文档库 最新最全的文档下载
当前位置:文档库 › 晶体管共射极单管放大器 实验报告

晶体管共射极单管放大器 实验报告

晶体管共射极单管放大器  实验报告
晶体管共射极单管放大器  实验报告

实验二晶体管共射极单管放大器

一、实验目得

1、学会放大器静态工作点得调试方法,分析静态工作点对放大器性能得影响。

2、掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压得测试方法。

3、熟悉常用电子仪器及模拟电路实验设备得使用。

二、实验原理

图2-1为电阻分压式工作点稳定单管放大器实验电路图。它得偏置电路采用RB1与R

B2组成得分压电路,并在发射极中接有电阻R E,以稳定放大器得静态工作点。当在放大器得输入端加入输入信号ui后,在放大器得输出端便可得到一个与u i相位相反,幅值被放大了得输出信号u0,从而实现了电压放大。

图2-1 共射极单管放大器实验电路

在图2-1电路中,当流过偏置电阻RB1与R B2得电流远大于晶体管T 得基极电流IB时(一般5~10倍),则它得静态工作点可用下式估算

U CE=U CC-I C(R C+RE+R F1)

电压放大倍数

输入电阻

R i=RB1// R B2//[r be+(1+β)R F1 ]

输出电阻

RO≈R C

由于电子器件性能得分散性比较大,因此在设计与制作晶体管放大电路时,离不开测量与调试技术。在设计前应测量所用元器件得参数,为电路设计提供必要得依据,在完成设计与装配以后,还必须测量与调试放大器得静态工作点与各项性能指标。一个优质放大器,必定就是理论设计与实验调整相结合得产物。因此,除了学习放大器得理论知识与设计方法外,还

必须掌握必要得测量与调试技术。

放大器得测量与调试一般包括:放大器静态工作点得测量与调试,消除干扰与自激振荡及放大器各项动态参数得测量与调试等。

1、放大器静态工作点得测量与调试

1) 静态工作点得测量

测量放大器得静态工作点,应在输入信号ui=0得情况下进行, 即将放大器输入端与地端短接,然后选用量程合适得直流毫安表与直流电压表,分别测量晶体管得集电极电流IC以及各电极对地得电位UB、U C与U E。一般实验中,为了避免断开集电极,所以采用测量电压U E或U C,然后算出I C得方法,例如,只要测出U E,即可用

算出IC(也可根据,由U C确定IC),同时也能算出UBE=U B-U E,U CE=UC-UE。

为了减小误差,提高测量精度,应选用内阻较高得直流电压表。

2) 静态工作点得调试

放大器静态工作点得调试就是指对管子集电极电流I C(或UCE)得调整与测试。

静态工作点就是否合适,对放大器得性能与输出波形都有很大影响。如工作点偏高,放大器在加入交流信号以后易产生饱与失真,此时uO得负半周将被削底,如图2-2(a)所示;如工作点偏低则易产生截止失真,即uO得正半周被缩顶(一般截止失真不如饱与失真明显),如图2-2(b)所示。这些情况都不符合不失真放大得要求。所以在选定工作点以后还必须进行动态调试,即在放大器得输入端加入一定得输入电压u i,检查输出电压uO得大小与波形就是否满足要求。如不满足,则应调节静态工作点得位置。

(a) (b)

图2-2静态工作点对uO波形失真得影响

改变电路参数UCC、R C、RB(RB1、RB2)都会引起静态工作点得变化,如图2-3所示。但通常多采用调节偏置电阻RB2得方法来改变静态工作点,如减小R B2,则可使静态工作点提高等。

图2-3电路参数对静态工作点得影响

最后还要说明得就是,上面所说得工作点“偏高”或“偏低”不就是绝对得,应该就是相对信号得幅度而言,如输入信号幅度很小,即使工作点较高或较低也不一定会出现失真。所以确切地说,产生波形失真就是信号幅度与静态工作点设置配合不当所致。如需满足较大信号幅度得要求,静态工作点最好尽量靠近交流负载线得中点。

2、放大器动态指标测试

放大器动态指标包括电压放大倍数、输入电阻、输出电阻、最大不失真输出电压(动态范围)与通频带等。

1) 电压放大倍数A V得测量

调整放大器到合适得静态工作点,然后加入输入电压u i,在输出电压uO不失真得情况下,用交流毫伏表测出u i与uo得有效值U i与UO,则

2) 输入电阻R i得测量

为了测量放大器得输入电阻,按图2-4 电路在被测放大器得输入端与信号源之间串入一已知电阻R,在放大器正常工作得情况下, 用交流毫伏表测出U S与U i,则根据输入电阻得定义可得

图2-4 输入、输出电阻测量电路

测量时应注意下列几点:

①由于电阻R两端没有电路公共接地点,所以测量R两端电压UR时必须分别测出US与Ui,然后按UR=U S-Ui求出UR值。

②电阻R得值不宜取得过大或过小,以免产生较大得测量误差,通常取R与R i为同一数量级为好,本实验可取R=1~2KΩ。

3) 输出电阻R0得测量

按图2-4电路,在放大器正常工作条件下,测出输出端不接负载 R L得输出电压U O与接入负载后得输出电压U L,根据

即可求出

在测试中应注意,必须保持RL接入前后输入信号得大小不变。

4) 最大不失真输出电压UOPP得测量(最大动态范围)

如上所述,为了得到最大动态范围,应将静态工作点调在交流负载线得中点。为此在放大器正常工作情况下,逐步增大输入信号得幅度,并同时调节R W(改变静态工作点),用示波

器观察u O,当输出波形同时出现削底与缩顶现象(如图2-5)时,说明静态工作点已调在交流负载线得中点。然后反复调整输入信号,使波形输出幅度最大,且无明显失真时,用交流毫伏表测出U O(有效值),则动态范围等于。或用示波器直接读出UOPP来。

图2-5 静态工作点正常,输入信号太大引起得失真

5) 放大器幅频特性得测量

放大器得幅频特性就是指放大器得电压放大倍数A U与输入信号频率f 之间得关系曲线。单管阻容耦合放大电路得幅频特性曲线如图2-6所示,A um为中频电压放大倍数,通常规定电压放大倍数随频率变化下降到中频放大倍数得倍,即0、707Aum所对应得频率分别称为下限频率f L与上限频率fH,则通频带:f BW=f H-f L

放大器得幅率特性就就是测量不同频率信号时得电压放大倍数A U。为此,可采用前述测AU得方法,每改变一个信号频率,测量其相应得电压放大倍数,测量时应注意取点要恰当,在低频段与高频段应多测几点,在中频段可以少测几点。此外,在改变频率时,要保持输入信号得幅度不变,且输出波形不得失真。

图 2-6 幅频特性曲线

3DG 9011(NPN)

3CG 9012(PNP)

9013(NPN)

