文档库 最新最全的文档下载
当前位置:文档库 › 1-第一章 超声相控阵技术基本概念

1-第一章 超声相控阵技术基本概念

1-第一章 超声相控阵技术基本概念
1-第一章 超声相控阵技术基本概念

第一章超声相控阵技术的基本概念

本章描述超声波原理、相控阵延时(或聚焦定律)概念,并介绍R/D公司研制的相控阵仪器设备。

1.1 原理

超声波是由电压激励压电晶片探头在弹性介质(试件)中产生的机械振动。典型的超声频率范围为0.1MHz~50MHz。大多数工业应用要求使用0.5MHz~15MHz的超声频率。

常规超声检测多用声束扩散的单晶探头,超声场以单一折射角沿声束轴线传播。其声束扩散是唯一的“附加”角度,这对检测有方向性的小裂纹可能有利。

假设将整个压电晶片分割成许多相同的小晶片,令小晶片宽度e远小于其长度W。每个小晶片均可视为辐射柱面波的线状波源,这些线状波源的波阵面会产生波的干涉,形成整体波阵面。

这些小波阵面可被延时并与相位和振幅同步,由此产生可调向的超声聚焦波束。

超声相控阵技术的主要特点是多晶片探头中各晶片的激励(振幅和延时)均由计算机控制。压电复合晶片受激励后能产生超声聚焦波束,声束参数如角度、焦距和焦点尺寸等均可通过软件调整。扫描声束是聚焦的,能以镜面反射方式检出不同方位的裂纹。这些裂纹可能随机分布在远离声束轴线的位置上。用普通单晶探头,因移动范围和声束角度有限,对方向不利的裂纹或远离声束轴线位置的裂纹,漏检率很高(见图1)。

图﹡

﹡常规

图1-2 脉冲发生和回波接收时的声束形成和时间延迟(同相位、同振幅)

图1-3 超声波垂直(a )和倾斜(b )入射时声束聚焦原理

发射

接收

超声波探伤仪

超声波探伤仪

触发

相控阵控制器

相控阵控制器

脉冲激励

阵列探头

缺陷

缺陷

入射波阵面

反射波阵面

回波信号

Σ

接收延时

延时 [ns]

延时 [ns]

转角

产生的波阵面

产生的波阵面 阵列探头

阵列探头

为产生同相位、有相长干涉的声束,用有微小时差的电脉冲分别激励阵列探头各选用晶片。来自材料中某一焦点(如缺陷等)的回波,以一定时差返回各换能器单元,见图1-2。在信号汇合前,各换能器晶片上接收到的回波信号均有时差。信号汇合后形成的A-扫描图形,显示了材料中某一焦点的回波特性,也显示了材料中其它各点衰减各异的回波特性。

(1)在发射过程中,探伤仪将触发信号传送至相控阵控制器。相控阵控制器将信号变换成特定的高压电脉冲,脉冲宽度预先设定,而时间延迟则由聚焦律界定。每个晶片只接收一个电脉冲,这样产生的超声波束就有一定角度,并聚焦在一定深度。该声束遇到缺陷即反射回来。

(2)接收回波信号后,相控阵控制器按接收聚焦律变换时间,并将这些信号汇合一起,形成一个脉冲信号,传送至探伤仪。

声束垂直和倾斜入射时的聚焦原理示于图1-3。

每个晶片上的延时值取决于相阵列探头上激励晶片数形成的窗孔尺寸、波型、折射角和焦点深度。

计算机控制的声束扫描模式主要有以下三种(参阅第三、第四章):

(1)电子扫描:高频电脉冲多路传输,按相同聚焦律和延时律横扫一组晶片(图1-4);

声束则以恒定角度,沿相阵列探头长度(虚拟窗孔

....)方向进行扫描,这相当于用常规超声换能器为腐蚀检测作光栅扫描或作横波检验。若使用斜楔,则聚焦律可对楔内不同延时值进行补偿。

(2)动态深度聚焦(简称DDF):超声束沿声束轴线,对不同聚焦深度进行扫描。实际上,发射声波时使用单个聚焦脉冲,而接收回波时则对所有编程深度重新聚焦(图1-5)。

(3)扇形扫描(也称方位扫描或角扫描):使阵列中相同晶片发射的声束,对某一聚焦深度在扫描范围内移动;而对其它不同焦点深度,可增加扫描范围。扇形扫描区大小可变。

激励单元组 (有效探头窗孔)

16

128

扫描方向

图1-4 电子扫描产生直射声束

(有效探头窗孔16单元)

图1-5 32单元线阵列探头纵波聚焦15、30、60 mm 时,

延时值(左)与深度扫描原理(右)﹡

﹡直接接触,无斜楔

延时值(ns )

单元数

1.2 延时律或聚焦律

无斜楔探头(即与试件直接接触的探头)由程控产生的纵波,按聚焦律延时结果,对聚焦深度呈一抛物线状。自探头边缘向中心移动,延时值由小而大。焦距倍增,则延时值减半(图1-5)。阵列晶片芯距增大,则晶片延时值线性增大(图1-6)。

根据沿特定路径到达时间最短的费马原理( Fermat ’s principle )*

,装在斜楔上的相控阵探头能按延时律给出不同的声束形状(图1-7)。其他型式的相控阵探头(如矩阵或圆锥形),可能需要对延时律数值、对声束形貌评价设定高级模式(参阅第三、第五章)。

探头无斜楔而声束偏转成扇形(有方位角)时,在等同晶片单元上的延时取决于激励晶片在阵列窗口中的位置,也取决于产生的声束角度(见图1-8)。延时值随声束折射角和激励晶片数而增大。

对装有斜楔的相控阵探头,延时值取决于激励晶片位置和程控折射角。

对由斯涅耳(Snell )定律给出的折射角,延时变化呈抛物线形(图1-7中45°)。若角度小于斯涅耳定律给出值,则各晶片单元上的延时对探头由后而前递增;若角度大于斯涅耳定律给出值,则探头各晶片单元上的延时值,后大前小,因楔内声程前长后短,故激励时间前先后迟。

在所有情况下,阵列中每个晶片上的延时值均需精确控制。最小延时增量决定了探头最高可用频率,后者由下式界定,即:

c

f n

。 (n :阵列单元数;f c :中心频率)

图1-6 同焦深时延时值相关于单元芯距

阵列单元数

图1-7 装在斜楔上的阵列探头延时值与折射角和单元位置的关系示例 (有机玻璃斜楔37°,第一单元高度H 1=5mm )

阵列单元芯距 (mm)

延时值(ns)

L 波5920m/s 焦深 20mm 线阵列n =16单元 单元1的延时值

实验设置

延时值(ns )

60°

30°

45°

图1-8 无斜楔阵列探头延时值与声束角度、单元位置及

焦深的关系示例(纵波,钢中折射角15-60°)

1.3 相控阵系统的基本组成

相控阵仪器的基本扫描系统主要组成见图1-9。

阵列单元数

延时值(ns )

纵波无斜楔

实线 F 1=15mm 虚线 F 2=30mm

F 1

F 2 =2F 1 Δβ2

Δβ2

图1-9相控阵系统基本组成方块图

1.4 基本扫描与成像

在机械驱动的扫描过程中,数据按编码器位置采集。显示数据呈现不同的图像,以供评定。

通常,相控阵使用多重A扫描叠加显示(也称B扫描显示,详见第四章),这些A 显示是由相控阵探头各压电小晶片(单元)产生的,与之相应的声束角度、声传播时间和延时值各各不同。

与A扫描总数相应的实时信息,是在某一探头位置获得的,显示为扇形扫描图(即S扫描图),或电子B扫描图(详见第四章)。

S扫描和电子扫描均能产生整体检测图像,由此可快速获取超声波在所有方位检测到的有关试件形貌或缺陷方面的信息。(见图1-10)。

将试件数据标绘在二维(平面)图即所谓“校正的S扫描图”上,能使超声检则结果的分析和评定简单明了。S扫描有以下优点:

(1)能在扫描过程中显示图像;

(2)能显示实际深度;

(3)能由二维显示再现体积。

在探头移动过程中,将线扫描、S扫描与多角度扫描组合一起,就能改进成像结果。S扫描显示与其他视图相结合(详见第四章),可构成缺陷成像图或识别图。图1-11表示对四种不同形状的人工缺陷(角槽、球孔、柱孔和横孔),进行相控阵检测的扫描示图,缺陷形状尺寸与B扫描显示结果,两者关系一目了然。

相控阵探头

图1-10 四横孔的相控阵检测:(a )扇形扫描原理;(b )S 扫描图像(±30°)

