文档库 最新最全的文档下载
当前位置:文档库 › 气体放电物理知识要点总结2014-6-6

气体放电物理知识要点总结2014-6-6

气体放电物理知识要点总结2014-6-6
气体放电物理知识要点总结2014-6-6

气体放电物理知识要点总结

1.气体放电过程中一般存在六种基本粒子:电子,正离子,负离子,光子,基态原子(或分子),激发态原子(或分子)。2.光子能量,其中为光的频率,h为普朗克常数。

3.原子能量由原子内部所有粒子共同决定,通常人们感兴趣的是原子最外层电子即价电子,因为气体放电过程主要是由最外层

电子参加的。原子通常处于稳定的能级,成为基态(基态能量

E1),当价电子从外界获得额外能量时,它可以跳跃到更高能级,此时原子处于激发态(激发态能量E2),电子处于激发态的时

间很短,然后会跃迁到基态或低激发态,并以光子形式释放出

能量()。

当电子获得的能量超过电离能时,电子就与原子完全脱离而成

为自由电子,原子变为正离子。

4.正离子也可被电离,负离子是电子附着到某些原子或分子上而形成的。负离子的能量等于原子或分子的基态能量加上电子的

亲和能。气体放电中的带电粒子是电子和各种离子(正离子和

负离子)。每种离子都将影响气体放电的电特性,电子的作用通

常占主导地位。

5.波数等于波长的倒数,表示在真空中每厘米的波长个数。即

6. 原子所处的状态取决于其核外电子的运动状态,可用四个量子数来描述。

主量子数n(n=1,2,3…), 它是由电子轨道主轴的尺寸决定;

轨道角量子数l,(l=0,1,2,3…n-1),它是由椭圆轨道的短轴和长轴之比决定。

轨道磁量子数m l,其取值范围为,它是由轨道相对于磁场的位置决定的;

自旋磁量子数.

7.在光谱中,将电子组态用规定的符号来标志,轨道角量子数用字母s,p,d,f等表示,相应的l值分别为0,1,2,3等。

电子组态所形成的原子态符号可以表示为

第二章.气体放电的基本物理过程

1.带电离子的产生方式:碰撞电离,光电离,热电离,金属表面电离

2.电子与原子碰撞时,若碰撞不引起原子内部的变化,这种碰撞称为弹性碰撞,若电子能量足够大,电子与原子碰撞后,可引起原子内部发生变化,即引起原子的激发或电离,这种碰撞称为非弹性碰撞。碰撞激发:若电子动能比原子的电离能小,但比原子激发能大,则电子与原子碰撞时,可使得原子激发。

碰撞电离:若电子动能比原子的电离能大很多,那么在非弹性碰撞之后,除了电子传递给原子一部分能量外,仍保留一部分动能,它以较低速度继续运动,并且原子被电离释放出一个电子。

分级电离:若被激发的原子再次与电子碰撞,那么电子的动能也可传

递给激发态原子,使之电离。

光电离:当光子的能量大于原子的电离能时,它就会发生光电离。

热电离:对气体粒子体系加热,温度较高时,快速运动粒子的数目增大,这些高能运动粒子之间的相互作用可使它们的动能转化为它们的势能,于是气体粒子被激发或电离,即热激发或热电离。

3.电离度:电离气体中电子或离子的浓度与中性气体原子原来的浓度之比。

4.气体平均自由程:相继两次碰撞之间的平均距离。

平均自由程与气体的粒子数密度成反比,与碰撞截面成反比。

5.碰撞时的能量转移。当弹性碰撞发生在电子与重粒子(原子或者离子)之间时,电子只给粒子很少一部分能量,而在非弹性碰撞中,电子与重粒子碰撞时可能交出全部能量,变为重粒子的势能,使重粒子激发或电离,而在重粒子之间碰撞时,重粒子只交出动能的一半来激发或者电离其它重粒子,其效率比电子低得多。

6.带电粒子在气体中的运动形式:(1)热运动(在无场空间里,与中性粒子的热运动相同),自由程反映粒子间的碰撞概率。自由程分布函数n=n0exp(-x/ ),(2)扩散运动:由于气体分子空间浓度的不均匀而在浓度梯度作用下靠杂乱无章的热运动而导致的结果。扩散系数表征粒子的流量速率与其浓度梯度之间的比例系数。D=

(3)带电粒子的漂移运动(在有电场的情况下发生):离子的漂移运动,电子的漂移运动,带电粒子的双极性扩散运动

7.迁移率:用单位强度电场作用下的粒子漂移速度来表征它的运动

状态。

8.带电粒子的消失(或者复合)两种途径:空间复合或扩散到电极及器壁上再复合。复合是电离的逆过程。

放电空间的复合主要是电子与正离子的复合,称为电子复合,正离子与负离子的复合,称为离子复合。电子复合又包括辐射复合,离解复合和双电子的复合的两体过程及三体复合。

第三章气体放电等离子体概论

1.物质存在的四种状态:固态,液态,气态,等离子体态。

2.在一定温度和压力下,物质的存在状态取决于构成物质的分子间力和无规则热运动这两种对立因素的相互作用。或者说取决于分子间的结合能与其热运动的竞争。

3.等离子体定义:包含足够多的电荷数量近似相等的正,负带电粒子的物质聚集状态。

4.1928年朗缪尔等人引入等离子体概念,1879年克鲁克斯把放电管中物质的状态称为物质的第四态。

5。组成等离子体的基本成分是:电子,离子和中性粒子。等离子体在宏观上保持电中性。

6.等离子体特征:气体高度电离,等离子体内带正电荷带负电的粒子浓度近似相等,具有导体的特征,等离子体具有振荡特性;等离子体具有加热气体特征(高温)。

7.等离子体分类:按照电离度分,(1)低温等离子体(电离度小于

0.01)(包含热等离子体(近局域热力学平衡),冷等离子体(非平衡),燃烧等离子体);(2 )高温等离子体(完全热平衡)(电离度大于0.01)。 非热力学平衡等离子体拥有高的电子能量及较低的离子及气体温度这一非平衡特性在工业上应用最广泛。

8.等离子体基本参量:等离子体粒子密度,等离子体温度,等离子体电离度

9.等离子体基本长度:德拜屏蔽长度是等离子体物理中具有决定意义的长度20ne kT e

D ελ=,它是等离子体具有电中性的空间尺度下限,

10.电子走完一个振幅(等于德拜长度)所需的时间可看做等离子体存在的时间下限e e D

p m kT /λτ=

11.等离子体鞘层:当等离子体与容器或电极,探针等固体表面接触时,表现出与普通气体截然不同的性质,在两者之间形成一层负电位的过度区域,它把等离子体包围起来,称为等离子体鞘层。在鞘层内的粒子不具有电中性。鞘层厚度具有德拜屏蔽长度的量级。

等离子体振荡: 若在等离子体的某一局部区域内,由于扰动,某瞬间出现正负电荷分离时,库仑力将使得其返回原状,但由于惯性,返回的粒子将越过平衡位置向相反方向偏离,此时静电恢复力再次起作用,从而形成等离子体内部带电粒子群的集体运动,即等离子体振荡。电子的振荡频率远大于离子的振荡频率。

12.等离子体判据:

(1)德拜长度远小于等离子体系统的特征长度L ;

(2)以德拜长度为半径的球内包含的带电粒子数远大于1;(3)等离子体的频率大于电子和中性粒子的碰撞频率。这表明电子不可能通过与中性粒子的碰撞来消耗振荡能量,以使等离子体振荡维持。13.气体放电的相似性(略)

第四章汤森放电与气体击穿

1.低气压气体放电的伏安特性曲线:p63

画出伏安特性曲线,并对每个区的特点进行分析说明

2.什么是自持放电,非自持放电?

3.1903年,汤森第一个提出气体击穿理论----电子雪崩理论,并于1910年发表“击穿判据”等。此理论开始用于非自持放电,自持暗放电及过渡区,后来罗果夫斯基修改和补充了该理论,扩展到辉光放电区。

4.电子崩的形成(电子雪崩或电子繁流)

阴极电极表面由于光电离产生电子(种子电子)在电场作用下向阳极运动过程中动能增大,并与气体粒子发生碰撞电离,产生新电子,新电子向阳极运动也会使得气体电离,于是电子数量增多,带电粒子像雪崩式的增殖,即电子雪崩或电子繁流。

5.α系数—电子沿电场方向运动1cm平均发生的碰撞电离次数—电子崩过程(α过程)α称为电子碰撞电离系数(或电子对气体的体积电离系数)。

α与放电气体性质,气体压强及给定放电点的场强等有关。 电离系数依赖于气体压强和电场强度。

)/()/exp(P E f P E B A P =-=α

6.γ系数(正离子的表面电离系数)—折合到每个碰撞阴极表面的正离子,使阴极金属平均释放出的自由电子数—离子崩达到阴极后引起阴极发射二次电子的过程(γ过程)。

γ与气体性质,电极材料和离子能量等有关。

7.汤逊理论的实质:电子碰撞电离是气体放电的主要原因,二次电子来源于正离子撞击阴极使阴极表面逸出电子,逸出电子是维持气体放电的必要条件。 所逸出的电子能否接替起始电子的作用是自持放电的判据。

