文档库 最新最全的文档下载
当前位置:文档库 › 圆锥曲线理

圆锥曲线理

2013年期末圆锥曲线理

1.(西城理)19.(本小题满分14分) 如图,已知抛物线24y x =的焦点为F .过点(2,0)P 的直线交抛物线于11(,)A x y ,

22(,)B x y 两点,直线AF 、BF 分别与抛物线交于点M 、N .

(Ⅰ)求12y y ?的值;

(Ⅱ)记直线MN 的斜率为1k ,直线AB 的斜率为2k . 证明:12

k k 为定值.

2.(朝阳理)19.(本小题满分14分)

已知点A 是椭圆()22

:109x y C t t

+=>的左顶点,直线:1()l x my m =+∈R 与椭圆C 相交于,E F 两点,与x 轴相交于点B .且当0m =时,△AEF 的面积为163

. (Ⅰ)求椭圆C 的方程;

(Ⅱ)设直线AE ,AF 与直线3x =分别交于M ,N 两点,试判断以MN 为直径的圆是否经过点B ?

并请说明理由.

M

O F

N

P B A y x

3.(昌平理)(19)(本小题满分13分)已知椭圆M 的对称轴为坐标轴, 离心率为2,2且抛物线242y x =的焦点是椭圆M 的一个焦点.

(Ⅰ)求椭圆M 的方程;

(Ⅱ)设直线l 与椭圆M 相交于A 、B 两点,以线段,OA OB 为邻边作平行四边形OAPB ,其中点P 在椭圆M 上,O 为坐标原点. 求点O 到直线l 的距离的最小值.

4.(丰台理)19.(本题共13分)

曲线12,C C 都是以原点O 为对称中心、离心率相等的椭圆.点M 的坐标是(0,1),线段MN 是1C 的短轴,是2C 的长轴.直线:(01)l y m m =<<与1C 交于A,D 两点(A 在D 的左侧),与2C 交于B,C 两点(B 在C 的左侧).

(Ⅰ)当m= 32, 54

AC =时,求椭圆12,C C 的方程; (Ⅱ)若OB ∥AN ,求离心率e 的取值范围.

5.(海淀理)19.(本小题满分14分)

已知(2,2)E 是抛物线2:2C y px =上一点,经过点(2,0)的直线l 与抛物线C 交

于A 、B 两点(不同于点E ),直线EA 、EB 分别交直线2x =-于点M 、N .

(Ⅰ)求抛物线方程及其焦点坐标;

(Ⅱ)已知O 为原点,求证:MON ∠为定值.

6.(石景山理)19.(本小题共14分)

已知椭圆的中心在原点,焦点在x 轴上,离心率为

32

,且经过点(4,1)M , 直线:l y x m =+交椭圆于不同的两点A ?B .

(Ⅰ)求椭圆的方程;

(Ⅱ)求m 的取值范围;

(Ⅲ)若直线l 不过点M ,求证:直线MA ?MB 的斜率互为相反数.

7.(东城理)

(19)(本小题共13分) 在平面直角坐标系xOy 中,动点P 到两点(30)-,,(30),的距离之和等于4,设点P 的轨迹为曲线C ,直线l 过点(1,0)E -且与曲线C 交于A ,B 两点.

(Ⅰ)求曲线C 的轨迹方程;

(Ⅱ)是否存在△AOB 面积的最大值,若存在,求出△AOB 的面积;若不存在,说明理由.

8.(通州理)18.(本小题满分14分)

已知椭圆的中心在原点O ,短半轴的端点到其右焦点()2,0F 的距离为10,过焦点F 作直线l ,交椭圆于,A B 两点.

(Ⅰ)求这个椭圆的标准方程;

(Ⅱ)若椭圆上有一点C ,使四边形AOBC 恰好为平行四边形,求直线l 的斜率.

2013高考试题分类汇编(理科):圆锥曲线

2013年全国高考理科数学试题分类汇编9:圆锥曲线 一、选择题 1 .引直线l 与曲线y =A,B 两点,O 为坐标原点,当?AOB 的面积取最大值时,直线l 的斜率等于( ) A . 3 B .3 - C .3 ± D .2 .双曲线2 214 x y -=的顶点到其渐近线的距离等于( ) A . 25 B . 45 C D 3 .已知中心在原点的双曲线C 的右焦点为()3,0F ,离心率等于3 2 ,在双曲线C 的方程是( ) A .22 14x = B .22145x y - = C . 22 125 x y -= D .22 12x -= 4 .已知双曲线C :22221x y a b -=(0,0a b >>) ,则C 的渐近线方程为( ) A .14 y x =± B .13 y x =± C .12 y x =± D .y x =± 5 .已知04π θ<<,则双曲线22122:1cos sin x y C θθ-=与22 2222 :1sin sin tan y x C θθθ -=的 ( ) A .实轴长相等 B .虚轴长相等 C .焦距相等 D .离心率相等 6 .抛物线2 4y x =的焦点到双曲线2 2 13 y x -=的渐近线的距离是( ) A .12 B C .1 D 7 .如图,21,F F 是椭圆14 :22 1=+y x C 与双曲线2C 的公共焦点,B A ,分别是1C ,2C 在第二、四象限的公共点.若四边形21BF AF 为矩形,则2C 的离心率是( ) A .2 B .3 C . 2 3 D . 2 6 8 .已知双曲线22 221(0,0)x y a b a b -=>>的两条渐近线与抛物线22(0)px p y =>的准线分别交于A , B 两点, O 为坐标原点. 若双曲线的离心率为2, △AOB 则p =( ) A .1 B . 3 2 C .2 D .3 9 .椭圆22 :143 x y C +=的左、右顶点分别为12,A A ,点P 在C 上且直线2PA 的斜率的取值范围是[]2,1--,那么直线1PA 斜率的取值范围是( ) A .1324 ?????? , B .3384 ?????? , C .112?? ???? , D .314?? ???? , 10.已知抛物线2:8C y x =与点()2,2M -,过C 的焦点且斜率为k 的直线与C 交于,A B 两点,若 0MA MB =uuu r uuu r g ,则k =( ) A . 12 B C D .2 11.若双曲线22 221x y a b -= 则其渐近线方程为( ) A .y =±2x B .y = C .12 y x =± D .2 y x =±