图2-7晶体三极管管脚排列

三、实验设备与器件

1、+12V直流电源

2、函数信号发生器

3、双踪示波器

4、交流毫伏表

5、直流电压表 6、直流毫安表

7、频率计 8、万用电表

9、晶体三极管3DG6×1(β=50~100)或9011×1(管脚排列如图2-7所示)电阻器、电容器若干

四、实验内容

实验电路如图2-1所示。各电子仪器可按实验一中图1-1所示方式连接,为防止干扰,各仪器得公共端必须连在一起,同时信号源、交流毫伏表与示波器得引线应采用专用电缆线或屏蔽线,如使用屏蔽线,则屏蔽线得外包金属网应接在公共接地端上。

1、调试静态工作点

接通直流电源前,先将RW调至最大, 函数信号发生器输出旋钮旋至零。接通+12V电

源、调节R W,使IC=2、0mA (即U E =2、0V ), 用直流电压表测量U B 、U E 、U C及用万用电表测量R B2值。记入表2-1。

表2-1 I C =2m A

2 在放大器输入端加入频率为1KHz 得正弦信号u S ,调节函数信号发生器得输出旋钮使放大器输入电压U i 10mV,同时用示波器观察放大器输出电压uO 波形,在波形不失真得条件下用交流毫伏表测量下述三种情况下得U O值,并用双踪示波器观察u O 与u i 得相位关系,记入表2-2。

表2-2 Ic =2、0m A U i = mV

3 置R C =2、4K Ω,R L =∞,Ui 适量,调节R W,用示波器监视输出电压波形,在u O不失真得条件下,测量数组I C与U O 值,

记入表2-3。

表2-3 RC=2、4K Ω RL =∞ U i = mV

测量IC 时,i 4、观察静态工作点对输出波形失真得影响

置R C =2、4K Ω,R L =2、4K

Ω, u i =0,调节R W 使IC =2、0mA,测出U CE 值,再逐步加大输入信号,使输出电压u 0 足够大但不失真。 然后保持输入信号不变,分别增大与减小RW ,使波形出现失真,绘出u 0得波形,并测出失真情况下得I C 与U C E值,记入表2-4中。每次测I C 与U CE 值时都要将信号源得输出旋钮旋至零。

表2-4 R C =2、4K Ω R L =2、4 K Ω U i = mV

5置RC =2、4KΩ,RL =2、4K Ω,

按照实验原理2、4)中所述方法,同时调节输入信号得幅度与电位器R W,用示波器与交流毫伏表测量U OP P及UO值,记入表2-5。

表2-5 R C =2、4K R L =2、4K

*6 置R C =2、4KΩ,RL =2、4K Ω,I C =2、0mA 。输入f =1KHz 得正弦信号,在输出电压u o 不失真得情况下,用交流毫伏表测出US ,Ui 与UL 记入表2-6。

保持US 不变,断开R L,测量输出电压U o ,记入表2-6。

表2-6 I c =2mA R c =2、4K Ω R L =2、4KΩ

*7

取IC =2、0mA,R C =2、4K Ω,R L =2、4K Ω。 保持输入信号u i 得幅度不变,改变信号源频率f,逐点测出相应得输出电压U O ,记入表2-7。

表2-7 U i = mV

说明:本实验内容较多,其中6、7可作为选作内容。

五、实验总结

1、列表整理测量结果,并把实测得静态工作点、电压放大倍数、输入电阻、输出电阻之值与理论计算值比较(取一组数据进行比较),分析产生误差原因。

2、总结R C,R L及静态工作点对放大器电压放大倍数、输入电阻、输出电阻得影响。

3、讨论静态工作点变化对放大器输出波形得影响。

4、分析讨论在调试过程中出现得问题。

六、预习要求

1、阅读教材中有关单管放大电路得内容并估算实验电路得性能指标。

假设:3DG6 得β=100,R B1=20KΩ,R B2=60KΩ,R C=2、4KΩ,R L=2、4KΩ。

估算放大器得静态工作点,电压放大倍数AV,输入电阻R i与输出电阻R O

2、阅读实验附录中有关放大器干扰与自激振荡消除内容。

3、能否用直流电压表直接测量晶体管得U BE?为什么实验中要采用测UB、UE,再间接算出U BE得方法?

4、怎样测量RB2阻值?

5、当调节偏置电阻RB2,使放大器输出波形出现饱与或截止失真时,晶体管得管压降U CE怎样变化?

6、改变静态工作点对放大器得输入电阻Ri有否影响?改变外接电阻R L对输出电阻R O 有否影响?

7、在测试AV,R i与R O时怎样选择输入信号得大小与频率?为什么信号频率一般选1K Hz,而不选100KHz或更高?

8、测试中,如果将函数信号发生器、交流毫伏表、示波器中任一仪器得二个测试端子接线换位(即各仪器得接地端不再连在一起),将会出现什么问题?

注:附图2-1所示为共射极单管放大器与带有负反馈得两级放大器共用实验模块。如将K1、K2断开,则前级(Ⅰ)为典型电阻分压式单管放大器;如将K1、K2接通,则前级(Ⅰ)与后级(Ⅱ)接通,组成带有电压串联负反馈两级放大器。

附图2-1

单管放大电路实验报告—王剑晓

单管放大电路实验报告 电03 王剑晓 2010010929 单管放大电路报告

一、实验目的 (1)掌握放大电路直流工作点的调整与测量方法; (2)掌握放大电路主要性能指标的测量方法; (3)了解直流工作点对放大电路动态特性的影响; (4)掌握发射极负反馈电阻对放大电路动态特性的影响; (5)掌握信号源内阻R S对放大电路频带(上下截止频率)的影响; 二、实验电路与实验原理 实验电路如课本P77所示。 图中可变电阻R W是为调节晶体管静态工作点而设置的。 (1)静态工作点的估算与调整; 将图中基极偏置电路V CC、R B1、R B2用戴维南定理等效成电压源,得到直流通路, 如下图1.2所示。其开路电压V BB和内阻R B分别为: V BB= R B2/( R B1+R B2)* V CC; R B= R B1// R B2; 所以由输入特性可得: V BB= R B I BQ+U BEQ+(R E1+ R E2)(1+Β) I BQ; 即:I BQ=(V BB- U BEQ)/[Β(R E1+ R E2)+ R B]; 因此,由晶体管特性可知: I CQ=ΒI BQ; 由输出回路知: V CC= R C I CQ + U CEQ+(R E1+ R E2) I EQ; 整理得: U CEQ= V CC-(R E1+ R E2+ R C) I CQ; 分析:当R w变化(以下以增大为例)时,R B1增大,R B增大,I BQ减小;I CQ减小; U CEQ增大,但需要防止出现顶部失真;若R w减小变化相反,需要考虑底部失真(截 止失真); (2)放大电路的电压增益、输入电阻和输出电阻 做出电路的交流微变等效模型: 则: 电压增益A i=U O/U i=-?(R C// R L)/r be; 输入电阻R i=R B1//R B2//r be; 输出电阻R O= R C; 其中r be=r bb’+(1+?)U T/ I EQ,体现了直流工作点对动态特性的影响; 分析:当R C、R L选定后,电压增益主要决定于r be,受到I EQ,即直流工作点的影 响。由上面对直流工作点的分析可知,R w变化(以下以增大为例)时I CQ减小, 那么r be增大,电压增益A i减小,输入电阻R i增大,输出电阻R O基本不变,与直 流无关; 如果将发射极旁路电容C E改为与R E2并联,R E1成为交流负反馈电阻,电路的动态 参数分别变为 电压增益A i=U O/U i=-?(R C// R L)/[r be+(1+?) R E1];

模电仿真实验 共射极单管放大器

仿真实验报告册 仿真实验课程名称:模拟电子技术实验仿真仿真实验项目名称:共射极单管放大器 仿真类型(填■):(基础■、综合□、设计□) 院系:专业班级: 姓名:学号: 指导老师:完成时间: 成绩: .