适用范围:解释低气压、短气隙中的放电现象。

8.影响γ系数的因素:(1)气体的电离电位高,阴极的逸出功低,则γ值就大;(2)正离子的动能大小也直接影响γ值大小,因为正离子被阴极吸收后的动能将变为零,这些动能同样被转化为逸出电子的能量;(3)γ值的大小还与阴极表面附近的E/P 值有关。

9.正离子引起次级电子发射的能量主要来源于电离能。

10.自持放电条件可表达为:1)1(=-d e αγ

11.击穿判据的物理意义 :若最初从阴极逸出一个初始电子,设电子在加速同时不断碰撞电离,到达阳极时电子数目为d e α, 产生的离子数为(d e α-1),这些正离子最终通过作用,产生二次电子,若二次电子数

d e α-1≥1,这些二次电子就可作为种子等初始电子一样产生连续

电流,从而使得放电持续进行。即仅由电子α作用产生初始电子时,电流在一个脉冲后会终止。但同时加上离子的γ作用,会不断从阴极补充种子电子使放电持续下去,此即自持放电含义。

12.帕邢定律:击穿电位的表达式为:))

/11ln(/ln(γ+=APd BPd V S 13.影响击穿电压的因素:在其他条件不变条件下,击穿电压与气体性质有关,且随着电极材料,表面状况和电极结构(电场分布)而变。

14.杂质气体对击穿电位的影响,如掺入低电离能的气体可降低击穿电压,相反,若掺入双原子分子气体,则着火电压要升高。

15.电场分布对击穿电压的影响:

(1)在均匀电场条件下测得的帕邢曲线,在正负电极反号前后,两条帕邢曲线重合。

(2)同轴圆筒电极系统的电极间电场分布不均匀。当中心电极接正电位时,阴极附近电场相当弱,击穿电压较高;当中心电极接负电位时,阴极附近电场较强,击穿电压就低。

16. 罗果夫斯基空间电荷理论在汤森放电理论基础上,提出了在气体击穿过程中应考虑空间电荷对放电的影响。

第五章 辉光放电

1. 正常辉光放电时,沿着存在有电场的管轴方向,放电管发光空间呈现明暗相间的光层分布分为五个区域:(一)阴极区,(二)负辉区,

(三)法拉第暗区,(四)正柱区,(五)阳极区。

2. 正常辉光放电的阴极区由三部分组成:阿斯顿暗区,阴极辉光区

克鲁克斯暗区。

3.辉光放电发光强度排序:负辉区最亮,正柱区次之,阴极区最弱。

4.辉光放电外貌与气体种类,压强,放电管尺寸,电极材料及形状,极间距等有关。

改变电极间距,阴极区和负辉区不受影响(负辉区和克鲁克斯暗区保留),而最大正柱区,法拉第暗区可完全消失。

5. 正常辉光放电:放电电流只从阳极表面的一部分流过,随着电流增加,阴极被放电电流覆盖的面积也增加两者成正比,此时阴极位降与放电电流及气压无关。

6.反常辉光放电:当放电电流大于某一值时,放电覆盖整个阴极表面,随后电流密度和阴极位降都增加,这种放电的阴极位降为反常阴极位降。

7. 辉光放电正柱区本质上就是等离子体区,空间宏观电荷密度为零,带电粒子以杂乱为主,不存在雪崩式的电离过程。正柱中电子的损失可认为主要是由在管壁的复合造成的。

8. 辉光放电中阳极仅仅起到搜集电子的作用。

9. 阴极溅射:当空心阴极放电时,放电空间的正离子向阴极移动,在阴极位降区的高场强作用下,正离子不断轰击阴极表面,使得阴极表面金属原子分解,产生的粒子附着在附近的管壁上,使之发黑。即阴极溅射。

10.溅射率S0--每个正离子能够从阴极表面溅射出的原子数。

11. 溅射率与阴极材料性质,离子能量与质量,气体压力,阴极表面

状况有关。

12.阴极阻塞:当空心阴极放电下,若电极间距进一步缩短,则电压会增加,放电出现阻塞现象。

13。空心阴极放电:在辉光放电时,当电极间距缩小到某一程度,阴极和阳极之间只出现负辉区,可得到没有正柱的放电。若将阴极制成平行平板,U字形或圆筒形,两个阴极面相对放置,则两个电子束彼此汇合,使得负辉区合并在一起,发光更明亮且较均匀。

14.空心阴极放电装置见P98

15.空心阴极放电主要特征:(1)放电维持电压降低;(2)阴极电流密度增加;(3)在某些条件下,放电电压-电流特性变为负;(4)阴极暗区长度缩短;(5)负辉区中高能和低能电子密度都变高。

16.空心阴极放电产生条件:(1)一定气压下,空心圆筒阴极的半径必须大于阴极暗区厚度;(2)圆筒阴极的长度与直径之比大于7;(3)维持空心阴极放电必须有相当强的光辐射。

17.辉光放电是汤森放电的进一步发展,它们之间的一个主要差别是辉光放电具有较大的放电电流密度,而且空间电荷效应起着显著作用,因此讨论辉光放电时必须考虑空间电荷问题。

18.发生空心阴极效应的本质是电子摆动。理论上一次电子摆动可引起几十个原子的激发或电离。

19.空心阴极放电的阴极位降比反常辉光放电小得多,因此放电电流密度增加不完全依赖于正离子轰击阴极所引起的次级电子发射来实现,而是依靠电子在阴极间的来回振荡和紫外光子及亚稳原子轰击阴

极所引起的次级电子发射。

20.当空心阴极间距过小时,电流密度不但不会增加反而下降为零,这是因为提供电子雪崩的空间太小了。P99

第六章电弧放电

1. 电弧放电应用:

高温特性,可用于对难熔金属切割焊接喷涂。

发光特性:制造高亮度高光效放电灯如高压汞灯,钠灯金属卤钨灯电流密度大,阴极位降低,热阴极充气管(如闸流管,整流管)

在固态气态激光器中,用作泵浦源

电弧放电法原位清洗光学元件。

2. 由放电伏安特性曲线可知,利用减小外阻增加辉光放电电流,起初阴极发射电子面积增大,而极间电压保持不变(正常辉光放电),到反常辉光放电后,若电流继续增加,极间电压经最大值后剧降,并过渡到低电压大电流放电即弧光放电。

特征:

(1)电流密度大。正柱区106A/m2或更高,阴极位降区106~1010A/m2,而辉光10~100A/m2

(2) 阴极位降低;电弧10V,辉光100V量级,例外高气压长弧放电管可达千伏以上。

(3)温度和发光度高,放电时呈现弧状白光,产生高温。

3.启动电弧的四种方法:

(1)电极相互接触后迅速分离的方法;

(2)改变辉光放电的放电条件,使之向电弧过渡;在一定的电流下增加气压,或者在一定的气压下,增大放电电流;通常采用减小外电路电阻的方法来增加放电电流。

(3)在电压不很高下,应用预电离使气体击穿形成电弧;

(4)在两个电极间外加一个足以使放电间隙击穿的电压,可形成一个火花而转成稳定的电弧放电。

4. 电弧放电管分三个区:阴极区(阴极,阴极斑点,阴极鞘层);

正柱区; 阳极区(阳极,阳极斑点,阳极鞘层)

阴极:靠热电子发射和场致发射产生电子,并维持放电电流。

正柱区:传导电流作用,电压降较小,长度由极间距和气压决定。

分为等离子体核心(热平衡)和等离子体晕(围绕核心的非热平衡)两区;正柱区温度与电极材料,工作气体,电流密度相关。

阳极区:起被动作用,一般只有一个电子自由程。

通过调节阳极位降大小使得阳极接收的电子流满足外电路电流值;

阳极收集电子电流,由高熔点难熔金属制成。

5.阴极发射机理:阴极处,电流密度高,而阴极位降低,,表明电弧放电中阴极发射过程比汤森放电的 过程有效的多。

(1)自持热阴极电弧放电;放电发生在难熔电极,阴极白炽化,T>3000K,放电电流靠热电子发射维持,集中于斑点上。阴极鞘层厚度为电子平均自由程量级,电子几乎不与气体碰撞,当外电压足够大时,

电子在阴极鞘层获得足够能量后与气体碰撞电离。由于电子迁移速度大于离子,碰撞电离后正离子聚集在鞘层处,形成正空间电荷,正离子在阴极位降加速下,撞击电极,把能量交给阴极以维持阴极高温。(2)自持冷阴极电弧放电:发生于易蒸发材料做电极,如汞弧,在汞蒸气中以汞做阴极的自持电弧放电。阴极斑点不固定,由于汞易蒸发,在阴极附近,汞蒸气浓度增加使得平均自由程减小,阴极鞘层的场强达108V/m2, 此强场是靠近阴极表面的正离子层引起,在强场下阴极中传导电子克服表面位垒而逸出,形成冷阴极场致发射;

(3)非自持热阴极电弧放电(或外加热阴极电弧放电):靠外加电源加热阴极,使之产生高温维持热电子发射。此时,电子从整个阴极表面发射而不形成阴极斑点。

这种放电不需大量正离子轰击阴极产生热电子发射,管内产生的正离子作用仅为抵消阴极附近负空间电荷影响。故只需很低的极间电压就可获得大电流,阴极位降与气体电离电位差不多。