高中理科数学解题方法篇(圆锥曲线)

攻克圆锥曲线解答题的策略 摘要:为帮助高三学生学好圆锥曲线解答题,提高成绩,战胜高考,可从四个方面着手:知识储备、方法储备、思维训练、强化训练。 关键词:知识储备 方法储备 思维训练 强化训练 第一、知识储备: 1. 直线方程的形式 (1)直线方程的形式有五件:点斜式、两点式、斜截式、截距式、一般式。 (2)与直线相关的重要内容 ①倾斜角与斜率tan ,[0,)k ααπ=∈ ②点到直线的距离d = ③夹角公式:2121 tan 1k k k k α-= + (3)弦长公式 直线y kx b =+上两点1122(,),(,)A x y B x y 间的距离:12AB x =- =或12AB y =- (4)两条直线的位置关系 ①1212l l k k ⊥?=-1 ② 212121//b b k k l l ≠=?且 2、圆锥曲线方程及性质 (1)、椭圆的方程的形式有几种(三种形式) 标准方程:22 1(0,0)x y m n m n m n + =>>≠且 2a = 参数方程:cos ,sin x a y b θθ== (2)、双曲线的方程的形式有两种 标准方程:22 1(0)x y m n m n + =?< 距离式方程:2a = (3)、三种圆锥曲线的通径你记得吗

22 222b b p a a 椭圆:;双曲线:;抛物线: (4)、圆锥曲线的定义你记清楚了吗 如:已知21F F 、是椭圆13 42 2=+y x 的两个焦点,平面内一个动点M 满足221=-MF MF 则动点M 的轨迹是( ) A 、双曲线; B 、双曲线的一支; C 、两条射线; D 、一条射线 (5)、焦点三角形面积公式:122tan 2 F PF P b θ ?=在椭圆上时,S 122cot 2 F PF P b θ ?=在双曲线上时,S (其中222 1212121212||||4,cos ,||||cos |||| PF PF c F PF PF PF PF PF PF PF θθθ+-∠==?=?) (6)、记住焦半径公式:(1)00;x a ex a ey ±±椭圆焦点在轴上时为焦点在y 轴上时为,可简记为“左 加右减,上加下减”。 (2)0||x e x a ±双曲线焦点在轴上时为 (3)11||,||22 p p x x y + +抛物线焦点在轴上时为焦点在y 轴上时为 (6)、椭圆和双曲线的基本量三角形你清楚吗 第二、方法储备 1、点差法(中点弦问题) 设 () 11,y x A 、()22,y x B ,()b a M ,为椭圆13 42 2=+y x 的弦AB 中点则有 1342 12 1=+y x ,1342 22 2=+y x ;两式相减得( )()03 4 2 2 2 1 2 2 21=-+-y y x x ? ()() ()() 3 4 21212121y y y y x x x x +-- =+-?AB k =b a 43- 2、联立消元法:你会解直线与圆锥曲线的位置关系一类的问题吗经典套路是什么如果有两个参数 怎么办 设直线的方程,并且与曲线的方程联立,消去一个未知数,得到一个二次方程,使用判别式 0?≥,以及根与系数的关系,代入弦长公式,设曲线上的两点1122(,),(,)A x y B x y ,将这两点代入曲线方程得到○1○2两个式子,然后○1-○2,整体消元······,若有两个字母未知数,则要找到它们的联系,消去一个,比如直线过焦点,则可以利用三点A 、B 、F 共线解决之。若有向量的关系,则寻找坐标之间的关系,根与系数的关系结合消元处理。一旦设直线为y kx b =+,就意味着k 存在。

期末总复习“圆锥曲线”(高中二年级数学)

学 科 数学 版 本 人教版 期 数 2345 年 级 高二 编稿老师 胡顺才 审稿教师 【同步教育信息】 一. 本周教学内容: 期末模拟试题 【模拟试题】 注:本卷满分100分,答题时间为90分钟。 一. 选择题(以下每题只有一个正确选项;每小题4分,共40分) 12131212.设复数,,则复数在复平面内对应的点位于()z i z i z z z =+=-= A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 2342.||||若,则的最大值为()z i z ++= A. 2 B. 3 C. 5 D. 7 3916425 12222 .若双曲线与椭圆有共同焦点,则的值为()x m y x y m -=+= A B C D ....43483030 41042102.抛物线的准线方程是()y y x --+= A x B x C x D x ....=-==-=2 211 5. 某小组有10名学生,其中有3名女生,现选举2名代表,至少有一名女生 当选的不同选法有( ) A. 27种 B. 24种 C. 22种 D. 21种 6. 学生甲在军训的射击项目中,射击8枪,命中4枪,则命中的4枪中恰有三枪连在一起的情形的不同种数为( ) A. 480 B. 30 C. 10 D. 20 741 42.曲线(为参数)在轴上截得的弦长为( )x t y t t y =-+=??? A. 1 B. 2 C. 4 D. 0 84252 .s i n 圆锥曲线的焦点到相应准线的距离为( )ρθ = A B C D . (54) 52 510 9111 1 .||若复数满足,且,则 是()z z z z z =≠±-+ A. 实数 B. 非纯虚数 C. 实数或虚数 D. 纯虚数 10. 6人站成一排,甲不站排头,乙不站排尾,则不同的排法为( )种