. 一、实验目的 (1)掌握放大器静态工作点的调试方法,熟悉静态工作点对放大器性能的影响。 (2)掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的测试方法。 (3)熟悉低频电子线路实验设备,进一步掌握常用电子仪器的使用方法。 二、实验设备及材料 函数信号发生器、双踪示波器、交流毫伏表、万用表、直流稳压电源、实验电路板。 三、实验原理 电阻分压式共射极单管放大器电路如图3.2.1所示。它的偏置电路采用(R W +R 1)和R 2组成的分压电路,发射极接有电阻R 4(R E ),稳定放大器的静态工作点。在放大器的输入端加入输入微小的正弦信号U i ,经过放大在输出端即有与U i 相位相反,幅值被放大了的输出信号U o ,从而实现了电压放大。 在图3.2.1电路中,当流过偏置电阻R 1和R 2的电流远大于晶体管T 的基极电流I B 时(一般5~10倍),则它的静态工作点可用下式进行估算(其中U CC 为电源电压): CC 21W 2 BQ ≈ U R R R R U ++ (3-2-1) C 4 BE B EQ ≈I R U U I -= (3-2-2) )(43C CC CEQ R R I U U +=- (3-2-3) 电压放大倍数 be L 3u ||=r R R β A - (3-2-4) 输入电阻 be 21W i ||||)(r R R R R += (3-2-5) 图3.2.1 共射极单管放大器

实验三_晶体管共射级单管放大器实验报告

实验三晶体管共射级单管放大器实验报告学号:姓名: 一、题目:晶体管共射级单管放大器 二、实验原理: 下图为电阻分压式工作点稳定单管放大 器实验电路图。晶体管共射电路是电压反向放大器。当在放大器的输入端加入输入信号U i后,在放大器的输出端便可得到一个与U i相位相反,幅值被放大了的输出信号U o,从而实现了电压放大。 实验电路图 三、实验过程

1.放大器静态工作点的测量与测试 ①静态工作点的测量 置输入信号U i=0,将放大器的输入端与地端短接,然后选用量程合适的万用表分别测量晶体管的各电极对地的电位U、U和U。通过 I=(U-U)/R 由U确定I。 ②静态工作点的调试 在放大器的输入端加入一定的输入电压U i,检查输出电压U o的大小和波形。若工作点偏高,则放大器在加入交流信号后易产生饱和失真,若工作点偏低则易产生截止失真。 2.测量最大不失真输出电压 将静态工作点调在交流负载的中点。在放大器正常工作的情况下,逐步加大输入信号的幅度,并同时调节R w,用示波器观察U o,当输出波形同时出现削底和缩顶现象时,说明静态工作点已调在交流负载线的中点。然后反复调整输入信号,使波形输出幅度最大,且无明显失真时,用示波器直接读出U opp。 3.测量电压放大倍数 调整放大器到合适的静态工作点,然后加入输入电压U i,在输出电压U o不失真的情况下,测出U i和U o的有效值, A u=U o/U i 4.输入电阻R i的测量 在被测放大器的输入端与信号源之间串入一已知电阻R,

在放大器正常工作的情况下,用毫伏表测出U s和U i。 根据输入电阻的定义可求出R i。 5.输出电阻R o的测量 在放大器正常工作条件下,测出输出端不接负载的输出电压U o和接入负载的输出电压U L。 U L=R L U O /(R O+R L) 计算出Ro。 在测试中保证负载接入前后输入信号的大小不变。 四、实验数据 1.调试静态工作点 测量值计算值 U(V)U(V)U(V)R(K)U(V)U(V)I(mA) 2.测量电压放大倍数 ∞

晶体管共射极单管放大电路实验报告

晶体管共射极单管放大 电路实验报告 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

实验二 晶体管共射极单管放大器 一、实验目的 1.学会放大器静态工作点的调式方法和测量方法。 2.掌握放大器电压放大倍数的测试方法及放大器参数对放大倍数的影 响。 3.熟悉常用电子仪器及模拟电路实验设备的使用。 二、实验原理 图2—1为电阻分压式工作点稳定单管放大器实验电路图。偏置电阻R B1、R B2组成分压电路,并在发射极中接有电阻R E ,以稳定放大器的静态工作点。当在放大器的输入端加入输入信号后,在放大器的输出端便可得到一个与输入信号相位相反、幅值被放大了的输出信号,从而实现了电压放大。 三、实验设备 1、信号发生器 2、双踪示波器 3、交流毫伏表 4、模拟电路实验箱 5、万用表 四、实验内容 1.测量静态工作点 实验电路如图2—1所示,它的静态工作点估算方法为: U B ≈ 2 11B B CC B R R U R +?

图2—1 共射极单管放大器实验电路图 I E = E BE B R U U -≈Ic U CE = U C C -I C (R C +R E ) 实验中测量放大器的静态工作点,应在输入信号为零的情况下进行。 1)没通电前,将放大器输入端与地端短接,接好电源线(注意12V 电源位置)。 2)检查接线无误后,接通电源。 3)用万用表的直流10V 挡测量U E = 2V 左右,如果偏差太大可调节静态工作点(电位器RP )。然后测量U B 、U C ,记入表2—1中。 表2—1 测 量 值 计 算 值 U B (V ) U E (V ) U C (V ) R B2(K Ω) U BE (V ) U CE (V ) I C (mA ) 2 60 2 B2所有测量结果记入表2—1中。 5)根据实验结果可用:I C ≈I E = E E R U 或I C =C C CC R U U -

单管放大电路的设计与实现实验报告

华中科技大学 《电子线路设计、测试与实验》实验报告 实验名称:单管放大电路的设计与实现 院(系): 专业班级: 姓名: 学号: 时间: 地点:华中科技大学南一楼 实验成绩: 指导教师:

一、实验目的 1.掌握单管放大电路的工作原理。 2.掌握MOSFET共源放大电路以及BJT共射放大电路静态工作点的设置与调整方法。 3.了解电路参数变化对于电路静态工作点的影响。 4.学习使用PSpice或Multisim软件对模拟电子电路进行仿真分析。 5.掌握BJT单极共射放大电路主要性能指标(A v、R i、R o)的测量方法。 二、实验元器件 类型型号(参数)数量 三极管9013 1只 电位器100kΩ1只 电阻51Ω、1kΩ、100kΩ各1只; 10kΩ、10kΩ各2只; 电容10μF 2只 47μF 1只 三、实验原理及参考电路 1.参考电路 实验电路如图1所示。该电路采用自动稳定工作点的分压式射极偏置电路,其温度稳定性好。 图1 2.静态工作点的估算与调整 静态工作点是指输入交流信号为零时三极管的基极电流IBE、集电极电流I CQ、和管压降V CEQ。 根据上图所示的直流通路可得出: 开路电压V BB = R b12V CC/(R b11+R b12) 内阻R B = R b11//R b12

