文档库 最新最全的文档下载
当前位置:文档库 › 细胞生物学情况总结(总)

细胞生物学情况总结(总)

细胞生物学情况总结(总)
细胞生物学情况总结(总)

细胞生物学总结

一、绪论

1.什么是细胞?

细胞是生物的基本结构单位

细胞是生物的基本功能单位

细胞是有机体生长发育的基本单位

细胞是生物体完整的遗传单位

细胞是最小的生命单位

2.什么是细胞生物学?

从细胞的显微、亚显微、分子三个水平研究细胞的结构、功能和各种生命活动规律的一门学科。

3.细胞生物学的发展过程?关键事件

四个阶段:16世纪到19世纪30年代

19世纪30年代到20世纪初期

20世纪30年代到70年代

20世纪70年代到如今

关键事件:第1~5页

二、细胞生物学研究方法

1.光学显微镜与电子显微镜有哪些区别。

2、简要说明细胞培养的过程。

三、细胞膜

1.细胞膜主要构成成分及其化学组成、特性和功能是什么?

答:细胞膜主要由膜脂、膜蛋白和膜糖类。其中,膜脂是细胞膜上的脂类物质总称,包括磷脂、胆固醇和糖脂,这三类脂类都是双亲性分子,有一个亲水末端(极性头部)和一个疏水末端(非极性尾部),是构成细胞膜的基本结构,各有其作用;膜蛋白是膜功能的主要体现者,也具有双亲性,根据膜蛋白和膜脂的结合方式,可分为膜内在蛋白质、膜外周蛋白质以及脂锚定蛋白质;膜糖类分为糖脂和糖蛋白,具有保护细胞表面、细胞识别和黏着、信息传递功能。

2.生物膜在结构和功能上有何特点?

答:生物膜结构上具有流动性,功能上具有选择透过性。

3.什么叫做流动镶嵌模型?简述其基本内容。

答:流动镶嵌模型是Singer和Nicolson于1972提出的,该模型的特点是:膜中脂双层构成膜的连贯主体,它既具有晶体分子排列的有序性,又具有液体的流动性。膜中蛋白质分子以不同形式与脂双层分子结合,有的嵌在脂双层分子中,有的则附着在脂双层的表面。它是一种动态的、不对称的、具有流动性地结构。

4、叙述细胞膜小分子及离子物质的运输方式。

小分子物质的跨膜运输分为被动运输和主动运输。被动运输不需要消耗代谢能,依靠膜两侧物质的浓度梯度就能够将物质从膜一侧运输到膜的另一侧。主要包括不需要蛋白介导的简单扩散、需要载体蛋白介导的易化扩散。而主动运输时物质运输过程中需要消耗代谢能,细胞才能逆浓度梯度运输物质。主要包括离子泵、离子梯度驱动的协同运输。

5、以钠钾泵为例说明细胞膜的主动转运过程及其生物学意义。(1)Na+-K+ATP酶通过磷酸化和去磷酸化过程发生构象的变化,导致与Na+、K+的亲和力发生变化.

(2)在膜内侧Na+与酶结合,激活ATP酶活性,使ATP分解,酶被磷酸化,构象发生变化,与Na+结合的部位转向膜外侧;这种磷酸化的酶对Na+的亲和力低,对K+的亲和力高,因而在膜外侧释放Na+、而与K+结合.

(3)K+与磷酸化酶结合后促使酶去磷酸化,酶的构象恢复原状,于是与K+结合的部位转向膜内侧,K+与酶的亲和力降低,使K+在膜内被

释放,而又与Na+结合.

(4)每一循环消耗一个ATP;转运出三个Na+,转进两个K+. Na+-K+泵的意义(作用):

?①维持细胞的渗透性,保持细胞的体积;

?②为葡萄糖协同运输泵提供了驱动力;

?③维持细胞的静息电位。

6、叙述细胞膜大分子及颗粒性物质的运输方式。

大分子物质以膜泡形式运输,根据物质分子流向分为胞吞作用(吞噬作用、吞饮作用、受体介导的胞吞作用)和胞吐作用。二者均需要消耗能量。

四、内膜系统

1.以80S核糖体为例,说明核糖体的结构成分及其功能。

核糖体是一种没有被膜包裹的颗粒状结构,其主要成分:核糖体表面r蛋白质40%,核糖体内部rRNA60%。

80S的核糖体普遍存在于真核细胞内,由60S大亚单位与40S 小亚单位组成,60S大亚单位相对分子质量为3200×103,40S小亚单位的相对分子质量为1600×103。小亚单位中含有18S的rRNA 分子,相对分子质量为900×10,含有33种r蛋白;大亚单位中含有一个28S的rRNA分子,相对分子质量为1600×103,还含有一

个5S的rRNA分子和一个5.8S的rRNA分子,含有49种r蛋白。核糖体大小亚单位常游离于胞质中,只有当小亚单位与mRNA结合后大亚单位才与小亚单位结合形成完整核糖体。肽链合成终止后,大小亚单位解离,重又游离于胞质中。核糖体是合成蛋白质的细胞器,其唯一的功能是按照mRNA的指令由氨基酸高效且精确地合成多肽链。

2.已知核糖体上有哪些活性部位?它们在多肽合成中各起什么作用?

1.氨酰基位点(aminoacy l site):受位(A位)

与氨酰-tRNA的结合位点,位于大亚基

2.肽酰基位点(peptigyl site):给位(P位)

与肽酰-tRNA的结合位点,位于大亚基

3.肽酰基转移酶位点:

催化氨基酸之间形成肽键。位于大亚基

4. GTP酶位点:

供给催化肽酰tRNA从A位点转移到P位点所需能量

5.E位点(exit site):肽酰转移后与即将释放的

tRNA的结合位点,位于大亚基。

3.何谓多聚核糖体?

进行蛋白质合成时,常由3-5个或几十个甚至更多聚集并与mRNA结合在一起,由mRNA分子与小亚基凹沟初结合,在与大亚

基结合,形成一串,称为多聚核糖体(游离多聚核糖体及固着多聚核糖体polyribosome 或polysome)

4.试比较原核细胞与真核细胞的核糖体在结构组分的异同点

.

5.内质网的形态特征,功能

内质网(ER)的形态特征:

由一层单位膜围成的连续的网状膜系统

光面内质网SER粗面内质网RER

功能脂质的合成

参与糖原分解代谢

(肝细胞)蛋白质合

新生多肽链的折叠和装配

最新细胞生物学知识点总结

细胞通讯的方式 (1)细胞通过分泌化学信号进行细胞间通讯,这是多细胞生物普遍采用的通讯方式。 (2)细胞间接触依赖性的通讯,指细胞间直接接触,通过与质膜结合的信号分子影响其它细胞。 (3)动物相邻细胞间形成间隙连接以及植物细胞间通过胞间连丝使细胞间相互沟通,通过交换小分子来实现代谢耦联或电耦联。 细胞分泌化学信号可长距离或短距离发挥作用,其作用方式分为: (1)内分泌,由内分泌细胞分泌信号分子到血液中,通过血液循环运送到体内各个部位,作用于靶细胞。 (2)旁分泌,细胞通过分泌局部化学介质到细胞外液中,经过局部扩散作用于邻近靶细胞。在多细胞生物中调节发育的许多生长因子往往是通过旁分泌起作用的。此外,旁分泌方式对创伤或感染组织刺激细胞增殖以恢复功能也具有重要意义。 (3)自分泌,细胞对自身分泌的物质产生反应。自分泌信号常存在于病理条件下,如肿细胞合成并释放生长因子刺激自身,导致肿瘤细胞的持续增殖。 (4)通过化学突触传递神经信号,当神经元接受刺激后,神经信号以动作电位的形式沿轴突快速传递至神经末梢,电压门控的Ca2+通道将电信号转换为化学信号。 通过胞外信号介导的细胞通讯步骤 (1)产生信号的细胞合成并释放信号分子。 (2)运送信号分子至靶细胞。 (3)信号分子与靶细胞受体特异性结合并导致受体激活。 (4)活化受体启动胞内一种或多种信号转导途径。 (5)引发细胞功能、代谢或发育的改变。 (6)信号的解除并导致细胞反应终止。 核被膜所具有的功能

