GGH 吹灰器及高压水系统试运。GGH 受热面清洁程度大有改观。北京高压水冲洗1月23日下午开始进场工作。1月26日结束。如图6和图7所示。

4.3 #1GGH 吹灰器及高压水系统试运。试运的目的是为了进一步确认GGH 受热面积灰结垢原因,并试运高压水冲洗系统的效果。转子受热面上部内侧区域为硬垢,后经检查发现吹灰器喷嘴有堵塞。高压水喷嘴也有部分堵,特别是靠近中心筒部位。高压水喷嘴有部分堵,造成的冲洗效果很明显。没堵的喷嘴吹扫区域较干净。中心筒部位喷嘴堵可能高压水流至该处压力也已偏低。现全部疏通。吹灰器行程及进退满足要求.高压水冲洗管行程及进退满足要求。

5. 结语

5.1 在运行操作方面,控制吸收塔中水份蒸发速度和蒸发量,控制石灰石浆液的PH 值,控制石灰石浆液中易于结晶的物质不要过饱和;严格除尘,

控制烟气进入吸收系统所带入的烟尘量。保证强

制氧化系统正常4,并保持足够的浆液含固量(大于12%)

,以提高石膏结晶所需要的晶种。及时按特定程序用工艺水对除雾器进行冲洗。

5.2 在检查检修方面,要选择并更换表面光滑、不易腐蚀的材料。及时疏通除雾器及冲洗喷嘴,保持除雾器清洁。每次GGH 检修项目增加喷嘴疏通签证点;

5.3 通过几种冲洗方式的使用情况分析,建议以后GGH 停用前进行高压水冲洗;

5.4 吹灰器气源压力铭牌标称0.7MPa,但就地压力能否达到很成问题。现吹灰器压力调整已调节到最大。与吹灰器厂家人员探讨,在现实的情况下,是否根据喷嘴与受热面距离、吹灰实际压力,更改喷嘴形式设计。厂家人员已把这一意见带回技术部门研究。

5.5净烟气再热后的温度仍然处在酸露点以下。这种情况在很多电厂的大型脱硫系统中出现,连州电厂如此,在我国最早应用湿法石灰石/石膏法的华能珞璜电厂也如此。2001年珞璜电厂FGD 系统停运,检查FGD 后的尾部烟道时发现,一些边角位置的钢板被腐蚀得如薄纸,有些部位甚至腐蚀光。因此如何选择净烟气温度,仍是一个值得探讨的课题。

浅谈汽轮机叶片结垢及其预防

浅谈汽轮机叶片结垢及其预防 叶片作为汽轮机的关键部件,又是最精细、最重要的零件之一,它在最苛刻的条件下承受高温、高压、巨大的离心力、蒸汽力、腐蚀和震动以及湿蒸汽区水滴冲蚀的共同作用,仍保持较高的性能。空气运动学性能加上几何图形、震动强度及运行方式对机组的安全可靠起决定性的影响,但由于一些实际中的操作,汽轮机叶片结垢现象已经制约了机组的正常运行。基于此,本文就汽轮机叶片结垢及对策建议和预防措施展开了讨论。 标签:汽轮机;叶片;结垢;预防措施 1、汽轮机叶片结垢及结垢原因分析 某汽轮机投运多年来,从未因设备故障造成过停机,运行工况一直处于良好状态。但自上个月起,汽轮机在负荷未增加的情况下,主蒸汽进汽流量有所增加,且调节级后压力也有所上升,进汽调节阀开度不断增大,并且随着调节级后压力的提升,调节汽阀的开度已全开,无调节手段。为了维持生产,不得不采取降低氧气产量,减少进入空压机、增压机的空气量,减轻汽轮机的负荷等一系列措施,但汽轮机的工况一直未见好转。为保证汽轮机的运行功率,不得不提高蒸汽的初压,增大进气流量,但这种方法会使汽轮机组的安全性降低,存在一定的潜在危险性,不能长期使用。经分析,认为造成汽轮机运行工况恶化的原因是汽轮机的喷嘴(静叶片)和动叶片等过流部件结垢(分析结垢种类为溶解盐垢类),尤其是中间叶片部位结垢比较严重,从而导致有效过流面积减小,摩擦损失增大,机械效率下降。又根据主蒸汽流量增加,调节级后压力上升,凝汽器真空度同时上升的情况,判断调节级后各级蒸汽温度较高,使得结垢现象产生,尤其是第四到第六级结垢较严重。调节级、第二、第三级由于蒸汽压力较高,蒸汽中所含盐类不易析出,结垢相对较轻,第七、第八级在湿蒸汽区间运行,故结垢的可能性也较小。 2、汽轮机叶片结垢的对策 2.1化学方法和手工清洗 (1)化学方法。使用W(H2SO4)=10%的稀硫酸进行人工清洗(使用时注意安全),因为稀硫酸与钠盐会发生化学反应,生成可溶性的盐、二氧化碳和水,可以消除部分的结垢。(2)手工清洗法。先将汽轮机组的电源关闭,将其拆开,把喷嘴、隔槽板及转子拆卸吊出,置于专门的支架上,先用高压软化水或专门的清理液进行清理,将软性污垢清除干净,再用砂轮、砂纸、扁铲等机械工具进行手工清理,最终将结构清除干净,但用时较多,效果不是太明显。 2.2饱和湿蒸汽在线处理 降低汽轮机的负荷,将汽轮机由抽凝式变为全凝式运行,空压机、增压机不

凝汽器结垢该如何清洗

凝汽式汽轮机是现代火电站和核电站广泛采用的典型汽轮机。凝汽设备是汽轮机装置的重要组成部分,它的设计制造和运行质量的优劣,直接影响汽轮机装置的经济性和安全性。 长期以来传统的清洗方式如机械方法(刮、刷)、高压水、化学清洗(酸洗)等在对设备清洗时出现很多问题:不能彻底清除水垢等沉积物,酸液对设备造成腐蚀形成漏洞,残留的酸对材质产生二次腐蚀或垢下腐蚀,最终导致更换设备,此外,清洗废液有毒,需要大量资金进行废水处理,接下来介绍一下凝汽器的清洗工艺。 1.隔离设备系统,并将凝汽器里面的水排放干净; 2.采用高压水清洗管道内存留的淤泥、藻类等杂质后,封闭系统; 3.在隔离阀和交换器间装上球阀(不小于1英寸=2.54厘米),进水和回水口都应安装; 4.接上输送泵和连接导管,使清洗剂从凝汽器的底部泵入,从顶部流出; 5.开始向凝汽器里泵入所需要的清洗剂(比例可根据具体情况调整); 6.反复循环清洗到推荐的清洗时间。随着循环的进展和沉积物的溶解,反应时产生的气体也会增多,应随时通过放气阀将多余的空气排出。随着空气的排出,凝汽器内的空间会增大,可加入适当的水,不要一开始就注入大量的水,可能会造成水的溢出;