则I BQ =(V BB–V BEQ)/( R B +(1+β)( R e1 +R e2)) I CQ = βI BQ V CEQ ≈ V CC – (R C + R e1 +R e2)I CQ 当管子确定后,改变V CC、R B、R B2、R C、(或R E)中任一参数值,都会导致静态工作点的变化。当电路参数确定后,静态工作点主要通过R P调整。工作点偏高,输出信号易产生饱和失真;工作点偏低,输出波形易产生截止失真。但当输入信号过大时,管子将工作在非线性区,输出波形会产生双向失真。当输出波形不很大时,静态工作点的设置应偏低,以减小电路的表态损耗。 3.放大电路电压增益的测量 放大电路电压增益A v 是指输出电压与输入电压的有效值之比,即 A v =V o /V i。 对于该电路,放大电路的电压增益A v 为 A v= -β(R C // R L) /( r be + (1 + β)R e1) 当三极管跟负载电阻选定后,A v主要取决于静态工作点I CQ。 4.输入电阻的测量 对于上述参考电路图所示参数,放大电路输入电阻为: R i = R b11//R b12//[r be + (1 + β)R e1] 三极管输入电阻r be 为: r be = 300 + (1+β)CQ 测量原理为:在信号源与放大电路之间串一个已知阻值的电阻R,用万用表分别测出R 两端的电压V S,和V i,则输入电阻为: Ri = Vi / Ii = Vi R /( V s- V i) 5.输出电阻的测量 输出电阻的测量原理为:用万用表分别测量放大器的开路电压V O和负载电阻上的电压V OL,则输出电阻R O可通过计算求得。 R O =( V O – V OL)R L /V OL 当R L = R O 时,测量误差最小。 6.幅频特性的测量 放大器的幅频特性是指放大器的增益与输入信号频率之间的关系曲线。一般用逐点法进行测量。在保持输入信号幅值不变的情况下,改变输入信号的频率,住店测量不同频率点的电压增益。利用各点数据,在单对数坐标纸上描绘出幅频特性曲

晶体管共射极单管放大器 实验报告

实验二 晶体管共射极单管放大器 一、实验目的 1、 学会放大器静态工作点的调试方法,分析静态工作点对放大器性能的影响。 2、 掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的测试方法。 3、 熟悉常用电子仪器及模拟电路实验设备的使用。 二、实验原理 图2-1为电阻分压式工作点稳定单管放大器实验电路图。它的偏置电路采用R B1和R B2 组成的分压电路,并在发射极中接有电阻R E ,以稳定放大器的静态工作点。当在放大器的输入端加入输入信号u i 后,在放大器的输出端便可得到一个与u i 相位相反,幅值被放大了的输出信号u 0,从而实现了电压放大。 在图2-1电路中,当流过偏置电阻R B1和R B2 的电流远大于晶体管T 的 基极电流I B 时(一般5~10倍),则它的静态工作点可用下式估算 CC B2 B1B1B U R R R U +≈ C E BE B E I R U U I ≈+-≈ 1 F R U CE =U CC -I C (R C +R E +R F1) 电压放大倍数 1 )1(F R // β++-=be L C V r R R β A 输入电阻 R i =R B1 // R B2 // [ r be +(1+β)R F1 ] 输出电阻 R O ≈R C 由于电子器件性能的分散性比较大,因此在设计和制作晶体管放大电路时,离不开测量 图2-1 共射极单管放大器实验电路

和调试技术。在设计前应测量所用元器件的参数,为电路设计提供必要的依据,在完成设计和装配以后,还必须测量和调试放大器的静态工作点和各项性能指标。一个优质放大器,必定是理论设计与实验调整相结合的产物。因此,除了学习放大器的理论知识和设计方法外,还必须掌握必要的测量和调试技术。 放大器的测量和调试一般包括:放大器静态工作点的测量与调试,消除干扰与自激振荡及放大器各项动态参数的测量与调试等。 1、放大器静态工作点的测量与调试 1) 静态工作点的测量 测量放大器的静态工作点,应在输入信号u i =0的情况下进行,即将放大器输入端与地端短接,然后选用量程合适的直流毫安表和直流电压表,分别测量晶体管的集电极电流 I C 以及各电极对地的电位U B 、U C 和U E 。一般实验中,为了避免断开集电极,所以采用测量电 压U E 或U C ,然后算出I C 的方法,例如,只要测出U E ,即可用 C E BE B E I R U U I≈ + - ≈ 1 F R 算出I C (也可根据C C CC C R U U I - = ,由U C 确定I C ),同时也能算出U BE =U B -U E ,U CE =U C -U E 。 为了减小误差,提高测量精度,应选用内阻较高的直流电压表。 2) 静态工作点的调试 放大器静态工作点的调试是指对管子集电极电流I C (或U CE )的调整与测试。 静态工作点是否合适,对放大器的性能和输出波形都有很大影响。如工作点偏高,放 大器在加入交流信号以后易产生饱和失真,此时u O 的负半周将被削底,如图2-2(a)所示; 如工作点偏低则易产生截止失真,即u O 的正半周被缩顶(一般截止失真不如饱和失真明显),如图2-2(b)所示。这些情况都不符合不失真放大的要求。所以在选定工作点以后还必须进 行动态调试,即在放大器的输入端加入一定的输入电压u i ,检查输出电压u O 的大小和波形 是否满足要求。如不满足,则应调节静态工作点的位置。 (a) (b) 图2-2 静态工作点对u O 波形失真的影响

晶体管共射极单管放大电路实验报告

实验二晶体管共射极单管放大器 一、实验目得 1.学会放大器静态工作点得调式方法与测量方法。 2.掌握放大器电压放大倍数得测试方法及放大器参数对放大倍数得影响。 3.熟悉常用电子仪器及模拟电路实验设备得使用。 二、实验原理 图2—1为电阻分压式工作点稳定单管放大器实验电路图。偏置电阻R B1、R B2组成分压电路,并在发射极中接有电阻R E,以稳定放大器得静 态工作点。当在放大器得输入端加入输入信号后,在放大器得输出端便可 得到一个与输入信号相位相反、幅值被放大了得输出信号,从而实现了电 压放大。 三、实验设备 1、信号发生器 2、双踪示波器 3、交流毫伏表 4、模拟电路实验箱 5、万用表 四、实验内容 1.测量静态工作点 实验电路如图2—1所示,它得静态工作点估算方法为: UB≈