一方面,核被膜构成了核、质之间的天然选择性屏障,将细胞分成核与质两大结构与功能区域,使得DNA复制、RNA转录与加工在核内进行,而蛋白质翻译则局限在细胞质中。这样既避免了核质问彼此相互干扰,使细胞的生命活动秩序更加井然,同时还能保护核内的DNA分子免受损伤。 另一方面,核被膜调控细胞核内外的物质交换和信息交流。核被膜并不是完全封闭的,核质之间进行着频繁的物质交换与信息交流。这些物质交换与信息交流主要是通过核被膜上的核孔复合体进行的。 核被膜的结构组成及特点 (1)核被膜由内外两层平行但不连续的单位膜构成。面向核质的一层膜被称作内(层)核膜,而面向胞质的另一层膜称为外(层)核膜。两层膜厚度相同,约为7。5 nm。两层膜之间有20~40nm的透明空隙,称为核周间隙或核周池。核周间隙宽度随细胞种类不同而异,并随细胞的功能状态而改变。 (2)核被膜的内外核膜各有特点:①外核膜表面常附有核糖体颗粒,且常常与糙面内质网相连,使核周间隙与内质网腔彼此相通。从这种结构上的联系出发,外核膜可以被看作是糙面内质网的一个特化区域。②内核膜表面光滑,无核糖体颗粒附着,但紧贴其内表面有一层致密的纤维网络结构,即核纤层。内核膜上有一些特有的蛋白成分,如核纤层蛋白B受体。③双层核膜互相平行但并不连续,内、外核膜常常在某些部位相互融合形成环状开口,称为核孔,:在核孔上镶嵌着一种复杂的结构,叫做核孔复合体。核孔周围的核膜特称为孔膜区,它也有一些特有的蛋白成分。

细胞生物学知识点总结

细胞生物学知识点总结 导读:细胞生物学知识点总结 细胞通讯的方式 (1)细胞通过分泌化学信号进行细胞间通讯,这是多细胞生物 普遍采用的通讯方式。 (2)细胞间接触依赖性的通讯,指细胞间直接接触,通过与质 膜结合的信号分子影响其它细胞。 (3)动物相邻细胞间形成间隙连接以及植物细胞间通过胞间连 丝使细胞间相互沟通,通过交换小分子来实现代谢耦联或电耦联。 细胞分泌化学信号可长距离或短距离发挥作用,其作用方式分为:(1)内分泌,由内分泌细胞分泌信号分子到血液中,通过血液 循环运送到体内各个部位,作用于靶细胞。 (2)旁分泌,细胞通过分泌局部化学介质到细胞外液中,经过 局部扩散作用于邻近靶细胞。在多细胞生物中调节发育的许多生长因子往往是通过旁分泌起作用的。此外,旁分泌方式对创伤或感染组织刺激细胞增殖以恢复功能也具有重要意义。 (3)自分泌,细胞对自身分泌的物质产生反应。自分泌信号常 存在于病理条件下,如肿细胞合成并释放生长因子刺激自身,导致肿瘤细胞的'持续增殖。 (4)通过化学突触传递神经信号,当神经元接受刺激后,神经 信号以动作电位的形式沿轴突快速传递至神经末梢,电压门控的Ca2+

通道将电信号转换为化学信号。 通过胞外信号介导的细胞通讯步骤 (1)产生信号的细胞合成并释放信号分子。 (2)运送信号分子至靶细胞。 (3)信号分子与靶细胞受体特异性结合并导致受体激活。 (4)活化受体启动胞内一种或多种信号转导途径。 (5)引发细胞功能、代谢或发育的改变。 (6)信号的解除并导致细胞反应终止。 核被膜所具有的功能 一方面,核被膜构成了核、质之间的天然选择性屏障,将细胞分成核与质两大结构与功能区域,使得DNA复制、RNA转录与加工在核内进行,而蛋白质翻译则局限在细胞质中。这样既避免了核质问彼此相互干扰,使细胞的生命活动秩序更加井然,同时还能保护核内的DNA分子免受损伤。 另一方面,核被膜调控细胞核内外的物质交换和信息交流。核被膜并不是完全封闭的,核质之间进行着频繁的物质交换与信息交流。这些物质交换与信息交流主要是通过核被膜上的核孔复合体进行的。 核被膜的结构组成及特点 (1)核被膜由内外两层平行但不连续的单位膜构成。面向核质的一层膜被称作内(层)核膜,而面向胞质的另一层膜称为外(层)核膜。两层膜厚度相同,约为7。5 nm。两层膜之间有20~40nm的

华师细胞生物学简答题(个人复习总结)

1、何谓成熟促进因子(MPF)?包括哪些主要成分?如何证明某一细胞提取液含有MPF? 成熟促进因子是指M期细胞中存在的促进细胞分裂的因子,是由两个不同亚基组成的异质二聚体,其一为调节亚基,有周期蛋白组成;其二为催化亚基,是丝氨酸/苏氨酸型蛋白激酶,其活性有懒于周期蛋白,故称为周期依赖性蛋白激酶。可以通过蛙卵细胞质移植实验证实MPF。成熟蛙卵细胞的细胞质可以诱导未成熟的蛙卵细胞提前进入成熟期。 2、简述微管、微丝和中间纤维的主要异同点?(顺序为微管、微丝、中间纤维) 直径:22nm、7nm、10nm;基本构件:α、β—微管蛋白,肌动蛋白,中间纤维丝蛋白;相对分子量(乘10的3次):50,43,40~200;结构:13根原丝围成的α—螺旋中空管状,双股α—螺旋,多级螺旋;极性:有,有,无;单体蛋白库:有,有,无;踏车现象:有,有,无;特异性药物:秋水仙素、长春花碱,细胞松弛素B、鬼笔环肽,无;运动相关蛋白:驱动蛋白、动力蛋白,肌球蛋白,无;主要功能:细胞运动、胞内运输、支持作用,变形运动、形状维持、胞质环流、胞质分裂环的桶状结构,骨架作用、细胞连接、信息传递;细胞分裂:纺锤体,无,包围纺锤体。 3、为什么将内质网比喻“开放的监狱”? KDEL信号序列为内质网驻守信号,如果内质网驻守蛋白被错误的包装进了COPII,并运输到顺面高尔基体,高尔基体膜上存在KDEL识别受体,能识别错误运输来的内质网驻守蛋白,并形成COP I小泡,将内质网驻守蛋白运输返回内质网。 4、在研究工作中分离得到一个与动物减数分裂直接相关的基因A,如果想由此获得该基因的单克隆抗体,请简要叙述实验方案及其实验原理。 英国科学家Milstein和Kohler因提出单克隆抗体而获得1984年诺贝尔生理学或医学奖。它是将产生抗体的单个B淋巴细胞同肿瘤细胞杂交,获得既能产生抗体又能无线增值的杂种细胞,并一次生产抗体的技术。其原理是:B淋巴细胞能够产生抗体,但在体外不能进行无限分裂;而肿瘤细胞虽然可以在体外进行无限传代,但不能产生抗体。将这两种细胞融合后得到的杂交瘤细胞具有两种亲本细胞的特性。 实验方案:a、表达基因A的蛋白,免疫小老鼠,获得免疫的淋巴细胞;b、将经过免疫的小老鼠的淋巴细胞与Hela细胞融合;c、利用选择培养基对融合细胞进行培养筛选,只有真正融合的细胞才能继续生长;d、融合细胞的培养,抗体的纯化。 5、微管是体内膜泡运输的导轨,请分析体内膜泡定向运输的机制? 微管是有极性的,微管的马达蛋白(动力蛋白和驱动蛋白)运输小泡也是单向的。动力蛋白向微管的负极运输小泡,驱动蛋白向微管的正极运输小泡。,另外,起始膜泡上有V-SNARE,靶膜上有T-SNARE。V-SNARE与T-SNARE选择性识别并定向融合。这两种因素共同导致了膜泡的定向运输。 6、简述细胞周期蛋白B的结构特点和动态调控机制?