与自持放电不同,电离过程不发生在阴极而是在正柱区,阴极出发的电子在鞘层得到加速后,携带相应的能量以很大定向运动速度进入正柱区,电子通过与原子,离子或激发原子的相互作用交换能量,部分电子具有超过电离电位的能量,可使原子电离。

在辉光放电中阳极通常只起着收集电子作用,阳极位降比阴极位降小,可在弧光放电中尤其高气压的阳极温度大于或等于阴极温度。

6.一般自持热阴极电弧放电的伏安特性曲线斜率为负的,即随着放电电流增加,极间压降下降。这主要是由于随着电流增加轴向电场强度

减小所致。在平衡态,单位长度正柱区中消耗的功率中一部分用于产生电离来补偿带电粒子复合所造成的损失,另一部分则消耗于辐射,对流和传导等。

7.正柱区中带电粒子的产生主要靠电子和基态原子碰撞电离及电子和激发原子碰撞电离(逐级电离)。

随着放电电流增加,逐次电离作用更加重要。总电离次数正比于In 8.正柱区中带电粒子的损失主要有两种形式:即管壁复合和体积复合。管壁复合速率与I成正比,体积复合速率与I2成正比。若放电管管径小,气压低,就以管壁复合为主;若管径大,气压高,则以体积复合为主。

9.当电流增加时,若管压不变,则放电空间带电粒子的产生必定超过带电粒子的损失。为维持放电平衡,当电流增加时,必须减少电离碰撞次数,即必须降低电子温度,也即必须减小轴向场强,使得管压下降。显然伏安特性为负的。

归纳起来,在放电电流增加时,带电粒子产生的速率将超过带电粒子损失的速率,则伏安特性为负的,反之,伏安特性为正的。

伏安特性为负的会带来一些不便,如大部分气体放电灯具具有负特性,为了使得放电灯稳定工作,通常必须使用镇流器。

10.温度与气压关系:在低气压时,电子温度高于离子温度; 高气压时,电子温度近似等于离子温度

原因:电子与气体原子间的碰撞大多为弹性碰撞,电子给原子很少部分能量。当气压升高时,碰撞频繁。

11.高气压电弧正柱特征:温度很高,处于热力学平衡态,温度随压强和电流上升。

在高气压电弧中,由于其温度梯度很大,电弧正柱承载很强的对流干扰,当电弧横向点燃时,对流会使电弧中间向上凸起,增加电弧的有效长度,若电源电压不足以维护电弧拉长,则电弧会被吹断。利用螺旋形气流把电弧围住,可稳定电弧防止被吹断。

12.低气压放电正柱区,电子放电电流主要承担者,而正离子只起中和电子空间电荷作用。

第七章火花放电

1. 火花放电是一种不连续不稳定的持续放电,在放电间隙会出现曲折而有分支的细丝,并发出强闪光和破裂声。

2. 当高压电源的功率不太大时,高电压电极间的气体被击穿,出现闪光和爆裂声的气体放电现象。在通常气压下,当在曲率不太大的冷电极间加高电压时,若电源供给的功率不太大,就会出现火花放电,火花放电时,碰撞电离并不发生在电极间的整个区域内,只是沿着狭窄曲折的发光通道进行,并伴随爆裂声。由于气体击穿后突然由绝缘体变为良导体,电流猛增,而电源功率不够,因此电压下降,放电暂时熄灭,待电压恢复再次放电。所以火花放电具有间隙性。雷电就是自然界中大规模的火花放电。

3.日光灯的启辉器也利用火花放电原理。闭合日光灯的电键时,电压使启辉器的玻璃管中的氖气放电,放电生热使玻璃管中动片受热膨胀与静片接通。在这一过程中发出闪光和咔嚓声。待动片与静片断开时,

高电压又使灯管中的水银蒸气放电,日光灯发光。

4.火花放电维持时间10-8~10-6s;

5.流注:火花放电阳极附近存在电离粒子的大量集聚,电离度大大超过电子雪崩中的电离度,高度电离区的形成及迅速传播特征称为流注或流光。放电中的流注发展速度增长非常迅速,约10-8s,

非均匀电场中流注发展不规则,每次放电形状,外貌均不同。

6.流注按起点区分为正流注和负流注

7.正流注是在起始雪崩的头部到达阳极后从阳极到阴极发展,

正柱扩展速度大于电子雪崩扩展速度。任何地点发生的流注都能发展为火花放电。

从阴极向阳极发展的流注称为负流注。

8.在通常的大气压下,当放电电源功率不足以产生和维持稳定的弧光放电时,高电压的气体放电从非自持放电过渡到自持放电的最终阶段会发展为火花放电。火花放电的着火电压等于自持放电的着火电压,在其他条件相同情况下,着火电压唯一地决定于电极间距离。

11.火花放电通常是在很高电压下发生,因此它的着火电位很高;但当放电间隙击穿后,它的电阻变得很小这样在电路中就要流过很大电流,并引起电路中电位重新分布。结果在放电间隙内只有很小的电压。若电源功率较小,那么在很短时间内强大的电流脉冲通过火花通道后,火花会遭到中断。此时电极间的电压又会重新上升到原来数值,于是重新发生火花击穿和生成新的火花通道,这就是火花放电表现出不连续的原因。(简答题)

12.在火花隙电极之间的电容越大时,极间电压升高所需要的时间就越长;因此如果在电路内接入和火花平行的电容,那么相继两个火花的时间间隔就变长了,火花的强度及相关的效应也增大了。大量电荷流过火花通道,将增加电流脉冲的强度和时间。在大电容的情况下,每个放电脉冲都有大量电荷通过火花,因为,火花通道明亮地发光,并引起宽阔的光带,这种放电称为高电容火花放电或高电容放电。

13.汤森放电理论在大气压下遇到的主要困难:(1)关于放电形成时延;(2)关于放电起始位置;(3) 关于光照的影响。

14.流注理论:Meek 和Reather 建立流注理论,认为电子碰撞电离及空间光电离是维持自持放电的主要因素。并强调空间电荷畸变电场的作用。

15.Reather 判据:当离子浓度为106~108时,电子崩的发展被减弱,这种低于指数增长速度是由于正极性空间电荷消弱了外加电场对电子的加速,从而降低了电子电离能力。当离子的浓度大于108时,间隙电流剧增,随后间隙击穿,在此阶段,正离子形成的空间电荷足够强,可激发流注过程。故流注形成条件也即自持放电条件为810>x e α

16.流注的形成直接取决于初始电子崩头部的电荷,即空间电荷增加到一定数量时,电场被畸变而加强到一定强度并造成足够空间光电离后方能转为流注。 因空间电荷量和空间光电离强度都与气体密度有关。

第八章电晕放电

1. 电晕放电的定义:

电晕放电发生于处于电击穿点之前的电气上受压状态的气体在尖端,边缘或丝附近的高电场区,在其它电场弱的地方不发生电离,只产生局部放电,是汤森暗放电的特征现象。在电极周围产生暗辉光。

2. 特征:

属于自持放电,放电电压降比辉光大(千伏量级)。但是放电电流较小(微安量级),发生在电极间电场分布不均匀条件下。

若电场分布均匀,放电电流较大,则发生辉光放电,若提高外加电压,而电源功率又不够大,则转变为火花放电;若电源功率够大,则电晕放电转变为电弧放电。

3. 电晕放电是极不均匀电场所特有的一种自持放电形式,它与其它形式的放电有本质的区别。

4. 电晕放电的电流强度取决于:外施电压的大小,电极形状,极间距离,气体的性质和密度等。

5.汤森研究了圆柱形电极构型下空间电荷对电流的制约作用。电晕放电可分为两个区域,一个是电离区域,一个是迁移区域,汤森在研究中仅考虑了电离区域以外区域的传导。

第九章介质阻挡放电

1.介质阻挡放电是有绝缘介质插入放电空间的一种气体放电.