7.循环中要定时检查清洗剂的有效性,可以使用PH试纸测定。如果溶液保持在PH值2‐3时,那么清洗剂仍然有效。如果清洗剂的PH值达到5‐6时,需要再添加适量清洗剂。最终溶液的PH值在2‐3时保持30分钟没有明显变化,证明达到了清洗效果,注意清洗剂可以回收后重复使用,排放会造成浪费; 8.达到清洗时间后,回收清洗溶液。并用清水反复冲洗交换器,直到冲洗干净至中性,用PH试纸测定PH值6~7; 9.完成清洗后既可开机运行。也可以打压试验,看是否有泄漏现象; 10.设备稳定后,记下当前的介质过流量、工作压力、换热效率等数据; 11.比较清洗前和清洗后数值的变化,就可以计算出该企业每个小时所节省的电费、煤费等生产费用及提高的工作效率; 12.同样的操作方法也可用于板式、框架式的热交换器清洗; 13.如企业需要设备进行钝化预膜处理,可按以下流程进行操作:将钝化预膜剂按推荐稀释比泵入设备中(同时在循环槽内悬挂试片);按推荐时间循环、浸泡;检测预膜效果(红点法或蓝点法);排放;水冲洗干净至中性(用PH试纸测定PH值6~7); 14.钝化预膜结束后,最好采用风机等通风设备将系统吹干,可确保并提升钝化预膜效果。 利用清洗剂清洗凝汽器,高效、环保、安全、无腐蚀,不但清洗效果良好而且对设备没有腐蚀,能够保证凝汽器的长期使用。清洗剂,特有的添加湿润剂和穿透剂,可以有效清除用水设备中所产生的最顽固的水垢(碳酸钙)、锈垢、油垢、粘泥等沉淀物,同时不会对人体造成伤害,不会对钢铁、紫铜、镍、钛、橡胶、塑料、纤维、玻璃、陶瓷等材质产生侵蚀、点蚀、氧化等其他有害的反应,可大大延长设备的使用寿命。 南京高和环境工程有限公司由一批北京科技大学、南京工业大学长期从事冶金、石化、化工、电力行业节能环保的专业技术人员组建而成,公司主要依托北京科技大学、南京工业大学等科研

换热器结垢机理及防治措施

换热器结垢机理及防治措施 污垢是一种极为普遍的现象,广泛存在于各种传热过程中,是许多换热设.备经常遇到的问题。综观当今工业界,结垢造成的浪费和损失是很严重。由于许多换热设备相对比较落后,污垢造成的实际损失还可能更高些。由于换热设备中温度梯度的存在,使换热面上的污垢形成机制更为复杂,污垢所带来的危害更为强烈,所以备受科学界和工程技术人员的广泛关注。是涉及国民经济众多产业和部门的一个急需解决的问题。 污垢的定义及其对换热设备的影响 污垢的定义。换热设备污垢是指流体中的组分或杂质在与之相接触的换热表面上逐渐积聚起来的那层固态物质。这层物质是“不需要”的多余物质,它通常以混合物的形态存在。污垢是热的不良导体,其热导率一般只有碳钢的数十分之一,不到不锈钢的1/10。一旦换热面上有了污垢,按串联热阻的观点,流体与换热壁面之间的传热热阻式中:污垢热阻,即污垢层形成的附加热阻,㎡?K/W;R:总传热热阻,㎡?K/W;α:传热系数,W/㎡?K。 污垢对换热设备及其系统的影响。结垢对换热设备的影响主要有两个方面,一是由于污垢层具有很低的导热系数,

从而增加了传热热阻,降低了换热设备的传热效率。二是当换热设备表面有结垢层形成时,换热设备中流体通道的过流面积将减少,导致流体流过设备时的阻力增加,从而消耗更多的泵功率,使生产成本增加。通常,为了补偿由于污垢而引起的换热效率降低,在设计换热器时,要选取过余的换热面积作为补偿,将污垢热阻折算在总传热系数中: =++++式中,为基于管外表面的总传热系数,W/㎡?K;A 为管壁面积,为平均管壁面积,㎡;为污垢热阻,为管壁热阻,㎡?K/W;α为对流传热系数,W/㎡?K;下标i、o分别表示管内和管外。 初投资费用增加在设计阶段,选用过余换热面积而增加的费用,即为增加的初投资,挟是合理的费用投资,而过多的费用增加有2个因素:①由于设计时选取了比实际污垢高的污垢热阻值,过多换热面积的投资造成浪费,即增加了换热器的初投资。②由于设计时选取了比实际污垢小的污垢热阻值,从而造成换热设备在运行较短的一段时间后,出现换热不足,要增加新的换热器来并联运行,这部分费用也使初投资费用增加。其间还有可能造成停产,因而经济损失更大。 操作费用增加由于结垢层的形成,流体流动阻力增大,造成泵功率增大,因而操作费用增加。此外,换热器需经常清洗,也使运行费用增加。 从应用角度看,影响因素有操作参数、流体性质和换热

循环水中腐蚀和管道结垢原因和处理方法

在现代的工业生产中,循环水含有的物质例如化学物质、金属物资等方面,工业循环水管道受到这些物质的影响,会产生结垢还有腐蚀等影响,如果处理不及时,就是妨碍到循环水管道的使用性能,继而降低工业生产效率,不能得到良好的经济效益。所以,需要对工业循环水管道结垢产生的原因还有机理明确好,针对性的采取控制和解决措施,目的就是保证循环水管道使用的稳定性,提升工业生产的效率,实现比较好的经济效益。 1.结垢和腐蚀产生的机理和原因 结垢和腐蚀可以说是影响工业循环水管道使用性能的重要原因,并且两者有直接的联系,通常情况下腐蚀就会产生结垢,结垢会产生腐蚀,时间长了就会影响管道的相关零件的使用性能,提升机泵运行的负荷,继而对设备、整体系统换热冷却等方面,不仅会影响到工业循环水管道的使用性能,还会使得工业生产效率还有经济效益,有所下降。接下来就和大家针对于工业循环水管道结垢和腐蚀产生的机理和原因相关内容,展开分析和阐述。 1.1补充水 由于在工业生产中,会消耗大量的是,因此为了保证生产的效率还有稳定性,需要定期进行补充,但是补充水在进入工业循环水管道之后,补充水中硬度、碱度还有PH值、浊度等方面,都会导致结垢。如果补充水中的硬度和碱度越大,意味着结垢离子更多,并且受到温度的影响,补充水容易达到饱和的状态,增加了循环水管道腐蚀现象的产生。此外,在工业循环水管道使用中,水质中的悬浮物会起到晶核的作用,这样浊度就会产生较多,悬浮物也会变多,这样如果不定期进行处理,也会导致悬浮物长期积累,增加工业循环水管道腐蚀和结垢现象的产生。 1.2温度 导致工业循环水管道结垢和腐蚀的重要因素之一就是温度,主要是由于工业循环水管道在运行过程中,循环水中包含的硬度盐类会根据温度的变化,产生溶解的现象。并且,在溶