细胞生物学总结复习重点细胞信转导

4、细胞通讯:一个细胞发出的信息通过介质传递到另一个细胞产生相应的反应。对于多细胞生物体的发生和组织的构建,协调细胞的功能,控制细胞的生长、分裂、分化和凋亡是必须的。包括分泌化学信号(内、旁、自、化学突触)、细胞间接触、和相邻细胞间间隙连接。 5、细胞识别:细胞通过其表面的受体与胞外信号物质分子(配体)选择性地相互作用,进而导致胞内一系列生理生化变化,最终表现为细胞整体的生物学效应的过程。 20、信号分子:生物体内的某些化学分子,如激素、神经递质、生长因子、气体分子等,在细胞间和细胞内传递信息,特称为信号分子。 21、信号通路:细胞接受外界信号,通过一整套的特定机制,将胞外信号转导为胞内信号,最终调节特定基因的表达,引起细胞的应答反应,这种反应系列称为细胞信号通路。 22、受体:一种能够识别和选择性地结合某种配体(信号分子)的大分子,当与配体结合后,通过信号转导作用将胞外信号转导为胞内化学或物理的信号,以启动一系列过程,最终表现 偶联型受体和酶偶联的受体。 23、第一信使:一般将胞外信号分子称为第一信使。 24、第二信使:细胞表面受体接受胞外信号后最早在胞内产生的信号分子。细胞内重要的第二信使有:cAMP、cGMP、DAG、IP3等。第二信使在细胞信号转导中起重要作用,能够激活级联系统中酶的活性以及非酶蛋白的活性,也控制着细胞的增殖、分化和生存,并参与基因转录的调节。 10、IP3IP2IP4。DG通过两种途径终止 其信使作用:一是被 水解成单脂酰甘油。 13、分子开关:在细胞内一系列信号传递的级联反应中,必须有正、负两种相辅相成的反馈机制精确调控,也即对每一步反应既要求有激活机制,又必然要求有相应的失活机制,使细胞内一系列信号传递的级联反应能在正、负反馈两个方面得到精确控制的蛋白质分子称为分子开关。 25、G—蛋白:由GTP控制活性的蛋白,当与GTP结合时具有活性,当与GDP结合时没有活性。既有单体形式(ras蛋白),也有三聚体形式(Gs活Gi抑)。在信号转导过程中起着分子开关的作用。 28、蛋白激酶A:称为依赖于cAMP的蛋白激酶A,是由四个亚基组成的复合物,其中两个是调节亚基,两个是催化亚基;PKA的功能是将ATP上的磷酸基团转移到特定蛋白质的丝氨酸或苏氨酸残基上,使蛋白质被磷酸化,被磷酸化的蛋白质可以调节下游靶蛋白的活性。29、双信使系统:胞外信号分子与细胞表面G蛋白偶联的受体结合后,激活质膜上的磷脂酶C(PLC),使质膜上的二磷酸磷脂酰肌醇分解成三磷酸肌醇(IP3)和二酰基甘油(DG)两个第二信使,将胞外信号转导为胞内信号,两个第二信使分别激动两个信号传递途径即IP3—Ca+和DG—PKC途径,实现对胞外信号的应答,因此将这一信号系统称为“双信使系统”。 12、目前已知的这类受体都 是跨膜蛋白,当胞外配体与受体结合即激活受体胞内段的酶活性。 个氨基酸残基组成,分布于质膜胞质侧,结合GTP 时为活化状态,结合GDP时失活状态,因此Ras蛋白属于GTP结合蛋白,具有GTP酶活性,具有分子开关的作用。突变后的Ras蛋白不能水解GTP …………………………………… 1.细胞质基质中Ca2+浓度低的原因是什么?

细胞生物学重点总结

细胞生物学重点总结 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

细胞生物学期末复习资料整理 第一章:1、细胞生物学cell biology:是研究细胞基本生命活动规律的科学, 是在显微、亚显微和分子水平上,以研究细胞结构与功能,细胞增殖、分化、 衰老与凋亡,细胞信号传递,真核细胞基因表达与调控,细胞起源与进化等为 主要内容的一门学科。P2 1、什么叫细胞生物学试论述细胞生物学研究的主要内容。P3-5 答:细胞生物学是研究细胞基本生命活动规律的科学,它是在三个水平(显微、亚 显微与分子水平)上,以研究细胞的结构与功能、细胞增殖、细胞分化、细胞衰 老开发商地亡、细胞信号传递、真核细胞基因表达与调控、细胞起源与进化等 为主要内容的一门科学。 细胞生物学的主要研究内容主要包括两个大方面:细胞结构与功能、细胞重要 生命活动。涵盖九个方面的内容:⑴细胞核、染色体以及基因表达的研究;⑵ 生物膜与细胞器的研究;⑶细胞骨架体系的研究;⑷细胞增殖及其调控;⑸细 胞分化及其调控;⑹细胞的衰老与凋亡;⑺细胞的起源与进化;⑻细胞工程; ⑼细胞信号转导。 2、试论述当前细胞生物学研究最集中的领域。 P5-6 答:当前细胞生物学研究主要集中在以下四个领域:⑴细胞信号转导;⑵细胞 增殖调控;⑶细胞衰老、凋亡及其调控;⑷基因组与后基因组学研究。人类亟 待通过以上四个方面的研究,阐明当今主要威胁人类的四大疾病:癌症、心血 管疾病、艾滋病和肝炎等传染病的发病机制,并采取有效措施达到治疗的目 的。 3.细胞学说(cell theory) p9 细胞学说是1838~1839年间由德国的植物学家施莱登和动物学家施旺所提出, 直到1858年才较完善。它是关于生物有机体组成的学说,主要内容有: ①细胞是有机体,一切动植物都是由单细胞发育而来,即生物是由细胞和细 胞的产物所组成; ②所有细胞在结构和组成上基本相似; ③新细胞是由已存在的细胞分裂而来; ④生物的疾病是因为其细胞机能失常。 4、细胞学发展的经典时期 P10 ⑴原生质理论的提出;⑵细胞分裂的研究;⑶重要细胞器的发现。 第二章:试论述原核细胞与真核细胞最根本的区别。 P35-37 答:原核细胞与真核细胞最根本的区别在于:①生物膜系统的分化与演变:真 核细胞以生物膜分化为基础,分化为结构更精细、功能更专一的基本单位—— 细胞器,使细胞内部结构与职能的分工是真核细胞区别于原核细胞的重要标 志;②遗传信息量与遗传装置的扩增与复杂化:由于真核细胞结构与功能的复