2.介质阻挡放电基本原理:介质可以覆盖在电极上或者悬挂在放电空间里。当在放电电极上施加足够高的交流电压时,电极间的气体,即

使在很高气压下也会被击穿而形成所谓的介质阻挡放电。这种放电表现为很均匀,漫散和稳定,貌似低气压下的辉光放电,但实际上它是由大量细微的快脉冲放电通道构成的。通常放电空间的气体压强可达105Pa或更高,所以这种放电属于高气压下的非热平衡放电。在历史上这种放电又称无声放电,因为它不像空气中的火花放电那样会发出巨大的击穿响声。

3.介质阻挡放电的电极结构

4. 微放电是介质阻挡放电的核心。介质阻挡放电的物理过程通常分为三个阶段:(1)放电的形成,放电的击穿,(2)放电击穿后,气体间隙电流脉冲或电荷的输送,(3)在微放电电流通道中原子或分子的激发和反应动力学的启动,即自由基,准分子的形成。

5. 介质阻挡放电是一种高气压下的非平衡放电。与其他放电的相似之处是电子在外电场下获得能量,通过与周围气体原子分子发生碰

撞,使得气体原子分子激发电离,从而生成更多电子,引起雪崩,当气体间隙上的外电场电压超过气体的击穿电压时,气体被击穿。但是由于介质的存在,限制了放电电流的自由增长,因此也阻止极间火花或电弧的形成。在较高气压下,气体的击穿会造成大量的电流细丝通道,而每个通道相当于一个单个击穿或流光击穿,这就是形成了所谓的微放电。这些微放电能够彼此独立发生在很多位置上。

6. 放电形态随气压变化的规律:在低气压下平均自由程较长,电子容易获得较大动能,因此在低气压下很易得到均匀放电形态。

随着气压升高,气体分子间的平均自由程变短,若使电子获得足够的动能,碰撞气体分子并使之电离,需要施加更高的电压。高场强下由于空间电荷造成电场畸变,电子崩发展极不稳定,可能导致流注的形成。因此随着气压升高,放电稳定性逐渐降低,放电从均匀形态向不均匀形态发展。放电形态随气压变化的规律是衡量材料对放电影响的基础。以这些放电形态发生改变的临界气压来衡量材料的好坏。认为在越高气压得到均匀放电的介质阻挡放材料越有利于均匀放电的形成。

7. 介质阻挡放电中的电场强度,举例。若放电空间充以空气,其间隙lg=0.4cm,玻璃介质薄片厚度ld=0.3cm,而4,1==d g εε,当作用电压V=25kV 时,则有cm kV E cm kV E d g /4.11,/5.45==,由于空气的击穿场强为cm kV /30,若去掉玻璃介质薄片,空气不会被击穿,然而在上述条件下,空气隙上的电场强度可达cm kV /5.45,会被击穿。可见由于玻璃片的插入,空气承受的电场强度可以超过它的介质强度,因此在足

半导体物理知识点及重点习题总结

基本概念题: 第一章半导体电子状态 1.1 半导体 通常是指导电能力介于导体和绝缘体之间的材料,其导带在绝对零度时全空,价带全满,禁带宽度较绝缘体的小许多。 1.2能带 晶体中,电子的能量是不连续的,在某些能量区间能级分布是准连续的,在某些区间没有能及分布。这些区间在能级图中表现为带状,称之为能带。 1.2能带论是半导体物理的理论基础,试简要说明能带论所采用的理论方法。 答: 能带论在以下两个重要近似基础上,给出晶体的势场分布,进而给出电子的薛定鄂方程。通过该方程和周期性边界条件最终给出E-k关系,从而系统地建立起该理论。 单电子近似: 将晶体中其它电子对某一电子的库仑作用按几率分布平均地加以考虑,这样就可把求解晶体中电子波函数的复杂的多体问题简化为单体问题。 绝热近似: 近似认为晶格系统与电子系统之间没有能量交换,而将实际存在的这种交换当作微扰来处理。 1.2克龙尼克—潘纳模型解释能带现象的理论方法 答案: 克龙尼克—潘纳模型是为分析晶体中电子运动状态和E-k关系而提出的一维晶体的势场分布模型,如下图所示 利用该势场模型就可给出一维晶体中电子所遵守的薛定谔方程的具体表达式,进而确定波函数并给出E-k关系。由此得到的能量分布在k空间上是周期函数,而且某些能量区间能级是准连续的(被称为允带),另一些区间没有电子能级(被称为禁带)。从而利用量子力学的方法解释了能带现象,因此该模型具有重要的物理意义。 1.2导带与价带 1.3有效质量 有效质量是在描述晶体中载流子运动时引进的物理量。它概括了周期性势场对载流子运动的影响,从而使外场力与加速度的关系具有牛顿定律的形式。其大小由晶体自身的E-k 关系决定。 1.4本征半导体 既无杂质有无缺陷的理想半导体材料。 1.4空穴 空穴是为处理价带电子导电问题而引进的概念。设想价带中的每个空电子状态带有一个正的基本电荷,并赋予其与电子符号相反、大小相等的有效质量,这样就引进了一个假想的

八年级物理下册知识点总结

2012—2013学年度第二学期八年级物理复习提纲 第七章力 一、力 1、力的概念:力是物体对物体的作用。 2、力的单位:牛顿,简称牛,用N 表示。力的感性认识:拿两个鸡蛋所用的力大约1N。 3、力的作用效果:力可以改变物体的形状,力可以改变物体的运动状态。 说明:物体的运动状态是否改变一般指:物体的运动快慢是否改变(速度大小的改变)和 物体的运动方向是否改变 4、力的三要素:力的大小、方向、和作用点;它们都能影响力的作用效果。 5、力的示意图:用一根带箭头的线段把力的大小、方向、作用点表示出来, 如果没有大小,可不表示,在同一个图中,力越大,线段应越长 6、力产生的条件:①必须有两个或两个以上的物体。②物体间必须有相互作用(可以不接触)。 7、力的性质:物体间力的作用是相互的。 两物体相互作用时,施力物体同时也是受力物体,反之,受力物体同时也是施力物体。 二、弹力 1、弹力 ①弹性:物体受力时发生形变,不受力时又恢复到原来的形状的性质叫弹性。 ②塑性:物体受力发生形变,形变后不能恢复原来形状的性质叫塑性。 ③弹力:物体由于发生弹性形变而受到的力叫弹力,弹力的大小与弹性形变的大小有关 弹力产生的重要条件:发生弹性形变;两物体相互接触; 生活中的弹力:拉力,支持力,压力,推力; 2:弹簧测力计 ①结构:弹簧、挂钩、指针、刻度、外壳 ②作用:测量力的大小 ③原理:在弹性限度内,弹簧受到的拉力越大,它的伸长量就越长。 (在弹性限度内,弹簧的伸长跟受到的拉力成正比) ④对于弹簧测力计的使用 (1) 认清量程和分度值;(2)要检查指针是否指在零刻度,如果不是,则要调零; (3)轻拉秤钩几次,看每次松手后,指针是否回到零刻度; (4) 使用时力要沿着弹簧的轴线方向,注意防止指针、弹簧与秤壳接触。测量力时不能超过 弹簧测力计的量程。(5)读数时视线与刻度面垂直 说明:物理实验中,有些物理量的大小是不宜直接观察的,但它变化时引起其他物理量的变化却容易观察,用容易观察的量显示不宜观察的量,是制作测量仪器的一种思路。这种科学方法称做“转换法”。利用这种方法制作的仪器有:温度计、弹簧测力计等。 三、重力、 1、重力的概念:由于地球的吸引而使物体受的力叫重力。重力的施力物体是:地球。 2、重力大小的叫重量,物体所受的重力跟质量成正比。 公式:G=mg 其中g=9.8N/kg ,它表示质量为1kg 的物体所受的重力为9.8N。在要求不很精确的情况下,可取g=10N/kg。3、重力的方向:竖直向下。其应用是重垂线、水平仪分别检查墙是否竖直和桌面是否水平。 4、重力的作用点——重心 重力在物体上的作用点叫重心。质地均匀外形规则物体的重心,在它的几何中心上。 如均匀细棒的重心在它的中点,球的重心在球心。方形薄木板的重心在两条对角线的交点 第八章力和运动 一、牛顿第一定律 1、牛顿第一定律: ⑴牛顿总结了伽利略等人的研究成果,得出了牛顿第一定律,其内容是: 一切物体在没有受到力的作用的时候,总保持静止状态或匀速直线运动状态。 ⑵说明: A、牛顿第一定律是在大量经验事实的基础上,通过进一步推理而概括出来的,且经受住了实践的检验,所以已成为大家公认的力学基本定律之一。但是我们周围不受力是不可能的,因此不可能用实验来直接证明牛顿第一定律。 B、牛顿第一定律的内涵:物体不受力,原来静止的物体将保持静止状态,原来运动的物体,不管原来做什么运动,物体都将做匀速直线运动. C、牛顿第一定律告诉我们:物体做匀速直线运动可以不需要力,即力与运动状态无关,所以力不是产生或维持运动的原因。 2、惯性:⑴定义:物体保持原来运动状态不变的性质叫惯性。 ⑵说明:惯性是物体的一种属性。一切物体在任何情况下都有惯性,惯性大小只与物体的质量有关,与物体是否受力、受力大小、是否运动、运动速度等皆无关。 利用惯性:跳远运动员的助跑;用力可以将石头甩出很远;骑自行车蹬几下后可以让它滑行。 防止惯性带来的危害:小型客车前排乘客要系安全带;车辆行使要保持距离。 二、二力平衡 1、定义:物体在受到两个力的作用时,如果能保持静止状态或匀速直线运动状态称二力平衡。 2、二力平衡条件:二力作用在同一物体上、大小相等、方向相反、两个力在一条直线上 3.物体在不受力或受到平衡力作用下都会保持静止状态或匀速直线运动状态。即平衡状态. 4、平衡力与相互作用力比较: 相同点:①大小相等;②方向相反;③作用在一条直线上。 不同点:平衡力作用在一个物体上,可以是不同性质的力;相互作用力作用在不同物体上,是相同性质的力。 物体运动状态的改变,是指速度大小的改变和运动方向的改变。 三、滑动摩擦力 1、定义:两个互相接触的物体,当它们做相对滑动时,在接触面上会产生一种阻碍相对运动的力,这种力叫做滑动摩擦力。