图1-11 四种不同形状尺寸的人工缺陷(角槽、球孔、柱孔和横孔)的 相控阵S 扫描图像:(a )缺陷和扫描示图:(b )归并的B 扫描显示图

探头几乎不用前后移动,就能用纵波和横波进行综合扫描,这对方向性缺陷的检测和定量非常有利(见图1-12)。按图中布置,阵列“活窗孔”可移动,以便使声束对缺陷进行检测和定量的角度最佳。

图1-12 用纵波(1)和横波(2)作综合扇形扫描对方向性缺陷进行检测和定量

圆柱形、椭圆形或球面状聚焦声束有较高信噪比(即缺陷识别能力强),且传播声束比扩散声束窄小。图1-13表示用圆柱形聚焦声束识别一簇小孔的C 扫描和B 扫描图形。

实时扫描可结合探头移动,数据则归并成单个视图(见图1-14)。其优点是:(1)检测重复性高;(2)缺陷定位方便;(3)图像标绘精确;(4)缺陷成像直观。

图1-15表示对体积状缺陷作多次扇形扫描所输出的“切片”图。每个切片展示不同

X

Y

1

2

位置的缺陷断面。此类切片颇似对缺陷作定量表征分析的金相切片。

欲详悉超声相控阵原理的一般概念,可查阅参考文献1-9。

图1-13 用圆柱形聚焦声束识别一簇小孔:

(a)顶视图(C扫描);(2)侧视图(B扫描)

图1-14 阵列探头在不同位置作多次扇形扫描,信息归并后显示缺陷单个图像

图1-15 阵列探头对体积状缺陷作分层扫描,信息归并后显示缺陷切片图像第一章参考文献(略)

目录

2.1 超声波物理学——定义

2.2 一些常用声速和波长

2.3 声压公式

2.4 温度影响示例

2.5 环形换能器

2.6 声束扩散

2.7 矩形探头

2.8 聚焦声场

2.9 时间-频率特性

2.10 基于阻尼的探头分类

2.11 超声波束与试件和反射体的相互作用2.12 衰减

2.13用衍射和变形波法对缺陷定量

2.14 圆形工件的检测

2.15 小缺陷长度的测量

2.16 超波检测的可靠性

2.9 时间-频率响应

使用特别的反射器无线电传送频率(RF )信号测量以下时间-响应特征(见图2-29): a) 峰点-峰点(Vpp ):RF 信号的最大正负极周期振幅间的最大偏差(伏特或%) b) 脉冲间期,或波形长度(∑τ

-20dB

):表示截止-20dB 时,从正极到负极最大的振幅。

c) 峰点数量(PN ): -20dB 为止的RF 信号跨跃以正负极的峰点数量。 d) 周期数(CN ):分成两个峰点的数量(或波长的数量)。 e) 阻尼因数(d A ):最大振幅和下一个最高的正极振幅间的比率。

根据Rourier 快速变形(FFT ),将RF 信号转换成频率-响应[公式(2.32)],具有以下特性(见图2-30):

峰点频率(f 峰):FFT 中出现的最大频率 较低频率(f L-6dB ): 以降到-6dB 水平线确定峰点频率左边部分的频率值。 较高频率(f U-6dB ): 以降到-6dB 水平线确定峰点频率右边部分的频率值。

中心频率(f c ):电算图形评定的频率或从较低和较高频率的几何图形上算出相应的频率。f c =(f L-6dB + f U-6dB )/2或f c =(f L-6dB ·f U-6dB )0.5

(2.32)

频宽(相对)(BW 相对):BW 相对[%]=100%·(f U-6dB -f L-6dB )/ f c (2.33)

2.10 根据BW (阻尼)对探头分类

见图2-31说明:

窄频宽度(15-30%):最适于检测 介质频宽(31-75%):检测和测算 宽频宽度(76-110%):最适于估算

这些是铁质材料和其它材料的一般准则。

实际

图2-30 5MHz 相控阵探头的FFT 对应图;f c =(2.539+7.813)MHz/2=5.2MHz;BW 相对=(7.813-2.539)MHz/5.2MHz ×100%=54%

的评定准则取决于裂纹的形态和方位。这些

准则对平面垂直入射有效,而对奥氏体村料的检测以及对奥氏体和/或不同材料的分叉裂纹的估算效果不明显。

脉冲形状(期间)对轴向分辨率(对固定的角度且探头不能移动)有直接的效果。轴向分辨率是沿声音轴向穿过一个小的△z 超声波途径分辨两个相连分离缺陷的超声波性能。对于有效的轴向分辨率,反射物从超过6dB (峰-谷)处应出现分开的峰点振幅。

相控阵探头具有典型的宽频,而且压电合成材料制造的相控阵探头提供了高效的测算功能。压电合成材料也可提供高强度和良好的检测作用,使功能达到最佳和协。

轴向分辨率公式由下列关系式得出(见图2-32): △z=v 试件[mm/μs]·△τ

-20dB

s]/2 (2-34) 有关探头特征和试块特点的补充资料可见参考14-18,42,46,50-52,54-57,59和105。

2.11 超声波波束与试件/反射物的相互作用

不考虑天气的因素,采用浸透法或接触法操作,并且是单晶探头或线性相控阵,超声波波束和试件之间的相互作用由可检区域决定。

可检区域是指在增益足够时能检测并测算特定缺陷的范围——例如面积,并且信号6dB 大于对抗的噪声信号,包括前面封闭(front surface ring-down )或初始部件的背面信号。

可检区根据下列曲线或界面定义(见图2-33): a) 背面反射率曲线(BW ):用于定义接

收到示波镜反射的探头最大能量 b) 近表面分辨率(NSR )[或盲区]:用

于定义缺陷分别从主脉冲信号或界面(透射)信号的最小距离,并加以判别;接收器的增益越高,盲区越长。

c)

衰减关系曲线(ATTN ):保留区内(C

保留区

)的增益是电子仪器能提供的最

图2-33 可检区域的定义

图2-32 轴向分辨率:原理(左);差与好的分辨率(右)

大增益。根据这个特点,增益因试件内的衰减而减弱。这种因衰减而造成的增益损失由下式得出:△G 衰减=2αUT 路径[dB]

d) 信噪程度(噪音)和有用的增益(G 有用的):探头一旦插入超声波仪器上,并且与试件

相连接,电子噪音就会增高。这种噪音是随机分布的:从探头、斜楔、电缆、耦合剂以及试件结构。噪音的振幅与BW 法则一致,但起始点由C 有用的决定。

由于盲区的影响、噪音水平提高,以及由于衰减耗损振幅的电子增益,或/和由于缺陷紧靠背后,所以在可检区域之外的一些缺陷无法检出。

理想的圆盘状反射物(平底孔,FBH )垂直于波束,因为缺陷小于波束,按照DGS 法规定的振幅,中心确定如下:

P FBH =P0探头(πD FBH D 探头)2

/16λ2z 2

(2.35) 如果使用如下的标准化结构:

z/N 0=D(距离),H 反射物/H 探头=G[振幅增益],D FBH /D 探头=S[反射物标准化规格] 生成DGS 曲线图。

DGS 法的曲线图在远场区的反射率形成以下明显的规则: 双倍距离时,振幅降至-12dB ; 尺寸为反射物双倍时,振幅增至+12dB.

灵敏度的设定取决于参考的

反射物及其信噪比(SNR )。当使用TCG 特征时(时程校正增益),首先建立最差检测事例的SNR 。

信噪比是参考反射物的振幅和由电子、耦合剂、探头和试件作用的平均振幅之差。SNR 用来评定特殊的结构、目标尺寸和UT 路径(见公式(2.36)和图2-34)。

SNR=20log 10(振幅目标

/振幅

噪音

)

(2.36)

SNR 实际最小值为10dB 或比率为3:1。

最常用设定灵敏度的反射物见图2-35示意。特定反射率的反射物(取决于超声波波束、频率和反射物规格)对于小的反射物,其规格小于波束宽度,见表2-6规定。

当z>1.5N 0时,有下面关系(2.37)的两个人工反射物,平底孔(FBH )和侧边钻孔(SDH )

图2-34 用SNR 评定TCG 特征,典型的SNR 应大于3:1(10dB )。

图2-35 最常用于设定灵敏度的反射物

可以使用相同的振幅。

D FBH =(0.2λ2

zD SDH )

0.25

(2.37)

相同的FBH 直径与球状平底孔之间的关系见公式2.38: DFBH=0.56(λD 球)0.5

(2.38) 表2-6 小的反射参照物的反射率模式

其中:

UT 路径=路径的一半 λ=波长

D SDH/FBH/球=(SDH/FBH/球)的直径 H 槽口=槽口高度 α=裂纹边曲半径 ε=入射线与裂纹表面成角

图2-36说明了不同反射物:FBH 、SDH 、槽口、球状以及采用横波(切变波)、纵波和盘旋波检测并由缺陷大小形成的振幅曲线水平。

2.12 衰减

由于吸收和散射的原因导致超声波的衰减(也可见第2章2.3的定义)。衰减程度取决于频率(f )、晶粒度(φ

晶粒

)、波形和各向异性系数。

衰减=持续吸收f=持续散射f4 (2.39)

图2-36 球形、FBH 、SDH-SW 、N-LW 、N-SW 、N-Cr 对标准缺陷大小形成的振幅曲线图

散射取决于晶粒度与波长间的比率:

φ晶粒<λ→瑞利散射

φ晶粒≈λ→随机散射

φ晶粒>λ→传播散射

在检测粗糙颗粒部件时,必须根据下列公式选择频率:

λ最

>6φ

晶粒

(2.40)

大多数常用的耦合剂/斜楔,声波衰减取决于频率,而对于钢铁中的衰减情况,见图2-37至2-39。

使用TOFD 或端点回波背面散状衍射法的纵波或横波(切变波)准确测算裂纹(见下面2.13节)。

2.13 使用衍射和模式转换法测算缺陷

2.1

3.1 TOFD(时差衍射法)

TOFD 现已成为电力和石化工业的一种标准技术。TOFD 也可用相控阵的方法操作。TOFD 是一种简单的程序,在投射与捕捉(pitch-and-catch )模式中使用两个探头。电力行业和石化工业的主要区别在于:电力行业典型的方法是使用光栅TOFD ,而石化工业和其它工业使用线性TOFD 。光栅TOFD 收集的数据更多,而且更精确,但线性TOFD 更快。在电力行业,大多要除去焊帽,因此可以使用光栅扫描。

注:线性扫描是平行于焊缝的单轴扫描。光栅扫描是x-y 向的前后运动。 TOFD 检测和记录缺陷顶端的衍射信号,用于检测和测算。TOFD 数据是在B 扫描的灰格里。可以对标准装置进行修改。 TOFD 中使用的四种波型:

横向波:从探头宽的波束产生的次近表面纵波。

图2-37 甘油/Hamikleer 和Rexolite 与频率有关的衰减曲线图

图2-38 纵波在2.25Cr-Mo 钢中的衰减曲线

图2-39 横波(切变波)在钢中的衰减曲线图

后壁反射:从后壁反射的纵波。 反射波:由薄面上缺陷反射的纵波。

端点衍射波:由缺陷边衍射击的环状波。纵波和剪波都是正常产生的,但TOFD 典型使用的是纵波。 TOFD 法原理:

·纵波中投射与捕捉(Pitch-and-catch )装置结构(见图2-40) ·探头为高阻尼(1.5λ或白-黑-白,BW 实际>90%)和高频率(>6MHz )

·波束分散大得足以产生横向波和一个后壁反射,因此可在横向波和后壁信号(跳动的)之间显示整个的壁厚。

·探头特别要位于整个焊缝中心线的中心。 ·对于壁厚大于75mm ,应使用双排TOFD 。 ·必须已知斜楔延迟、试件里的速率、横向波TOF 、后壁TOF 值、厚度和PCS (探头中心分离距离)(尽管有些可以推论出)。

·上端和下端回波是逆相位(见图2-40有关物理图解)。

·可以通过转变模式(LT ,TL )操作生成另外的缺陷成像识别图。

·一般要求用前置放大器显示来自缺陷边的数

字信号,在相同范围的侧边钻孔信号在-20db 至-30dB 。

·在约700

外获得衍射信号的最大幅度。

·由于纵波“最先击中”到缺陷边,所以纵波优于横波。并且纵波被试件结构形状削弱较小。

·线性扫描是在一个扫查内操作,平行于焊缝中心线。

假设缺陷是对称地位于探头之间,使用以下公式推算缺陷高度h (2a )和上部的韧带(upper ligament )(d ): T 侧向波=

PCS/v L =2S/V L

(2.41)

图2-40 TOFD 原理及四个主要信号的相位标记。 假设缺陷对称地位于探头之间,每个RT 信号的相 位分别用“+”和“-”标记。

T

上端

=2(S 2+d

2

0.5

/v L

(2.42)

T

下端

=2[S 2+(d+h)2]0.5

/

v L

(2.43)

T

后壁

=2[S 2+t 2]0.5

/

v L

(2.44) TOFD 局限性

由于横向波的盲区,还因为后壁信号的盲区(见图2-42),所以位于上表面和内表面的缺陷难以检测到。

图2-42 横向波和后壁的TOFD 盲区。盲区大小取决于频率、脉冲长度、探头中心分离长

度、材料厚度和速率。如果缺陷是非对称地位于探头之间,在使用TOFD 时可能出现错误。

因为衍射波到达时间取决于缺陷位置与探头的关系,由于TOFD 的所在位置,缺陷检测呈线性D 扫描时会出现一些错误(见图2-43)。要通过其他的B 扫描整个缺陷位置来估计缺陷的定位(探头横向于焊缝移动)。

·缺陷说明和缺陷式样识别需要有高级的培训和分析经验。 ·壳层厚度大于75mm 的压力容器的要求加倍扫描不同的PCS 。 ·低信噪比。

·纹理粗糙材料的信号灵敏度。

·几何形和耦合问题可能妨碍横向波的传递。 ·振幅与缺陷大小无关或不重要。

不考虑这些局限性,TOFD 还是一种用于测算裂纹的最精确UT 方法(包括长度和高度,特别是高度)。在ASME 标准案例2235中,TOFD 被作为评定压力容器焊缝质量的一种替代方法。

为了加强缺陷检测的可靠性,已建议R/D 技术与TOFD 和脉冲回波组合,因此在特殊的版面上可以实时显示成像识别图。图2-44(a )至图2-44(h )显示了典型的缺陷及其相应的TOFD 显示。

(a)对于脚裂纹,横波被中断而且裂纹底部明

图2-41 使用TOF D 扫描检测和测算未熔合。上下缺陷边的逆相位用灰色级别表示。

图2-43 由于横波的TOF 所在位置导致的TOFD 在横向位置和上部的韧带(upper ligament )出现错误。

显可见.这个缺陷可定性为表面开口裂纹,而且深度已测知。

(b)对于根部未完全焊透的,顶部和底部的衍射信号明显不同,而未受干扰的横向和后壁信号显示一个埋藏缺陷。

(c)对于根部未焊透的,后壁信号混乱但未断裂,而顶部信号明显可见。这表示的是表面开口缺陷。

(d)侧壁未熔合时横向或后壁信号不会出现混乱,所以说明是埋藏缺陷。底部衍射的信号是清析的,但顶部衍射信号的部分被横波埋没。

(e)多孔性显示为一系列的点缺陷伴随着双曲线的后部。成倍的多孔性难以分析,但容易定性。注:后壁信号未出现在该TOFD 成像中。

(f)横向缺陷本质上显示为一个点缺陷,类似于多孔状。 (g)根部凹陷缺陷会干扰后壁信号(说明是表面开裂),并且末端明显可见。

(h)层间未熔合显示为一个单

独的高幅度反射信号,但在脉冲回波通道上检测不到。 优点:

·一次通过 ·实时A 扫查、B 扫查和C 扫查

·高度精确测算:TOFD ·高信噪比:聚焦的波束相控阵超声波

·高度精确定位缺陷 ·易于报告

2.1

3.2 相对时间到达技术(RATT )

“相对时间到达技术(RATT )”是一种根据时差读数的测算技术,不是关于振幅回波动态的。该技术也称为“追随脉冲观测时间技术(SPOT )”。 RATT (见图2-45)具有以下特点:

图2-46 直接或急速跳跃式波束检测裂纹末端RF 显示

图2-45 RATT 根据测算有关裂纹末端与裂纹死角

(corner trap )间的超声波路径评定裂纹高度。

第一章 概率论的基本概念习题答案

第三章 多维随机变量及其分布习题答案 3. 220,(1)(1),4,(,),0.5940, x y x y e e c F x y --<<+∞?--==? ? 其它 . 4. 2012.4(2),()0,X x x x f x ≤≤?-=??,其它201 2.4(34),()0,Y y y y y f y ≤≤?-+=? ? 其它. 5. ???=,0,4),(y x f ,),(其它G y x ∈???+=,0,48)(x x f X ,05.0其它<≤-x ?? ?-=, 0,22)(y y f Y 其它10<≤y . 6. (1) (|)(1),0,1,;,m m n m n P Y m X n C p p n m n -===-=≤否则(|)0P Y m X n ===; (2)(,)(1)/!,0,1,;,m m n m n n P Y m X n C p p e n n m n λλ--===-=≤否则(|)0P Y m X n ===. 7. 10. ⑴0y ≥时|0 ,(|)0 0,x X Y x e f x y x -≥?=?