圆锥曲线中的最值和范围问题

圆锥曲线中的最值和范围问题 一、【基础考点】 与圆锥曲线有关的最值和范围问题在高考中突出考试的知识点: (1)圆锥曲线的定义和方程; (2)点与曲线的位置关系;特别是点在曲线上,点的坐标满足方程; (3)a 、b 、c 、p 、e 的几何意义及相关关系; (4)二次函数、均值不等式及导数的应用。 基础训练: 1.已知双曲线 122 22 =-b y a x (a >0,b >0)的右焦点为F ,若过点F 且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是(C ) A.( 1,2) B. (1,2) C.[2,)+∞ D.(2,+∞) 2. P 是双曲线 2 2 1916 x y - =的右支上一点,M 、N 分别是圆(x +5)2+y 2=4和(x -5)2+y 2 =1上的点,则|PM| -|PN |的最大值为( D ) A. 6 B.7 C.8 D.9 3.抛物线y=-x 2上的点到直线4x +3y -8=0距离的最小值是( A ) A .43 B .75 C .8 5 D .3 4.已知双曲线 222 2 1,(0,0)x y a b a b - =>>的左、 右焦点分别为F 1、F 2,点P 在双曲线的右支上,且|PF 1|=4|PF 2|,则此双曲线的离心率e 的最大值为:(B ) (A)43 (B)53 (C)2 (D)7 3 5.已知抛物线y 2 =4x ,过点P (4,0)的直线与抛物线相交于A(x 1,y 1),B(x 2,y 2)两点,则y 12+y 22的最小值是 . 32 6.对于抛物线y 2=4x 上任意一点Q ,点P (a ,0)都满足|PQ |≥|a |,则a 的取值范围是( B ) (A )(-∞,0) (B )(-∞,2] (C )[0,2] (D )(0,2) 二、【热点透析】 与圆锥曲线有关的最值和范围问题的讨论常用以下方法解决: (1)结合定义利用图形中几何量之间的大小关系; (2)不等式(组)求解法:利用题意结合图形(如点在曲线内等)列出所讨论的参数适合的不等式(组),通过解不等式组得出参数的变化范围; (3)函数值域求解法:把所讨论的参数作为一个函数、一个适当的参数作为自变量来表示这个函数,通过讨论函数的值域来求参数的变化范围。 (4)利用代数基本不等式。代数基本不等式的应用,往往需要创造条件,并进行巧妙的构思; (5)结合参数方程,利用三角函数的有界性。直线、圆或椭圆的参数方程,它们的一个共同特点是均含有三角式。因此,它们的应用价值在于: ① 通过参数θ简明地表示曲线上点的坐标; ② 利用三角函数的有界性及其变形公式来帮助求解诸如最值、范围等问题; (6)构造一个二次方程,利用判别式?≥0。 突破重难点 【例1】已知点M (-2,0),N (2,0),动点P 满足条件||||P M P N -=记动点P 的轨迹为W . (Ⅰ)求W 的方程; (Ⅱ)若A ,B 是W 上的不同两点,O 是坐标原点,求OA OB ? 的最小值. 解:(Ⅰ)依题意,点P 的轨迹是以M ,N 为焦点的双曲线的右支,

(完整版)圆锥曲线高考题及答案

数学圆锥曲线测试高考题选讲 一、选择题: 1. (2006全国II )已知双曲线 x 2a 2- y 2 b 2=1的一条渐近线方程为y =4 3x ,则双曲线的离心率为( ) (A )53 (B )43 (C )54 (D )3 2 2. (2006全国II )已知△ABC 的顶点B 、C 在椭圆x 2 3 +y 2 =1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在 BC 边上,则△ABC 的周长是( ) (A )2 3 (B )6 (C )4 3 (D )12 3.(2006全国卷I )抛物线2 y x =-上的点到直线4380x y +-=距离的最小值是( ) A . 43 B .75 C .8 5 D .3 4.(2006广东高考卷)已知双曲线2239x y -=,则双曲线右支上的点P 到右焦点的距离与点P 到右准线的距离之比等于( ) B. 3 C. 2 D. 4 5.(2006辽宁卷)方程22520x x -+=的两个根可分别作为( ) A.一椭圆和一双曲线的离心率 B.两抛物线的离心率 C.一椭圆和一抛物线的离心率 D.两椭圆的离心率 6.(2006辽宁卷)曲线 221(6)106x y m m m +=<--与曲线22 1(59)59x y m m m +=<<--的( ) (A)焦距相等 (B) 离心率相等 (C)焦点相同 (D)准线相同 7.(2006安徽高考卷)若抛物线2 2y px =的焦点与椭圆22 162 x y +=的右焦点重合,则p 的值为( ) A .2- B .2 C .4- D .4 8.(2006辽宁卷)直线2y k =与曲线2222 918k x y k x += (,)k R ∈≠且k 0的公共点的个数为( ) (A)1 (B)2 (C)3 (D)4 二、填空题: 9. (2006全国卷I )双曲线2 2 1mx y +=的虚轴长是实轴长的2倍,则m = 。 10. (2006上海卷)已知在平面直角坐标系xOy 中的一个椭圆,它的中心在原点,左焦点为(F ,右顶点为(2,0)D ,