图2—1共射极单管放大器实验电路图 I E=≈Ic U CE=UCC-I C(RC+RE) 实验中测量放大器得静态工作点,应在输入信号为零得情况下进行。 1)没通电前,将放大器输入端与地端短接,接好电源线(注意12V电源位置)。 2)检查接线无误后,接通电源。 3)用万用表得直流10V挡测量UE =2V左右,如果偏差太大可调节静态工作点(电位器RP)。然后测量U B、U C,记入表2—1中。 表2—1 测量值计算值UB(V) UE(V) UC(V)R B2(KΩ)U BE(V) UCE(V) I C(mA) 2、6 2 7、2 60 0、6 5、2 2 B2 量结果记入表2—1中。 5)根据实验结果可用:I C≈I E=或I C= UBE=U B-U E U CE=U C-UE 计算出放大器得静态工作点。 2.测量电压放大倍数

共射极单管放大电路(一)

电路分析实验报告 共射极单管放大电路(一) 一 、实验摘要 通过单管放大电路,认识三极管放大电路的性能参数。静态参数有:三极管的静态工作点Ib、Ic和Vce;了解三极管放大电路的线性放大,饱和失真、截止失真;动态参数有:电压放大倍数Av、最大不失真输出电压Uomax。 2、 实验环境 模拟电路试验箱 函数信号发生器 示波器 万用表 3、 实验原理 ui直接加在三极管V的基极和发射极之间,引起基极电流iB作相应的变化 。 通过三极管VT的电流放大作用,VT的集电极电流iC也将变化 。 iC的变化引起V的集电极和发射极之间的电压uCE变化。 uCE中的交流分量uce经过电容C2畅通地传送给负载RL,成为输出交流电压uo,,实现了电压放大作用。 4、 实验步骤 在模电试验箱对应模块上连 接电路 调节信号发生器调节频率、峰峰值,观察波形 调节电位器调节电位器,观察波形 分别在饱和失真、截止失计算得出放大倍数,Ib、Ic和Vce,最

真、不失真时观察波形,记 大不失真输出电压 录数据 5、 实验数据 截止失真 Vce/V Ic/A Ie/A Ib/A放大倍数Av 8.380.000890.0008-0.000098.89 饱和失真 Vce/V Ic/A Ie/A Ib/A放大倍数Av 2.610.00220.0023-0.000111.23 不失真

Vce/V Ic/A Ie/A Ib/A放大倍数Av 4.820.00170.001780.0000812.63 最大不失真输出电压Uomax=500mVPP 上下半波均失真,形成矩形波 相移:140.5° 6、 实验总结 在本次实验中了解到了三极管的放大特性。通过单管放大电路,认识了三极管放大电路的性能参数。

单管放大电路实验报告王剑晓

单管放大电路实验报告

电03 王剑晓 2010010929 单管放大电路报告 一、实验目的 (1)掌握放大电路直流工作点的调整与测量方法; (2)掌握放大电路主要性能指标的测量方法; (3)了解直流工作点对放大电路动态特性的影响; (4)掌握发射极负反馈电阻对放大电路动态特性的影响; (5)掌握信号源内阻R S对放大电路频带(上下截止频率)的影响; 二、实验电路与实验原理

实验电路如课本P77所示。 图中可变电阻R W是为调节晶体管静态工作点而设置的。 (1)静态工作点的估算与调整; 将图中基极偏置电路V CC、R B1、R B2用戴维南定理等效成电压源,得到直流通路, 如下图1.2所示。其开路电压V BB和内阻R B分别为: V BB= R B2/( R B1+R B2)* V CC; R B= R B1// R B2; 所以由输入特性可得: V BB= R B I BQ+U BEQ+(R E1+ R E2)(1+Β) I BQ; 即:I BQ=(V BB- U BEQ)/[Β(R E1+ R E2)+ R B]; 因此,由晶体管特性可知: I CQ=ΒI BQ; 由输出回路知: V CC= R C I CQ + U CEQ+(R E1+ R E2) I EQ; 整理得: U CEQ= V CC-(R E1+ R E2+ R C) I CQ; 分析:当R w变化(以下以增大为例)时,R B1增大,R B增大,I BQ减小;I CQ减 小;U CEQ增大,但需要防止出现顶部失真;若R w减小变化相反,需要考虑底部 失真(截止失真); (2)放大电路的电压增益、输入电阻和输出电阻 做出电路的交流微变等效模型: 则:

实验一晶体管共射极单管放大器

实验一电磁型电流继电器和电压继电器实 验 【实验名称】 电磁型电流继电器和电压继电器实验 【实验目的】 1.熟悉DL型电流继电器和DY型电压继电器的的实际结构,工作 原理、基本特性; 2.学习动作电流、动作电压参数的整定方法。 【预习要点】 1.复习电磁型电流、电压继电器相关知识。 2.电流继电器的返回系数为什么恒小于1? 【实验仪器设备】 【实验原理】 DL-20C系列电流继电器和DY-20C系列电压继电器为电磁式继电器。由电磁系统、整定装置、接触点系统组成。当线圈导通时,衔铁克服游丝的反作用力矩而动作,使动合触点闭合。转动刻度盘上的指针,可改变游丝的力矩,从而改变继电器的动作值。改变线圈的串并联接法,可获得不同的额定值。

图1-1 DL-20C系列电流继电器铭牌刻度值,为线圈并联时的额定值。继电器用于反映发电机,变压器及输电线短路和过负荷的继电保护装置中。 DY-20C系列电压继电器铭牌刻度值,为线圈串联时的额定值。继电器用于反映发电机、变压器及输电线路的电压升高(过压保护)或电压降低(低电压起动)的继电保护装置中。 【实验内容】 1.电流继电器的动作电流和返回电流测试 a.选择EPL-04组件的DL-21C过流继电器(额定电流为6A),确定动作值并进行整定。本实验整定值为2.7A及5.4A两种工作状态。 b .根据整定值要求对继电器线圈确定接线方式; 注意: (1)过流继电器线圈可采用串联或并联接法,如图1-2所示。其中串联接法电流动作值可由转动刻度盘上的指针所对应的电流值读出,并联接法电流动作值则为串联接法的2倍。 (2)串并联接线时需注意线圈的极性,应按照要求接线,否则得不到预期的动作电流值。

单管放大电路仿真实验报告

? 单管放大电路仿真实验报告 一、实验目的 1、 掌握放大电路支流工作点的调整与测量方法。 2、掌握放大电流主要性能指标的测量方法。 3、了解支流工作点对放大电路动态特性的影响。 4、掌握发射极负反馈电阻对放大电路性能的影响。 5、了解信号源内阻Rs 对放大电路频带(上限截止频率f H )的影响。 二、实验电路与实验原理图

2、直流通路 VCC 12V 将基极偏置电路用戴维南定理等效成电压源,得到支流通路。开路电压:V BB = V CC*R B2/(R B1 + R B2) 电源内阻:R B = R B1 // R B2 三、实验内容 1、静态工作点的调整 ※预习计算