11. ⑴放回抽样 ⑵ 不放回抽样 X 的条件分布律与上相同,再结合联合分布律可以看出: 放回抽样时独立,不放回抽样时不独立。 12. 1c = ; 当10x -<<时,|1/2,||(|)0, Y X x y x f y x -<-?=? ? 其它 ; 当| |1y <时,|1/(1||),1|| (|)0,X Y y x y f x y --<<-?=? ? 其它 . 13. ⑴ (2|2)5/16,(3|0)1/5P X Y P Y X ====== ; ⑶ ⑷ . ;0.375 . 16. ? ? ?<≥-=--00 ,0,)1()(6/3/z z e e z f z z Z . 17. ⑴(2)30 3!,()00,t T t t e f t t ->?=?≤? ;⑵(3)50()00,t T t t e f t t ->?=?≤?.

超声相控阵检测教材超声相控阵技术

第三章超声相控阵技术 3.1 相控阵的概念 3.1.1相控阵超声成像 超声检测时,如需要对物体内某一区域进行成像,必须进行声束扫描。相控阵成像是通过控制阵列换能器中各个阵元激励(或接收)脉冲的时间延迟,改变由各阵元发射(或接收)声波到达(或来自)物体内某点时的相位关系,实现聚焦点和声束方位的变化,从而完成相控阵波束合成,形成成像扫描线的技术,如图3-1所示。 图3-1 相控阵超声聚焦和偏转

3.2 相控阵工作原理 相控阵超声成像系统中的数字控制技术主要是指波束的时空控制,采用先进的计算机技术,对发射/接收状态的相控波束进行精确的相位控制,以获得最佳的波束特性。这些关键数字技术有相控延时、动态聚焦、动态孔径、动态变迹、编码发射、声束形成等。 3.2.1相位延时 相控阵超声成像系统使用阵列换能器,并通过调整各阵元发射/接收信号的相位延迟(phase delay),可以控制合成波阵面的曲率、指向、孔径等,达到波束聚焦、偏转、波束形成等多种相控效果,形成清晰的成像。可以说,相位延时(又称相控延时)是相控阵技术的核心,是多种相控效果的基础。 相位延时的精度和分辨率对波束特性的影响很大。就波束的旁瓣声压而言,文献研究表明,延时量化误差产生离散的误差旁瓣,从而降低图像的动态范围。其均方根(RMS)延时量化误差与旁瓣幅值之比为 (式3-1) 式中,; N-----阵元数目; μ----中心频率所对应一个周期与最小量化延时之比。 图3-2示出了延时量化误差引起的旁瓣随N、μ变化的关系曲线。早期的超声成像设备如医用B超中,由LC网络组成多抽头延迟线直接对模拟信号进行延迟,用电子开关来分段切换以获得不同的延迟量。这种延迟方式有两大缺点:①延迟量不能精细可调,只能实现分段聚焦,当聚焦点很多时需要庞大的LC网络和电子开关矩阵;②由于是模拟延迟方式,电气参数难以未定,延时量会发生温漂、时漂、波形容易被噪声干扰。

无损检测新技术-超声波相控阵检测技术简介

无损检测新技术-超声波相控阵检测技术简介 夏纪真 无损检测资讯网 https://www.wendangku.net/doc/4517748366.html, 广州市番禺区南村镇恒生花园14梯701 邮编:511442 摘要:本文简单介绍了超声波相控阵检测技术的基本原理、应用与局限性 关键词:无损检测超声检测相控阵 1 超声波相控阵检测技术的基本原理 超声波相控阵检测技术是一种新型的特殊超声波检测技术,类似相控阵雷达、声纳和其他波动物理学应用,依据惠更斯(Huyghens-Fresnel)原理:波动场的任何一个波阵面等同于一个次级波源;次级波场可以通过该波阵面上各点产生的球面子波叠加干涉计算得到。 并显示保真的(或几何校正的)回波图像,所生成材料内部结构的图像类似于医用超声波图像。 常规的超声波检测技术通常采用一个压电晶片来产生超声波,一个压电晶片只能产生一个固定的声束,其波束的传递是预先设计选定的,并且不能变更。 超声波相控阵检测技术的关键是采用了全新的发生与接收超声波的方法,采用许多精密复杂的、极小尺寸的、相互独立的压电晶片阵列(例如36、64甚至多达128个晶片组装在一个探头壳体内)来产生和接收超声波束,通过功能强大的软件和电子方法控制压电晶片阵列各个激发高频脉冲的相位和时序,使其在被检测材料中产生相互干涉叠加产生可控制形状的超声场,从而得到预先希望的波阵面、波束入射角度和焦点位置。因此,超声波相控阵检测技术实质上是利用相位可控的换能器阵列来实现的。超声波相控阵激发的超声波进入材料后,仍然遵循超声波在材料中的传播规律。因此,对于常规超声波检测应用的频率、聚焦的焦点尺寸、聚焦长度、入射角、回波幅度与定位等等,超声波相控阵也是同样应用的。 超声波相控阵探头的每个压电晶片都可以独立接受信号控制(脉冲和时间变化),通过软件控制,在不同的时间内相继激发阵列探头中的各个单元,由于激发顺序不同,各个晶片激发的波有先后,这些波的叠加形成新的波前,因此可以将超声波的波前聚焦并控制到一个特定的方向,可以以不同角度辐射超声波束,可以实现同一个探头在不同深度聚焦(电子动态聚焦)。此外,从电子技术上为阵列确定相位顺序和相继激发的速度可以使固定在一个位置上的探头发出的超声波束在被检工件中动态地“扫描”或“扫调”通过一个选定的波束角范围或者一个检测的区域,而不需要对探头进行人工操作。相控阵探头的关键特性包括:电子焦距长度调整、电子线性扫描和电子波束控制/偏角。 图1示出了超声波相控阵换能器实现电子聚焦和波束偏转的原理示意图。 图1超声波相控阵换能器实现电子聚焦和波束偏转的原理示意图超声波相控阵换能器的晶片不同组合构成不同的相控阵列,目前主要有三种阵列类型:线形阵列(晶片成间隔状直线形分布在探头中)、面形(二维矩阵)阵列和圆(环)形阵列,

超声相控阵检测教材-第三章-超声相控阵技术

第三章超声相控阵技术 3.1相控阵的概念 3.1.1相控阵超声成像 超声检测时,如需要对物体内某一区域进行成像, 必须进行声束扫描。相控阵成像是通 过控制阵列换能器中各个阵元激励(或接收)脉冲的时间延迟,改变由各阵元发射(或接收) 声波到达(或来自)物体内某点时的相位关系,实现聚焦点和声束方位的变化,从而完成相 控阵波束合成,形成成像扫描线的技术,如图 3-1所示。 图3-1 相控阵超声聚焦和偏转

3.2相控阵工作原理 相控阵超声成像系统中的数字控制技术主要是指波束的时空控制, 采用先进的计算机技 术,对发射/接收状态的相控波束进行精确的相位控制,以获得最佳的波束特性。这些关键 数字技术有相控延时、动态聚焦、动态孔径、动态变迹、编码发射、声束形成等。 3.2.1相位延时 相控阵超声成像系统使用阵列换能器,并通过调整各阵元发射 /接收信号的相位延迟 (phase delay ),可以控制合成波阵面的曲率、指向、孔径等,达到波束聚焦、偏转、波束 形成等多种相控效果,形成清晰的成像。可以说,相位延时(又称相控延时)是相控阵技术 的核心,是多种相控效果的基础。 相位延时的精度和分辨率对波束特性的影响很大。 就波束的旁瓣声压而言, 文献研究表 明,延时量化误差产生离散的误差旁瓣,从而降低图像的动态范围。其均方根( ,r . / \ 诙爲 式中, 一-—— N-----阵元数目; 尸--中心频率所对应一个周期与最小量化延时之比。 图3-2示出了延时量化误差引起的旁瓣随 N 、□变化的关系曲线。早期的超声成像设备 如医用B 超中,由LC 网络组成多抽头延迟线直接对模拟信号进行延迟, 用电子开关来分段 切换以获得不同的延迟量。这种延迟方式有两大缺点:①延迟量不能精细可调,只能实现分 段聚焦,当聚焦点很多时需要庞大的 LC 网络和电子开关矩阵;②由于是模拟延迟方式,电 气参数难以未定,延时量会发生温漂、时漂、波形容易被噪声干扰。 RMS )延 (式 3-1)