圆锥曲线知识点整理

高二数学圆锥曲线知识整理 解析几何的基本问题之一:如何求曲线(点的轨迹)方程。它一般分为两类基本题型:一是已知轨迹类型求其方程,常用待定系数法,如求直线及圆的方程就是典型例题;二是未知轨迹类型,此时除了用代入法、交轨法、参数法等求轨迹的方法外,通常设法利用已知轨迹的定义解题,化归为求已知轨迹类型的轨迹方程。因此在求动点轨迹方程的过程中,一是寻找与动点坐标有关的方程(等量关系),侧重于数的运算,一是寻找与动点有关的几何条件,侧重于形,重视图形几何性质的运用。 在基本轨迹中,除了直线、圆外,还有三种圆锥曲线:椭圆、双曲线、抛物线。 1、三种圆锥曲线的研究 (1)统一定义,三种圆锥曲线均可看成是这样的点集:? ?????>=0e ,e d |PF ||P ,其中 F 为定点,d 为P 到定直线的距离,如图。 因为三者有统一定义,所以,它们的一些性质,研究它们的一些方法都具有规律性。 当01时,点P 轨迹是双曲线;当e=1时,点P 轨迹是抛物线。 (2)椭圆及双曲线几何定义:椭圆:{P||PF 1|+|PF 2|=2a ,2a>|F 1F 2|>0,F 1、F 2为定点},双曲线{P|||PF 1|-|PF 2||=2a ,|F 1F 2|>2a>0,F 1,F 2为定点}。 (3)圆锥曲线的几何性质:几何性质是圆锥曲线内在的,固有的性质,不因为位置的改变而改变。 定性:焦点在与准线垂直的对称轴上 椭圆及双曲线中:中心为两焦点中点,两准线关于中心对称;椭圆及双曲线关于长轴、短轴或实轴、虚轴成轴对称,关于中心成中心对称。 (4)圆锥曲线的标准方程及解析量(随坐标改变而变) 举焦点在x 轴上的方程如下: 椭 圆 双 曲 线 抛 物 线 标准方程 1b y a x 2 22 2=+ (a>b>0) 1b y a x 2 22 2=- (a>0,b>0) y 2=2px (p>0) 顶 点 (±a ,0) (0,±b ) (±a ,0) (0,0) 焦 点 (±c ,0) ( 2 p ,0) 准 线 X=±c a 2 x=2 p - 中 心 (0,0) 焦半径 P(x 0,y 0)为圆锥曲线上一点,F 1、F 2分别为左、右焦点 |PF 1|=a+ex 0 |PF 2|=a-ex 0 P 在右支时: |PF 1|=a+ex 0 |PF 2|=-a+ex 0 P 在左支时: |PF 1|=-a-ex 0 |PF 2|=a-ex 0 |PF|=x 0+ 2 p

圆锥曲线期末复习训练题

圆锥曲线期末复习训练题(一) 考号: 姓名: 题型一、圆锥曲线的定义问题 1、短轴长为5,离心率3 2 = e 的椭圆两焦点为F 1,F 2,过F 1作直线交椭圆于A 、B 两点,则△ABF 2的周长为( ) A.3 B.6 C.12 D.24 2、已知P 为椭圆2212516 x y +=上的一点,,M N 分别为圆22(3)1x y ++=和圆 22(3)4x y -+=上的点,则PM PN +的最小值为( ) A . 5 B . 7 C .13 D . 15 3、设P 为双曲线112 2 2 =-y x 上的一点F 1、F 2是该双曲线的两个焦点,若|PF 1|:|PF 2|=3:2,则△PF 1F 2的面积为 ( ) A .36 B .12 C .312 D .24 4、P 是双曲线)0,0(122 22>>=-b a b y a x 左支上的一点,F 1、F 2分别是左、右焦点,且焦距为 2c ,则21F PF ?的内切圆的圆心的横坐标为( ) A a - B b - C c - D c b a -+ 5、抛物线y=42 x 上的一点M 到焦点的距离为1,则点M 的纵坐标是( ) A. 1617 B. 1615 C.8 7 D. 0 6、动圆与定圆A : (x +2)2+y 2=1外切,且和直线x =1相切,则动圆圆心的轨迹是( ) A 直线 B 椭圆 C 双曲线 D 抛物线 题型二、标准方程问题 1、已知椭圆的对称轴是坐标轴,离心率e = 3 2 ,长轴长为6,那么椭圆的方程是 2、椭圆的长、短轴都在坐标轴上,和椭圆14 y 9x 2 2=+共焦点,并经过点P (3, -2),则椭圆的 方程为 3、与双曲线116y 9x 2 2=-有共同渐近线,且过点(-3,32)的双曲线方程为 2 2

圆锥曲线与参数的范围

圆锥曲线与参数的范围 四川省大英县育才中学 秦增林 圆锥曲线中,参数是一个非常重要的量。在解有关参数问题时,往往涉及求参数的范围,深刻理解与掌握参数的意义及其对圆锥曲线的图象的形状、性质的影响,是高中数学教与学的一个难点问题。本文就怎样求参数的范围,归纳几种较为典型的类型。 一、 根据直线与圆锥曲线的公共点的情况,利用Δ法求参数的范围 这是圆锥曲线中求范围的一种常规思路,通过直线与圆锥曲线消元得到一个类一元二次方程(需确定二项式系数是否为0),利用Δ法求参数的范围 例:若抛物线y =x 2 上存在关于直线y=m(x-3)对称的两点,求实数m 的取值范围。 解:设直线l :b x m y +- =1 ,直线l 与抛物线y =x 2的两交点为A (x 1 ,y 1) 、B (x 2 ,y 2), 由????? =+-=2 1x y b m y 消元得02=-+mb x mx ∴Δ=1+4b m 2 >0,且m x x x 212210-=+=,b m b m m y +=+-?-=2 021 )21(1 则线段AB 的中点M (m 21- ,b m +2 21),又点M 在直线y=m(x-3)上, ∴b m +221= m(m 21--3) 即b =2 21m --3m 21- 由Δ=1+4b m 2>0得Δ=1+42m ﹒(2 21m -- 3m 21-)=12122 3---m m >0 ∴12122 3++m m <0即)126)(12(2 +-+m m m <0 解得实数m 的取值范围为)2 1,(--∞ 二、 利用a 、b 、c 的大小关系求参数的范围 在圆锥曲线中,对于a 、b 、c 大小关系有规定,若能建立参数与这三个量之间的关系,则可求出参数的范围。 例:如图,点A 是椭圆C :122 22=+b y a x (a >b >0)的短轴位于x 轴下方的端点,过A 作斜率为1 的直线交椭圆于B 点,P 点在y 轴上,且BP ∥x 轴,9=?→ → AP AB , 若P 的坐标为()t ,0,求t 的取值范围。 解:法一、由P 的坐标为()t ,0及A 点位于x 轴下方,得A 点的坐标为()3,0-t ∴b t -=-3即t b -=3