_汽轮机凝汽器真空度下降原因分析

汽轮机凝汽器真空度下降原因分析在现代大型电站凝汽式汽轮机组的热力循环中,凝汽设备是凝汽式汽轮机组的一个重要组成部分,它的工作性能直接影响整个汽轮机组的安全性、可靠性、稳定性和经济性。汽轮机的真空下降会使汽轮机的可用热焓降减少器综合性.凝汽器的真空水平对汽轮发电机组的经济性有着直接影响,如机组真空下降1%,机组热耗将要上升0.6%~1%。因此保持凝汽器良好的运行工况,保证凝汽器的最有利真空;是每个发电厂节能的重要内容。而凝汽器内所形成的真空受凝汽器传热情况、真空系统严密性状况、冷却水的温度、流量、机组的排汽量及抽气器的工作状况等因素制约。因此有必要分析机组凝汽器真空度下降的原因,找出预防真空度下降的措施,提高凝汽器性能,维持机组经济真空运行,直接提高整个汽轮机组的热经济性。 引起汽轮机凝汽器真空度下降的原因主要有循环水量中断或不足、循环水温升高、后轴封供汽中断、抽气器或真空泵故障、凝汽器满水(或水位升高)、凝汽器结垢或腐蚀,传热恶化、凝汽器水侧泄漏、凝汽器真空系统不严密,汽侧泄漏导致空气涌入等。就这些问题我将分别做出分析、阐述: 一、循环水量中断或不足 ⑴循环水中断 循环水中断引起真空急剧下降的主要特征是:真空表指示回零;凝汽器前循环水泵出口侧压力急剧下降;冷却塔无水喷出。循环水中断的原因可能是:循环水泵或其驱动电机故障;循环水吸水口滤网堵塞,吸入水位过低;循环水泵轴封或吸水管不严密或破裂,使空气漏人泵内等。循环水中断时,应迅速卸掉汽轮机负荷,并注意真空降到允许低限值时进行故障停机。 ⑵循环水量不足 循环水量不足的主要特征是:真空逐步下降;循环水出口和人口温差增大。由于引起循环水量不足的原因不同,因此有其不同的特点,所以可根据这些特征去分析判断故障所在,并加以解决: ①若此时凝汽器中流体阻力增大,表现为循环水进出口压差增大,循环水泵出口和凝汽器进口的循环水压均增高,冷却塔布水量减少,可断定是凝汽器内管板堵塞,此时可采用反冲洗、凝汽器半面清洗或停机清理的办法进行处理。

凝汽器怎么解决结垢问题

据有关资料介绍,水冷设备换热器中水垢厚度为2.16mm时,传热系数平均下降51%,设备运行效率下降50%,而形成水垢的时间仅25天。如此短的积垢时间和低传热效率,导致凝汽器长期处在低效率中运行。 在工业上,利用磁水器磁场处理锅炉用水,以减少水垢;用于各种高温炉的冷却系统,对于提高冷却效率、延长炉子和管道的使用寿命起了很重要的作用;换热器、冷凝器、凝汽器等设备的使用能够有效地清除积垢及防止水垢的生成。 活性炭生产,用磁水生产活性炭质地更均匀、吸附力更强、节约原材料。化工厂上应用磁水可加快化学反应速度,提高产量。建筑行业用磁水搅拌混凝土,大大提高了混凝土强度。纺织厂用磁水褪浆,印染厂用磁化水调色,制药厂等效果都非常显著。 由于水垢的热导率很低,因而急剧降低了凝汽器的传热系数,导致凝汽器真空降低,按照不同汽轮机的试验资料,真空度每降低1%,汽耗增加1~1.5%,当蒸汽流量不变,将降低汽轮机组的出力。据有关资料介绍,水冷设备换热器中水垢厚度为2.16mm时,传热系数平均下降51%,

设备运行效率下降50%,而形成水垢的时间仅25天; 水垢的附着,特别是粘泥的附着,会在附着物下部发生局部腐蚀甚至破裂和穿孔。水垢的附着凝汽器铜管会导致铜管堵塞,严重影响设备运行; 凝汽器铜管的损坏会造成凝汽器的严重泄露,情况严重或处理不当会造成锅炉锅炉水冷壁管的爆破,严重危及锅炉的安全运行。 高科技、高效率、安全、清除及防止水垢和腐蚀生成。不使用化学药剂环保、无污染、不耗能,使用寿命长不需专人管理维护保养,无任何后期费用,结构小巧,安装简便、快捷,工艺达到零排放,节省大量水资源提高系统换热效率,可节能(15%-30%)除垢过程有效降低水中含菌量。节能节水寿命长、投资小、回收快等特点。 南京高和环境工程有限公司由一批北京科技大学、南京工业大学长期从事冶金、石化、化工、电力行业节能环保的专业技术人员组建而成,公司主要依托北京科技大学、南京工业大学等科研院所,主要从事冶金、石化、化工、电力等领域节能环保产品研制、开发、生产、合同能源管理及工程设计总承包,公司通过ISO9001质量体系认证,拥有多项专利技术。

换热器发生结垢的原因分析及处理方法

换热器发生结垢的原因分析及处理方法 换热器是炼油厂常减压车间应用广泛的冷换设备,工厂每年因处理换热器的结垢而耗资巨大,问题严重时还会影响安全生产的进行。根据结垢层沉积的机理,可将污垢分为颗粒污垢、结晶污垢、化学反应污垢、腐蚀污垢、生物污垢等。 1)颗粒污垢:悬浮于流体的固体微粒在换热表面上的积聚。这种污垢也包括较大固态微粒在水平换热面上因重力作用形成的沉淀层,即所谓沉淀污垢和其他胶体微粒的沉积。 2)结晶污垢:溶解于流体中的无机盐在换热表面上结晶而形成的沉积物,通常发生在过饱和或冷却时。典型的污垢如冷却水侧的碳酸钙、硫酸钙和二氧化硅结垢层。 3)化学反应污垢:在传热表面上进行化学反应而产生的污垢,传热面材料不参加反应,但可作为化学反应的一种催化剂。 4)腐蚀污垢:具有腐蚀性的流体或者流体中含有腐蚀性的杂质对换热器表面腐蚀而产生的污垢。通常,腐蚀程度取决于流体中的成分、温度及被处理流体的 pH 值。 5)生物污垢:除海水冷却装置外,一般生物污垢均指微生物污垢。其可能产生粘泥,而粘泥反过来又为生物污垢的繁殖提供了条件,这种污垢对温度很敏感,在适宜的温度条件下,生物污垢可生成可观厚度的污垢层。 6)凝固污垢:流体在过冷的换热器面上凝固而形成的污