法律 ---第一章---法律的基本概念

第一节法律的基本概念 一、法律的基本概念 (一)法或法律的定义: 法的定义:法是反映统治阶级意志的,由国家制定或认可并以国家强制力保证实施的行为规范总和。 “法律”,通常那广义和狭义两种含义以上使用。 广义的“法律”通“法”同义。 狭义的法律,是指拥有立法权的国家机关依照法定程序和颁布的规范性文件。 在我国,由全国人大和全国人大常委会制定和颁布的规范性文件,称为法律。 (二)法的特征 法的特征:指区别于其他社会规范所持有的属性。 特征:1、法是由国家制定或认可的规范。制定或认可是国家创造法的两种形式。 2、法是有国家强制力保证实施的规范。 3、法是制定人们权利和义务的规范。 4、法具有普遍约束力的规范。 (三)法的本质 法的本质:指法的质的规定性,是法的内在、基本的物质精神因素的总和,是法存在的基础和发展变化的决定力量。

要点:1、法是统治阶级意志的体现。 2、法的内容是统治阶级的物质生活条件所决定的。经济基础对法具有决定作用。 二、法律价值和法律理念 (一)法律的价值 首先:法具有服务性价值,它确认和保护、发展对统治阶级有利的社会关系和社会秩序,它确立规则,使资源得到合理的分配。其次:法本身还具有权利和义务相一致的价值、相对稳定相的价值、是国家权力运用公开化的价值等。只有当法律符合或能够满足人们的需要时,法律才有价值可言。 (二)法律的理念 法律的理念是对法律的本质、精神、基本原则和运行机制的理性认识和价值取向上的意识形态,它基于某种基本的法律制度而产生。 依法治国是社会主义法治的核心内容,执法为民是社会主义法治的本质要求,公平公正是社会主义法治的价值追求,服务大局是社会主义法治的重要使命。 三、法律的形式和体系 (一)法律的形式 国家机关制定的各种规范性文件是法律的主要形式。 规范性文件:国家机关在其权限范围内,按照法定程序制定和颁

第1章基本概念和基本规律

第一篇电阻电路

第一章基本概念和基本规律 1.1电路和电路模型 ?电路(electric circuit)是由电气器件互连而成 的电的通路。 ?模型(model)是任何客观事物的理想化表示,是对客观事物的主要性能和变化规律的一种抽象。 ?电路理论(circuit theory)为了定量研究电路的电气性能,将组成实际电路的电气器件在一定条件下按其主要电磁性质加以理想化,从而得到一系列理想化元件,如电阻元件、电容元件和电感元件等。

?由于没有任何一种实际器件只呈现一种电磁性质,而能把其它电磁性质排除在外,所以器件建模是有条件的,一种近似表示只有在一定的条件下适用,条件变了,电路模型的形式也要作相应的改变。 ?电路分析(circuit analysis ),就是对由理想元件组成的电路模型的分析。虽然分析结果仅是实际电路的近似值,但它是判断实际电路电气性能和指导电路设计的重要依据。 如:不同工作频率下的电阻模型 R R C L

?当实际电路的尺寸远小于其使用时的最高工作频率所对应的波长时,可以无须考虑电磁量的空间分布,相应的电路元件称为集中参数元件。由集中参数元件组成的电路,称为实际电路的集中参数电路模型或简称为集中参数电路。描述电路的方程一般是代数方程或常微分方程。 ?如果电路中的电磁量是时间和空间的函数,使得描述电路的方程是以时间和空间为自变量的代数方程或偏微分方程,则这样的电路模型称为分布参数电路。 电路集中化条件:实际电路的各向尺寸d远小于电路工作频率所对应的电磁波波长λ,即d

例1.1.1我国电力用电的频率是50Hz ,则该频率对应的波长8 /(310/50)km 6000km c f λ==?=可见,对以此为工作频率的实验室设备来说,其尺寸远小于这一波长,因此它能满足集中化条件。而对于数量级为103km 的远距离输电线来说,则不满足集中化条件,不能按集中参数电路处理。 例1.1.3对无线电接收机的天线来说,如果所接收到信号频率为400MHz ,则对应的波长为 8 6 /[310/(40010]m 0.75m )c f λ==??=因此,即使天线的长度只有0.1m ,也不能把天线视为集中参数元件。

超声相控阵相关知识

相控阵的概念起源于雷达天线电磁波技术,超声相控阵最早仅用于医疗领 域。近年来,随着微电子、计算机等新技术的快速发展,超声相控阵逐渐被应用 于工业无损检测领域。 超声相控阵通过各阵元发出声束的有序叠加可以灵活地生成偏转及聚焦声 束,不需更换探头即可完成对关心区域的高分辨率检测,且其特有的线性扫查、 扇形扫查、动态聚焦等工作方式可在不移动或少移动探头的情况下对零件进行高效率检测。因此,较传统的单晶片超声检测,超声相控阵的声束更灵活、检测速度更快、分辨率更高、更适用于形状复杂的零部件检测。 超声相控阵探头是将若干个独立的压电晶片按照一定的排列组合成一个阵 列,通过控制压电晶片的激励顺序及延时,来实现声束的偏转以及聚焦。 超声相控阵是基于Huygens-Fresnel原理,由各个阵元发出的超声波经过干涉形成预期的声束。以同一频率的脉冲激发各个阵元,并对各个阵元的激发时间施加一定的延迟,于是各阵元的发射声波产生了相位差,从而影响干涉结果,即可以形成偏转及聚焦声束。各阵元的激发延时一般被称为聚焦法则或延时法则。

&恤I hit IJI Itic fuiniiiiion of beam 聚焦点 崖焦百虫形處示豈 (b*i l he torm&twri of tu^using buMi 图2超声相控阵偏转疑聚焦声束的形成 与传统单晶片换能器的超声检测不同,超声相控阵不同的阵元组合与不同的聚焦法则相结合,形成了3种特有的工作方式,即线性扫查,扇形扫查和动态聚焦。 线性扫查 线性扫查,又称为电子扫查,具体步骤为: 1)假设相控阵阵元总数为N,令其中相邻的n( 1v* N)个阵元为一组,对每一组阵元施加相同的聚焦法则 2)以设定的聚焦法则激发第一组阵元; 3)沿阵列长度方向向前移动一个步进值(一般为一个阵元晶片),以同样的 聚 焦法则激发第2组阵元。以此类推,直至最后一个阵元。一般将上述的一组阵元称 为一个序列。这样扫查完成后会得到N-n+1个序列回波信号,在不移动探头 的情况下就可以检测到较大区域。线性扫查的示意图如图3( a)所示

相控阵超声新技术在电站设备无损检测中的实践思路探索(正式版)

文件编号:TP-AR-L2243 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编订:_______________ 审核:_______________ 单位:_______________ 相控阵超声新技术在电站设备无损检测中的实践思路探索(正式版)

相控阵超声新技术在电站设备无损 检测中的实践思路探索(正式版) 使用注意:该安全管理资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 超声相控阵检测技术20世纪60年代就已经出 现,被应用于医疗领域。但是由于固体中波动传播复 杂性、系统复杂性和成本费用高等因素存在,限制了 超声相控阵检测技术在无损检测中的运用。而电子技 术和计算机技术以及压电复合材料等高新技术被广泛 综合应用,促进了超声相控阵技术发展,并且渐渐应 用到工业无损检测中。 现代技术飞速发展,带动了很多高新技术在超声 相控阵技术中被综合应用,从而降低了相控阵系统复 杂性与制作费用[1]

。而且相控阵技术具有比传统超声波检测更加明显的优势,使得超声相控阵检测技术被广泛应用于工业无损检测领域,并且日渐得到人们重视,迎来了很大的发展空间。 超声相控阵检测技术 超声相控阵检测技术建立在惠更斯原理上,其探头由许多个晶片组成。要应用时,则需要按照相关规则以及时序激活探头中一组或全部晶片,其中相控阵仪器的控制能力与检测需要决定着晶片激活数量。晶片被激活后,发出的超声波即为次波。每一个晶片的次波会彼此干涉,形成新波阵面并传播开来,从而形成超声波束检测工件。 无损检测技术 无损检测就是在不损坏被检测设备的基础上,根据物理特性将被检对象的内外部缺陷的位置、形状、

