文档库 最新最全的文档下载
当前位置:文档库 › 排列组合练习试题和答案解析86421

排列组合练习试题和答案解析86421

排列组合练习试题和答案解析86421
排列组合练习试题和答案解析86421

《排列组合》

一、排列与组合

1.从9人中选派2人参加某一活动,有多少种不同选法

2.从9人中选派2人参加文艺活动,1人下乡演出,1人在本地演出,有多少种不同选派方法

3. 现从男、女8名学生干部中选出2名男同学和1名女同学分别参加全校“资源”、“生态”和“环保”三个夏令营活动,已知共有90种不同的方案,那么男、女同学的人数是

A.男同学2人,女同学6人

B.男同学3人,女同学5人

C. 男同学5人,女同学3人

D. 男同学6人,女同学2人

4.一条铁路原有m个车站,为了适应客运需要新增加n个车站(n>1),则客运车票增加了58种(从甲站到乙站与乙站到甲站需要两种不同车票),那么原有的车站有

个个个个

5.用0,1,2,3,4,5这六个数字,

(1)可以组成多少个数字不重复的三位数

(2)可以组成多少个数字允许重复的三位数

(3)可以组成多少个数字不允许重复的三位数的奇数

(4)可以组成多少个数字不重复的小于1000的自然数

(5)可以组成多少个大于3000,小于5421的数字不重复的四位数

二、注意附加条件

人排成一列(1)甲乙必须站两端,有多少种不同排法

(2)甲乙必须站两端,丙站中间,有多少种不同排法

2.由1、2、3、4、5、6六个数字可组成多少个无重复数字且是6的倍数的五位数

3.由数字1,2,3,4,5,6,7所组成的没有重复数字的四位数,按从小到大的顺序排列起来,第379个数是

4. 设有编号为1、2、3、4、5的五个茶杯和编号为1、2、3、4、5的五个杯盖,将五个杯盖盖在五个茶杯上,至少有两个杯盖和茶杯的编号相同的盖法有 种 种 种 种

5.从编号为1,2,…,10,11的11个球中取5个,使这5个球中既有编号为偶数的球又有编号为奇数的球,且它们的编号之和为奇数,其取法总数是 种 种 种 种

6.从6双不同颜色的手套中任取4只,其中恰好有1双同色的取法有 种 种 种 种

7. 用0,1,2,3,4,5这六个数组成没有重复数字的四位偶数,将这些四位数从小到大排列起来,第71个数是 。 三、间接与直接

1.有4名女同学,6名男同学,现选3名同学参加某一比赛,至少有1名女同学,由多少种不同选法

2. 6名男生4名女生排成一行,女生不全相邻的排法有多少种

3.已知集合A 和B 各12个元素,A B I 含有4个元素,试求同时满足下列两个条件的集合C 的个数:(1)()C A B ?U 且C 中含有三个元素;(2)C A ≠?I ,?表示空集。

4. 从5门不同的文科学科和4门不同的理科学科中任选4门,组成一个综合高考科目组,若要求这组科目中文理科都有,则不同的选法的种数 种 种 种 种

5.四面体的顶点和各棱中点共有10个点,在其中取4个不共面的点不同取法有多少种

6. 以正方体的8个顶点为顶点的四棱锥有多少个

7. 对正方体的8个顶点两两连线,其中能成异面直线的有多少对 四、分类与分步

1.求下列集合的元素个数.

(1){(,)|,,6}M x y x y N x y =∈+≤; (2){(,)|,,14,15}H x y x y N x y =∈≤≤≤≤.

2.一个文艺团队有9名成员,有7人会唱歌,5人会跳舞,现派2人参加演出,其中1名会唱歌,1名会跳舞,有多少种不同选派方法

3.已知直线

12

//l l ,在1l 上取3个点,在2l 上取4个点,每两个点连成直线,那么这些直线在1l 和

2

l 之间的交点(不包括1l 、2l

上的点)最多有

A. 18个 个 个 个

4. 9名翻译人员中,6人懂英语,4人懂日语,从中选拔5人参加外事活动,要求其中3人担任英语翻译,2人担任日语翻译,选拔的方法有 种(用数字作答)。

5.某博物馆要在20天内接待8所学校的学生参观,每天只安排一所学校,其中一所人数较多的学校要连续参观3天,其余学校只参观1天,则在这20天内不同的安排方法为 A.