细胞生物学总结

细胞生物学总结 ——By 生科2005 狐狸要起早 第一章.绪论 三、简答论述: 为什么说细胞生物是重要的学科? 细胞生物主要研究的内容: 细胞生物学是研究细胞的基本生命活动规律的科学,它从不同层次(显微、亚显微与分子水平)研究细胞结构与功能、细胞增殖、分化、衰老与凋亡、细胞信号传递、细胞基因表达与调控、细胞起源与进化。 细胞生物学核心问题是将遗传与发育在细胞水平上结合起来。细胞生物学研究的重点领域: (1)染色体DNA与蛋白质相互作用; (2)细胞增殖、分化、调亡、衰老及其调控; (3)细胞信号转导; (4)细胞结构体系的装配; (5)蛋白质与蛋白质相互作用; (6)细胞内的网络调控。 第二章.细胞基本知识概要 二、名词解释: 病毒:由核酸和蛋白质等少数几种成分组成的超显微“非细胞生物”,营寄生生活。 古细菌:又称原细菌,是一些生长在极端特殊环境中(高温或高盐)的细菌。古核细胞的形态结构、遗传装置虽与原核细胞相似,但一些基本分子生物学特点又与真核细胞接近。 分辨率:指区分开两个质点间的最小距离。是判断显微镜性能好坏的标准。 三、简答论述: 怎样理解细胞是生命活动的基本单位? 细胞是有膜包围的能进行独立繁殖的最小原生质团,简单地说细胞是生命活动的基本单位,可以从以下角度去理解: (1)细胞是构成有机体的基本单位; (2)细胞具有独立完整的代谢体系,是代谢与功能的基本单位; (3)细胞是有机体生长与发育的基础; (4)细胞具有遗传的全能性,即具有一套基因组(基因组是指一种生物的基本染色体套即单个配子内所含有的全部基因,在原核生物中即是一个连锁群中所含的全部遗传信息); (5)没有细胞就没有完整的生命。

医学细胞生物学知识点归纳汇总

线粒体: 1.呼吸链(电子传递链)Respiratory chain一系列能够可逆地接受和释放H+和e-的化学物质所组成的酶体系在线粒体内膜上有序地排列成互相关联的链状。 2.化学渗透假说(氧化磷酸化偶联机制):线粒体内膜上的呼吸链起质子泵的作用,利用高 能电子传递过程中释放的能量将H+泵出内膜外,造成内膜内外的一个H+梯度(严格地讲是离子的电化学梯度),ATP合酶再利用这个电化学梯度来合成ATP。 3.电子载体:在电子传递过程中与释放的电子结合并将电子传递下去的物质称为电子载体。 参与传递的电子载体有四种∶黄素蛋白、细胞色素、铁硫蛋白和辅酶Q,在这四类电子载体中,除了辅酶Q以外,接受和提供电子的氧化还原中心都是与蛋白相连的辅基。 4.阈值效应:突变所产生的效应取决于该细胞中野生型和突变型线粒体DNA的比例,只有突变型DNA达到一定数量(阈值)才足以引起细胞的功能障碍,这种现象称为阈值效应。 5.导向序列:将游离核糖体上合成的蛋白质的N-端信号称为导向信号,或导向序列,由于 这一段序列是氨基酸组成的肽,所以又称为转运肽。 6.信号序列:将膜结合核糖体上合成的蛋白质的N-端的序列称为信号序列,将组成该序列 的肽称为信号肽。 7.共翻译转运:膜结合核糖体上合成的蛋白质通过定位信号,一边翻译,一边进入内质网, 由于这种转运定位是在蛋白质翻译的同时进行的,故称为共翻译转运。 8.蛋白质分选:在膜结合核糖体上合成的蛋白质通过信号肽,经过连续的膜系统转运分选才 能到达最终的目的地,这一过程又称为蛋白质分选。 核糖体: 1.原核生物mRNA中与核糖体16S rRNA结合的序列称为SD序列(SD sequence) 。 2.核酶:将具有酶功能的RNA称为核酶。 3.N-端规则(N-end rule): 每一种蛋白质都有寿命特征,称为半衰期(half-life)。研究发现多肽链N-端特异的氨基酸与半衰期相关,称为N-端规则。 4.泛素介导途径:蛋白酶体对蛋白质的降解通过泛素(ubiquitin)介导,故称为泛素降解途径。 蛋白酶体对蛋白质的降解作用分为两个过程:一是对被降解的蛋白质进行标记,由泛素完成;二是蛋白酶解作用,由蛋白酶体催化。 细胞核: 1.核内膜:有特有的蛋白成份(如核纤层蛋白B受体),膜的内表面有一层网络状纤维蛋白质,即核纤层(nuclear lamina),可支持核膜。 核外膜:靠向细胞质的一层,是内质网的一部分,胞质面附有核糖体 核周隙:内、外膜之间有宽20~40nm的腔隙,与粗面内质网腔相通 核孔复合体:内、外膜融合处,物质运输的通道 核纤层:内核膜内表面的纤维网络,支持核膜,并与染色质、核骨架相连。 2.核孔复合体:是细胞核内外膜融合形成的小孔,直径约为70 nm,是细胞核与细胞质间物 质交换的通道。 3.核孔蛋白:参与构成核孔的蛋白质,可能在经核孔的主动运输中发挥作用。 核运输受体:参与物质通过核孔的主动运输。 核周蛋白: 是一类与核孔选择性运输有关的蛋白家族,相当于受体蛋白。 5.输入蛋白:核定位信号的受体蛋白, 存在于胞质溶胶中, 可与核定位信号结合, 帮助核蛋白进入细胞核。 输出蛋白:存在于细胞核中识别并与输出信号结合的蛋白质, 帮助核内物质通过核孔复合