垢。例如当水低于冰点而在换热表面上凝固成冰。温度分布的均匀与否对这种污垢影响很大。 防止结垢的技术应考虑以下几点:1)防止结垢形成;2)防止结垢后物质之间的粘结及其在传热表面上的沉积;3)从传热表面上除去沉积物。 防止结垢采取的措施包括以下几个方面: 1 设计阶段应采取的措施 在换热器的设计阶段,考虑潜在污垢时的设计,应考虑如下 6 个方面:1)换热器,也称为换热设备,热交换器,热交换设备href="https://www.wendangku.net/doc/4512240840.html,/" target=_blank>换热器容易清洗和维修(如板式换热器);2)换热器设备安装后,清洗污垢时不需拆卸设备,即能在工作现场进行清洗;3)应取最少的死区和低流速区;4)换热器内流速分布应均匀,以避免较大的速度梯度,确保温度分布均匀(如折流板区);5)在保证合理的压力降和不造成腐蚀的前提下,提高流速有助于减少污垢;6)应考虑换热器表面温度对污垢形成的影响。 2 运行阶段污垢的控制 1)维持设计条件由于在设计换热器时,采用了过余的换热面积,在运行时,为满足工艺需要,需调节流速和温度,从而与设计条件不同,然而应通过旁路系统尽量维持设计条件(流速和温度)以延长运行时间,推迟污垢的发生。2)运行参数控制在换热器运行时,进口物料条件可能变化,因此要

结垢预测

结垢机理研究 1.1 理论分析 水垢一般都是具有反常溶解度的难溶或微溶盐类,它具有固定晶格,单质水垢较坚硬致密。水垢的生成主要决定于盐类是否过饱和以及盐类结晶的生长过程。水是一种很强的溶剂,当水中溶解盐类的浓度低于离子的溶度积时,他将仍然以离子状态存在于水中,一旦水中溶解盐类的浓度达到饱和状态时,设备粗糙的表面和杂质对结晶过程的催化作用就促使这些饱和盐类溶液以水垢形态结晶析出。 水垢的种类有很多,但通常油田水中只含有其中少数几种水垢。最常见的水垢有碳酸盐类水垢,组成为CaCO3、MgCO3,但易被酸化去除,危害相对较小;而硫酸盐垢,组成成分有CaSO4、BaSO4、SrSO4,常常采用防垢方法加以阻止;铁化物垢组成为FeCO3、FeS、Fe(OH)2、Fe2O3。实际上一般的结垢都不是单一的组成,往往是混合垢,只不过是以某种垢为主而已。 表2-13 常见垢的溶度积 垢溶度积垢溶度积 BaSO4 1.1×10-10SrSO4 3.2×10-7 CaCO3 2.8×10-9FeS 8.3×10-13 CaSO49.1×10-8FeCO3 3.2×10-11 MgCO3 3.5×10-8Fe(OH)28.0×10-13 注:溶度积温度为18~25℃ (1)不相容论 两种化学不相容的液体(不同层位含有不相容的离子的地层水、地层水与地面水、清水与污水)相混,因为含有不同离子或不同浓度的离子,就会产生不稳定的、易于沉淀的固体。如宝浪油田,两个不同层位的水一混合就结垢,主要是因为一层含有SO42-,另一层含有Ba2+、Sr2+较多,混合后就生成BaSO4、SrSO4。(2) 热力学条件变化 当井下热力学和动力学条件不变时,即使有不相容的离子,并且为过饱和溶

汽轮机结垢原因分析

汽轮机内盐类沉积形成的原因如下: 当带有杂质的过热蒸汽进入汽轮机后,由于蒸汽在汽轮机内膨作功,蒸汽的压力和温度逐渐下降,蒸汽中的钠盐和硅酸等杂质的溶解度随压力降低而减小,故当其中某种物质的溶解度降低到低于蒸汽中该物质的含量时,该物质就以结晶的形式析出,并沉积在汽轮机的蒸汽通流的表面上,在蒸汽流过汽轮机的喷嘴和叶片时,那些细微的浓液滴还能把一些固体微粒一起粘附在蒸汽通流表面上。因此在汽轮机的每个隔板和叶片上便产生了盐类附着物。 8机大修垢物分析数据如下:

#8机组大修受检部件:低压缸叶片及高压缸隔板检验名称:低压缸叶片及高压

#8机组大修受检部件:高压缸叶片检验名

汽轮机中盐类沉积物的分布情况如下: (1)不同级中沉积物量不一样。在汽轮机中除第一级和最后几级积盐量极少外,低压级的积盐量总是比高压级的多 些,中压级中的某几级所沉积的盐量也是很多的。(2)不同级中沉积物的化学组成不同。其化学组成的分布主要是依据汽缸的压力级而定。基本规律归纳如下:1)高压级中的沉积物有:Na2SO4、Na2SiO3、Na2PO4等。 2)中压级中的沉积物有:NaCl、Na2CO3、NaOH等,还可能有Na2O·Fe2O3·4SiO2(钠锥石)和Na2FeO2(铁 酸钠)等。 3)低压级中的沉积物有:SiO2。 4)铁的氧化物(主要是Fe3O4,部分是Fe2O3),在汽轮机各级中(包括第一级)都可能沉积,能常在高压级的沉积 物中它所占的百分率要比低压级多些。 (3)在各级隔板和轮上分布不均匀。汽轮机中的沉积物不仅在不同级中的分布不钧匀。汽轮机中的沉积物不仅在不 同级中的分布不均匀,即使在同一级中部位不同,分布 也不均匀。例如:在叶轮上叶片的边缘、复环的内表面、 叶片轮孔、叶轮和隔板的背面等处积盐量往往较多,这 可能与蒸汽的流动工况有关。 (4)供热机组和经常启、停的汽轮机内,沉积物量较小。 汽轮机的前后几级没有盐类沉积物: 汽轮机内各级的积盐情况不同,这主要与蒸汽的流动工况有关

热交换器结垢的原因及处理方法

热交换器结垢的原因及处理方法 换热器在化工生产中占有重要地位,而换热器机组结垢腐蚀,导致传热不够而被迫停车清洗或者换热器的更换,严重时会影响安全生产的进行,更会增加企业运行的成本. 1结垢原因 1.1颗粒污垢 悬浮于流体的固体微粒在换热表面上的积聚,一般是由颗粒细小的泥沙尘土不溶性盐类胶状物油污等组成 当含有这些物质的水流经换热器表面时,容易形成污垢沉积物,形成垢下腐蚀,为某些细菌生存和繁殖提供温床当防腐措施不当时,最终导致换热表面腐蚀穿孔而泄漏 1.2生物污垢 除海水冷却装置外,一般生物污垢均指微生物污垢循环水系统中最常见的微生物主要是铁细菌真菌和藻类 铁细菌能把溶于水中的Fe2+ 转化为不溶于水的Fe2O3 的水合物,在水中产生大量铁氧化物沉淀以及建立氧浓差腐蚀电池,腐蚀金属 且循环水系统中的藻类常在水中形成金属表面差异腐蚀电池而导致沉积物下腐蚀块状的还会堵塞换热器中的管路,减少水的流量,从而降低换热效率 1.3结晶污垢 在冷却水循环系统中,随着水分的蒸发,水中溶解的盐类(如重碳酸盐)的浓度增高,部分盐类因过饱和而析出,而某些盐类则因通过换热器传热表面时受热分解产生沉淀这些水垢由无机盐组成结晶致密,被称为结晶水垢 1.4腐蚀污垢 具有腐蚀性的流体或者流体中含有腐蚀性的杂质对换热表面腐蚀而产生的污垢腐蚀程度取决于流体中的成分温度及被处理流体的pH 值等因素 通常,冷却管中的污垢冷却管一般为紫铜管和黄铜管,金属腐蚀主要是较高温度下(40~50)的氧腐蚀,污垢以铜或铜合金腐蚀产物和钙镁沉淀物为主,从而造成大量腐蚀污垢 1.5凝固污垢 流体在过冷的换热面上凝固而形成的污垢例如当水低于冰点而在换热表面上凝固成冰温度分布的均匀与否对这种污垢影响很大 2金属腐蚀