第1章 随机过程的基本概念

第一章 随机过程的基本概念 1.设随机过程 +∞<<-∞=t t X t X ,cos )(0ω,其中0ω是正常数,而X 是标准正态变量。试求X (t )的一维概率分布 解:∵ 当0cos 0=t ω 即 πω)21(0+ =k t 即 πω)2 1 (10+=k t 时 {}10)(==t x p 若 0c o s 0≠t ω 即 πω)2 1 (1 0+≠ k t 时 当 0c o s 0>t ω时 ξπ ωωξd e t x X P t x F t x ? - = ??? ? ??≤=02cos 0 2 021cos ),( 此时 ()t e x t x F t x f t x 0c o s 2c o s 1 21,),(022ωπ ω? =??=- 若 0c o s 0

?? ?= ,2 ,cos )(出现反面出现正面t t t X π 假定“出现正面”和“出现反面”的概率各为21。试确定)(t X 的一维分布函数)2 1 ,(x F 和)1,(x F ,以及二维分布函数)1,2 1;,(21x x F 解:(1)先求)21,(x F 显然?? ?=?????=??? ??出现反面出现正面 出现反面出现正面10,2 1*2,2cos 21π X 随机变量?? ? ??21X 的可能取值只有0,1两种可能,于是 21 021= ??????=?? ? ??X P 2 1121=??????=??? ??X P 所以 再求F (x ,1) 显然?? ?-=?? ?=出现反面出现正面出现反面出现正面 2 1 2 cos (1)πX {}{}2 1 2)1(-1(1)====X p X p 所以 ???? ???≥<≤<=2 121- 2 1-1 0,1)(x x x x F (2) 计算)1,2 1 ;,(21x x F ?? ?-=?? ?=出现反面出现正面 出现反面出现正面 2 1)1(, 1 0)2 1( X X ?????≥<≤<=??? ?? 11 102 1 00 21,x x x x F

1-第一章 超声相控阵技术基本概念

第一章超声相控阵技术的基本概念 本章描述超声波原理、相控阵延时(或聚焦定律)概念,并介绍R/D公司研制的相控阵仪器设备。 1.1 原理 超声波是由电压激励压电晶片探头在弹性介质(试件)中产生的机械振动。典型的超声频率范围为0.1MHz~50MHz。大多数工业应用要求使用0.5MHz~15MHz的超声频率。 常规超声检测多用声束扩散的单晶探头,超声场以单一折射角沿声束轴线传播。其声束扩散是唯一的“附加”角度,这对检测有方向性的小裂纹可能有利。 假设将整个压电晶片分割成许多相同的小晶片,令小晶片宽度e远小于其长度W。每个小晶片均可视为辐射柱面波的线状波源,这些线状波源的波阵面会产生波的干涉,形成整体波阵面。 这些小波阵面可被延时并与相位和振幅同步,由此产生可调向的超声聚焦波束。 超声相控阵技术的主要特点是多晶片探头中各晶片的激励(振幅和延时)均由计算机控制。压电复合晶片受激励后能产生超声聚焦波束,声束参数如角度、焦距和焦点尺寸等均可通过软件调整。扫描声束是聚焦的,能以镜面反射方式检出不同方位的裂纹。这些裂纹可能随机分布在远离声束轴线的位置上。用普通单晶探头,因移动范围和声束角度有限,对方向不利的裂纹或远离声束轴线位置的裂纹,漏检率很高(见图1)。 图﹡ ﹡常规

图1-2 脉冲发生和回波接收时的声束形成和时间延迟(同相位、同振幅) 图1-3 超声波垂直(a )和倾斜(b )入射时声束聚焦原理 发射 接收 超声波探伤仪 超声波探伤仪 触发 相控阵控制器 相控阵控制器 脉冲激励 阵列探头 缺陷 缺陷 入射波阵面 反射波阵面 回波信号 Σ 接收延时 延时 [ns] 延时 [ns] 转角 产生的波阵面 产生的波阵面 阵列探头 阵列探头

第一章 一些基本概念

第一章一些基本概念 讲课之前问问大家EXCELL用得怎么样?会使用公式编辑吗? 调出上标、下标:工具→自定义→命令→格式→右边找到X2、X2拖出来 调出公式编辑器:工具→自定义→命令→插入→右边找到公式编辑器,拖出来 SPSS是“社会科学统计软件包”(Statistical Package for the Social Science)的简称,是一种集成化的计算机数据处理应用软件。SPSS是世界上公认的三大数据分析软件之一(SAS、SPSS和SYSTAT)。 §1.1 统计是什么? ?统计是人类思维的一个归纳过程 ?站在一个路口,看到每过去20辆小轿车时,也有100辆自行车通过,而且平均每10个轿车载有12个人,于是,你认为小汽车和自行车在这个路口的运载能力为24:100 ?这是一个典型的统计思维过程 ?一般来说,统计先从现实世界收集数据(信息),如观测路口的交通,然后,根据数据作出判断,称为模型。模型是从数据产生的,模型也需要根据新的信息来改进。 ?不存在完美的模型,模型的最终结局都是被更能够说明现实世界的新模型所取代。统计学可以应用于几乎所有的领域: 精算,农业,动物学,人类学,考古学,审计学,晶体学,人口统计学,牙医学,生态学,经济计量学,教育学,选举预测和策划,工程,流行病学,金融,水产渔业研究,遗传学,地理学,地质学,历史研究,人类遗传学,水文学,工业,法律,语言学,文学,劳动力计划,管理科学,市场营销学,医学诊断,气象学,军事科学,核材料安全管理,眼科学,制药学,物理学,政治学,心理学,心理物理学,质量控制,宗教研究,社会学,调查抽样,分类学,气象改善,博彩等。 ?一句话, ?统计学(statistics)是用以收集数据,分析数据和由数据得出结论的一组概念、原则和方法。 ?以归纳为主要思维方式的统计,不是以演绎为主的数学。 ?统计可应用于各个不同学科,在有些学科已经有其特有的方法和特点;如生物统计(biostatistics)、经济计量学(econometrics)以及目前很热门的生物信息(bioinformation)和数据挖掘(Data Mining)的方法主体都是统计。 §1.2 现实中的随机性和规律性,概率和机会 ?从中学起,我们就知道物理学的许多定律,例如v=v0+at; F=ma等等 ?但是在许多领域,很难用如此确定的公式或论述来描述一些现象。 ?一些现象既有规律性又有随机性(randomness) ?肺癌患者中(主动或被动)吸烟的比例较大,这体现了规律性 ?而绝非每个吸烟的人都会患肺癌,这体现了随机性 ?再如,一般来说,白种人身材比黄种人要高些,这就是规律性 ?但对于具体的一个白人和一个黄种人,就很难说谁高谁矮了,这体现随机性 ?什么是概率(probability)?新闻中最常见的是“降水概率” ?从某种意义说来,概率描述了某件事情发生的机会。显然,这种概率不可能超过百分之百,也不可能少于百分之零。 ?概率是在0和1之间(也可能是0或1)的一个数,描述某事件发生的机会。 ?有些概率是无法精确推断的。比如你明天感冒的概率

TOFD与超声波相控阵检测技术特点比较

TOFD与超声波相控阵检测技术特点比较TOFD方法具有超声成像技术,它通过采用一发一收探头布置,然后要求相应的探头入射点间距离,在平板对接焊缝、环焊缝方面具有很大的优势,下面是小编搜集的一篇探究TOFD与超声波相控阵检测技术特点的论文范文,欢迎阅读查看。目前我国无损检领域应用最广泛的是TOFD技术,业界人士已经普遍认可了TOFD技术,这项技术在我国的工业领域已经有了数不胜数的成功案例。21世纪初,我国引入了Isonic系列便携式超声波成像检测系统(以色列的IsonotronNDT公司出品),经由一系列的实际的对比以及验证加之不断改进和创新了的扫查器系统,TOFD技术被更多的应用到各工业现场检测中。TOFD方法具有超声成像技术,它通过采用一发一收探头布置,然后要求相应的探头入射点间距离,在平板对接焊缝、环焊缝及直径大于500mm的纵缝中厚板检测方面具有很大的优势,但是该技术也存在一些弊端,比如对于复杂几何形状的结构件、焊缝检测盲区等束手无策。到目前为止超声相控阵技术已经在我国发展了20年,在早期主要应用在医疗领域,利用该技术可以在实际的医学超声成像中对被检器官进行成像,有益于医学的不断发展和进步,但是由于很多客观因素的限制,比如系统的复杂性、固体中波动传播的复杂性及成本费用高等,使得该技术的应用面受限。在这种情况下,在超声相控阵成像领域应用压电复合材料、数据处理分析等高新技术是大势所趋,未来超声相控阵检测技术一定会得到更加广泛的应用。超声相控阵是采用多晶片控制声束聚焦技术,探头可以在同一位置实现很大声