2018高三数学全国二模汇编(理科)专题07圆锥曲线

【2018高三数学各地优质二模试题分项精品】 一、单选题 1.【2018黑龙江大庆高三二模】已知分别是双曲线的左、右焦点,为双曲线右支上一点,若,,则双曲线的离心率为( ) A. B. C. D. 2 【答案】A 点睛:本题考查了双曲线的几何性质——离心率的求解,其中根据条件转化为圆锥曲线的离心率的方程是解答的 关键.求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出,代入公式;②只需要根据一个条件得到关于的齐次式,转化为的齐次式,然后转化为关于的方程(不等式),解方程(不等式),即可得(的取值范围). 2.【2018广东惠州高三4月模拟】已知F是抛物线2x4y =的焦点,P为抛物线上的动点,且点A的坐标为 () 0,1-,则PF PA 的最小值是()

A. 14 B. 1 2 C. 22 D. 3 【答案】C 设切点() 2,P a a ,由214y x =的导数为1 2y x '=,则PA 的斜率为1222a a a ?== . ∴1a =,则()2,1P . ∴2PM =, 22PA =∴2 sin 2 PM PAM PA ∠== 故选C . 点睛:本题主要考查抛物线的定义和几何性质,与焦点、准线有关的问题一般情况下都与拋物线的定义有关,解决这类问题一定要注意点到焦点的距离与点到准线的距离的转化, 这样可利用三角形相似,直角三角形中的锐角三角函数或是平行线段比例关系可求得距离弦长以及相关的最值等问题. 3.【2018河南郑州高三二模】如图,已知抛物线1C 的顶点在坐标原点,焦点在x 轴上,且过点()24,,圆 222:430C x y x +-+=,过圆心2C 的直线l 与抛物线和圆分别交于,,,P Q M N ,则4PN QM +的最小值为 ( )

高考数学真题汇编圆锥曲线理(解析版)

2012高考真题分类汇编:圆锥曲线 一、选择题 1.【2012高考真题浙江理8】如图,F 1,F 2分别是双曲线C :22 221x y a b -=(a,b >0)的左、右焦点,B 是虚轴的端点,直线F 1B 与C 的两条渐近线分别交于P,Q 两点,线段PQ 的垂直平分线与x 轴交与点M ,若|MF 2|=|F 1F 2|,则C 的离心率是 A. 33 B 。6223【答案】B 【解析】由题意知直线B F 1的方程为:b x c b y +=,联立方程组???????=-+=0,b y a x b x c b y 得点Q ),(a c bc a c ac --,联立方程组???????=++=0,b y a x b x c b y 得点P ),(a c bc a c ac ++-,所以PQ 的中点坐标为),(222b c b c a ,所以PQ 的垂直平分线方程为:)(222b c a x b c b c y --=-,令0=y ,得)1(22 b a c x +=,所以c b a c 3)1(22=+,所以2222222a c b a -==,即2223 c a =,所以2 6=e 。故选B 2.【2012高考真题新课标理8】等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162=的准线交于,A B 两点,43AB =C 的实轴长为( )

()A 2 ()B 22 ()C 4 ()D 8 【答案】C 【解析】设等轴双曲线方程为)0(2 2>=-m m y x ,抛物线的准线为4-=x ,由34=AB ,则32=A y ,把坐标)32,4(-代入双曲线方程得 4121622=-=-=y x m ,所以双曲线方程为42 2=-y x ,即1442 2=-y x ,所以2,42==a a ,所以实轴长42=a ,选C. 3.【2012高考真题新课标理4】设12F F 是椭圆22 22:1(0)x y E a b a b +=>>的左、右焦点,P 为直线32a x = 上一点,12PF F ?是底角为30的等腰三角形,则E 的离心率为( ) ()A 12 ()B 23 ()C 34 ()D 45 【答案】C 【解析】因为12PF F ?是底角为30 的等腰三角形,则有P F F F 212=,,因为02130=∠F PF ,所以 0260=∠D PF ,0230=∠DPF ,所以21222121F F PF D F ==,即c c c a =?=-22 123,所以c a 223=,即43=a c ,所以椭圆的离心率为4 3=e ,选C. 4.【2012高考真题四川理8】已知抛物线关于x 轴对称,它的顶点在坐标原点O ,并且经过点0(2,)M y 。若点M 到该抛物线焦点的距离为3,则||OM =( ) A 、2、23、4 D 、5 【答案】B 【解析】设抛物线方程为22y px =,则点(2,2) M p ±焦点,0 2p ?? ???,点M 到该抛物线焦点的距离为3,∴ 22492p P ??-+= ?? ?, 解得2p =,所以44223OM =+?=.