大学物理知识点总结汇总

大学物理知识点总结汇总 大学物理知识点总结汇总 大学物理知识点总结都有哪些内容呢?我们不妨一起来看看吧!以下是小编为大家搜集整理提供到的大学物理知识点总结,希望对您有所帮助。欢迎阅读参考学习! 一、物体的内能 1.分子的动能 物体内所有分子的动能的平均值叫做分子的平均动能. 温度升高,分子热运动的平均动能越大. 温度越低,分子热运动的平均动能越小. 温度是物体分子热运动的平均动能的标志. 2.分子势能 由分子间的相互作用和相对位置决定的能量叫分子势能. 分子力做正功,分子势能减少, 分子力做负功,分子势能增加。 在平衡位置时(r=r0),分子势能最小. 分子势能的大小跟物体的体积有关系. 3.物体的内能

(1)物体中所有分子做热运动的动能和分子势能的总和,叫做物体的内能. (2)分子平均动能与温度的关系 由于分子热运动的无规则性,所以各个分子热运动动能不同,但所有分子热运动动能的`平均值只与温度相关,温度是分子平均动能的标志,温度相同,则分子热运动的平均动能相同,对确定的物体来说,总的分子动能随温度单调增加。 (3)分子势能与体积的关系 分子势能与分子力相关:分子力做正功,分子势能减小;分子力做负功,分子势能增加。而分子力与分子间距有关,分子间距的变化则又影响着大量分子所组成的宏观物体的体积。这就在分子势能与物体体积间建立起某种联系。因此分子势能分子势能跟体积有关系, 由于分子热运动的平均动能跟温度有关系,分子势能跟体积有关系,所以物体的内能跟物的温度和体积都有关系:温度升高时,分子的平均动能增加,因而物体内能增加; 体积变化时,分子势能发生变化,因而物体的内能发生变化. 此外, 物体的内能还跟物体的质量和物态有关。 二.改变物体内能的两种方式 1.做功可以改变物体的内能.

初二物理知识点总结

长度的测量: 1、长度的测量是物理学最基本的测量。长度测量的常用的工具是_____。 2、国际单位制中,长度的主单位是__,常用单位有____,____,____, ____, ____, ____, 3、长度估测:黑板的长度2.5__、课桌高0.7__、篮球直径24__、指甲宽度 1__、铅笔的直径1mm 、一只新铅笔长度1.75___、手掌宽度1 __、墨水瓶高度6__: 4、刻度尺的使用规则: A、“选”:根据实际需要选择刻度尺。 B、“观”:使用刻度尺前要观察它的___、___、___。 C、“放”用刻度尺测长度时,尺要沿着所测直线(紧贴物体且不歪斜)。不利用磨损的___。(用零刻线磨损的的刻度尺测物体时,要从整刻度开始) D、“看”:读数时视线要与尺面___。 E、“读”:在精确测量时,要估读到___的下一位。 F、“记”:测量结果由___和___组成。(也可表达为:测量结果由准确值、估读值和单位组成)。 练习:有两位同学测同一只钢笔的长度,甲测得结果12.82cm,乙测得结果为12.8cm。如果这两位同学测量时都没有错误,那么结果不同的原因是:两次刻度尺的___不同。如果这两位同学所用的刻度尺分度值都是mm,则乙同学的结果错误。原因是:没有___。 5、误差: (1)定义:测量值和真实值的差异叫____。 (2)产生原因:测量工具测量环境人为因素。 (3)减小误差的方法:_________。 (4)误差只能减小而不能避免,而错误是由于不遵守测量仪器的使用规则和主观粗心造成的,是能够避免的。 参照物 1、(1)、定义:为研究物体的运动假定不动的物体叫做___。 (2)、任何物体都可做参照物,通常选择参照物以研究问题的方便而定。 (3)、选择不同的参照物来观察同一个物体结论可能不同。同一个物体是运动还是静止取决于所选的参照物,这就是运动和静止的_____。 (4)、不能选择所研究的对象本身作为参照物那样研究对象总是静止的。 练习 (1)、诗句“满眼风光多闪烁,看山恰似走来迎,仔细看山山不动,是船行”其中“看山恰似走来迎”和“是船行”所选的参照物分别是_____和_____。 (2)、坐在向东行使的甲汽车里的乘客,看到路旁的树木向后退去,同时又看到乙汽车也从甲汽车旁向后退去,试说明乙汽车的运动情况。分三种情况:①_____②_______________③__________。 二、机械运动 2、比较物体运动快慢的方法:⑴比较同时启程的步行人和骑车人的快慢采用:____

半导体物理知识点总结

半导体物理知识点总结 本章主要讨论半导体中电子的运动状态。主要介绍了半导体的几种常见晶体结构,半导体中能带的形成,半导体中电子的状态和能带特点,在讲解半导体中电子的运动时,引入了有效质量的概念。阐述本征半导体的导电机构,引入了空穴散射的概念。最后,介绍了Si、Ge和GaAs的能带结构。 在1.1节,半导体的几种常见晶体结构及结合性质。(重点掌握)在1.2节,为了深入理解能带的形成,介绍了电子的共有化运动。介绍半导体中电子的状态和能带特点,并对导体、半导体和绝缘体的能带进行比较,在此基础上引入本征激发的概念。(重点掌握)在1.3节,引入有效质量的概念。讨论半导体中电子的平均速度和加速度。(重点掌握)在1.4节,阐述本征半导体的导电机构,由此引入了空穴散射的概念,得到空穴的特点。(重点掌握)在1.5节,介绍回旋共振测试有效质量的原理和方法。(理解即可)在1.6节,介绍Si、Ge的能带结构。(掌握能带结构特征)在1.7节,介绍Ⅲ-Ⅴ族化合物的能带结构,主要了解GaAs的能带结构。(掌握能带结构特征)本章重难点: 重点: 1、半导体硅、锗的晶体结构(金刚石型结构)及其特点; 三五族化合物半导体的闪锌矿型结构及其特点。 2、熟悉晶体中电子、孤立原子的电子、自由电子的运动有何不同:孤立原子中的电子是在该原子的核和其它电子的势场中运动,自由电子是在恒定为零的势场中运动,而晶体中的电子是在严格周期性重复排列的原子间运动(共有化运动),单电子近似认为,晶体中的某一个电子是在周期性排列且固定不动的原子核的势场以及其它大量电子的平均势场中运动,这个势场也是周期性变化的,而且它的周期与晶格周期相同。 3、晶体中电子的共有化运动导致分立的能级发生劈裂,是形成半导体能带的原因,半导体能带的特点: ①存在轨道杂化,失去能级与能带的对应关系。杂化后能带重新分开为上能带和下能带,上能带称为导带,下能带称为价带②低温下,价带填满电子,导带全空,高温下价带中的一部分电子跃迁到导带,使晶体呈现弱导电性。

最新人教版八年级物理下册知识点总结

八年级物理下册知识点 第七章 7.1力(F) 1、定义:力是物体对物体的作用,物体间力的作用是相互的。 注意(1)一个力的产生一定有施力物体和受力物体,且同时存在。 (2)单独一个物体不能产生力的作用,且不能脱离物体而单独存在。 (3)力的作用可发生在相互接触的物体间,也可以发生在不直接接触的物体间。 (4)因为力的作用是相互的,所以是施力物体的同时,也是受力物体;是受力物体的同时,也是施力物体。 2、判断力的存在可通过力的作用效果来判断。 力的作用效果有两个: (1)力可以改变物体的运动状态。(运动状态的改变是指物体运动的大小、运动的方向或 运动的大小和方向同时发生改变)。 举例:用力推小车,小车由静止变为运动;守门员接住飞来的足球。 (2)力可以改变物体的形状。举例:用力压弹簧,弹簧变形;用力拉弓弓变形。 3、力的单位:牛顿(N) 4、力的三要素:力的大小、方向、作用点称为力的三要素。它们都能影响力的作用效果。 5、力的表示方法:画力的示意图。在受力物体上沿着力的方向画一条线段,在线段的末端 画一个箭头表示力的方向,线段的起点或终点表示力的作用点,线段的长表示力的大小,这种方法叫力的示意图。 6、力的作用是相互的 一个物体对另一个物体施加力的同时,另一个物体也同时对它施加力的作用。也就是说物体间力的作用是相互的, 7.2、弹力 (1)弹性:物体受力发生形变不受力自动恢复原来形状的特性; 塑性:物体受力发生形变不受力不能自动恢复原来形状的特性。 弹性限度:当弹性物体的形变超过某一数值时,即使撤去外力,物体也不能恢复原状了,这个值叫弹性限度。 (2)弹力的定义:物体由于发生弹性形变而产生的力。(如压 力,支持力,拉力) (3)产生条件:①两物体直接接触,②物体发生弹性形变。 (4)弹力的方向:与施力物体形变方向相反。 弹簧测力计: (5)测量力的大小的工具叫做弹簧测力计。 弹簧测力计(弹簧秤)的工作原理:在弹性限度内,弹 簧的伸长与受到的拉力成正比。即弹簧受到的拉力越大,弹簧的伸长就越长。

大学物理学知识总结

大学物理学知识总结 第一篇 力学基础 质点运动学 一、描述物体运动的三个必要条件 (1)参考系(坐标系):由于自然界物体的运动是绝对的,只能在相对的意义上讨论运动,因此,需要引入参考系,为定量描述物体的运动又必须在参考系上建立坐标系。 (2)物理模型:真实的物理世界是非常复杂的,在具体处理时必须分析各种因素对所涉及问题的影响,忽略次要因素,突出主要因素,提出理想化模型,质点和刚体是我们在物理学中遇到的最初的两个模型,以后我们还会遇到许多其他理想化模型。 质点适用的范围: 1.物体自身的线度l 远远小于物体运动的空间范围r 2.物体作平动 如果一个物体在运动时,上述两个条件一个也不满足,我们可以把这个物体看成是由许多个都能满足第一个条件的质点所组成,这就是所谓质点系的模型。 如果在所讨论的问题中,物体的形状及其在空间的方位取向是不能忽略的,而物体的细小形变是可以忽略不计的,则须引入刚体模型,刚体是各质元之间无相对位移的质点系。 (3)初始条件:指开始计时时刻物体的位置和速度,(或角位置、角速度)即运动物体的初始状态。在建立了物体的运动方程之后,若要想预知未来某个时刻物体的位置及其运动速度,还必须知道在某个已知时刻物体的运动状态,即初台条件。 二、描述质点运动和运动变化的物理量 (1)位置矢量:由坐标原点引向质点所在处的有向线段,通常用r 表示,简称位矢或矢径。 在直角坐标系中 zk yi xi r ++= 在自然坐标系中 )(s r r = 在平面极坐标系中 rr r = (2)位移:由超始位置指向终止位置的有向线段,就是位矢的增量,即 1 2r r r -=?

