文档库 最新最全的文档下载
当前位置:文档库 › 边界层理论1

边界层理论1

边界层理论1
边界层理论1

边界层(Boundary Layer)是高雷诺数绕流中紧贴物面的粘性力不可忽略的流动薄层,又称流动边界层、附面层。这个概念由近代流体力学的奠基人,德国人Ludwig Prandtl(普朗特)于1904年首先提出。从那时起,边界层研究就成为流体力学中的一个重要课题和领域。在边界层内,紧贴物面的流体由于分子引力的作用,完全粘附于物面上,与物体的相对速度为零。

边界层又称附面层,它是指流体流经固体表面时,靠近表面总会形成那么一个薄层,在此薄层中紧贴表面的流体流速为零,但在垂直固体表面的方向(法向)上速度增加的很快,即具有很大的速度梯度,甚至对粘性很小的流体,也不能忽略它表现出来的粘性力。而在此边界层外,流体的速度梯度很小,甚至对粘度很大的流体而言,其粘性力的影响也可以忽略,流体的流速与绕流固体表面前的流速V0一样。这样就可把边界层外流动的流体运动视为理想流体运动,不考虑粘性力的影响。边界层内、外区域间没有明显的分界面,而把边界层边缘上的流体流速V x视为V x=0.99 V0,因此从固体表面至V x=0.99 V0处的垂直距离视为边界层的厚度δ。这样大雷诺数下绕过固体的流动便简化为研究边界层中的流动问题。

边界层内的流动可以是层流,也可以是带有层流底层的紊流,还可以是层流、紊流混合的过渡流。

图1 边界层结构

综上所述,边界层的特征可归结为:

(1)与固体长度相比,边界层厚度很小;

(2)边界层内沿边界层厚度方向上的速度梯度很大;

(3)边界层沿流动方向逐渐增厚;

(4)由于边界层很薄,故可近似地认为,边界层截面上的压力等于同一截面上边界层外边界上的压力;

(5)边界层内粘性力和惯性力士同一数量级的;

(6)如在整个长度上边界层内都是层流,称层流边界层;仅在起始长度上的是层流,而在其他部分为紊流的称混合边界层。

以上定义的边界层为速度边界层,另外在其他学科领域中对于边界层的应用还是十分广泛的,主要有温度边界层和浓度边界层。

1.温度边界层

流体在平壁上流过时,流体和壁面间将进行换热,引起壁面法向方向上温度分布的变化,

形成一定的温度梯度,近壁处,流体温度发生显著变化的区域,称为热边界层或温度边界层。

热边界层的厚度:处与壁面的垂直距离;

热边界层内:

热边界层外:

(等温区)

湍流流动热边界层与流动边界层关系:

湍流区:质点相互混合交换热量,△t 小。

缓冲层:质点混合,分子运动共同作用,温度变化平缓。

层流内层:导热为主,热阻大,温差大。

2.浓度边界层

浓度边界层又称传质边界层,当流体与它所流过的固体表面之间,因浓度差而发生质量传递时,在固体表面附近形成的具有浓度梯度的薄层。这是对流传质过程阻力所在的区域,传质边界层之外,浓度梯度可以忽略,可视为浓度均匀,不存在传质阻力。浓度边界层是流动边界层概念在流体组成非均匀情况下的推广,运用浓度边界层的特性,可简化对流扩散方程,确立浓度分布,求得传质分系数,以方便对流传质的计算。浓度边界层概念是研究对流传质的理论基础。

对于有传质情况的流动,表面上存在两个边界层,即厚度为的流动边界层和厚度为的传质边界层,两者的关系为:

31 Sc

c=δδ

边界层理论

1.边界层理论概述 (1) 1.1 边界层理论的形成与发展 (1) 1.1.1 边界层理论的提出 (1) 1.1边界层理论存在的问题 (2) 1.2 边界层理论的发展 (2) 2边界层理论的引入 (3) 3 边界层基础理论 (4) 3.1 边界层理论的概念 (4) 3.2 边界层的主要特征 (6) 3.3边界层分离 (7) 3.4 层流边界层和紊流边界层 (9) 3.5 边界层厚度 (10) 3.5.1 排挤厚度 (11) 3.5.2 动量损失厚度 (11) 3.5.2 能量损失厚度 (12) 4 边界层理论的应用 (14) 4.1 边界层理论在低比转速离心泵叶片设计中的应用 (14) 4.2 边界层理论在高超声速飞行器气动热工程算法中的应用 (14) 4.3 基于边界层理论的叶轮的仿真 (15) 参考文献 (17)

1.边界层理论概述 1.1 边界层理论的形成与发展 1.1.1 边界层理论的提出 经典的流体力学是在水利建设、造船、外弹道等技术的推动下发展起来的,它的中心问题是要阐明物体在流体中运动时所受的阻力。虽然很早人们就知道,当粘性小的流体(像水、空气等)在运动,特别是速度较高时,粘性直接对阻力的贡献是不大的。但是,以无粘性假设为基础的经典流体力学,在阐述这个问题时,却得出了与事实不符的“D'Alembert之谜”。在19世纪末叶,从不连续的运动出发,Kirchhoff,Helmholtz,Rayleigh等人的尝试也都失败了。 经典流体力学在阻力问题上失败的原因,在于忽视了流体的粘性这一重要因素。诚然,在速度较高、粘性小的情况下,对一般物体来说,粘性阻力仅占一小部分;然而阻力存在的根源却是粘性。一般,根据来源的不同,阻力可分为两类:粘性阻力和压差阻力。粘性阻力是由于作用在表面切向的应力而形成的,它的大小取决于粘性系数和表面积;压差阻力是由于物体前后的压差而引起的,它的大小则取决于物体的截面积和压力的损耗。当理想流体流过物体时,它能沿物体表面滑过(物体是平滑的);这样,压力从前缘驻点的极大值,沿物体表面连续变化,到了尾部驻点便又恢复到原来的数值。这时压力就没有损失,物体自然也就不受阻力。如果流体是有粘性的,哪怕很小,在物体表面的一层内,流体的动能在流体运动过程中便不断地在消耗;因此,它就不能像理想流体一直沿表面流动,而是中途便与固体表面脱离。由于流体在固体表面上的分离,在尾部便出现了大型涡旋;涡旋演变的结果,就形成了一种新的运动“尾流”。这全部过程是一个动能损耗的过程,也是阻力产生的过程。 由于数学上的困难,粘性流体力学的全面发展受到了一定的限制。但是,在粘性系数小的情况下,粘性对运动的影响主要是在固体表面附近的区域内。 从这个概念出发,普朗特(Prandtl)在1904年提出了简化粘性运动方程的理论——边界层理论。即当流体的粘度很小或雷诺数较大的流动中,流

8第八章-边界层理论基础和绕流运动

第八章 边界层理论基础和绕流运动 8—1 设有一静止光滑平板宽b =1m ,长L =1m ,顺流放置在均匀流u =1m/s 的水流中,如图所示,平板长边与水流方向一致,水温t =20℃。试按层流边界层求边界层厚度的最大值δmax 和平板两侧所受的总摩擦阻力F f 。 解:20℃水的运动粘度ν=1.003?10-6 m 2/s 密度3 998.2/kg m ρ= 6 11 9970091.00310ν-?= = =?L uL Re 因为 56 310997009310?<=