高二期末考试圆锥曲线专项训练.doc

圆锥曲线专项训练 一、填空题 x 2 y 2 。 y 3 x 1.若双曲线 1的渐近线方程为 16 9 4 2 2 2 倍,则 m 等于 1 2. 双曲线 m x y 1 的虚轴长是实轴长的 。 4 3. 设双曲线以椭圆 x 2 y 2 , 其准线过椭圆的焦点 , 则双曲线的渐近线的斜 1的长轴的两个端点为焦点 25 9 1 率为 。 2 y 4.如图,在平面直角坐标系 x o y B 中,已知椭圆 x 2 y 2 1(a b 0) A F O x a 2 b 2 的左顶点为 A ,左焦点为 F ,上顶点为 B , 5 1 第 11 题 若 BAO BFO 900 ,则椭圆的离心率是 。 2 2 2 5.已知 F 1、 F 2 是椭圆 C : x 2 y 2 1( a > b >0)的两个焦点, P 为椭圆 C 上一点,且 PF 1 PF 2 . a b 若 PF 1 F 2 的面积为 9,则 b =______. 3 6. 已知双曲线 x 2 y 2 1 的焦点为 F 1、F 2 ,点 M 在双曲线上,且 MF 1 MF 2 0,则点 M 到 x 轴 的 2 2 3 距离为 。 3 x 2 y 2 7.已知 F 1、F 2 是双曲线 2 2 1(a 0,b 0) 的两焦点,以线段 F 1、F 2 为边作正三角形 MF 1F 2 ,若 MF 1 a b 的中点在双曲线上,则双曲线的离心率为 。 3 1 8.在平面直角坐标平面内,不难得到“对于双曲线 xy=k ( k > 0)上任意一点 P ,若点 P 在 x 轴、 y 轴上的 x 2 y 2 1(a > 0,b >0)上任 射影分别为 M 、N ,则 |PM| ?|PN| 必为定值 k ”、类比于此,对于双曲线 b 2 a 2 意一点 P ,类似的命题为: 。若点 P 在两渐近线上的射影分别为 M 、 N ,则 |PM|?|PN|必为定 值 a 2 b 2 2 2 a b

2012_2018全国卷圆锥曲线(理科)

2012-2018全国卷圆锥曲线解答题(理科) 1.(2012年全国高考新课标Ⅰ卷理科第20题)设抛物线2:2(0)C x py p =>的焦点为F ,准线为l ,A C ∈.已知以F 为圆心,FA 为半径的圆F 交l 于,B D 两点. (Ⅰ)若90BFD ∠=?,ABD ?的面积为,求p 的值及圆F 的方程. (Ⅱ)若,,A B F 三点在同一直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐标原点到,m n 距离的比值. 2.(2013全国高考新课标Ⅰ卷理科第20题)已知圆22:(1)1M x y ++=,圆 22:(1)9N x y -+=,动圆P 与M 外切并且与圆N 切,圆心P 的轨迹为曲线C . (Ⅰ)求C 的方程; (Ⅱ)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于,A B 两点,当圆P 的半径最长时,求||AB . 3.(2014年全国高考新课标Ⅰ卷理科第20题)已知点(0,2)A -,椭圆E :22 221(0) x y a b a b +=>> 的离心率为 2 ,F 是椭圆的焦点,直线AF 的斜率为3,O 为坐标原点. (Ⅰ)求E 的方程; (Ⅱ)设过点A 的直线l 与E 相交于,P Q 两点,当OPQ ?的面积最大时,求l 的方程. 4.(2015年全国高考新课标Ⅰ卷理科第20题)在直角坐标系xOy 中,曲线2 :4 x C y =与直线 (0)y kx a a =+>交于,M N 两点. (Ⅰ) 当0k =时,分别求C 在点M 和N 处的切线方程; (Ⅱ) y 轴上是否存在点P ,使得当k 变动时,总有OPM OPN ∠=∠?说明理由.

圆锥曲线历年高考题(整理)附答案

数学圆锥曲线测试高考题 一、选择题: 1. (2006全国II )已知双曲线x 2a 2-y 2b 2=1的一条渐近线方程为y =4 3x ,则双曲线的离心率为( ) (A )53 (B )43 (C )54 (D )3 2 2. (2006全国II )已知△ABC 的顶点B 、C 在椭圆x 23+y 2 =1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是( ) (A )2 3 (B )6 (C )4 3 (D )12 3.(2006全国卷I )抛物线2 y x =-上的点到直线4380x y +-=距离的最小值是( ) A . 43 B .7 5 C .85 D .3 4.(2006广东高考卷)已知双曲线2239x y -=,则双曲线右支上的点P 到右焦点的距离与点P 到右准线的距离之比等于( ) B. C. 2 D. 4 5.(2006辽宁卷)方程22520x x -+=的两个根可分别作为( ) A.一椭圆和一双曲线的离心率 B.两抛物线的离心率 C.一椭圆和一抛物线的离心率 D.两椭圆的离心率 6.(2006辽宁卷)曲线 22 1(6)106x y m m m +=<--与曲线221(59)59x y m m m +=<<--的( ) (A)焦距相等 (B) 离心率相等 (C)焦点相同 (D)准线相同 7.(2006安徽高考卷)若抛物线2 2y px =的焦点与椭圆22 162 x y +=的右焦点重合,则p 的值为( ) A .2- B .2 C .4- D .4 8.(2006辽宁卷)直线2y k =与曲线2222 918k x y k x += (,)k R ∈≠且k 0的公共点的个数为( ) (A)1 (B)2 (C)3 (D)4 二、填空题: 9. (2006全国卷I )双曲线2 2 1mx y +=的虚轴长是实轴长的2倍,则m = 。 10. (2006上海卷)已知在平面直角坐标系xOy 中的一个椭圆,它的中心在原点,左焦点为(F ,右顶点为(2,0)D ,

江苏各市2019届高三上学期期末数学试卷【圆锥曲线类题】汇编及解析

2019届高三上学期期末数学试卷 【圆锥曲线类题】汇编 (一)试题细目表地区+题号类型考点思想方法2018·南通泰州期末·1填空集合的运算 2018·无锡期末·1填空集合的运算 2018·镇江期末·1填空集合的运算 2018·扬州期末·1填空集合的运算 2018·常州期末·1填空集合的运算 2018·南京盐城期末·1填空集合的运算 2018·苏州期末·2 2018·苏北四市期末·1 (二)试题解析 1.(2018·南通泰州期末·7) 在平面直角坐标系xOy 中,已知点F 为抛物线28y x =的焦点,则点F 到双曲线22 1169x y -=的渐近线的距离为. 【答案】6 5