直流工作点的调整 I CQ =1.0mA 时 3.3c R C CQ V R I V ==, 1.95BQ E CQ BE V R I V V ≈+= 12 '11 75.4//55.4CC BQ B CQ BQ B W B B V V R K I V R R R R K β-= =Ω +=-=Ω -7.5C CEQ CC BQ R BE V V V V V V =-+= I CQ =2.0mA 时 6.6c R C CQ V R I V ==, 3.15BQ E CQ BE V R I V V ≈+= 12 ' 1140.8, //20.8CC BQ B CQ BQ B W B B V V R K I V R R R R K β-= =Ω+=-=Ω -3C CEQ CC BQ R BE V V V V V V =-+= 由此可以得到扫描参数时的大致范围 要求:调节RW ,在ICQ=1mA 和2mA 时,测量VCEQ 的值,并记录RB1的值。 操作:对R W 进行参数扫描,通过观察Rc 上的电压变化 可以得到 CQ I ( c CQ c U I R = ), Uc 可以通过V (Vcc )-V(4)得到,从而可以在扫描参数设备时通过跟踪Uc 得到CQ I 为一 定值时对应的V CEQ 以及相应的R W 。 仿真结果(设备参数扫描):

单极管放大电路实验报告材料.doc

实验三 晶体管单管共射放大电路实验报告 一、 实验目的: 1.学习电子线路安装、焊接技术。 2.学会放大器静态工作点的测量和调试方法,分析静态工作点对放大器性能的影响。 3.掌握放大器交流参数:电压放大倍数、输入电阻、输出电阻、最大不失真输出电压和频率特性的测试方法。 4.进一步熟悉常用电子仪器及模拟电路设备的使用方法和晶体管β值测试方法。 二、实验原理: (一)实验电路 图3.1中为单管共射基本放大电路。 (二)理论计算公式: ① 直流参数计算: C CQ CEQ BQ EQ CQ BEQ B BEQ BQ R I VCC V I I I V 7.0V ; R V VCC I -=β?=≈≈-≈ 式中: ② 交流参数计算: 图2-1 共射极单管放大器实验电路

() C O be B i V i S i VS L C L be 'L V ' bb EQ 'bb be R R r //R R A R R R A R R R ; r R A 300r (mA) I (mV)26β1r r ≈=*+= ='*β-= ++≈∥Ω 的默认值可取式中: (三)放大电路参数测试方法 由于半导体元件的参数具有一定的离散性,即便是同一型号的元件,其参数往往也有较大差异。设计和制作电路前,必须对使用的元器件参数有全面深入的了解。有些参数可以通过查阅元器件手册获得;而有些参数,如晶体管的各项有关参数(最重要的是β值),常常需要通过测试获取,为电路设计提供依据。另一方面,即便是经过精心设计和安装的放大电路,在制作完成后,也必须对静态工作点和一些交流参数进行测试和调节,才能使电路工作在最佳状态。一个优质的电子电路必定是理论设计和实验调试相结合的产物。因此,我们不但要学习电子电路的分析和设计方法,还应认真学习电子调节和测试的方法。 1. 放大器静态工作点的调试和测量: 晶体管的静态工作点对放大电路能否正常工作起着重要的作用。对安装好的晶体管放大电路必须进行静态工作点的测量和调试。 ① 静态工作点的测量: 晶体管的静态工作点是指V BEQ 、I BQ 、V CEQ 、I CQ 四个参数的值。这四个参数都是直流量,所以应该使用万用电表的直流电压和直流电流档进行测量。 测量时,应该保持电路工作在“静态”,即输入电压V i =0。要使V i =0,对于阻容耦合电路,由于存在输入隔直电容,所以信号源的阻不会影响放大器的静态工作点,只要将测试用的信号发生器与待测放大器的输入端断开,即可使V i =0;但是输入端开路很可能引入干扰信号,所以最好不要断开信号发生器,而是将信号发生器的“输出幅度”旋钮调节至“0”的位置,使V i =0。对于直接耦合放大电路,由于信号源的阻直接影响待测放大器的静态工作点,所以在测量静态工作点时必须将信号发生器连接在电路中,而将输出幅度调节至0。 在实验中,为了不破坏电路的真实工作状态,在测量电路的电流时,尽量不采用断开测点串入电流表的方式来测量,而是通过测量有关电压,然后换算出电流。在本实验中,只要测出V BQ 、V CQ 、VCC 电压值,便可计算出V BEQ 、V CEQ 、I CQ 、I BQ 。计算公式如下(计算前,需知道R B 、R C 的值): 式中:R B = R 1 + RW B BQ BQ C CQ CQ CQ CEQ BQ BEQ R V VCC I R V VCC I V V ;V V -= -===

共射级单管放大器工作原理

1共射级单管放大器工作原理 管子工作前题是BE结加正向电压BC结加反向电压,然后1.发射区向基区扩散电子,2.电子在基区边界扩散与复合,空穴由外电源补充,维持电流。3.电子被集电极收集。改变基极电流就可以改变集电极电流:IC=BIB 2.在两个放大管与VEE之间接的有一个恒流源. 一、微恒流源原理电路 电路如图1所示,当IR一定时,IC2可确定为: 图1 可见,利用两管基一射电压差VBE可以控制IO。由于VBE的数值小,用阻值不大的Re2即可得微小的工作电流--微电流源。

二、恒流源电路的主要应用-有源负载 前面曾提到,增大Rc可以提高共射放大电路的电压增益。但是,Rc不能很大,因为在集成工艺中制造大电阻的代价太高,而且,在电源电压不变的情况下,Rc越大,导致输出幅度越小。那么,能否找到一种元件代替RC,其动态电阻大,使得电压增益增大,但静态电阻较小。因而不致于减小输出幅度呢?自然地,我们可以考虑晶体管恒流源。由于电流源具有直流电阻小,交流电阻大的特点,在模拟集成电路中广泛地把它作负载使用--有源负载,如图2所示。 在本图中恒流源由20K电阻和Q7与Q8组成.其他同基本放大电路. Q7短接基极和集电极的接法在集成电路制作中常用. 由于晶体管电流源具有直流电阻小,交流电阻大的特点,在模拟集成电路中广泛地把它作负载使用--有源负载. 而且集成电路中做二极管就是用三极管一个极.短接另一个极. 3三级运放放大电路工作原理 三极管是电流放大器件,有三个极,分别叫做集电极C,基极B,发射极E。分成NPN和PNP两种。我们仅以NPN三极管的共发射极放大电路为例来说明一下三极管放大电路的基本原理。

单管放大电路实验报告材料

单管放大电路 一、实验目的 1. 掌握放大电路直流工作点的调整与测量方法; 2.掌握放大电路主要性能指标的测量方法; 3.了解直流工作点对放大电路动态特性的影响; 4.掌握射极负反馈电阻对放大电路特性的影响; 5.了解射极跟随器的基本特性。 二、实验电路 实验电路如图2.1所示。图中可变电阻R W是为调节晶体管静态工作点而设置的。 三、实验原理 1.静态工作点的估算