边界层理论

3 强制对流流过平板形成的速度边界层和浓度边界层 速度边界层 假设流体为不可压缩,流体内部速度为u b ,流体与板面交界处速率u x =0。靠近板面处, 存在一个速度逐渐降低的区域,定义从0.99x b u u =到u x = 0的板面之间的区域为速度边界层,用u δ表示。如图4-1-3和4-1-4所示。其厚度b u 64.4u x νδ=, 由于b e u x R ν = 所以 x u Re 64 .4= x δ 浓度边界层 若扩散组元在流体内部的浓度为c b ,而在板面上的浓度为c 0,则在流体内部和板面之间存在一个浓度逐渐变化的区域,物质的浓度由界面浓度c 0变化到流体内部浓度c b 的99%时的厚度δc ,即 00.01b b c c c c -=-所对应的厚度称为浓度边界层,或称为扩散边界层。 层流状态时, δu 与δc 有如下关系 δc /δu =(ν/D )-1/3 = Sc -1/3 Sc=ν/D 为施密特数。 δc /x = 4.64Re x -1/2 Sc x -1/3 在界面处(即y =0)沿着直线对浓度分布曲线引一切线,此切线与浓度边界层外流体内部的浓度c b 的延长线相交,通过交点作一条与界面平行的平面,此平面与界面之间的区域叫做有效边界层,用δc ’来表示。在界面处的浓度梯度即为直线的斜率 's b 0)( c y c c y c δ??-== 瓦格纳(C. Wagner )定义' c δ

速度边界层、浓度边界层及有效边界层 4 数学模型 在界面处(y =0),液体流速u y = 0=0, 假设在浓度边界层内传质是以分子扩散一种方式进行,稳态下,服从菲克第一定律,则垂直于界面方向上的物质流密度即为扩散流密度J : J = -D (c y )y=0?? 而 's b 0)( c y c c y c δ??-== -----多相反应动力学基本方程 k d 叫传质系数。 有效边界层的厚度约为浓度边界层(即扩散边界层)厚度的2/3,即δc ’=0.667δc 。 对层流强制对流传质,δc ’ =3.09 Re 2/1-x Sc -1/3 x Sh x = D x k d 或 Sh x = x /δc ’ 所以 Sh x = 0.324 Re 2 /1x Sc 1/3 ()(.Re )'//k D D x x x d c Sc = = δ 03241213 若平板长为L ,在x =0 ~ L 范围内(k d )x 的平均值(注意到:c S D ν= ,b e u x R ν = ,Sh x = D x k d )

边界层理论1

边界层(Boundary Layer)是高雷诺数绕流中紧贴物面的粘性力不可忽略的流动薄层,又称流动边界层、附面层。这个概念由近代流体力学的奠基人,德国人Ludwig Prandtl(普朗特)于1904年首先提出。从那时起,边界层研究就成为流体力学中的一个重要课题和领域。在边界层内,紧贴物面的流体由于分子引力的作用,完全粘附于物面上,与物体的相对速度为零。 边界层又称附面层,它是指流体流经固体表面时,靠近表面总会形成那么一个薄层,在此薄层中紧贴表面的流体流速为零,但在垂直固体表面的方向(法向)上速度增加的很快,即具有很大的速度梯度,甚至对粘性很小的流体,也不能忽略它表现出来的粘性力。而在此边界层外,流体的速度梯度很小,甚至对粘度很大的流体而言,其粘性力的影响也可以忽略,流体的流速与绕流固体表面前的流速V0一样。这样就可把边界层外流动的流体运动视为理想流体运动,不考虑粘性力的影响。边界层内、外区域间没有明显的分界面,而把边界层边缘上的流体流速V x视为V x=0.99 V0,因此从固体表面至V x=0.99 V0处的垂直距离视为边界层的厚度δ。这样大雷诺数下绕过固体的流动便简化为研究边界层中的流动问题。 边界层内的流动可以是层流,也可以是带有层流底层的紊流,还可以是层流、紊流混合的过渡流。 图1 边界层结构 综上所述,边界层的特征可归结为: (1)与固体长度相比,边界层厚度很小; (2)边界层内沿边界层厚度方向上的速度梯度很大; (3)边界层沿流动方向逐渐增厚; (4)由于边界层很薄,故可近似地认为,边界层截面上的压力等于同一截面上边界层外边界上的压力; (5)边界层内粘性力和惯性力士同一数量级的; (6)如在整个长度上边界层内都是层流,称层流边界层;仅在起始长度上的是层流,而在其他部分为紊流的称混合边界层。 以上定义的边界层为速度边界层,另外在其他学科领域中对于边界层的应用还是十分广泛的,主要有温度边界层和浓度边界层。 1.温度边界层 流体在平壁上流过时,流体和壁面间将进行换热,引起壁面法向方向上温度分布的变化,