凝汽器端差大原因

凝汽器端差大原因分析 一、凝结器端差增大的主要原因有: 1.凝器铜管水侧或汽侧结垢; 2.凝汽器汽侧漏入空气; 3.冷却水管堵塞; 4.冷却水量增加等。 二、根据本机组实际情况分析 1、凝器铜管水侧或汽侧结垢,由于本机组凝汽器是新安装,而且胶球冲洗根据定期工作冲洗及时,因此凝汽器结垢的可能性较小。 2、本机组运行中真空较高且真空严密性试验为良好,可能是由于循环水入口水温过低造成端差过大,即凝结器产生过冷却; 1.循环水温度过低和循环水量过大,使凝结水被过度的冷却,过冷度增加。 2.凝结器漏入空气多或抽气器工作不正常,空气不能及时被抽出,空气分压力增大,使过冷度增加。 3、凝结器单位面积负荷过大造成: (1).低压加热器的疏水通过危机疏水门直接进入凝汽器,增加了凝汽器的热负荷; (2)主蒸汽管道旁路系统是否有漏气进入凝汽器。 4、循环水量多或少都可能引起端差的增大: (1).如果机组的负荷高,势必会导致排气量的增大,如果此时水量少了,肯定会引起排汽温度的升高,而一定量的循环水它的吸热能力是一定的是有限的,如果严重的话甚至会有溶于水的气体析出,这样无疑会使水侧换热效果变差,致使出水温度较此时真空对应下的排气温度相差很多,端差

变大,因为此时真空应该是下降的; (2)循环水量多也会引起凝汽器端差的变大,如果机组的排气量远远小于循环水量,这时循环水的温升很小,循环水出口温度很低【现在是冬季循环水的进水温度也低】这时就应该注意机组的真空严密性了,如果真空很高,这时肯定会有空气进入致使排汽温度也很高,端差变大; (2)假如凝汽器是完全严密的,如果是负荷低循环水量过剩的话,这时的排汽温度较循环水出水温度相差也是很大的,端差也会增大。

板式换热器易结垢原因及解决办法

在很多情况下,板式换热器易结垢,会严重影响到板式换热器的换热效率,是因为板式换热器大多是以水为载热体的换热系统,由于某些盐类在温度升高时从水中结晶析出,附着于换热管表面,形成水垢。 在冷却水中加入聚磷酸盐类缓冲剂,当水的PH值较高时,也可导致水垢析出。初期形成的水垢比较松软,但随着垢层的生成,传热条件恶化,水垢中的结晶水逐渐失去,垢层即变硬,并牢固地附着于换热管表面上。 此外,如同水垢一样,当换热器的工作条件适合溶液析出晶体时,换热管表面上即可积附由物料结晶形成的垢层;当流体所含的机械杂质有机物较多、而流体的流速又较小时,部分机械杂质或有机物也会在换热器内沉积,形成疏松、多孔或胶状污垢。 艾瑞德板式换热器(江阴)有限公司作为专业的可拆式板式换热器生产商和制造商,专注于可拆式板式换热器的研发与生产。ARD艾瑞德专业生产可拆式板式换热器(PHE)、换热器密封垫(PHEGASKET)、换热器板片(PHEPLATE)并提供板式换热器维护服务(PHEMAINTENANCE)的专业换热器厂家。

ARD艾瑞德拥有卓越的设计和生产技术以及全面的换热器专业知识,一直以来ARD致力于为全球50多个国家和地区的石油、化工、工业、食品饮料、电力、冶金、造船业、暖通空调等行业的客户提供高品质的板式换热器,良好地运行于各行业,ARD已发展成为可拆式板式换热器领域卓越的厂家。 ARD艾瑞德同时也是板式换热器配件(换热器板片和换热器密封垫)领域专业的供应商和维护商。能够提供世界知名品牌(包括:阿法拉伐/AlfaLaval、斯必克/SPX、安培威/APV、基伊埃/GEA、传特/TRANTER、舒瑞普/SWEP、桑德斯/SONDEX、艾普尔.斯密特/API.Schmidt、风凯/FUNKE、萨莫威孚/Thermowave、维卡勃Vicarb、东和恩泰/DONGHWA、艾克森ACCESSEN、MULLER、FISCHER、REHEAT等)的所有型号将近2000种的板式换热器板片和垫片,ARD艾瑞德实现了与各品牌板式换热器配件的完全替代。全球几十个国家的板式换热器客户正在使用ARD 提供的换热器配件或接受ARD的维护服务(包括定期清洗、维修及更换配件等维护服务)。 无论您身在何处,无论您有什么特殊要求,ARD都能为您提供板式换热器领域的系统解决方案。

凝汽器结垢原因分析

凝汽器结垢原因分析 1.凝汽器铜管脏污主要有以下几种情况: 1)因水中机械混合物的沉淀而使铜管变脏。是悬浮颗粒在管子中沉积的结果。这种悬浮颗粒是冷却水带入凝汽器中的沙石、木屑、小贝壳以及其他碎末。多数发生在使用江河、湖泊作为冷却水供水系统中。为了清除管内及管板上因机械混合物所造成的积垢凝汽器应定期进行机械清洗 2)由于盐类沉积而变脏。是水中溶有的无机盐在一定的条件下沉积下来附着于管壁污脏受热面。这种沉淀物主要是钙盐、镁盐所组成的水垢在管子上积聚的结果。由于冷却水水质不良,水中含有有机物质和无机物质覆盖在凝汽器管子的内表面上就形成一层不良的沉淀物,如果在水中含有大量的盐类时,这种沉淀物就在管子表面形成坚硬的水垢。为了清除冷却水的暂时硬度和永久硬度,可采用不同的化学水处理方法。 3)由于微生物沉积生长而变脏。由于水中各种微生物沉积在管面上而使铜管变脏。这些微生物在凝汽器中水温稳定的条件下会迅速繁殖,并形成粘膜水中其它混合物就很容易粘附在这种粘膜上,凝汽器的冷却面就在这种过程中迅速变脏。在这种情况下,有效的措施是在冷却水中定期加入氯气或漂白粉,使冷却水氯化。氯化的水能够在管子金属表面上杀菌,这就取消了微生物在管面上生长的可能性从而防止了凝汽器铜管脏污的发展。 4)流速的影响:我厂凝汽器铜管5460根,直径2.5cm,