位移是矢量,只与始、末位置有关,与质点运动的轨迹及质点在其间往返的次数无关。 路程是质点在空间运动所经历的轨迹的长度,恒为正,用符号s ?表示。路程的大小与质点运动的轨迹开关有关,与质点在其往返的次数有关,故在一般情况下: s r ?≠? 但是在0→?t 时,有 ds dr = (3)速度v 与速率v : 平均速度 t r v ??= 平均速率 t s v ??= 平均速度的大小(平均速率) t s t r v ??≠ ??= 质点在t 时刻的瞬时速度 dt dr v = 质点在t 时刻的速度 dt ds v = 则 v dt ds dt dr v === 在直角坐标系中 k v j v i v k dt dz j dt dy i dt dx v z y x ++=++= 式中dt dz v dt dy v dt dx v z y x = == ,, ,分别称为速度在x 轴,y 轴,z 轴的分量。

初中物理知识点总结(最新最全)

初中物理知识点总结(大全) 第一章声现象知识归纳 1 . 声音的发生:由物体的振动而产生。振动停止,发声也停止。 2.声音的传播:声音靠介质传播。真空不能传声。通常我们听到的声音是靠空气传来的。 3.声速:在空气中传播速度是:340米/秒。声音在固体传播比液体快,而在液体传播又比空气体快。 4.利用回声可测距离:S=1/2vt 5.乐音的三个特征:音调、响度、音色。(1)音调:是指声音的高低,它与发声体的频率有关系。(2)响度:是指声音的大小,跟发声体的振幅、声源与听者的距离有关系。 6.减弱噪声的途径:(1)在声源处减弱;(2)在传播过程中减弱; (3)在人耳处减弱。 7.可听声:频率在20Hz~20000Hz之间的声波:超声波:频率高于20000Hz的声波;次声波:频率低于20Hz的声波。 8.超声波特点:方向性好、穿透能力强、声能较集中。具体应用有:声呐、B超、超声波速度测定器、超声波清洗器、超声波焊接器等。 9.次声波的特点:可以传播很远,很容易绕过障碍物,而且无孔不入。一定强度的次声波对人体会造成危害,甚至毁坏机械建筑等。它主要产生于自然界中的火山爆发、海啸地震等,另外人类制造的火箭发射、飞机飞行、火车汽车的奔驰、核爆炸等也能产生次声波。 第二章物态变化知识归纳 1. 温度:是指物体的冷热程度。测量的工具是温度计, 温度计是根据液体的热胀冷缩的原理制成的。 2. 摄氏温度(℃):单位是摄氏度。1摄氏度的规定:把冰水混合物温度规定为0度,把一标准大气压下沸水的温度规定为100度,在0度和100度之间分成100等分,每一等分为1℃。 3.常见的温度计有(1)实验室用温度计;(2)体温计;(3)寒暑表。 体温计:测量范围是35℃至42℃,每一小格是0.1℃。 4. 温度计使用:(1)使用前应观察它的量程和最小刻度值;(2)使用时温度计玻璃泡要全部浸入被测液体中,不要碰到容器底或容器壁;(3)待温度计示数稳定后再读数;(4)读数时玻璃泡要继续留在被测液体中,视线与温度计中液柱的上表面相平。 5. 固体、液体、气体是物质存在的三种状态。

半导体物理知识点及重点习题总结

基本概念题: 第一章半导体电子状态 1、1 半导体 通常就是指导电能力介于导体与绝缘体之间的材料,其导带在绝对零度时全空,价带全满,禁带宽度较绝缘体的小许多。 1、2能带 晶体中,电子的能量就是不连续的,在某些能量区间能级分布就是准连续的,在某些区间没有能及分布。这些区间在能级图中表现为带状,称之为能带。 1、2能带论就是半导体物理的理论基础,试简要说明能带论所采用的理论方法。 答: 能带论在以下两个重要近似基础上,给出晶体的势场分布,进而给出电子的薛定鄂方程。通过该方程与周期性边界条件最终给出E-k关系,从而系统地建立起该理论。 单电子近似: 将晶体中其它电子对某一电子的库仑作用按几率分布平均地加以考虑,这样就可把求解晶体中电子波函数的复杂的多体问题简化为单体问题。 绝热近似: 近似认为晶格系统与电子系统之间没有能量交换,而将实际存在的这种交换当作微扰来处理。 1、2克龙尼克—潘纳模型解释能带现象的理论方法 答案: 克龙尼克—潘纳模型就是为分析晶体中电子运动状态与E-k关系而提出的一维晶体的势场分布模型,如下图所示 利用该势场模型就可给出一维晶体中电子所遵守的薛定谔方程的具体表达式,进而确定波函数并给出E-k关系。由此得到的能量分布在k空间上就是周期函数,而且某些能量区间能级就是准连续的(被称为允带),另一些区间没有电子能级(被称为禁带)。从而利用量子力学的方法解释了能带现象,因此该模型具有重要的物理意义。 1、2导带与价带 1、3有效质量 有效质量就是在描述晶体中载流子运动时引进的物理量。它概括了周期性势场对载流子运动的影响,从而使外场力与加速度的关系具有牛顿定律的形式。其大小由晶体自身的E-k

教科版 初二下册物理知识点归纳总结(强烈推荐)

初二下册物理基础知识点归纳 1.力是一个物体对另一个物体的作用。力不能脱离物体单独存在;施加力的物体叫施力物体, 受到力的物体叫受力物体,其中被研究的对象都是受力物体。 2.力产生的条件:①必须有两个或两个以上的物体。②物体间必须有相互作用(可以不接触)。 3.力学必记的三句话:①物体间力的作用是相互的(一个物体是施力物体的同时也是受力物体) ②力可以改变物体的运动状态(动←→静、快←→慢、方向改变)③力可以使物体发生形变。 (不能说改变形变或物体形变发生改变) 4.力的三要素:大小、方向、作用点。(它们都可以影响力的作用效果) 5.力(F):国际单位是牛(顿),符号是N;2个鸡蛋在手上对手的力大约是1N。 6.力的表示法有2种:力的图示和力的示意图 用一个带有箭头的线段表示力,线段的长度表示力的大小,箭头表示力的方向,起点(或终点)表示力的作用点(同光线一样,这个方法叫理想模型法) 7.口诀为:一定点二画线、三定比例四截线、五在末端标尖尖、六是力的大小写尖边。 注:①力的示意图比力的图示少了画标度的过程。可以这样记:示意图就是意思意思,只是表示出大致的意思就可以了,没有图示详细; ②在同一个图中,如果有几个力的话要公用一个标度和力的作用点。(作用点一定在受 力物体上,而且一般取中心。) ③线段长度没有半格的,也没有一个格的,也就是说最少2个格,且是格的整数倍。 8.物体在撤去外力后能恢复到原来的形状叫弹性形变。 产生条件或依据:①物体间是否直接;②接触处是否有相互挤压和拉伸。 9.弹力的大小:F=k x 其中F:弹力;k:劲度系数,和物体本身有关;x:形变量,即形变 后的长度也原长的差。即弹力的大小与物体本身额弹性强弱和形变量的大小有关。形变量越大,弹力越大,弹簧测力计就是根据这个原理制成的:在一定范围内,弹簧的伸长量与拉力成正比。 10.弹力的方向:与受力物体形变方向相反;常见的弹力有压力、拉力和支持力。 11.弹簧测力计又叫弹簧秤,可测重力和拉力。 其使用方法为:①看(量程)②认(分度值和单位)③调(调零,然后拉几下挂钩,避免弹簧被外壳卡住)④测(拉力方向与弹簧轴线方向一致)⑤读(视线与刻度面板垂直)⑥记(+单位)