2.(2018·无锡期末·11)已知双曲线2222:1(0,0)x y C a b a b -=>>与椭圆22 11612 x y +=的焦点重合,离心率互为倒数,设12,F F 分别为双曲线C 的左,右焦点,P 为右支上任意一点,则2 12 PF PF 的最小值为. 【答案】8 3.(2018·镇江期末·5)已知双曲线1222 =-y a x 左焦点与抛物线x y 122-=的焦点重合,则双曲线的右准线方程为【答案】8 3 x =4.(2018·扬州期末·10) 在平面直角坐标系xOy 中,若双曲线22a x -22b y =1(a >0,b >0)的渐近线与圆x 2+y 2-6y+5=0没有焦点,则双曲线离心率的取值范围是__________.【答案】3 (1,)2 5.(2018·常州期末·9) 在平面直角坐标系xOy 中,设直线:10l x y ++=与双曲线22 22:1(0,0)x y C a b a b -=>>的两条渐近线都相交且交点都在y 轴左侧,则双曲线C 的离心率e 的取值范围是 .【答案】(1,2)

圆锥曲线中的最值、范围问题

圆锥曲线中的最值、范围问题 圆锥曲线中最值问题的两种类型和两种解法 (1)两种类型 ① 涉及距离、面积的最值以及与之相关的一些问题; ② 求直线或圆锥曲线中几何元素的最值以及这些元素存在最值时确定与之有关的一些 问题. (2)两种解法 ① 几何法,若题目的条件和结论能明显体现几何特征及意义,则考虑利用图形性质来 解决; ② 代数法,若题目的条件和结论能体现一种明确的函数关系, 则可先建立起目标函数, 再求这个函数的最值,最值常用基本不等式法、配方法及导数法求解. [典例](2018武昌调研)已知椭圆的中心在坐标原点, A(2,0), B(0,1)是它的两个顶点, 直线y = kx(k>0)与直线AB 相交于点D ,与椭圆相交于 E , F 两点. (1) 若 ED — = 6I D F ,求 k 的值; (2) 求四边形AEBF 的面积的最大值. [思路演示] 2 解:(1)由题设条件可得,椭圆的方程为 X + y 2= 1,直线AB 的方程为x + 2y — 2= 0. 4 设 D(x o , kx o ), E(X 1, kx 1), F(X 2, kx ?),其中 X 1 由 ED — = 6DF ,得 x 0— x 1= 6(x 2— x 0), 解得k = 2或k = 3. 2 由点D 在直线AB 上,得X o + 2kx 0- 2 = x o =百. 2 1 + 2k 10 7 .1 + 4k 2' 化简,得 24k 2— 25k + 6= 0, y = kx , 由 V y 2= 1 得(1 + 4k 2)x 2= 4, X o = ^(6X 2+ X 1) = 5x 2 = _10_ 7 ;1 +

[高中数学]圆锥曲线专题-理科

圆锥曲线专题 【考纲要求】 一、直线 1.掌握直线的点方向式方程、点法向式方程、点斜式方程,认识坐标法在建立形与数的关 系中的作用; 2.会求直线的一般式方程,理解方程中字母系数表示斜率和截距的几何意义:懂得一元二 次方程的图像是直线; 3.会用直线方程判定两条直线间的平行或垂直关系(方向向量、法向量); 4.会求两条相交直线的交点坐标和夹角,掌握点到直线的距离公式. 二、圆锥曲线 1.理解曲线的方程与方程的曲线的意义,并能由此利用代数方法判定点是否在曲线上,以 及求曲线交点; 2.掌握圆、椭圆、双曲线、抛物线的定义,并理解上述曲线在直角坐标系中的标准方程的 推导过程; 3.理解椭圆、双曲线、抛物线的有关概念及简单的几何特性,掌握求这些曲线方程的基本 方法,并能根据曲线方程的关系解决简单的直线与上述曲线有两个交点情况下的有关问题; 4.能利用直线和圆、圆和圆的位置关系的几何判定,确定它们之间的位置关系,并能利用解 析法解决相应的几何问题. 【知识导图】【精解名题】 一、弦长问题 例1 如图,已知椭圆 2 21 2 x y +=及点B(0, -2),过点B引椭圆的割线(与椭圆相交的直线)BD 与椭圆交于C、D两点 (1)确定直线BD斜率的取值范围 (2)若割线BD过椭圆的左焦点 12 , F F是椭圆的右焦点,求 2 CDF ?的面积 y x B C D F1F2 O

二、轨迹问题 例2 如图,已知平行四边形ABCO,O 是坐标原点,点A 在线段MN 上移动,x=4,y=t (33)t -≤≤上移动,点C 在双曲线 22 1169 x y -=上移动,求点B 的轨迹方程 三、对称问题 例3 已知直线l :22 2,: 1169 x y y kx C =++=,问椭圆上是否存在相异两点A 、B,关于直线l 对称,请说明理由 四、最值问题 例4 已知抛物线2 :2()C x y m =--,点A 、B 及P(2, 4)均在抛物线上,且直线PA 与PB 的倾斜角互补 (1)求证:直线AB 的斜率为定值 (2)当直线AB 在y 轴上的截距为正值时,求ABP ?面积的最大值 五、参数的取值范围 例 5 已知(,0),(1,),a x b y → → == ()a → +⊥()a → - (1)求点P (x, y )的轨迹C 的方程 (2)直线:(0,0)l y kx m k m =+≠≠与曲线C 交于A 、B 两点,且在以点D (0,-1)为圆心 的同一圆上,求m 的取值范围 六、探索性问题 例6 设x, y ∈R,,i j →→ 为直角坐标平面内x, y 轴正方向上的单位向量,若向量 (2)a x i y j → →→=++,且(2)b x i y j →→→=+-且8a b →→ += (1)求点M (x, y )的轨迹方程 (2)过点(0,3)作直线l 与曲线C 交于A 、B 两点,设OP OA OB → → → =+,是否存在这样的直线l,使得四边形OAPB 是矩形?若存在,求出直线l 的方程;若不存在,请说明理由