37

2017

C A 种 B.

820

A 种 C.

17

1817

C A 种 D.

1818

A 种

6. 从10种不同的作物种子选出6种放入6个不同的瓶子展出,如果甲乙两种种子不许放第一

号瓶内,那么不同的放法共有 A.

24108

C A 种 B.

15

99

C A 种 C.

15

89

C A 种 D.

15

98

C A 种

7. 在画廊要展出1幅水彩画、4幅油画、5幅国画,要求排成一排,并且同一种的画摆放在一

起,还要求水彩画不能摆两端,那么不同的陈列方式有 A.

15

45

A A 种 B.

245

345

A A A 种 C.

145

445

A A A 种 D.

245

245

A A A 种

8. 把一个圆周24等分,过其中任意3个分点,可以连成圆的内接三角形,其中直角三角形的

个数是

9. 有三张纸片,正、反面分别写着数字1、2、3和4、5、6 ,将这三张纸片上的数字排成三位数,共能组不同三位数的个数是

A. 24

10.在1~20共20个整数中取两个数相加,使其和为偶数的不同取法共有多少种 11. 如下图,共有多少个不同的三角形

解:所有不同的三角形可分为三类:

第一类:其中有两条边是原五边形的边,这样的三角形共有5个

第二类:其中有且只有一条边是原五边形的边,这样的三角形共有5×4=20个 第三类:没有一条边是原五边形的边,即由五条对角线围成的三角形,共有5+5=10个 由分类计数原理得,不同的三角形共有5+20+10=35个.

12.从5部不同的影片中选出4部,在3个影院放映,每个影院至少放映一部,每部影片只放映一场,共有 种不同的放映方法(用数字作答)。 五、元素与位置——位置分析 人争夺5项冠军,结果有多少种情况 2. 75600有多少个正约数有多少个奇约数

解:75600的约数就是能整除75600的整数,所以本题就是分别求能整除75600的整数和奇约数的个数.

由于 75600=24×33×52×7

(1) 75600的每个约数都可以写成l

k j l 7532???的形式,其中40≤≤i ,30≤≤j ,20≤≤k ,10≤≤l

于是,要确定75600的一个约数,可分四步完成,即l k j i ,,,分别在各自的范围内任取一个值,这样i 有5种取法,j 有4种取法,k 有3种取法,l 有2种取法,根据分步计数原理得约数的个数为5×4×3×2=120个.

(2)奇约数中步不含有2的因数,因此75600的每个奇约数都可以写成l

k j 753??的形式,同上奇约

数的个数为4×3×2=24个.

3. 2名医生和4名护士被分配到两所学校为学生体检,每校分配1名医生和2名护士,不同分配方法有多少种

4.有四位同学参加三项不同的比赛,

(1)每位同学必须参加一项竞赛,有多少种不同的结果 (2)每项竞赛只许一位学生参加,有多少种不同的结果

解:(1)每位学生有三种选择,四位学生共有参赛方法:333381???=种;

(2)每项竞赛被选择的方法有四种,三项竞赛共有参赛方法:44464??=种. 六、染色问题

1.如图一,要给①,②,③,④四块区域分别涂上五种颜色中的某一种,允许同一种颜色使用多次,但相邻区域必须涂不同颜色,则不同涂色方法种数为() A. 180 B. 160 C. 96 D. 60

若变为图二,图三呢(240种,5×4×4×4=320种) 2. 某班宣传小组一期国庆专刊,现有红、 黄、白、绿、蓝五种颜色的粉笔供选用, 要求在黑板中A 、B 、C 、D (如图)每一