将基极偏置电路CC V ,1B R 和2B R 用戴维南定理等效成电压源。 开路电压CC B B B BB V R R R V 2 12 += ,内阻 21//B B B R R R = 则 ) )(1(21E E B BEQ BB BQ R R R V V I +++-= β, BQ CQ I I β= CQ E E C CC CEQ I R R R V V )(21++-≈ 可见,静态工作点与电路元件参数及晶体管β均有关。 在实际工作中,一般是通过改变上偏置电阻R B1(调节电位器R W )来调节静态工作点的。 R W 调大,工作点降低(I CQ 减小),R W 调小,工作点升高(I CQ 增加)。 一般为方便起见,通过间接方法测量CQ I ,先测E V ,)/(21E E E EQ CQ R R V I I +=≈。 2.放大电路的电压增益与输入、输出电阻 be L C u r R R ) //(β-= A be B B i r R R R ////21= C O R R ≈ 式中晶体管的输入电阻r be =r bb ′+(β+1)V T /I EQ ≈ r bb ′+(β+1)×26/I CQ (室温)。 3.放大电路电压增益的幅频特性 放大电路一般含有电抗元件,使得电路对不同频率的信号具有不同的放大能力,即电压增益是频率的函数。电压增益的大小与频率的函数关系即是幅频特性。一般用逐点法进行测量。测量时要保持输入信号幅度不变,改变信号的频率,逐点测量不同频率点的电压增益,以各点数据描绘出特性曲线。由曲线确定出放大电路的上、下限截止频率f H 、f L 和频带宽度BW =f H -f L 。 需要注意,测量放大电路的动态指标必须在输出波形不失真的条件下进行,因此输入信

晶体管共射极单管放大器

晶体管共射极单管放大器 一、实验项目名称:晶体管共射极单管放大器 二、实验目的:1)学会共射放大电路静态工作点的调试方法,分析静态工作点对放大电路性能的影响。 2)掌握放大电路电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的测试方法。 三、实验设备:1)单级晶体管放大电路板 2)TDS1002型数字存储示波器 3)F20A型数字合成函数信号发生器/计数器 4)AS2294D型交流毫伏表 5)VC9807型数字万用表 6)电子技术实验台 四、实验原理:图3.2.1为分压式偏置共射放大电路图,它的偏置电路采用R B1和R B2组成的分压电路,并在发射极中接有电阻R E以稳定放大器的静态工作点。当在放大器的输入端加入输入信号u i后,在放大器的输出端便可得到一个与u i相位相反、幅值被放大了的输出信号u o,从而实现了电压放大。 图3.2.1 分压式偏置共射放大电路 (1)静态工作点的估算与调整

将基极偏置电路V cc 、R B1及R B2用戴维南定理等效成电压源,得到直流通路如3.2.2所示。 图3.2.2 放大电路直流通路 其开路电压V B 和内阻R B 分别为 CC B B B B V R R R V 2 12 += 21//B B B R R R = 则静态工作点分别为 ()E B BEQ B BQ R R V V I β++-= 1 BQ CQ I I β= ()E C CC CEQ R R V V +-≈ 在实际工作中,一般通过改变上偏置电阻R B1(调节电位器R P )来调节静态工作点的。R P 调大,工作点降低(I CQ 减小);R P 调小,工作点升高(I CQ 增加)。 (2)共射放大电路动态指标估算 电压放大倍数 be L C V r R R A //β -= 输入电阻 be B B i r R R R ////21= 输出电阻 C R R ≈0 (3)放大器静态工作点的测量与调试 1)静态工作点的测量 测量放大器的静态工作点,应在输入信号u i =0的情况下进行,即将放大器输入端与地端短接,然后选用量程合适的直流毫安表和直流电压表,分别测量晶体管的集电极电流I C

单管放大电路实验报告范本

单管放大电路实验报告 一、实验目的 1.掌握单管放大电路静态工作点的调试; 2.熟悉常用仪器的使用方法; 3.掌握放大电路的主要指标和测试方法。 二、实验仪器及器件 设备条件:万用表,示波器,函数发生器,直流稳压电源 实验器材: 三、实验原理 基本放大电路有共射极、共基极、共集电极三种构成方式,本次实验采用共射极放大电路,如图1.1所示。三极管是一个电流控制电流源器件(即I C=βI B),通过合理设置静态工作点,实现对交流电压信号的放大。放大电路的主要参数有电压放大倍数Au、输入电阻Ri、输出电阻Ro。

四、实验内容 4.1静态工作点的设置 1.什么是静态工作点 静态工作点是指在电路输入信号为零时,电路中各去路电流和各节点的电压值。通常直流负载线与交流负载线的交点Q所对应的参数IBQ、ICQ、VCEQ是主要观测对象,如图1.1所示,在电路高度过程中,电路参数确定以后,对工作点起决定作用的是IB,测量比较方便的是VCE,通过调节RW1改变电流IB,通过测量VCE判断工作点是否合适。 2.静态工作点的设置原则 在有负载的情况下,输入信号的变化使工作点沿交流负载线变化,从图1.2中VCE的变化规律可以看出:在不考虑三极管的饱和压降时,VCE向减小方向的变化幅度为VCEQ,向增大方向的变化幅度为ICQ×RL’,要获得最大的不失真输出幅度则: 在电压输出幅度满足不失真的要求的条件下,减小I CQ可以适当提高输入电阻,电压放大倍数随之减小,反之,增大I CQ可以适当增大电压放大倍数,输入电阻随之减小。 3.静态工作点的测量 用万用表可以测量直流电压,用示波器同样可以测量直流电压。万用表,有效倍数多,测量精

晶体管共射极单管放大器实验报告

晶体管共射极单管放大器实 验报告 word文档,精心编排整理,均可修改 你的满意,我的安心

字体如需要请自己调整 实验题目:晶体管共射极单管放大器 一、实验目的 1、学会放大器静态工作点的调试方法,分析静态工作点对放大器性能的影响; 2、掌握放大器电压放大倍数测试方法; 3、熟悉常用电子仪器及模拟电路实验设备的使用。 二、实验仪器 1、0~18V可调直流电源; 2、函数信号发生器; 3、双踪示波器; 4、万用电表; 5、实验用晶体管共射放大器、导线、电阻若干。 三、实验原理 图1为电阻分压式工作点稳定单管放大器实验电路图,它的偏置电路采用和组成的分压电路,并在发射极中接有电阻,以稳定放大器的静态工作点。当在放大器的输入端加入输入信号后,在放大器的输出端便可得到一个与相位相反,幅值被放大了的输出信号,从而实现了电压放大。 图1 RC微分电路 在图1电路中,当流过偏置电阻和的电流远大于晶体管T的基极电流时,则它的静态工作点可用下式估算

电压放大倍数 输入电阻 输出电阻 四、实验内容 1、实验准备: 1)按照实验电路图将未接上的原件和导线接到实验电路板中,将各仪器公共端连在一起。 2)估算负载电阻大小,并用万用电表测出其阻值。 3)打开函数发生器和示波器,将函数发生器输出端接到示波器中,选择频率2K的正弦波,然后观察示波器,并调节频率为1KHz,输出电压为150mV。 2、调试静态工作点 将调至最大,输入端不接;接通+12V电源、调节,使 ,即,用万用表调到偏大的直流电压测量档位,测量、 、、在用万用表测量的值,记录到表1中。 表1 测量值计算值 (V)(V)(V)(V)(V)(mA) 53