大学物理物理知识点总结

y 第一章质点运动学主要内容 一. 描述运动的物理量 1. 位矢、位移和路程 由坐标原点到质点所在位置的矢量r r 称为位矢 位矢r xi yj =+r v v ,大小 r r ==v 运动方程 ()r r t =r r 运动方程的分量形式() ()x x t y y t =???=?? 位移是描述质点的位置变化的物理量 △t 时间内由起点指向终点的矢量B A r r r xi yj =-=?+?r r r r r △,r =r △路程是△t 时间内质点运动轨迹长度s ?是标量。 明确r ?r 、r ?、s ?的含义(?≠?≠?r r r s ) 2. 速度(描述物体运动快慢和方向的物理量) 平均速度 x y r x y i j i j t t t u u u D D = =+=+D D r r r r r V V r 瞬时速度(速度) t 0r dr v lim t dt ?→?== ?r r r (速度方向是曲线切线方向) j v i v j dt dy i dt dx dt r d v y x ??????+=+==,2222y x v v dt dy dt dx dt r d v +=?? ? ??+??? ??==?? ds dr dt dt =r 速度的大小称速率。 3. 加速度(是描述速度变化快慢的物理量) 平均加速度v a t ?=?r r 瞬时加速度(加速度) 220lim t d d r a t dt dt υυ→?===?r r r r △ a r 方向指向曲线凹向j dt y d i dt x d j dt dv i dt dv dt v d a y x ????ρ ?2222+=+== 2 2222222 2 2???? ??+???? ??=? ?? ? ??+??? ??=+=dt y d dt x d dt dv dt dv a a a y x y x ? 二.抛体运动 运动方程矢量式为 2 012 r v t gt =+ r r r

【重点】新人教版八年级物理下册知识点总结

八年级物理第二学期复习提纲 第七章力 一、力 1、力的概念:力是物体对物体的作用。 2、力的单位:牛顿,简称牛,用N 表示。力的感性认识:拿两个鸡蛋所用的力大约1N。 3、力的作用效果:一、力可以改变物体的形状,二、力可以改变物体的运动状态。 说明:物体的运动状态是否改变一般指:物体的运动快慢是否改变(速度大小的改变,比如:物体由静止到运动、物体由运动到静止、物体运动速度由快变慢、物体运动速度由慢变快。)和物体的运动方向是否改变,二者可以同时发生,也可以单独发生。如果物体的形状或运动状态发生改变,它一定受到了力的作用。 4、力的三要素:力的大小、方向、和作用点;它们都能影响力的作用效果。 5、力的示意图:用一根带箭头的线段把力的大小、方向、作用点表示出来,如果没有大小,可不表示,在同一个图中,力越大,线段应越长。 6、力产生的条件:①必须有两个或两个以上的物体。②物体间必须有相互作用(可以不接触)。 7、力的性质:物体间力的作用是相互的。 两物体相互作用时,施力物体同时也是受力物体,反之,受力物体同时也是施力物体。 物体间的相互作用力是同时产生的,没有先后之分。 只有一个物体不能产生力,要同时有两个物体,它们之间才有可能产生相互作用的力,也就是施力物体和受力物体要同时存在。 二、弹力 1、弹力 ①弹性:物体受力时发生形变,不受力时又恢复到原来的形状的性质叫弹性。 ②塑性:物体受力发生形变,形变后不能恢复原来形状的性质叫塑性。 ③弹力:物体由于发生弹性形变而受到的力叫弹力,弹力的大小与弹性形变的大小有关。 弹力产生的重要条件:①发生弹性形变;②两物体相互接触。 生活中的弹力:拉力、支持力、压力、推力; 2:弹簧测力计

初二物理知识点汇总

初二物理知识点 第一章:走进物理世界 1、物理学史研究光、热、力、声、电等形形色色物理现象的规律和物质结构的一门科学 2、观察和实验是获取物理知识的重要来源 3、长度测量的工具是刻度尺,长度的国际基本单位是米,符号是m;常用单位还有千米(km)、分米(dm)、厘米(cm)、毫米(mm)、微米(μm)、纳米(nm)等。它们之间的换算关系是 1km=1 000m lm=l0dm ldm=l0cm lcm=l0mm 1mm=1 000μn lμm=1 000nm 4、长度测量结果的记录包括准确值、估计值和单位。 5、误差:测量值和真实值之间的差别叫误差。误差产生的原因:①与测量的人有关;②与测量的工具有关。任何测量结果都有误差,误差只能尽量减小,不能绝对避免;但错误是可以避免的。 减小误差的方法:①选用更精密的测量工具;②采用更合理的测量方 法; ③多次测量取平均值。 6、测量时间的工具是秒表,时间的国际基本单位是秒,符号是s;常用的单位还有小时(h)、分(min)等。它们之间的换算关系是1h=60min lmin=60s 7、科学探究的主要过程是:提出问题、猜想与假设、指定计划与设计实验、进行实验与收集数据、分析与论证、评估、交流与合作

第二章:声音与环境 1、产生:声音是由物体的振动产生的,振动停止,声音就停止;振动发 声的物体叫声源 2、传播:声音的传播需要介质,真空不能传播声音。声音在介质中是以波的形式传播;在不同的介质中传播速度不同,一般在固体中传播最快,气体中传播最慢。15℃的空气中声音传播速度为340m/s。 3、声音的三个特性: (1)音调:人耳感觉到声音的高低叫音调;音调的高低跟发声体振动的频率有关,频率越高,音调越高。 (2)响度:人耳感觉到的声音的强弱,响度的大小跟发声体振动的幅度有关;振幅越大,响度越大;响度还跟距离发声体的远近有关。 (3)音色:又叫音品,不同的发声体发出声音的音色不同。 4、频率的高低决定音调的高低;振幅的大小决定声音的响度。频率的单位是赫兹,符号是Hz,人能感受到的声音频率范围是20Hz~20000Hz。人们把低于20Hz的声音叫次声,高于20000Hz的声音叫超声。超声的应用有:超声波粉碎结石、声纳探测潜艇、鱼群,B超检查内脏器官。 5、乐音与噪声: 乐音:悦耳动听、使人愉快的声音;是物体做规则振动时发出的声音。 噪声:使人们感到厌烦、有害身心健康的声音;是物体做无规则振动时发出的声音。人们用分贝来划分dB声音的强弱的等级。 6、控制噪声的三个途径是:吸声、隔声、消声;即在声源处、在传播途径和在接收处控制。 7、声的利用:(1)声音可以传递信息:如渔民利用声纳探测鱼群 (2)声音可以传递能量:如某些雾化器利用超声波产生水雾 8、回声:声音在传播途径中遇到碍物被返射回去的现象,叫回声。如回声比原声到达人耳晚0.1s以上,人耳能把他们区分开,否则回声会与原声混在一起会加强原声。利用“双耳效应”可以听到立体声。 第三章:光 一、光的传播

半导体物理知识点梳理

半导体物理考点归纳 一· 1.金刚石 1) 结构特点: a. 由同类原子组成的复式晶格。其复式晶格是由两个面心立方的子晶格彼此沿其空间对角线位移1/4的长度形成 b. 属面心晶系,具立方对称性,共价键结合四面体。 c. 配位数为4,较低,较稳定。(配位数:最近邻原子数) d. 一个晶体学晶胞内有4+8*1/8+6*1/2=8个原子。 2) 代表性半导体:IV 族的C ,Si ,Ge 等元素半导体大多属于这种结构。 2.闪锌矿 1) 结构特点: a. 共价性占优势,立方对称性; b. 晶胞结构类似于金刚石结构,但为双原子复式晶格; c. 属共价键晶体,但有不同的离子性。 2) 代表性半导体:GaAs 等三五族元素化合物均属于此种结构。 3.电子共有化运动: 原子结合为晶体时,轨道交叠。外层轨道交叠程度较大,电子可从一个原子运动到另一原子中,因而电子可在整个晶体中运动,称为电子的共有化运动。 4.布洛赫波: 晶体中电子运动的基本方程为: ,K 为波矢,uk(x)为一个与晶格同周期的周期性函数, 5.布里渊区: 禁带出现在k=n/2a 处,即在布里渊区边界上; 允带出现在以下几个区: 第一布里渊区:-1/2a