第7章节层流边界层理论

第7章层流边界层理论 7.1 大雷诺数下物体绕流的特性 我们知道,流动雷诺数是度量惯性力和粘性内摩擦切力的相互关系的准则数,大雷诺数下的运动就意味着惯性力的作用远大于粘性力。所以早年发展起来的非粘性流体力学理论对解决很多实际问题获得了成功。但是后来的实验和理论分析均发现,无论雷诺数如何大,壁面附近的流动与非粘性流体的流动都有本质上的差别,而且从数学的观点来看,忽略粘性项的非粘性流体远动方程的解并不能满足粘性流体在壁面上无滑移的边界条件,所以不能应用非粘性流体力学理论来解决贴近物面的区域中流体的运动问题。 1904年普朗特第一次提出边界层流动的概念。他认为对于如水和空气等具有普通粘性的流体绕流物体时,粘性的影晌仅限于贴近物面的薄层中,在这一薄层以外,粘性影响可以忽略,应用经典的非拈性流体力学方程来求解这里的流动是可行的。普朗特把边界上受到粘性影响的这一薄层称之为边界层,并且根据在大雷诺数下边界层非常薄这一前提,对粘性强体运动方程作了简化,得到了后人称之为普朗特方程的边界层微分方程。过了四年,他的学生布拉修斯首先运用这一方程成功地求解了零压力梯度平板的边界层问题,得到了计算摩擦阻力的公式。从此,边界层理论正式成为流体力学的新兴分支而迅速地发展起来。 图7-1 沿薄平板的水流 简单的实验就可以证实普朗特的思想。例如沿薄平板的水流照片(见图7-1)和直接测量的机翼表面附近的速度分布(见图7-2),即可以看到边界层的存在。观察图7-2示中的流动图景,整个流场可以划分为边界层、尾迹流和外部势流三个区域。 在边界层内,流速由壁面上的零值急速地增加到与自由来流速度同数量级的值。因此沿物面法线方向的速度梯度很大,即使流体的粘性系数较小表现出来的粘性力也较大。同时,由于速度梯度很大,使得通过边界层的流体具有相当的涡旋强度,流动是有旋的。 当边界层内的粘性有旋流离开物体流入下游时,在物体后面形成尾迹流。在尾迹流中,初始阶段还带有一定强度的涡旋,速度梯度也还相当显著,但是由于没有了固体壁面的阻滞作用,不能再产生新的涡旋,随着远离物体,原有的涡旋将逐渐扩散和衰减,速度分布渐趋均匀,直至在远下游处尾迹完全消失。 在边界层和尾迹以外的区域,流动的速度梯度很小,即使粘性系数较大的流体粘性力的影响也很小,可以把它忽略,流动可以看成是非粘性的和无旋的。