细胞生物学心得体会

精心整理细胞生物学心得体会 舒斌水产301402 细胞生物学是现代生命科学的重要基础学科,它联系着生物科学的许多分支学科,尤其是与分子生物学、遗传学、生物化学等学科联系密切.从1665年英国人胡克发现第一个植物细胞后,历经170多年的研究探索,科学家们创立了被认为是19世纪的三大发现之一的细胞学说,细胞学说的创立对细胞学的发展起着极大的推动作用,在19世纪的最后25年的时间里,人们相继发现了有丝分裂、无丝分裂、减数分裂等细胞生命现象,同时还发现了染色体和多种细胞器,这段时间是细胞学的经典时期.1876年,O.Hertwig等发现了动物细胞的受精现象,于是实验细胞学得以迅速发展,人们广泛应用实验手段与分析方法来研究细胞学中的一些根本问题,于是 ,大大 年代随着分子 高. 1 种类型, ,(IP3PKG 2 ,具一级 3 , ,MPF 的活性达到最高峰.CDK通过对其底物丝氨酸和苏氨酸的磷酸化和去磷酸化进行调节.细胞周期中有3个关键的控制点;G1关卡、G2关卡、中期关卡.促后期复合物(APC)介导细胞周期蛋白降解使细胞退出有丝分裂. 哺乳动物细胞受多种CDK和多种Cyclin的调控,裂殖酵母只有一种CDK和一种Cyclin,芽殖酵母有一个CDK和多种Cyclin. 另外,对生物膜流动性的机理和功能上也有进一步的了解,科学家们发现了越来越多的参与跨膜运输的蛋白质种类,并对其作用机制研究得越来越深入.对细胞骨架体系的组成和装配机制有了更深入的理解,认识了分子发动机的概念.学习了核酶一节后,认识到并非所有的酶都是蛋白质,核酶的作用与蛋白酶的作用机制也有一定的差别.对目前的热门研究领域:程序性细胞死亡、癌细胞的发生机理及控制也有了一定的了解和认识.

细胞生物学复习要点整理

春2周细胞膜 1.细胞膜的化学组成及其特性:膜脂;膜蛋白;膜糖。 2.细胞膜的分子结构模型:流动镶嵌模型,脂筏模型。 3.细胞膜的生物学特性:不对称性;流动性(膜流动性的影响因素)。 1.脂质体(liposome):当脂质分子被水环境包围时,自发聚集,疏水尾在内, 亲水头在外,出现两种存在形式:球状分子团、形成双分子层,为防止两端尾部与水接触,游离端自动闭合,形成充满液体的球状小泡称为脂质体。 2.细胞外被(cell coat)或糖萼(glycocalyx):质膜中的糖蛋白和糖脂向外表面 延伸出的寡糖链构成的糖类物质。 3.脂筏(lipid raft):膜双层内含有特殊脂质和蛋白质组成的微区,微区中富含胆 固醇和鞘脂,其中聚集一些的特定种类的膜蛋白。由于鞘脂的脂肪酸尾部比较长,这一区域比膜的其他部分厚,更有秩序且较少流动,称脂筏。 1.细胞膜的基本结构特征与生理功能? 1)脂类:包括磷脂、胆固醇、糖脂,构成细胞膜主体,与膜流动性有关。 2)蛋白质:可分为内在蛋白和外在蛋白,是膜功能的主要体现者,如物质运输、 信号转导等。 3)糖类:包括糖脂和糖蛋白,对细胞有保护作用,在细胞识别起作用。 2.影响膜脂流动性的因素? 1)脂肪酸链的饱和程度(不饱和流动性大)。 2)脂肪酸链的长短(短链流动性大)。 3)胆固醇的双重调节(相变温度以上降低,相变温度以下提高)。 4)卵磷脂和鞘磷脂的比值(比值高的流动性大)。 5)膜蛋白的影响(膜蛋白越多,流动性越差)。 6)极性基团、环境温度、pH、离子强度。 春3、4周细胞内膜系统、囊泡转运 1.细胞内膜系统的概念、组成。 2.粗面内质网功能:蛋白质的合成;蛋白质的折叠装配;蛋白质的糖基化;蛋白 质的胞内运输。 3.滑面内质网的功能:参与脂质物质的合成运输;参与糖原代谢;参与解毒;参 与储存和调节Ca2+;参与胃酸、胆汁的合成分泌(内质网以葡萄糖-6-磷酸酶为标志酶)。 4.信号肽假说:新生肽链N端有独特序列称为信号肽,细胞基质中存在SRP能 识别并结合信号肽,SRP另一端与核糖体结合,形成复合结构,然后向内质网膜移动,与内质网膜上SRP-R识别结合,并附着于移位子上,然后SRP解离,肽链延伸。当肽链进入内质网腔时,信号肽序列会被内质网腔信号肽酶切除,肽链继续延伸至终止。 5.高尔基体是高度动态、具有极性的细胞器,以糖基转移酶为标志酶,主要功能 有:糖蛋白合成;参与脂质代谢;是大分子转运枢纽;加工成熟蛋白。 6.溶酶体酶的形成:①在内质网中合成、折叠和N-连接糖基化修饰,形成N-连 接的甘露糖糖蛋白,运送至高尔基体;②溶酶体酶蛋白在高尔基体中加工时甘露糖残基磷酸化为甘露糖-6-磷酸(M-6-P),为分选重要信号;③溶酶体酶分选并以出芽方式转运到前溶酶体。 7.溶酶体以酸性磷酸酶为标志酶,主要功能为:细胞内的消化作用;细胞营养功 能;机体防御和保护;激素分泌的调控;个体发生和发育的调控。 8.过氧化物酶体(peroxisome)又称微体,特点:①内有尿酸氧化酶结晶,称作 类核体;②模内表面界面可见一条称为边缘板的高电子致密度条带状结构。以过氧化物酶为标志酶。主要功能:清除细胞代谢所产生的H2O2及其他毒物; 对细胞氧张力的调节作用;参与脂肪酸等高能分子物质的代谢。 9.三种了解最多的囊泡:①网格蛋白有被囊泡:来源于反面高尔基体网状结构和 细胞膜,介导蛋白质从反面高尔基网状结构向胞内体、溶酶体和细胞膜运输; 在受体介导的胞吞作用过程中,介导物质从细胞膜向细胞质或从胞内体向从溶酶体运输;②COP Ⅰ有被囊泡:主要产生于高尔基体顺面膜囊,主要负责回收、转运内质网逃逸蛋白返回内质网及高尔基体膜内蛋白的逆向运输;③COP Ⅱ有被囊泡:产生于粗面内质网,主要介导从内质网到高尔基体的物质转运。

细胞生物学知识点总结

细胞生物学知识点总结 细胞生物学知识点总结 导语:细胞学说是施莱登和施旺所提出:一切植物、动物都是由细胞组成的,细胞是一切动植物体的基本单位。以下是小编为大家整理分享的细胞生物学知识点总结,欢迎阅读参考。 细胞生物学知识点总结 细胞通讯的方式 (1)细胞通过分泌化学信号进行细胞间通讯,这是多细胞生物普遍采用的通讯方式。 (2)细胞间接触依赖性的通讯,指细胞间直接接触,通过与质膜结合的信号分子影响其它细胞。 (3)动物相邻细胞间形成间隙连接以及植物细胞间通过胞间连丝使细胞间相互沟通,通过交换小分子来实现代谢耦联或电耦联。 细胞分泌化学信号可长距离或短距离发挥作用,其作用方式分为: (1)内分泌,由内分泌细胞分泌信号分子到血液中,通过血液循环运送到体内各个部位,作用于靶细胞。