数学期末复习《圆锥曲线与方程》

圆锥曲线与方程单元测试 时间:90分钟 分数:120分 一、选择题(每小题5分,共60分) 1.椭圆122 =+my x 的焦点在y 轴上,长轴长是短轴长的两倍,则m 的值为( ) A . 41 B . 2 1 C . 2 D .4 2.过抛物线x y 42=的焦点作直线l 交抛物线于A 、B 两点,若线段AB 中点的横坐标为3,则||AB 等于 ( ) A .10 B .8 C .6 D .4 3.若直线y =kx +2与双曲线622 =-y x 的右支交于不同的两点,则k 的取值范围是( ) A .3 15(- , )3 15 B .0(, )3 15 C .3 15(- ,)0 D .3 15(- ,)1- 4.(理)已知抛物线 x y 42=上两个动点B 、C 和点A (1,2)且∠BAC =90°,则动直线BC 必过定点( ) A .(2,5) B .(-2,5) C .(5,-2) D .(5,2) (文)过抛物线 )0(22>=p px y 的焦点作直线交抛物线于1(x P ,)1y 、2(x Q ,)2y 两点,若 p x x 321=+,则||PQ 等于( ) A .4p B .5p C .6p D .8p 5.已知两点 ) 4 5 ,4(),45,1(--N M ,给出下列曲线方程:① 0124=-+y x ;②322=+y x ;③ 122 2=+y x ;④12 22=-y x .在曲线上存在点P 满足|MP|=|NP|的所有曲线方程是( ) (A )①③ (B )②④ (C )①②③ (D )②③④ 6.已知双曲线122 22=-b y a x (a >0,b >0)的两个焦点为1F 、2F ,点A 在双曲线第一象限的图象上,若 △ 21F AF 的面积为1,且2 1 tan 21= ∠F AF ,2tan 12-=∠F AF ,则双曲线方程为( ) A .135 1222 =-y x B .1312522=-y x C .1512322 =-y x D . 112 532 2=-y x 7.圆心在抛物线)0(22>=y x y 上,并且与抛物线的准线及x 轴都相切的圆的方程是( ) A .04 1 222 =- --+y x y x B .01222 =+-++y x y x C .01222 =+--+y x y x D .04 1222 =+ --+y x y x

高考数学真题分类汇编专题圆锥曲线理科及答案

专题九 圆锥曲线 1.【2015高考福建,理3】若双曲线22 :1916 x y E -= 的左、右焦点分别为12,F F ,点P 在双 曲线E 上,且13PF =,则2PF 等于( ) A .11 B .9 C .5 D .3 【答案】B 【解析】由双曲线定义得1226PF PF a -==,即236PF -=,解得29PF =,故选B . 【考点定位】双曲线的标准方程和定义. 【名师点睛】本题考查了双曲线的定义和标准方程,利用双曲线的定义列方程求解,属于基础题,注意运算的准确性. 2.【2015高考四川,理5】过双曲线22 13 y x -=的右焦点且与x 轴垂直的直线,交该双曲线 的两条渐近线于A ,B 两点,则AB =( ) (C)6 (D )【答案】D 【解析】 双曲线的右焦点为(2,0)F ,过F 与x 轴垂直的直线为2x =,渐近线方程为2 2 03 y x -=,将 2x =代入2 2 03 y x -=得:212,||y y AB ==±∴=.选D. 【考点定位】双曲线. 【名师点睛】双曲线22221x y a b -=的渐近线方程为22 220x y a b -=,将直线2x =代入这个渐近线 方程,便可得交点A 、B 的纵坐标,从而快速得出||AB 的值. 3.【2015高考广东,理7】已知双曲线C :12222=-b y a x 的离心率5 4 e =,且其右焦点()25,0F , 则双曲线C 的方程为( ) A .13422=-y x B. 191622=-y x C. 116922=-y x D. 14 32 2=-y x

【答案】B . 【解析】因为所求双曲线的右焦点为()25,0F 且离心率为5 4 c e a = =,所以5c =,4a =,2 2 2 9b c a =-=所以所求双曲线方程为22 1169 x y - =,故选B . 【考点定位】双曲线的标准方程及其简单几何性质. 【名师点睛】本题主要考查学生利用双曲线的简单几何性质求双曲线的标准方程和运算求解能力,由离心率和其右焦点易得a ,c 值,再结合双曲线222b c a =-可求,此题学生易忽略右焦点信息而做错,属于容易题. 4.【2015高考新课标1,理5】已知M (00,x y )是双曲线C :2 212 x y -=上的一点,12,F F 是 C 上的两个焦点,若120MF MF ?<,则0y 的取值范围是( ) (A )(- 33,3 3 ) (B )(- 36,3 6 ) (C )(223-,223) (D )(233-,23 3 ) 【答案】A 【考点定位】双曲线的标准方程;向量数量积坐标表示;一元二次不等式解法. 【名师点睛】本题考查利用向量数量积的坐标形式将12MF MF ?表示为关于点M 坐标的函数,利用点M 在双曲线上,消去x 0,根据题意化为关于0y 的不等式,即可解出0y 的范围,是基础题,将12MF MF ?表示为0y 的函数是解本题的关键. 5.【2015高考湖北,理8】将离心率为1e 的双曲线1C 的实半轴长a 和虚半轴长()b a b ≠同时增加(0)m m >个单位长度,得到离心率为2e 的双曲线2C ,则( ) A .对任意的,a b ,12e e > B .当a b >时,12e e >;当a b <时,12e e < C .对任意的,a b ,12e e < D .当a b >时,12e e <;当a b <时,12e e > 【答案】D 【解析】依题意,2 221)(1a b a b a e +=+=,2222)(1)()(m a m b m a m b m a e +++=++++=,

相关文档
相关文档 最新文档