束及角度范围内的电子扫查,适用于复杂几何形状结构件的检测。 下面对TOFD和相控阵的检测技术做简要对比。 1、TOFD的技术特点 1.1 TOFD的优点 TOFD技术不仅具有很强的缺陷检出能力,还具有很高的缺陷定量精度,除此之外还具有很高的时效性和安全性,可永久保存其检测数据。 ①效率高:该技术只需要做线性扫查就可以对焊缝完成扫查,很大程度上扩大了单组探头检测对焊缝的覆盖范围大,远远超过了传统的检测方法。 ②灵敏度高:由于该技术的衍射波信号具有很高的灵敏度,很大程度上保证了检出率。 ③精度高:利用衍射时差计算方法,缺陷的高度可以得到精确的计算。 ④影响小:该技术不会因焊缝结构或缺陷的方向性就左右最后的检测结果,其检测结果具有很高的稳定性,几乎不受其他因素的影响。 ⑤漏检少:衍射波具有高灵敏度,通过图像记录完整检测数据,重复性好。 ⑥数据全:检测结果的时效性很强,并且相关数据和资料会以存盘、打印出来等形式永久的保留下来,以便随时进行分析处理。 ⑦更安全:采用该技术不会对相关人员造成人身伤害。

超声相控阵技术的发展及应用

超声相控阵技术的发展及应用 钟志民,梅德松 (核工业无损检测中心,上海200233) 摘要:扼要介绍超声相控阵技术的发展历史、原理及特点。着重介绍其最新研究动态及其在核工业无损检测与评价中的典型应用。指出将相控阵技术同其它诸如纵波一发一收(TRL) 、声时衍射(TOFD) 技术、数字信号处理(DSP) 及成像等技术结合起来,将有助于充分发挥其特点,提高其检测能力,促进无损检测与评价的发展及应用。 关键词: 超声检验; 相控阵技术; 换能器; 核电站 中图分类号:TG115. 28 + 5 文献标识码:A 文章编号:100026656 (2002) 022******* DEVELOPMENT AND APPLICATION OF ULTRASONIC PHASED ARRAY TECHNIQUE ZHONG Zhimin , MEI Desong (Nuclear Non2Destructive Testing Center , Shanghai 200233 , China) Abstract : The development history , theory and characterization of ultrasonic phased array technique , especially the state2of2the2arts and applications of the technique in nuclear industry nondestructive testing and evaluation (NDT & E) are https://www.wendangku.net/doc/4517748366.html,bining phased array technique with TRL ( the transmitter2receiver technique for longitudinal waves) , TOFD ( time of flightdiffraction) , DSP(digital signal processing) and imaging technique will improve detectability and promote NDT&E developmentand application. Keywords :Ultrasonic testing ; Phased array technique ; Transducer ; Nuclear power station 超声相控阵技术已有近20 多年的发展历史。初期主要应用于医疗领域,医学超声成像中用相控阵换能器快速移动声束对被检器官成像[1 ];利用其可控聚焦特性局部升温热疗治癌,使目标组织升温并减少非目标组织的功率吸收[2 ]。最初,系统的复杂性、固体中波动传播的复杂性及成本费用高等原因使其在工业无损检测中的应用受限。然而随着电子技术和计算机技术的快速发展,超声相控阵技术逐渐应用于工业无损检测,特别是在核工业及航空工业等领域。如核电站主泵隔热板的检测[3 ];核废料罐电子束环焊缝的全自动检测[4 ]及薄铝板摩擦焊焊缝热疲劳裂纹的检测[5 ]。近几年,超声相控阵技术发展尤为迅速,在第15 届世界无损检测会议中,关于超声相控阵技术的文献有17 篇之多。在相控阵系统设计、系统仿真、生产与测试和应用等方面已取得一系列进展,如采用新的复合材料压电换能器改善电声性能[6 ];奥氏体焊缝、混凝土和复合材料等的超声相控阵检测[7-9 ] ;R/ D TECH ,SIEMENS 及IMA2SONIC 等公司已生产超声相控阵检测系统及相控阵换能器。而动态聚焦相控阵系统[10 ] ,二维阵列、自适应聚焦相控阵系统[11 ] ,表面波及板波相控阵换能器[12 ]和基于相控阵的数字成像系统等的研制、开发、应用及完善已成为研究重点。其中,自适应聚焦相控阵技术尤为突出,它利用接收到的缺陷回波信息调整下一次激发规则,实现声束的优化控制,提高缺陷(如厚大钛锭中的小缺陷或埋藏较深的大缺陷)的检出率。目前,国内在超声相控阵技术上的研究应用尚处于起步阶段,主要集中于医疗领域。 1 原理及特点 超声相控阵换能器的设计基于惠更斯原理。换能器由多个相互独立的压电晶片组成阵列,每个晶片称为一个单元,按一定的规则和时序用电子系统控制激发各个单元,使阵列中各单元发射的超声波叠加形成一个新的波阵面。同样,在反射波的接收过程中,按一定规则和时序控制接收单元的接收并进行信号合成,再将合成结果以适当形式显示[13 ]。 由其原理可知,相控阵换能器最显著的特点是可以灵活、便捷而有效地控制声束形状和声压分布。其声束角度、焦柱位置、焦点尺寸及位置在一定范围内连续、动态可调;而且探头内可快速平移

第一章 基本概念

第一章 基本概念 §1.1 集 合 1.指出下列各命题的真假. (1)}1{1∈; (2)}1{1?; (3)}1{1=; (4)}1{}1{∈; (5)}1{}1{?; (6)}}1{,1{}1{∈; (7)}1{∈?; (8)}1{??; (9)}1{??; (10)?∈?; (11)???; (12)???. 解 命题)1(,(5),(6),(8),(9)和(11)为真命题,其余都是假命题. 2.设},,,,,,,{h g f e d c b a U =,},,,{h e c a M =,},,,,{g f e d a N =,求N M , N M ,N M \,M N \,''N M ,''N M . 解 },,,,,,{h g f e d c a N M = ;},{e a N M = ;},{\h c N M =; },,{\g f d M N =; },,,,,{''h g f d c b N M = ;}{''b N M = . 3.设B A ,是两个集合,若B A B A =,证明:B A =. 证明 假设B A B A =.则A B A B A B B A B A A ?=??=? .因此B A =. 4.设C B A ,,是三个集合,若C A B A =,C A B A =,证明:C B =. 证明 考察任意的B x ∈:若A x ∈,则由C A B A =可知C x ∈;若A x ?,则由C A B A =可知C x ∈.由此可见,C B ?.同理可证,B C ?.所以C B =. 5.证明下列三命题等价: (1)B A ?;(2)A B A = ;(3)B B A = . 证明 我们有 B A A B A A A A B A =??=?? B B A B B B A B A =??=? )( B A ??. 所以命题(1),(2)和(3)两两等价. 6.设C B A ,,是三个集合,证明: (1))(\\B A A B A =; (2)B A B A A =)\(\; (3))\()\()(\C A B A C B A =; (4))\()\()(\C A B A C B A =; (5))(\)()\(C A B A C B A =; (6))(\)()\()\(B A B A A B B A =. 证明 (1)对于任意的元素x ,我们有 )(\\B A A x B A x A x B x A x B A x ∈??∈??∈?∈且且. 所以)(\\B A A B A = (2)对于任意的元素x ,我们有 B A x B x A x B A x A x B A A x ∈?∈∈??∈?∈且且\)\(\.