大气边界层理论

大气边界层是地球一大气之间物质和能量交换的桥梁。全球变化的区域响应以及地表变化和人类活动对气候的影响均是通过大气边界层过程来实现的。由于人类 生活在大气底层一大气边界层中,因此人体健康与大气环境密切相关。天气、气候的变化往往会影响到人体对疾病的抵御能力,使某些疾病加重或恶化,同时适宜的气象条件又使病毒、细菌等对人体有害的生物繁殖、传播,使人们感染而患病。在城市尤其是大城市,人口、机动车、燃煤量的增加,以及城市工业化的发展,大量生产中的废气、尘埃和汽车尾气排放到大气中加上高大建筑的增加,改变了城市的小气候,使城市在无强冷空气活动的情况下,大气扩散能力极差,造成大气质量不断恶化,从而危害到人体健康,影响人类的正常生活。因此,边界层尤其是城市边界层大气结构及其与污染物浓度之间关系的研究具有特殊重要的意义。 边界层定义为直接受地面影响的那部分对流层,它响应地面作用的时间尺度为小时或更短. 大气边界层,是指受地球表面摩擦以及热过程和蒸发显著影响的大气层。这些作用包括摩擦阻力、蒸发和蒸腾、热量输送、污染物排放,以及影响气流变化的建筑物和地形等。 边界层一般白天约为1 km,夜间大约在200 m左右,地表提供的物质和能量主要消耗和扩散在大气边界层内。 地面典型吸收率约为90%,其结果使大部分太阳能被地面吸收。 正是地面为响应太阳辐射而变暖或变冷,它依次迫使边界层通过输送过程而变化。 边界层内气流或风可以分为平均风速、湍流和波动三大类。 边界层中诸如湿度、热量、动量和污染物等各种量的输送,在水平方向上受平均风速支配,在垂直方向上受湍流支配 平均风速是造成快速水平输送或平流的主要原因。边界层中一的水平风速2~10 m是常见的。 在夜间边界层中经常观测到的波动,虽然它们只能输送少量的热量、湿度和污染物之类的标量,但在输送动量和能量方面却有着显著的作用。 许多边界层湍流是由来自地面的作用引起的,例如白天阳光充足,地面的太阳加热使暖空气热泡上升,这种热泡就是大湍涡。地面对气流的摩擦曳力使风切变得到发展,常常演变成湍流。 最大的边界层湍涡估计接近即大小约等于边界层厚度,也就是说,它们的直径可以达到100~300 m。小湍涡出现于叶面卷动和草地波状摆动中,它们要以大湍涡为能源。直径只有几毫米的最小湍涡,由于分子粘性的耗散作用,其强度非常微弱。 在边界层中,浮力是产生湍流的力的一种。由于暖空气比周围空气密度少,有正浮力,所以暖空气上升。虚位温是研究上升气流普遍采用的一个变量。在同一气压条件下,使干空气密度必须等于湿空气密度的温度就是虚位温,因此,可以用虚位温变化来代替密度变化

边界层理论

边界层理论 思考题及练习题 1.为什么在高雷诺数下出现边界层? 2.边界层的边界线是否是流线?为什么? 3.边界层名义厚度 随雷诺数的增加而————————。 4.从物体的前沿向后边界层的名义厚度逐渐————————。 5.在边界层内部,沿物面法线方向流动可以分为————————。 6. 影响边界层厚度的因素有哪些? 7.引入边界层概念后, 绕物体流动的流场划分为怎样的两个流动区域,对求解粘性流体高Re 绕流问题有何意义? 8.为什么高Re 下绕物体的流动粘性的影响仅局限在物体表面一薄层范围内,而外部流动可以当作理想流体来处理? 9.在外边界层边界上的压力分布可以由势流方法求出,为什么这一压力分布可以近似作为物面上压力分布? 10.边界层内的流线为什么会出现偏移,其偏移的大小为何? 11.物面上局部摩擦切应力沿流动方向逐渐减小,简述其原因。 12.不可压缩流体高Re 下沿平板的定常流动,物面上的压力沿流向的分布规律为————。 13.卡门边界层动量积分方程适用的条件为何?求解它需要补充什么条件? 14.卡门边界层动量积分方程求解边界层问题所得的结果与实际情况吻合的前提是————。 15.简述边界层排挤厚度,动量损失厚度的物理意义。 16.简述平板混合边界层的何定义。 17. 边界层名义厚度定义是( ) (a )沿物面法向流速由零增为99%U 的连线 (b )流速由0增为99%U 处的连线 (c )流速由0增至99%U 处的流线 (d )流速为99%0U 质点的迹线。 18. 边界层名义厚度,排挤厚度,动量损失厚度之间的关系为( ) (a )*>>δδθ (b )* <<δδθ (c )*>>δθδ (d )*<<δθδ 19. 在高雷诺数情况下,流体绕平板无攻角地流动,平板上局部摩擦阻力0τ沿流向( )。 (a )不变 (b )不断增加 (c )不断减小 (d )层流边界层时减小,湍流边界层时增加。

相关文档