循环泵流量5040吨/小时,流速为:0.52m/s,此流速不会造成沉积变脏。 5)表面状态:粗糙表面比光滑表面更容易造成污垢沉积。这是因为粗糙表面比原来光滑表面的面积要大很多倍,表面积的增大,增加了金属表面和污垢接触的机会和粘着力。此外,一个粗糙的表面好比有许多空腔,表面越粗糙,空腔的密度也越大。在这些空腔内的溶液是处在滞流区,如果这个表面是传热面,则还是高温滞流区。浓缩、结晶、沉降、聚合等各种作用都在这里发生,促进了污垢的沉积。 2. 目前从汽机专业看我厂主要清洗方法为:胶球清洗和高压水清洗。 去年全年#3机胶球清洗正常,在开机的几个月正常投入,收球率基本在正常范围。 经查去年全年甚至更长的时间#3机凝汽器未进行高压水冲洗。只在4月27日、7月13日、8月25日进行了水室及收球网清理。 3. #3机回收#4、#5机工业水回水及空压机冷却水,补充新鲜水较少。 根据以上分析#3机凝汽器结垢的原因为:1)冷却水较脏,水质不良。2)长时间未进行高压水冲洗。3)经过长时间的运行铜管表面光洁度变低。 王明君2011.3.2

循环冷却水换热器结垢及腐蚀的原因及处理措施

循环冷却水换热器结垢及腐蚀的原因及处理措施 化工生产中各类介质的热量交换均离不开冷却水换热器这一重 要的工业设备,大多数冷却水换热器在使用过程中存在结垢堵塞和腐蚀问题,常出现因换热不够而被迫停车清洗甚至导致换热器的报废更换,严重时会影响生产的安全稳定运行,针对冷却水换热器结垢和腐蚀的原因,阐述了常见的结垢和腐蚀的处理措施。 1、结垢的原因 A、悬浮于循环水中的固体微粒附着在换热器表面,一般由颗粒细小的泥沙、尘土、不溶性盐类、胶状物、有无等组成,当含有这些物质的水流经换热器表面时,容易形成污垢沉积物,造成垢下腐蚀,为某些细菌生存和繁殖创造了条件。当防腐措施不当时,最终导致换热表面腐蚀穿孔泄漏。 B、一般生物污垢均指微生物污垢,循环水系统中最常见的微生物主要是铁细菌、真菌,铁细菌能见溶于水中的Fe2+转化为不溶于水的Fe2O3的水合物,在水中产生大量铁氧化物沉淀以及建立氧浓度差腐蚀电池,腐蚀金属。 C、结晶污垢 在冷却循环水中,随着水分的蒸发,水中溶解的盐类(重碳酸盐、硫酸盐、硅酸盐)的浓度升高,部分盐类因过饱和而析出,而某些盐类因为则因通过换热器表面受热分解形成沉淀,这些盐类有无机盐组成,结晶致密,被称为结晶水垢。 D、腐蚀污垢 具有腐蚀性的流体或流体中含有腐蚀性杂质对换热器表面腐蚀 而产生的污垢,腐蚀程度取决于流体中的成分、温度及被处理流体中的PH等因素,金属腐蚀主要是温度在40~50℃的氧腐蚀,而合成冷排工作温度40~60℃,正好跟金属发生氧腐蚀的温度相吻合,加之循环水的PH值长期偏低,一般都在PH至8.0以下,更容易形成金属腐蚀。 2、腐蚀原因 A、电化学腐蚀是金属最常见的一种腐蚀形式当冷却水系统内

锅炉结垢与腐蚀的成因及防范措施

锅炉结垢与腐蚀的成因及防措施 【摘要】在锅炉运行中,锅炉的结垢和腐蚀会给锅炉安全运行带来很大影响,所以了解锅炉结垢和腐蚀的成因,尽量去规避这些问题带来的危害是十分必要的。本文通过分析结垢和腐蚀的危害及产生原因,寻找相应的防措施,为促进锅炉的安全运行提供了很好的参考。 【关键词】锅炉;结垢;腐蚀;危害;成因;防措施 1.前言 锅炉的结垢和腐蚀是锅炉维护和检修中应重点关注的问题,因为结垢和腐蚀会给锅炉带来的各种问题,不仅威胁到锅炉的安全运行,而且大大增加锅炉的维护和检修成本,缩短锅炉的使用寿命。对于锅炉的结垢和腐蚀问题,我们应深入分析其产生的原因,及时采取有效防措施,为锅炉的安全、节能、经济运行提供有力保障。 2.锅炉结垢 2.1结垢的危害 (1)影响传热效果由于水垢的导热系数只有钢材的几十分之一,锅炉受热面结水垢必然造成传热效率降低。据估算锅炉受热面水垢厚度每增加1mm,传热效率即降低 5%以上。 (2)影响安全运行锅炉的受热面温度一般要比炉水的温度高六到十度左右,但是水垢的存在,会使受热面的温度升高,金属过热产生蠕变,从而导致金属鼓包甚至爆破,严重影响锅炉的安全运行。

(3)增加大气污染锅炉受热面结垢必然导致热效率下降,要保证锅炉出力必须加大燃料的用量,燃料特别是煤的用量增加,会增加大气污染,影响空气质量。 (4)破坏水循环受热面特别是水冷壁管、对流管等部结垢,会影响正常的锅炉水汽循环,造成循环阻滞,破坏正常的水循环。 2.2. 结垢的原因 (1)碳酸盐、硫酸盐水垢 碳酸盐、硫酸盐水垢形成的原因是由于锅炉给水中存在钙、镁盐类,其重碳酸盐在高温锅水中会转化为碳酸盐,碳酸盐、硫酸盐等溶解度随温度的升高而降低,到一定程度会析出水垢。碳酸盐水垢,一般是在受热比较不强烈的地方形成的;硫酸盐水垢则一般在高温状态下发生沉淀,常发生在受热比较强烈的受热面上,在锅炉的水冷壁管以及对流管束中很常见。 (2)硅酸盐水垢 硅酸盐水垢的化学成分主要是铝、铁的硅酸化合物,其化学结构较为复杂,这种水垢质地最硬,并且导热性非常差,所以其危害最大,一般在锅炉热负荷高的炉管中形成。 (3)氧化铁水垢 氧化铁水垢的主要成分是铁的化合物,锅炉在正常运行情况下,水中氧含量很低,不会对锅炉造成氧腐蚀。但如果水中溶氧量增加, 就可能使金属表面产生氧腐蚀,生成氧化铁产物溶解在锅炉水中,并在高温作用下,逐渐形成氧化铁水垢。 2.3 结垢的防措施