(2)旁分泌,细胞通过分泌局部化学介质到细胞外液中,经过局部扩散作用于邻近靶细胞。在多细胞生物中调节发育的许多生长因子往往是通过旁分泌起作用的。此外,旁分泌方式对创伤或感染组织刺激细胞增殖以恢复功能也具有重要意义。 (3)自分泌,细胞对自身分泌的物质产生反应。自分泌信号常存在于病理条件下,如肿细胞合成并释放生长因子刺激自身,导致肿瘤细胞的持续增殖。 (4)通过化学突触传递神经信号,当神经元接受刺激后,神经信号以动作电位的形式沿轴突快速传递至神经末梢,电压门控的Ca2+通道将电信号转换为化学信号。 通过胞外信号介导的细胞通讯步骤 (1)产生信号的细胞合成并释放信号分子。 (2)运送信号分子至靶细胞。 (3)信号分子与靶细胞受体特异性结合并导致受体激活。 (4)活化受体启动胞内一种或多种信号转导途径。 (5)引发细胞功能、代谢或发育的改变。 (6)信号的解除并导致细胞反应终止。 核被膜所具有的功能

北师大细胞生物学(历年试题总结)

北师大细胞生物学(历年试题总结) 一、名词解释: 1.同源盒(homeobox)(96、99、91) 2.PCR(96) 3.泛素(ubquitin)(96) 4.伴侣分子(chapron)(96) 5.转录因子(trascription factor)(96) 6.DG-IP3(96) 7.基因敲除(gene knock out)(96、00) 8.微管组织中心(MTOC)(96、01) 9.端粒酶(telomerase)(96) 10.蛋白分选(protein sorting)(96、99、00)11.Transformation(92) 12.Transfection转染(92) 13.Transcytosis转移作用(92)14.Transduction转导(92)15.Transdetermination(92)16.Transdifferentiation(92) 17.Transgenic animal转基因动物(92) 18.Rb-1(92) 19.P53(92、91) 20.C-jun(92) 21.微观结合蛋白MAPS(99、91) 22.胞内体(99) 23.Cyclin dependent kinase inhibitor(CDKI)(99) 24.G-protein(91) 25.Restriction point(91) 26.Antipost(91) 27.Capping(91) 28.TATAbox(91) 29.cDNA library(90) 30.Aritotic apparatus(90) 31.跨膜信号transmembrane signal(90)32.促有丝分裂原mitogen(90) 33.Nuclear lamina(90) 34.细胞凋亡(apotosis)(00) 35.细胞外基质(00、01) 36.细胞分化(00) 37.细胞信号转导(signal transduction)(00)38.克隆(00)

细胞生物学复习总结

Chapter 2 Cell membrane 1.简述细胞膜的特性。 1)不对称性:细胞膜的两侧具有不同的组成,包括三种成分的不对称性和维持膜功能的方向性。 膜脂分布不对称:脂质双分子层两边组成不同; 膜蛋白不对称:膜蛋白不对称分布,膜蛋白的不同定向; 膜糖的不对称:膜糖分布朝向胞外。 2)膜的流动性:膜成分处于不断运动中,是保证膜功能的重要条件,包括膜脂流动性与膜蛋白流动性. 2.试述不同类型膜蛋白的特点。 1)膜内在蛋白: 部分或全部镶嵌在细胞膜中或内外两侧;以非极性、疏水性氨基酸与脂双分子层的非极性疏水区相互作用而结合在质膜上;分子中具有一个或多个富含疏水性氨基酸的疏水区,多呈α螺旋; 在膜上可单次穿膜或多次穿膜。 2)膜周边蛋白质: 分布于膜的外表面;通过非共价键与膜脂极性头部结合;通过与膜内在蛋白亲水部分相互作用间接与膜结合。 3.何为离子通道蛋白?在胞膜物质运输中该类蛋白有何作用? 概念:大多都与离子的转运有关,通道蛋白也称为离子通道。 作用:具有离子选择性,只允许一定体积和电荷的离子通过; 转运速率高,离子通道转运离子的速率极快,比载体蛋白所介导的最快转运速率高1 000倍; 介导的物质跨膜运输是被动运输,使物质从高浓度向低浓度运输,不需要细胞提供能量. 4.举例说明离子泵在主动运输中的作用。 (答题要点:什么是离子泵,钠钾泵的组成及作用过程) 离子泵实际上就是膜上的一种ATP酶,实现离子或小分子逆浓度或电化学梯度的跨膜运动,是直接利用水解ATP提供能量的主动运输。 Na+-K+-ATP酶由大小两个亚基组成,大亚基是一个多次跨膜的膜整合蛋白,具有ATP酶活性,为催化亚单位。其中,大亚基在其胞质面有一个ATP结合点和三个高亲和的Na+结合点,在膜的外表面有两个高亲和K+结合点和一个K+结合点。 钠钾泵的作用是通过ATP驱动的泵构型改变来完成的。首先由Na+结合到胞质面的结合点,刺激ATP水解,使泵磷酸化,引起蛋白质构型改变,暴露Na+结合点面向细胞外,使Na+释放到细胞外;于此同时也将K+结合点朝向细胞外表面,结合胞外K+后引起泵去磷酸化,导致蛋白质的构型再次发生变化,将K+结合点朝向细胞质面,然后释放K+至胞质溶胶内,蛋白构型恢复原状。钠钾泵每秒钟可发生1000次构象变化,每个循环消耗1个ATP分子,泵出3个Na+和泵入2个K+。 5.试述细胞连接的主要类型及特点。 紧密连接:无间隙,点状对合结构。其作用是封闭细胞间隙:阻止物质从细胞之间通过,保证转运方向性。 锚定连接:粘着连接:带状、15-20nm缝隙、内有丝状物质.与微丝相连. 桥粒连接:纽扣状、胞质内侧圆盘型斑;中间纤维附着。 间隙连接:1.5-2nm间隙,中有规则排列的横颗粒;最普遍的细胞连接的方式。 6.试述细胞黏连分子的类型及特点。 类型:钙黏素,免疫球蛋白超家族,整合素,选择素。 1)钙粘素: 属同亲性依赖Ca2+的细胞粘连糖蛋白,介导依赖Ca2+的细胞粘着和从ECM到细胞质传递信号; 分类有,E-钙黏蛋白、N-钙黏蛋白、P-钙黏蛋白; 钙黏素介导细胞间钙依赖同亲性粘着。钙黏素的细胞部分通过接头蛋白和肌动蛋白纤维相连。 2)免疫球蛋白超家族的CAM: 分子结构中具有与免疫球蛋白类似的结构域的CAM超家族;

《细胞周期》——细胞生物学知识点总结

《细胞周期》 ★细胞的最终命运: 细胞分裂及生长(相关物质准备)→细胞增殖(受到严密的调控机制所监控)→细胞死亡 ★标准的细胞周期: (从G1期开始,历经S、G2,到M期结束) 一.细胞周期的基本概念: 1.细胞周期:细胞周期是细胞增殖周期的简称,指细胞从分裂结束后开始生长,到再次分裂终了所经历的全过程。 2.细胞周期时间(Tc):细胞周期时间因细胞类型、状态和环境而异,变异范围大,从0h~数年都可能。 3.细胞的增殖特性(机体细胞的状态): 1)增殖细胞(周期性细胞):能够增殖,不断进入 周期完成分裂。 2)暂不增殖细胞(休眠细胞,G0细胞):长期停 留在G1晚期(G0期)而不越过限制点,未丧失 分裂能力,在适当条件下可恢复到增殖状态。 3)永不增殖细胞(终末分化细胞):始终停留在 G1期,失去增殖能力直到衰老死亡。 二.细胞周期的研究方法: ★细胞周期模型 细胞周期研究中经常使用一些典型的物种和细胞系统,最常用的模型包括酵母、爪蟾胚胎细胞和哺乳动物体外培养细胞。 ★细胞周期同步化 ——由于实验常常需要设法获得时相均一的细胞群,使样品中的细胞都处于大致相同的细胞周期阶段,所以常需要使细胞周期同步化。 同步化的策略:①诱导同步化;②选择同步化 同步化常用方法:①细胞分裂收获法②代谢抑制法(加入过量胸苷后清洗)③低温培养法 ★3H-TdR(氚标记胸苷)有丝分裂标记法(测定细胞周期的时间) ——应用3H-TdR短期饲养细胞,数分钟至半小时后,将3H-TdR洗脱,置换新鲜培养液并继续培养。随后,每隔半小时或1小时定期取样,作放射自显影观察分析,从而确定细胞周期各个时相的长短。