新人教版物理八年级下册知识点汇总

第七章力 一、力 1.力的作用效果:(1)力可以改变物体的运动状态。 (2)力可以使物体发生形变。 注:物体运动状态的改变指物体的运动方向或速度大小的改变或二者同时改变,或者物体由静止到运动或由运动到静止。形变是指形状发生改变。 2.力的概念 (1)力是物体对物体的作用,力不能脱离物体而存在。一切物体都受力的作用。 (2)有的力必须是物体之间相互接触才能产生,比如物体间的推、拉、提、压等力, 但有的力物体不接触也能产生,比如重力、磁极间、电荷间的相互作用力等。 (3)力的单位:牛顿,简称:牛,符号是N。 (4)力的三要素:力的大小、方向、作用点叫做力的三要素。都会影响力的作用效果。 3.力的示意图 (1)用力的示意图可以把力的三要素表示出来。 (2)作力的示意图的要领: ①确定受力物体、力的作用点和力的方向; ②从力的作用点沿力的方向画力的作用线,用箭头表示力的方向; ③力的作用点可用线段的起点,也可用线段的终点来表示; ④表示力的方向的箭头,必须画在线段的末端。 4.物体间力的作用是相互的,比如甲、乙两个物体间产生了力的作用,那么甲对乙施加一个力的同时,乙 也对甲施加了一个力。 由此我们认识到:①力总是成对出现的;②相互作用的两个物体互为施力物体和受力物体。 二、弹力 1.弹性和塑性:(1)在受力时会发生形变,不受力时,又恢复到原来的形状,物体的这种性质叫做弹性; (2)在受力时会发生形变,不受力时,形变不能自动地恢复到原来的形状,物体的这种性质叫做塑性。 2.弹力 (1)弹力是物体由于发生弹性形变而产生的力。压力、支持力、拉力等的实质都是弹力。 (2)弹力的大小、方向和产生的条件: ①弹力的大小:与物体的材料、形变程度等因素有关。 ②弹力的方向:跟形变的方向相反,与物体恢复形变的方向一致。 ③弹力产生的条件:物体相互接触,发生弹性形变。 3.弹簧测力计 (1)测力计:测量力的大小的工具叫做测力计。 (2)弹簧测力计的原理:弹簧所受拉力越大弹簧的伸长就越长; 在弹性限度内,弹簧的伸长与所受到的拉力成正比。 (3)弹簧测力计的使用: ①测量前,先观察弹簧测力计的指针是否指在零刻度线的位置,如果不是,则需校零;所测的力不能大于 弹簧测力计的测量限度,以免损坏测力计。 ②观察弹簧测力计的分度值和测量范围,估计被测力的大小,被测力不能超过测力计的量程。 ③测量时,拉力的方向应沿着弹簧的轴线方向,且与被测力的方向在同一直线。 ④读数时,视线应与指针对应的刻度线垂直。 三、重力 1.重力的定义:由于地球的吸引而使物体受到的力,叫做重力。地球上的所有物体都受到重力的作用。 2.重力的大小 (1)重力也叫重量。 (2)重力与质量的关系:物体所受的重力跟它的质量成正比。 公式:G=mg,式中,G是重力,单位牛顿(N);m是质量,单位千克(kg)。g=9.8N/kg。 (3)重力随物体位置的改变而改变,同一物体在靠近地球两极处重力最大,靠近赤道处重力最小。 3.重力的方向 (1)重力的方向:竖直向下。 (2)应用:重垂线,检验墙壁是否竖直。 4.重心: (1)重力的作用点叫重心。 (2)规则物体的重心在物体的几何中心上。有的物体的重心在物体上,也有的物体的重心在物体以外。 5.万有引力:宇宙间任何两个物体,大到天体,小到灰尘之间,都存在互相吸引的力,这就是万有引力。 第八章运动和力 一、牛顿第一定律 1.牛顿第一定律 (1)内容:一切物体在没有受到外力作用时,总保持匀速直线运动状态或静止状态。 (2)牛顿第一定律不可能简单的从实验中得出,它是通过实验为基础、通过分析和科学推理得到的。 (3)力是改变物体运动状态的原因,惯性是维持物体运动的原因。 (4)探究牛顿第一定律中,每次都要让小车从同一斜面上同一高度滑下,其目的是使小车滑至水平面上的 初速度相等。 (5)牛顿第一定律的意义: ①揭示运动和力的关系。 ②证实了力的作用效果:力是改变物体运动状态的原因。 ③认识到惯性也是物体的一种特性。 2.惯性 (1)惯性:一切物体保持原有运动状态不变的性质叫做惯性。 (2)对“惯性”的理解需注意的地方: ①“一切物体”包括受力或不受力、运动或静止的所有固体、液体气体。 ②惯性是物体本身所固有的一种属性,不是一种力,所以说“物体受到惯性”或“物体受到惯性力”等, 都是错误的。 ③要把“牛顿第一定律”和物体的“惯性”区别开来, 前者揭示了物体不受外力时遵循的运动规律,后者表明的是物体的属性。 ④惯性有有利的一面,也有有害的一面,我们有时要利用惯性,有时要防止惯性带来的危害,但并不是“产 生”惯性或“消灭”惯性。 ⑤同一个物体不论是静止还是运动、运动快还是运动慢,不论受力还是不受力,都具有惯性,而且惯性大 小是不变的。惯性只与物体的质量有关,质量大的物体惯性大,而与物体的运动状态无关。 (3)在解释一些常见的惯性现象时,可以按以下来分析作答: ①确定研究对象。②弄清研究对象原来处于什么样的运动状态。 ③发生了什么样的情况变化。④由于惯性研究对象保持原来的运动状态于是出现了什么现象。 二、二力平衡 1.力的平衡 (1)平衡状态:物体受到两个力(或多个力)作用时,如果能保持静止状态或匀速直线运动状态,我们就说 物体处于平衡状态。

大学物理物理知识点总结!!!!!!

y 第一章质点运动学主要容 一. 描述运动的物理量 1. 位矢、位移和路程 由坐标原点到质点所在位置的矢量r r 称为位矢 位矢r xi yj =+r v v ,大小 r r ==v 运动程 ()r r t =r r 运动程的分量形式() ()x x t y y t =???=?? 位移 是描述质点的位置变化的物理量 △t 时间由起点指向终点的矢量B A r r r xi yj =-=?+?r r r r r △,r =r △路程是△t 时间质点运动轨迹长度s ?是标量。 明确r ?r 、r ?、s ?的含义(?≠?≠?r r r s ) 2. 速度(描述物体运动快慢和向的物理量) 平均速度 x y r x y i j i j t t t u u u D D ==+=+D D r r r r r V V r 瞬时速度(速度) t 0r dr v lim t dt ?→?== ?r r r (速度向是曲线切线向) j v i v j dt dy i dt dx dt r d v y x ??????+=+==,2222y x v v dt dy dt dx dt r d v +=?? ? ??+??? ??==?? ds dr dt dt =r 速度的大小称速率。 3. 加速度(是描述速度变化快慢的物理量) 平均加速度v a t ?=?r r 瞬时加速度(加速度) 220lim t d d r a t dt dt υυ→?===?r r r r △ a r 向指向曲线凹向j dt y d i dt x d j dt dv i dt dv dt v d a y x ????ρ ?2222+=+== 2 2222222 2 2???? ??+???? ??=? ?? ? ? ?+??? ??=+=dt y d dt x d dt dv dt dv a a a y x y x ? 二.抛体运动

初中物理知识点总结大全详解

初中物理知识点总结 初中物理基本概念概要 一、测量 ⒈长度L:主单位:米;测量工具:刻度尺;测量时要估读到最小刻度的下一位;光年的单位是长度单位。 ⒉时间t:主单位:秒;测量工具:钟表;实验室中用停表。1时=3600秒,1秒=1000毫秒。 ⒊质量m:物体中所含物质的多少叫质量。主单位:千克;测量工具:秤;实验室用托盘天平。 二、机械运动 ⒈机械运动:物体位置发生变化的运动。 参照物:判断一个物体运动必须选取另一个物体作标准,这个被选作标准的物体叫参照物。 ⒉匀速直线运动: ①比较运动快慢的两种方法:a 比较在相等时间里通过的路程。b 比较通过相等路程所需的时间。 ②公式:1米/秒=3.6千米/时。 三、力 ⒈力F:力是物体对物体的作用。物体间力的作用总是相互的。 力的单位:牛顿(N)。测量力的仪器:测力器;实验室使用弹簧秤。 力的作用效果:使物体发生形变或使物体的运动状态发生改变。 物体运动状态改变是指物体的速度大小或运动方向改变。 ⒉力的三要素:力的大小、方向、作用点叫做力的三要素。 力的图示,要作标度;力的示意图,不作标度。 ⒊重力G:由于地球吸引而使物体受到的力。方向:竖直向下。 重力和质量关系:G=mg m=G/g g=9.8牛/千克。读法:9.8牛每千克,表示质量为1千克物体所受重力为9.8牛。 重心:重力的作用点叫做物体的重心。规则物体的重心在物体的几何中心。 ⒋二力平衡条件:作用在同一物体;两力大小相等,方向相反;作用在一直线上。 物体在二力平衡下,可以静止,也可以作匀速直线运动。 物体的平衡状态是指物体处于静止或匀速直线运动状态。处于平衡状态的物体所受外力的合力为零。 ⒌同一直线二力合成:方向相同:合力F=F1+F2 ;合力方向与F1、F2方向相同; 方向相反:合力F=F1-F2,合力方向与大的力方向相同。 ⒍相同条件下,滚动摩擦力比滑动摩擦力小得多。 滑动摩擦力与正压力,接触面材料性质和粗糙程度有关。【滑动摩擦、滚动摩擦、静摩擦】7.牛顿第一定律也称为惯性定律其内容是:一切物体在不受外力作用时,总保持静止或匀速直线运动状态。惯性:物体具有保持原来的静止或匀速直线运动状态的性质叫做惯性。 四、密度 ⒈密度ρ:某种物质单位体积的质量,密度是物质的一种特性。 公式:m=ρV 国际单位:千克/米3 ,常用单位:克/厘米3, 关系:1克/厘米3=1×103千克/米3;ρ水=1×103千克/米3; 读法:103千克每立方米,表示1立方米水的质量为103千克。 ⒉密度测定:用托盘天平测质量,量筒测固体或液体的体积。 面积单位换算: 1厘米2=1×10-4米2,

相关文档
相关文档 最新文档