凝汽器结垢清洗的注意事项

因冷却水大多数含有钙、镁离子和酸式碳酸盐。当冷却水流经金属表面时,有碳酸盐的生成。另外,溶解在冷却水中的氧还会造成金属腐蚀,形成铁锈。由于锈垢的产生,换热效果下降。严重时不得不在壳体外喷淋冷却水,结垢严重时会堵塞管子,使换热效果失去作用。 研究的数据显示水垢沉积物对热传输的损失影响巨大,随着沉积物的增加会造成能源费用的加大。即使很薄的一层水垢就要增加设备中结垢部分40%以上的运行费用。保持冷却通道中不含矿物沉积物可以很好的提高功效、节约能源、延长设备的使用寿命,同时节约生产时间和费用。 长期以来传统的清洗方式如机械方法(刮、刷)、高压水、化学清洗(酸洗)等在对设备清洗时出 现很多问题:不能完全清除水垢等沉积物,酸液对设备造成腐蚀形成漏洞,残留的酸对材质产生二次腐蚀或垢下腐蚀,较终导致更换设备,此外,清洗废液有毒,需要大量资金进行废水处理。 利用福世泰克清洗剂清洗凝汽器,福世泰克的高效、环保、安全、无腐蚀,不但清洗效果良好而且对设备没有腐蚀,能够保证凝汽器的长期使用。 福世泰克清洗剂(特有的添加湿润剂和穿透剂,可以有效清除用水设备中所产生的较顽固的水垢(碳酸钙)、锈垢、油垢、粘泥等沉淀物,同时不会对人体造成伤害,不会对钢铁、紫铜、镍、钛、橡胶、塑料、纤维、玻璃、陶瓷等材质产生侵蚀、点蚀、氧化等其他有害的反应,可大大延长设备的使用寿命。同时清洗液是可生物降解的(获得美国环保局认可批准),完全可以直接排放,在排放前不需进行中和处理。 福世泰克优势: (1)安全环保; (2)快速有效; (3)费用低廉; (4)操作简单; (5)生物降解; (6)用途广泛。 清洗方法: (1)循环清洗:在线针对换热设备进行循环清洗;普通设备3-5小时完成,大系统不超过12小时。 (2)浸泡清洗:对于一些体积较小的冷凝器、可采用浸泡的方法4-6个小时。 (3)喷淋清洗:对于表层大面积结垢的板式设备,可以用喷淋的方法清洗。 清洗工艺及相关注意事项: 1.隔离设备系统,并将凝汽器里面的水排放干净。 2.采用高压水清洗管道内存留的淤泥、藻类等杂质后,封闭系统。 3.在隔离阀和交换器间装上球阀(不小于1英寸=2.54厘米),进水和回水口都应安装。 4.接上输送泵和连接导管,使清洗剂从凝汽器的底部泵入,从顶部流出。 5.开始向凝汽器里泵入所需要的福世泰克清洗剂(比例可根据具体情况调整)。

汽轮机结垢分析及处理[权威资料]

汽轮机结垢分析及处理[权威资料] 汽轮机结垢分析及处理 本文档格式为WORD,感谢你的阅读。 摘要:汽轮机通流部分结垢,使汽轮机达不到额定负荷。主要原因是凝汽器内漏及锅炉对蒸汽参数控制不严格,导致蒸汽品质不合格,通流部分结垢,工艺采用对蒸汽品质从源头上严格控制和饱和湿蒸汽在线清洗的方法,消除了汽轮机结垢的现象,达到了预期效果。 以神华宁煤甲醇厂2.5万KW的汽轮机 (EHNKS40/50/20)为例进行论述,2009年8月,此汽轮机在运行期间明显出力不足,在汽轮机高、低调节进汽阀全开的情况下,仍然达不到额定转速,严重影响机组安全与经济运行。经过对汽轮机进汽蒸汽和冷凝液指标的分析,发现Na+、SiO2、电导率均严重超标,并且发现汽轮机轮室压力大幅增大,经初步判断为汽轮机通流部分已经结垢。 一、汽轮机通流部分结垢的危害 1.1 结垢后使通流面积减小。若保持主蒸汽参数不变,蒸汽流量将减小,汽轮机做功相应降低; 1.2 动、静叶结垢使其表面粗糙,增大了摩擦损失,又因机组出力偏离设计工况运行,使汽轮机效率下降。由经验可知,结垢厚度每增加0.11 mm,将使汽轮机级效率降低3 %,4 %; 1.3 汽轮机级段结垢,降低了理想焓【1】降,增加反动度【2】,转子轴向推力增大,很可能造成推力轴承过载而发生事故; 1.4 速关阀、调速汽门等部件的阀杆结垢,可引起阀门卡涩,在事故状况下不能切断进汽,从而造成机组超速。

本机组在计划停车过程中,机组负荷已降至30%,但是汽轮机高调阀开度依然是100%,机组准备停车时,汽轮机高调阀开度有所下降,确保了机组顺利、安全停车; 1.5 某些具有侵蚀性的积垢对叶片的耐高温性能会产生很大影响。 二、汽轮机结垢的原因分析 汽轮机结垢的主要原因是过热蒸汽品质不良,蒸汽中易溶于水的钠的化合物和不溶于水或极难溶于水的化合物超标,当蒸汽在通流部分膨胀做功时,参数降低及汽流方向和流速不断改变,蒸汽携带盐分的能力逐渐减弱,在减压部位或流道变更部位被分离出来,沉积在喷嘴、动叶片和进汽阀等通流部件表面上,形成盐垢。汽轮机通流部分结垢将使通流面积减小,效率下降。若维持进气调节阀开度不变,流量将减小,使机组功率下降;若要保持汽轮机转速,就要开大进汽阀,当进汽阀开到最大仍不能提供合适的转速时就影响到了装置的正常生产。经停车打开凝汽器人孔,测漏检验,证明列管的确内漏,且数量能达20根左右。由于汽轮机凝汽器内漏,大量循环水进入凝汽侧,致使汽机冷凝液Na+、SiO2严重超标,使蒸汽中无机盐分超标严重,导致汽轮机叶片积盐结垢。根据凝汽式汽轮机结构和当时现状,决定采用低压饱和湿蒸汽在线清洗的方法清理汽轮机结垢。 三、饱和湿蒸汽在线清洗 3.1清洗前准备 3.1.1蒸汽压力和温度的选择 由于是在汽轮机运转的工况下进行清洗,湿蒸汽的比重大,对叶片的冲击力很强,特别是末级叶片的进汽湿度会更大,甚至可能产生大量明水。为了减小对末级叶片的冲击,必须对进入汽轮机的蒸汽温度进行合理控制,保证过热度20,25?为宜。汽轮机进行在线清洗时的工况与正常运行工况相差较大,随着清洗过程的进行蒸汽的压力会有波动,