基于超声波相控阵无损检测技术在小口径无缝钢管上的应用研究

基于超声波相控阵无损检测技术在小口径无缝钢管上的应 用研究 摘 要:本文介绍了超声波相控阵技术原理,分析该 技术的独特优势对小口径无缝钢管的检测更具针对性,可以 明显提高缺陷检出率与检测速度。重点研究 89 机组在线 2# 线美国GE 公司生产的ROWA240-6WT PAT 型相控阵超声波钢 管自动分层测厚系统在小口径无缝钢管检测上的应用。 关键词: 超声波相控阵; 分层;测厚;小口径无缝钢管; 探伤 0. 概述 超声波相控阵检测技术的应用始于 20 世纪 60 年代,目 前已广泛应用于医学超声成像领域。由于该系统复杂且制作 成本高,因而在工业无损检测方面的应用受到限制。 近年来, 超声相控阵技术以其灵活的声束偏转及聚焦性能越来越引 起人们的重视。由于压电复合材料、纳秒级脉冲信号控制、 数据处理分析、软件技术及计算机模拟等多种高新技术在超 声相控阵成像领域中的综合应用,使得超声波相控阵技术得 到快速发展,逐渐应用于工业无损检测。 1. ROWA240-6WT PAT 型GE 相控阵超声波钢管自动分层 中图分类 口 号: TB559 文献标识码: A

测厚设备简介 89机组在线2#线管体超声分层测厚设备是美国 GE 公司 生产的ROWA240-6WT PAT 型相控阵超声波钢管自动分层测 厚系统。本套设备包含测厚分层检测主机、主机进 /出平台、 中心线导向装置、 6 组相控阵探头、前端电子、后端电子、 供水系统、导套及橡胶密封、控制系统等。 1.1 探头布置及主要参数 1.1.1 探头布置 该系统共有 6 个相控阵探头阵列,成环状布置,分为 2 列, 2 列的探头交错布置。探头阵列其布置如图 1 所示。 1.1.2 探头阵列主要参数 晶片组成,每个晶片尺寸为1.15 X 12.5mm 。每个虚拟探头最 多由 16个晶片组成, 每个虚拟探头的最大重复频率为 1.2 检测能力 检测外径: 32mm ?115mm 壁厚范围: 3mm ?16mm 壁厚静态测量精度:± 0.03mm 壁厚动态测量精度:± 0.05mm 壁厚减薄: 25mm (L )X 25mm (W )X 12.5%WT (D ) 夹层缺陷:①6.3mm 平底孔,当壁厚大于等于 6mm 时, 夹层缺陷深度介于1/4?1/2壁厚深度,夹层最小深度为2mm 。 探头阵列含 6 组相控阵探头,每个相控阵探头由 126 个 20kHz 。

超声相控阵技术在工业上的应用

龙源期刊网 https://www.wendangku.net/doc/4517748366.html, 超声相控阵技术在工业上的应用 作者:刘晓睿刘斯以吴斌斌 来源:《硅谷》2012年第17期 摘要: 超声相控阵技术最早应用在医疗领域,从上个世纪80年代起,超声相控阵技术开始应用到核电领域。20多年以来,超声相控阵技术在工业上的应用范围越来越广泛,在电力、航空、航天、石化等行业都能够看到它的身影。相信随着相控阵设备价格的不断下降、人员培训规模的日益扩大以及相关标准的逐步建立与完善,工业相控阵技术的应用会越来越普及。 关键词: 超声相控阵;工业应用;线性扫查;扇形扫查 1 超声相控阵技术简介 普通超声探头通常由一个晶片来产生超声波,其声束的传播角度是唯一的,在实际检测中,为了防止漏检,通常需要进行不同角度的扫查。相控阵探头是由许多独立的晶片构成的,每个晶片都能被单独激发。这些探头由特殊的装置驱动,能够在每个通道独立的、同步的发射和接收信号。超声相控阵的一个重要特性就是可以通过软件来改变超声波束的特性。根据系统软件设置,每个晶片都能通过不同的时间延时来激活,并发射和接收超声信号。另外扫查角度范围、聚焦 深度和焦点尺寸等也都能通过软件控制。因而在一定程度上克服了常规超声由于声束的方向性造成的在缺陷检出和定量上的限制。 超声相控阵的两个重要特性是偏转和聚焦,这些特性在理论上的实现都是基于波的叠加和 干涉以及惠更斯原理。相控阵探头根据晶片的排布可以分成环阵、一维线阵、扇形环阵、二维矩阵、曲率线阵等。超声相控阵技术在扫查方式上主要分为线性扫查、扇形扫查、动态深度聚焦等,在显示方式上分为A显示、B显示、C显示、D显示、S显示等。 上世纪80年代,出现了工业用相控阵系统,这种系统非常的大,需要把数据传入电脑来进行 数据处理和图像展示,至少需要两个人来操作。这类设备大部分都是用在在役电站的检查中,特别是核电领域。上世纪90年代以来,随着电子和软件技术的发展,依靠低功率的电子元件、低能耗的结构,结合微处理器技术,使得电池驱动的相控阵设备的产生成为可能。1997年,RD/TECH 公司发布了便携式的相控阵设备Tomoscan FOCUS,它使得相控阵信号产生、数据处理、显示和分析都能在一台仪器上完成,从此相控阵技术的应用领域更加广阔。下面将介绍一些国外相控 阵应用的实例。 2 电力 Figure 1 Example of blade root inspection 超声相控阵技术可以检测电站汽轮机叶根的应力腐蚀裂纹。汽轮机的几何形状比较复杂, 被检工件的接触面有限,在检测时需要保证缺陷漏检率越小越好,利用超声相控阵技术可以根据

第一章基本概念和原理

第一章基本概念和原理 第一章 差不多概念和原理 复习方法指导 化学差不多概念是学习化学的基础,是化学思维的细胞,是化学现象的本质反映。就初中化学而言,概念繁多(有近百个),要较好地把握概念应做到以下几点: 1、弄清概念的来胧去脉,把握其要点,专门注意概念的关键词语。 2、要分清大致念和小概念,把握概念之间的区不和联系,把概念分成块,串成串,纵横成片,形成网状整体,融汇贯穿。 3、熟练地运用化学用语,准确表达化学概念的意义。 化学差不多原理在教学中占有重要地位,它对化学的学习起着指导作用,要较好把握这些理论,应做到以下几点: 1、把握理论的要点和涵义。 2、抓住理论要点和实际咨询题的关系,注意理论指导实际,实际咨询题联挂理论。 3、加强练习,深化对理论联系实际的明白得。 知识结构梳理 专题1 物质的微观构成 一、中考复习要求 溶液 混合物 浓溶液 稀溶液 溶解度 饱和溶液 不饱和溶液 溶质质量分数 质量守恒定律 可溶性碱 不溶性碱 酸性氧化物 碱性氧化物 含氧酸盐 无氧酸盐 无氧酸 含氧酸 氧化物 酸 碱 盐 吸热现象 放热现象 氧化反应 还原反应 化合反应 分解反应 置换反应 复分解反应 原子结构简图 离子结构简图 元素符号 离子符号 化学方程式 化学式 化合价 物质 分类 变化 元素 原子 分子 离子 物质 游离态 化合态 化合物 纯洁物 单质 金属单质 非金属单质 稀有气体 物理变化 化 学 变 化 组成结构 质子 电子 中子 核外电子排布 原子核 性质 物理性质 化学性质 溶剂 溶质

1、正确描述分子、原子、离子概念的含义以及它们的区不与联系,并能将它们进行区分。 2、会用分子、原子的知识讲明日常生活中的一些现象。 3、准确描述原子的构成,明白原子核外的电子是分层排布的,认识常见原子的原子结构示意图。 4、从微观角度简单认识NaCl和HCl的形成过程。 二、基础知识回忆 自然界的物质是由微粒构成的,、、是构成物质的三种差不多微粒。 分子原子离子 区不概念 保持物质性质的 微粒 是化学变化中的微粒带电的或 化学变 化中是 否可分 在化学变化中分, 变化前后种类和数目可能 发生变化。 在化学变化中分,变 化前后种类和数目不发生 变化。 在化学变化中单原子离子一样 不可分,但原子团构成的离子 可能分割成其它离子、原子或 分子。 是否独 立存在 能独立存在,构成物质并 保持物质的化学性质不 变。 有些能独立存在,并直截了 当构成物质,且能保持物质 的化学性质不变。 阴阳离子共同构成物质。 构成 同种原子或不同种原子通 过共用电子对形成。且纯 洁物中仅含有一种分子。 一样有、和核外 电子三种微粒构成。 由原子得失电子形成,原子得 电子带电荷成为 离子,原子失去电子带 电荷,成为离子。 所显电 性情形 电性电性 阴离子:带电荷 阳离子:带电荷 表示 方法 用〔分子式〕表示 用或原子结构示意 图表示。 分不以阴、阳离子符号或离子 结构示意图表示。 联系 在化学 反应中 的表现 在化学反应中原分子破裂在化学反应中得失电子 分子原子离子 在化学反应中重新组合成新分子在化学反应中得失电子 表达 方法 均为微观粒子,既可讲个数,又可论种类。 基本 属性 体积,质量,差不多上在不断的,微粒之间有。同种微粒 相同,不同种微粒性质不同。 2、原子的结构 ①每个质子相对原子质量约等于1,约等于一个原子的质量。 质子②每个质子带一个单位的电荷。 ③决定种类。 原子核①每个中子相对原子质量约等于1,约等于一个氢原子的质量。 原中子②电荷。 ③决定同类元素中的不同种原子。

相关文档