细胞生物学各章节重点内容整理

第一章细胞质膜 1、被动运输 是指通过简单扩散或协助扩散实现物质由高浓度向低浓度方向的跨膜转运。转运的动力来自于物质的浓度梯度,不需要细胞代谢提供能量。 2、主动运输 是由载体蛋白所介导的物质逆浓度梯度或电化学梯度由低浓度一侧向高浓度一侧进行跨膜转运的方式。转运的溶质分子其自由能变化为正值,因此需要与某种释放能量的过程相耦连。主动运输普遍存在于动植物细胞和微生物细胞中。 3、紧密连接 是封闭连接的主要形式,一般存在于上皮细胞之间。紧密连接有两个主要功能:一是紧密连接阻止可溶性物质从上皮细胞层一侧通过胞外间隙扩散到另一侧,形成渗透屏障,起重要封闭作用,二是形成上皮细胞质膜蛋白与质膜分子侧向扩散的屏障,从而维持上皮细胞的极性。 4、通讯连接 一种特殊的细胞连接方式,位于特化的具有细胞间通讯作用的细胞。介导相邻细胞间的物质转运、化学或电信号的传递,主要包括间隙连接、神经元间的化学突触和植物细胞间的胞间连丝。动物与植物的通讯连接方式是不同的,动物细胞的通讯连接为间隙连接,而植物细胞的通讯连接则是胞间连丝 5、桥粒 是一种常见的细胞连接结构,位于中间连接的深部。一个细胞质内的中间丝和另一个细胞内的中间丝通过桥粒相互作用,从而将相邻细胞形成一个整体,在桥粒处内侧的细胞质呈板样结构,汇集很多微丝,这种结构和加强桥粒的坚韧性有关。

物质跨膜运输的方式和特点 Ⅰ、被动运输 是指物质由高浓度向低浓度方向的跨膜转运。转运的动力来自于物质的浓度梯度,不需要细胞代谢提供能量。主要分为两种类型: (1)简单扩散②不需要提供能量;③没有 (2)协助扩散②存在最大转运速率;在一定限度内运 输速率同物质浓度成正比。如超过一定限度,浓度不再增加, ④不需要提供能量。属于这种运输方式的物质有某些离子和一些较大的分子如葡萄糖等物质 Ⅱ、主动运输 物质从浓度梯度从低浓度的一侧向高浓度的一侧方向跨膜运输的过程。此过程中需要消耗细胞生产的能量,也需要膜上载体协助。属于这种运输方式的物质有离子和一些较大的分子如葡萄糖、氨基酸等物质。主动运输根据其过程所需的能量来源不同,可将其归纳为三种主要类型: (1)ATP驱动泵:ATP酶直接利用水解ATP提供的能量,实现离子或小分子逆浓度梯度或电化学梯度的跨膜运动。 (2)耦连转运蛋白:是介导各种离子和分子的跨膜运动。这类转运蛋白包括2种基本类型:同向转运蛋白和反向转运蛋白。这两类转运蛋白使一种离子或分子逆浓度梯度的运动与一种或多种不同离子顺浓度梯度的运动耦连起来。 (3)光驱动泵:主要在细菌细胞中发现,对溶质的主动运输与光能的输入相耦连,如菌紫红质利用光能驱动氢离子的转运。 Ⅲ、膜泡运输 物质进出细胞不需穿透细胞膜,而是借助各种膜泡来达到运输的目的。运输过程中涉及膜的融合,不需要膜上载体协助,但需要消耗细胞生产的能量,是一种物质的批量运输方式,又包括胞吞作用和胞吐作用。

细胞生物学总结

细胞生物学总结 一、绪论 1.什么是细胞 细胞是生物的基本结构单位 细胞是生物的基本功能单位 细胞是有机体生长发育的基本单位 细胞是生物体完整的遗传单位 细胞是最小的生命单位 2.什么是细胞生物学 从细胞的显微、亚显微、分子三个水平研究细胞的结构、功能和各种生命活动规律的一门学科。 3.细胞生物学的发展过程关键事件 四个阶段: 16世纪到19世纪30年代 19世纪30年代到20世纪初期 20世纪30年代到70年代 20世纪70年代到如今 关键事件:第1~5页

二、细胞生物学研究方法 1.光学显微镜与电子显微镜有哪些区别。 2、简要说明细胞培养的过程。 三、细胞膜 1.细胞膜主要构成成分及其化学组成、特性和功能是什么 答:细胞膜主要由膜脂、膜蛋白和膜糖类。其中,膜脂是细胞膜上的脂类物质总称,包括磷脂、胆固醇和糖脂,这三类脂类都是双亲性分子,有一个亲水末端(极性头部)和一个疏水末端(非极性尾部),是构成细胞膜的基本结构,各有其作用;膜蛋白是膜功能的主要体现者,也具有双亲性,根据膜蛋白和膜脂的结合方式,可分为膜内在蛋白质、膜外周蛋白质以及脂锚定蛋白质;膜糖类分为糖脂和糖蛋白,具有保护细胞表面、细胞识别和黏着、信息传递功能。 2.生物膜在结构和功能上有何特点 答:生物膜结构上具有流动性,功能上具有选择透过性。 3.什么叫做流动镶嵌模型简述其基本内容。 答:流动镶嵌模型是Singer和Nicolson于1972提出的,该模型的特点是:膜中脂双层构成膜的连贯主体,它既具有晶体分子排列的有序性,又具有液体的流动性。膜中蛋白质分子以不同形式与脂双层分子结合,有的嵌在脂双层分子中,有的则附着在脂双层的表面。它是一种动态的、不对称的、具有流动性地结构。