列管式换热器结垢原因及其解决方案

列管式换热器结垢原因及其解决方案 【摘要】列管式换热器是目前在我国热力系统中最常用的换热设备结构形式,这也是当前换热器中应用最广泛的一种,这完全取决于列管式换热器自身诸多的优点。此种形式的换热器不仅具有较为坚固的结构,而且易于制造,具有较强大的处理能力和适应性,在操作上具有较大的弹性,适应范围广,能够在高温和高压下进行使用。其作为间壁式换热器,在使用过程中极易形成结垢和污垢现象,严重时还会出现堵塞的情况,导致各传热面的传热能力下降,本文在此通过分析列管式换热器污垢形成的原因,从而制定切实可行的解决方案,确保换热器传热能力的提升。 【关键词】列管式换热器结垢原因;解决方案 在化工企业生产中,列管式换热器作为最为典型的间壁式换热器,其由壳体、管束、管板、折流挡板和封头等部分组成。列管式换热器制造过程中可以利用多种材料,由于其传热面积大,传热效果好,而且结构较为简单,所以利用非常广泛。列管式换热器在使用过程中,由于其传热面积大,所以也极易在传热表面形成沉积物堆积而发生结垢现象,使表面的热阻升高,影响了热量的传递速度。而且一旦出现结垢的情况,则会导致流通面积减小,介质在流动过程中受到较大的阻力,从而增加其运行过程中的能耗。目前很多化工生产企业都是由于列管式换热器在使用中存在结垢问题,而影响了使用效果,从而造成经济上的损失。列管式换热器在运行过程中为了有效的避免和减少结垢问题所带来的影响,则需要从设计及清理方法上来进行预防和解决,及时进行维护和保养,有效的提高列管式换热器的传热能力,增加企业的收益。 1、列管式换热器结垢的原因 列管式换热器最易结垢的部位为管束的内外壁,当该位置形成污垢层后,则会导致换热器热传递能力下降,甚至会导致介质的流道受到阻塞。流体的性质、流速、速度、状态及换热器的参数等都会导致污垢的发生。 1.1流体的性质。列管换热器其主要是以水为其载热体,水作为换热器的流体,其性质不仅指水本身的性质,也包括水中夹带着的各种物质。所以当水在加温过程中,其内所含有的离子或是某些盐类会随着温度的升高而发生结晶,这些结晶会附着在换热管的表面,形成水垢,在水垢刚形成阶段,其还会较为松软,但随着时间的推移、传热效果的恶化,则会使水垢中的结晶开始失去,垢层开始变硬,并在换热管表面形成一层牢固的硬壳。 1.2流体的流速。在列管换热器运行中,流体的流速并不是越快越好,因为当流速增加时,可能会导致结垢的增加,但也会引起沉积物脱卸的速率增加,所以当流速增加时,可能总结垢的速率反而会降低。当处于运行中的列管换热器,其流速增加时,不仅换热器的系数会变大,而且所带来的磨损也会增大,使能耗增大,所以对于列管换热器流体的流速的控制,需要从能耗和污垢两个方面进行

凝汽器端差偏高原因分析及对策

凝汽器端差偏高原因分析及对策 1 凝汽器端差δ值的意义 δ值是指凝汽器压力下的饱和温度与凝汽器冷却出口温度之差。它是反映凝汽器铜管的污垢或凝汽器内是否积存空气的主要监视数值之一,是凝汽器运行的主要监视指标,δ值一般不应超过10℃。δ值的变化标志着凝汽器运行状况的好坏,可作为判别凝汽器运行状态的依据。 2 凝汽器端差δ值的影响因素 δ值的大小决定于抽汽器效率、凝汽器构造(铜管的布置方式及换热面积)、管子内外表面清洁度、冷却水流量和流速、冷却水入口温度、进入凝汽器蒸汽流量、真空系统严密性等。以上除了设计因素外,主要取决于铜管内外表面的清洁度和真空系统的严密性。 3. 对策 3.1 提高凝汽器胶球清洗装置的清洗收球率,加强清洗效果。每台汽轮机凝汽器循环水系统配置有两套运行的胶球清洗装置,其清洗原理为:将比重接近于水的胶球投入到凝汽器循环水进水中,利用循环水的流动力迫使胶球在反复循环通过凝汽器铜管时,对凝汽器铜管内壁进行撞击和磨檫,从而达到将凝汽器铜管内壁的泥垢清洗干净的目的。为了提高凝汽器胶球清洗装置的工作效率,我们可以采用以下一系列技术措施:①改善胶球清洗装置收球网的工作特性。收球网刚度不够变形、收球网马达功率过小、收球网穿孔、收球网给垃圾堵塞等情况发生时,应通知检修配合,对收球网进行检修整改,确保收球网马达力矩足够,确保收球网刚度足够,以及确保收球网关闭严密,防止收球网关不到位,造成大量胶球漏入江中,降低胶球清洗装置循环清洗效果。②改变凝汽器循环水水流动动力。应加强循环水二次滤网的清洗,提高凝汽器循环水进水压力,同时也可以通过调整凝汽器循环水出水门,使循环水排水压力为0~0.01mpa,确保凝汽器循环水有足够的动力带动胶球在凝汽器铜管内进行流动和循环清洗。当然,应该做好对装球室的放空气工作。③采用合适尺寸的胶球。根据机组凝汽器铜管的设计内径及污脏程度,采用不同尺寸的胶球进行铜管清洗,另外,还可以根据判断凝汽器铜管结垢的不同情况(经常分为软水垢和硬水垢)而采用不同的胶球进行清洗。 3.2 加强真空系统的查漏、堵漏工作由于凝汽器的蒸汽侧是在高负压状态下运行,因此凡是与凝汽器汽侧相连接的管道,如果有空气漏入,均会进入到凝汽器。大量的不凝结气体聚集在凝汽器中,将会造成凝汽器内传热恶化,最后必将使凝汽器排汽温度升高,同时凝汽器排汽饱和温度也升高,导致凝汽器端差升高,凝汽器真空降低。因此,只有当班运行人员认真负责,经常分析,勤加检查,发现凝汽器端差升高,凝汽器真空降低时,经过分析为真空系统漏空气时,应该立即对泄漏的管道和设备加以堵漏或隔绝。 3.3 增加射水泵及射水抽气器的出力射水泵及射水抽气器由于使用的是开式循环系统的循环水,水温在夏季经常超过设计值,并且水质较差,会腐蚀射水泵及射水抽气器,而且经过长期运行后,管道内部出现结垢现象,上述原因都会导致射水抽气器出力不足,部分不凝结气体,将无法抽离凝汽器,使凝汽器中有残余未凝结气体,从而恶化排汽凝结环境,使凝汽器排汽升高,造成凝汽器端差升高。 3.4 停机后,采用高压射流清洗凝汽器铜管汽轮发电机组在正常运行中凝汽器的胶球清洗是保持凝汽器良好端差的最好方法,可利用机组停运的大好时机采用高压射流清洗凝汽器铜管,降低凝汽器端差。 高压射流清洗技术,它是将低压清水经高压射流泵升压后,输入高压软管,由喷嘴上的射流孔将高压水转变成高速水流,来冲击凝汽器冷却铜管内表面的污垢,并利用喷水方向偏后的反作用推动喷嘴带动软管向前运动,达到整根冷却铜管清洗的目的。利用这项技术清扫凝汽器的冷却铜管,其洁净度可达到95%,清洗后效果显著,受益较高。它具有清洁度高、

相关文档
相关文档 最新文档