晶体管共射极单管放大器 实验报告2

肇庆学院 晶体管共射极单管放大器实验报告 一、实验设备 D2X-1型电子学综合实验装置,示波器,导线若干。 二、实验原理 图2-1为电阻分压式工作点稳定单管放大器实验电路图。它的偏置电路采用R B1和R B2组成的分 压电路,并在发射极中接有电阻R E,以稳定放大器的静态工作点。当在放大器的输入端加入输入信 号u i后,在放大器的输出端便可得到一个与u i相位相反,幅值被放大了的输出信号u o,从而实现了 电压放大。 图2-1 在图2-1电路中,当流过偏置电阻R B1和R B2的电流远大于晶体管T的基极电流I B时(一般5~10倍),静态工作点Q可用下列公式估算: 电压放大倍数:

由于电子器件性能的分散性比较大,因此在设计和制作晶体管放大电路时,必须测量和调试。在设计前应测量所用元器件的参数,为电路设计提供必要的依据,在完成设计和装配以后,还必须测量和调试放大器的静态工作点和各项性能指标。一个优质放大器,必定是理论设计与实验调整相结合的产物。因此,除了学习放大器的理论知识和设计方法外,还必须掌握必要的测量和调试技术。 放大器的测量和调试一般包括:放大器静态工作点的测量与调试,消除干扰与自激振荡及放大器各项动态参数的测量与调试等。 1. 放大器静态工作点的测量与调试 (1)静态工作点的测量 测量放大器的静态工作点,应在输入信号u i=0的情况下进行,即将放大器输入端与地端短接,然后选用量程合适的直流毫安表和直流电压表,分别测量晶体管的集电极电流I C以及各电极对地的电位U B、U C和U E。一般实验中,为了避免断开集电极,所以采用测量电压U E或U C,然后算出I C的方法,例如,只要测出U E,即可用 算出IC(也可根据,由U C确定I C),同时算出U BE=U B-U E,U CE=U C-U E。 为了减小误差,提高测量精度,应选用内阻较高的直流电压表。 (2)静态工作点的调试 放大器静态工作点的调试是指对管子集电极电流I C(或U CE)的调整与测试。 静态工作点是否合适,对放大器的性能和输出波形都有很大影响。如工作点偏高,放大器在加入交流信号以后易产生饱和失真,此时u O的负半周将被削底,如图2-2(a)所示;如工作点偏低则易产生截止失真,即u O的正半周被缩顶(一般截止失真不如饱和失真明显),如图2-2(b) 所示。这些情况都不符合不失真放大的要求。所以在选定工作点以后还必须进行动态调试,即在放大器的输入端加入一定的输入电压u i,检查输出电压u O的大小和波形是否满足要求。如不满足,则应调节静态工作点的位置。

单管共射极分压式放大电路仿真实验报告

单管共射极分压式放大电路仿真实验报告 班级:电气工程及自动化二班 学号:141600194 姓名:辛军奎

单管共射极分压式放大电路仿真实验报告 一、实验目的:1.学会放大器静态工作点的调试方法,分析静态工作点对放大器性能的影响。 2.掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的 测量法。 3.熟悉简单放大电路的计算及电路调试。 4.能够设计较为简单的对温度稳定的具有一定放大倍数的放大电路。 二、实验要求:输入信号Ai=5 mv, 频率f=20KHz, 输出电阻R0=3kΩ, 放大倍数Au=60,直 流电源V cc=6v,负载R L=20 kΩ,Ri≥5k,Ro≤3k,电容C1=C2=C3=10uf。 三、实验原理: (一)双极型三极管放大电路的三种基本组态。 1.单管共射极放大电路。 (1)基本电路组成。如下图所示:

(2)静态分析。I BQ=(V cc-U BEQ)/R B (V CC为图中RC(1)) I CQ =βI BQ U CEQ=V CC-I CQ R C (3)动态分析。A U=-β(R C//R L)/r be R i =r be// R B R o=Rc 2.单管共集电极放大电路(射极跟随器)。 (1)基本电路组成。如下图所示: (2)静态分析。I BQ=(V cc-U BEQ)/(R b +(1+β)R e)(V CC为图中Q1(C)) I CQ=βI BQ U CEQ=V CC-I EQ R e≈V CC-I CQ R e (3)动态分析。A U=(1+β)(R e//RL)/(r be+(1+β)(R e//R L)) 电压放大倍数恒小于1,而且接近于1。 Ai=-(1+β)

晶体管共射极单管放大器__实验报告

实验一 晶体管共射极单管放大器实验报告 一、实验目的 1、 学会放大器静态工作点的调试方法,分析静态工作点对放大器性能的影响。 2、 掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的测试方法。 3、 熟悉常用电子仪器及模拟电路实验设备的使用。 二、实验原理 图2-1为电阻分压式工作点稳定单管放大器实验电路图。它的偏置电路采用R B1和R B2组成的分压电路,并在发射极中接有电阻R E ,以稳定放大器的静态工作点。当在放大器的输入端加入输入信号u i 后,在放大器的输出端便可得到一个与u i 相位相反,幅值被放大了的输出信号u o ,从而实现了电压放大。 图2-1 共射极单管放大器实验电路 在图2-1电路中,当流过偏置电阻R B1和R B2的电流远大于晶体管T 的基极电流I B 时(一般5~10倍),静态工作点Q 可用下列公式估算:

电压放大倍数: 输入电阻 R i=R B1//R B2//r be 输出电阻 R O≈R C 由于电子器件性能的分散性比较大,因此在设计和制作晶体管放大电路时,必须测量和调试。在设计前应测量所用元器件的参数,为电路设计提供必要的依据,在完成设计和装配以后,还必须测量和调试放大器的静态工作点和各项性能指标。一个优质放大器,必定是理论设计与实验调整相结合的产物。因此,除了学习放大器的理论知识和设计方法外,还必须掌握必要的测量和调试技术。 放大器的测量和调试一般包括:放大器静态工作点的测量与调试,消除干扰与自激振荡及放大器各项动态参数的测量与调试等。 1. 放大器静态工作点的测量与调试 (1)静态工作点的测量 测量放大器的静态工作点,应在输入信号u i=0的情况下进行,即将放大器输入端与地端短接,然后选用量程合适的直流毫安表和直流电压表,分别测量晶体管的集电极电流I C 以及各电极对地的电位U B、U C和U E。一般实验中,为了避免断开集电极,所以采用测量电压U E或U C,然后算出I C的方法,例如,只要测出U E,即可用 算出IC(也可根据,由U C确定I C),同时算出U BE=U B -U E,U CE=U C-U E。 为了减小误差,提高测量精度,应选用内阻较高的直流电压表。 (2)静态工作点的调试 放大器静态工作点的调试是指对管子集电极电流I C(或U CE)的调整与测试。 静态工作点是否合适,对放大器的性能和输出波形都有很大影响。如工作点偏高,放大器在加入交流信号以后易产生饱和失真,此时u O的负半周将被削底,如图2-2(a)所示;如工作点偏低则易产生截止失真,即u O的正半周被缩顶(一般截止失真不如饱和失真明显),

相关文档
相关文档 最新文档