细胞生物学知识点整理

一、名词解释 细胞生物学:研究细胞基本生命活动规律的科学,它从不同层次(显微、亚显微和分子水平)上研究细胞结构与功能,细胞增殖、分化、衰老与凋亡,细胞信号转导,细胞基因表达与调控,细胞起源与分化等。细胞分化:其本质是细胞基因选择性表达功能蛋白质的过程。 细胞质膜(plasma membrane):又称细胞膜,指围绕在细胞最外层,由脂质和蛋白质组成的生物膜。 膜:形成各种细胞器的膜。 生物膜(biomembrane):质膜和膜的总称。 细胞外被:也叫糖萼,由质膜表面寡糖链形成。 膜骨架:质膜下起支撑作用的网络结构。 细胞表面:由细胞外被、质膜和表层胞质溶胶构成。 脂筏模型(lipid rafts model) :即在生物膜上胆固醇等富集而形成有序脂相,如同脂筏一样载着各种蛋白。脂 筏是质膜上富含胆固醇和鞘磷脂的微结构域。 被动运输指通过简单扩散或协助扩散实现物质由高浓度到低浓度方向的跨膜运输。 水孔蛋白(aquporins;AQPs):或称水分子通道,是一类具有选择性、高效转运水分的膜通道蛋白。不具有水 泵”功能,通过减小水分跨膜运动的阻力而使细胞间的水分迁移速度加快。 协助扩散:也称促进扩散( facilitated diffusion ):各种极性分子和无机离子顺着浓度梯度或电化学梯度的跨膜运输。 通道蛋白:跨膜亲水性通道,允许特定离子顺浓度梯度通过,又称离子通道。 配体门通道:受体与细胞外的配体结合,引起通道构象改变,“门”打开,又称离子通道型受体。 协同运输:靠间接提供能量完成主动运输,所需能量来自膜两侧离子的浓度梯度。动物细胞中常常利用膜两侧Na+浓度梯度来驱动。植物细胞和细菌常利用H+浓度梯度来驱动。分为:同向协同和反向协同。 膜泡运输:真核细胞通过胞吞作用(endocytosis)和胞吐作用(exocytosis)完成大分子与颗粒性物质的跨膜运输。 胞吐作用:包含容物的囊泡移至细胞表面,与质膜融,将物质排出细胞之外 底物水平的磷酸化:由相关酶将底物分子上的磷酸基团直接转移到ADP分子生成ATP的过程。 氧化磷酸化:在呼吸链上与电子传递相耦联,ADP 被磷酸化生成ATP 的过程。 半自主性细胞器:自身含有遗传表达系统,但编码的遗传信息十分有限,其RNA 转录、蛋白质翻译、自身构建和功能发挥等必须依赖核基因组编码的遗传信息。 细胞膜系统:是指细胞在结构、功能及发生上相关的、由膜包被的细胞器或细胞结构。包括质网、高尔基体、溶酶体和分泌泡等。 粗面质网:多为扁囊状,在ER 膜的外表面附有大量的核糖体,普遍存在于分泌蛋白质的细胞中。 光面质网:ER 膜上无颗粒(核糖体) ,ER 的成分不是扁囊,而常为小管小囊,它们连接成网,广泛存在于能合成类固醇的细胞中。次级溶酶体:是正在进行或完成消化作用的溶酶体,分为自噬溶酶体和异噬溶酶体。 残体:又称后溶酶体(post-lysosome),已失去酶活性,仅留未消化的残渣,可排出细胞,也可能留在细胞逐年增多,如表皮细胞的老年斑,肝细胞的脂褐质。 细胞蛋白质分选:除线粒体和植物叶绿体中能合成少量蛋白质外,绝大多数的蛋白质均在细胞质基质中的核糖体上开始合成然后运至细胞的特定部位,这一过程称蛋白质的定向转运或蛋白质分选。 信号序列:引导蛋白质定向转移的线性序列,通常15-60 个氨基酸残基,对所引导的蛋白质没有特异性要求。 信号斑:存在于完成折叠的蛋白质中,构成信号斑的信号序列之间可以不相邻,折叠在一起构成蛋白质分选的信号。 翻译后转运:在细胞质基质游离核糖体上完成多肽链的合成,然后转运至膜围绕的细胞器或成为基质可溶性驻留蛋白和支架蛋白。 共翻译转运:蛋白质合成在游离核糖体上起始后,由信号肽引导转移至糙面质网,然后新生肽链边合成边转入糙面质网,经高尔基体加工包装转运溶酶体、细胞质膜或分泌到细胞外。 分子伴侣:细胞中的某些蛋白质分子,可以识别正在合成的多肽或部分折叠的多肽,并与多肽的某些部位结合,从而帮助这些多肽转运、折叠、或装配。这类分子本身并不参与最终产物的形成。 细胞信号转导:指细胞外因子通过与受体( 膜受体或核受体)结合,引发细胞的一系列生物化学反应以及蛋白间相互作用,直至细胞生理反应所需基因开始表达、各种生物学效应形成的过程。 双信使系统:在磷脂酰肌醇信号通路中胞外信号分子与细胞表面G 蛋白耦联型受体结合,激活质膜上的磷脂酶C ( PLC- 3),使质膜上4, 5-二磷酸磷脂酰肌醇(PIP2)水解成1, 4, 5-三磷酸肌醇(IP3 )和二酰基甘油( DAG )两个第二信使,胞外信号转换为胞信号

细胞生物学知识点总结

细胞生物学 细胞是构成有机体的基本单位是代谢与功能的基本单位是有机体生长与发育的基础是遗传的基本单位、 基本共性 相似的化学组成由磷脂双分子层与镶嵌蛋白质构成的生物膜同时含有两种核酸蛋白质合成的机器─核糖体以一分为二的方式进行分裂 原核细胞 遗传的信息量小,DNA为裸露的环状双螺旋分子,没有核膜 细胞内没有分化为以膜为基础的具有专门结构与功能的细胞器 一般以二分裂的方式繁殖,也有的产生孢子 大多数细菌的直径在0.5~5μm之间 细胞壁 主要成分是肽聚糖,由N-乙酰葡糖胺和N-乙酰胞壁酸构成双糖单元,以β(1-4)糖苷键连接成大分子。 革兰氏阳性菌细胞壁含高达90%的壁酸,而革兰氏阴性菌细胞壁仅含5% 核糖体: ?部分附着在细胞膜内侧,大部分游离于细胞质中。 ?沉降系数为70S。。 ?由大亚单位(50S)与小亚单位(30S)组成。 ?30S的小亚单位对四环素与链霉素敏感,50S的大亚单位对红霉素与氯霉素敏感。 质粒(plasmid):除核区DNA外,可进行自主复制的遗传因子,是裸露的环状DNA分子,质粒常用作基因重组与基因转移的载体 普通菌毛和性菌毛两类。前者与细菌吸附和侵染宿主有关,后者为中空管子,与传递遗传物质有关。蓝藻细胞的结构又称蓝细菌,最复杂的原核细胞,是最简单的自养生物。直径约10μm 1中心质 2光合作用片层 3细胞质内含物 4细胞表面结构 5细胞分裂: 一分为二的分裂方式

古核细胞(古细菌) ?生活在极端环境中,如:产甲烷菌、极端嗜盐菌、嗜热嗜酸菌。 ? 1 、细胞壁 ? 2 、遗传装置 ? 3 、核小体结构 ? 4 、核糖体 ? 5 、5S rRNA ?三大界:原核生物界,古核生物界,真核生物界 真核细胞 ?(一)以脂质及蛋白质成分为基础的生物膜结构系统 ?(二)以核酸(DNA或RNA)与蛋白质为主要成分的遗传信息表达系统 ?(三)由特异蛋白分子装配构成的细胞骨架系统。 器官的大小主要决定于细胞的数量,与细胞的数量成正比,而与细胞的大小无关,把这种现象称之为"细胞体积的守恒定律"。 原核细胞与真核细胞的比较 特征原核细胞真核细胞 细胞膜有多功能有 核膜无有 染色体一个环状DNA分子,不与蛋白质结合线状多染色体 核仁无有 内质网等细胞器无有 核糖体70S 80S 核外DNA质粒DNA线粒体DNA叶绿体DNA 细胞壁主要成分为氨基糖与壁酸动物细胞无植物主要为纤维素

相关文档
相关文档 最新文档