部分只写一种颜色,相邻两块颜色不同,

则不同颜色粉笔书写的方法共有 种(用具体数字作答)。 七、消序

1. 有4名男生,3名女生。现将他们排成一行,要求从左到右女生从矮到高排列,有多少种排法

2. 书架上有6本书,现再放入3本书,要求不改变原来6本书前后的相对顺序,有多少种不同排法 八、分组分配

1.某校高中一年级有6个班,分派3名教师任教,每名教师任教二个班,不同的安排方法有多少种

2. 高三级8个班,分派4名数学老师任教,每位教师任教2个班,则不同安排方法有多少种

3. 6本不同的书分给甲、乙、丙三人,每人一本、二本、三本的不同分法有多少种 项工程,甲承包三项,乙承包一项,丙、丁各承包二项,不同的承包方案有 种

图一

图二

图三

5..六人住A、B、C三间房,每房最多住三人,

(1)每间住两人,有种不同的住法,

(2)一间住三人,一间住二人,一间住一人,有种不同的住宿方案。

6. 8人住ABC三个房间,每间最多住3人,有多少种不同住宿方案

7.有4个不同小球放入四个不同盒子,其中有且只有一个盒子留空,有多少种不同放法

7. 把标有a,b,c,d,…的8件不同纪念品平均赠给甲、乙两位同学,其中a、b不赠给同一个人,则不同的赠送方法有种(用数字作答)。

九、捆绑

1. A、B、C、D、E五个人并排站成一列,若A、B必相邻,则有多少种不同排法

2. 有8本不同的书,其中科技书3本,文艺书2本,其它书3本,将这些书竖排在书架上,则科技书连在一起,文艺书也连在一起的不同排法种数与这8本书的不同排法之比为

:14 :28 :140 :336

十、插空

1.要排一个有6个歌唱节目和4个舞蹈节目的演出节目单,任何两个舞蹈节目都不相邻,有多少种不同排法

2、4名男生和4名女生站成一排,若要求男女相间,则不同的排法数有()

3. 要排一个有5个歌唱节目和3个舞蹈节目的演出节目单,如果舞蹈节目不相邻,则有多少种不同排法

4. 5人排成一排,要求甲、乙之间至少有1人,共有多少种不同排法

5..把5本不同的书排列在书架的同一层上,其中某3本书要排在中间位置,有多少种不同排法到7七个自然数组成一个没有重复数字的七位数,其中偶数不相邻的个数有个.

7.排成一排的8个空位上,坐3人,使每人两边都有空位,有多少种不同坐法

张椅子放成一排,4人就坐,恰有连续三个空位的坐法有多少种

9. 排成一排的9个空位上,坐3人,使三处有连续二个空位,有多少种不同坐法

10. 排成一排的9个空位上,坐3人,使三处空位中有一处一个空位、有一处连续二个空位、有一处连续三个空位,有多少种不同坐法

11. 某城市修建的一条道路上有12只路灯,为了节省用电而又不影响正常的照明,可以熄灭其中三只灯,但不能熄灭两端的灯,也不能熄灭相邻的两只灯,那么熄灯的方法共有 种 A.

38

C B.

38

A C.

39

C D.

39

A

12. 在一次文艺演出中,需给舞台上方安装一排彩灯共15只,以不同的点灯方式增加舞台效果,

要求设计者按照每次点亮时,必需有6只灯是关的,且相邻的灯不能同时被关掉,两端的灯必需点亮的要求进行设计,那么不同的点亮方式是 种 种 种 种

13. 一排长椅上共有10个座位,现有4人就座,恰有五个连续空位的坐法种数为 。(用数字作答) 十一、隔板法 1. 不定方程

12347

x x x x +++=的正整数解的组数是 ,非负整数解的组数是 。

2.某运输公司有7个车队,每个车队的车多于4辆,现从这7个车队中抽出10辆车,且每个车队至少抽一辆组成运输队,则不同的抽法有 种 种 种 种

3. 要从7所学校选出10人参加素质教育研讨班,每所学校至少参加1人,则这10个名额共有 种分配方法。

4.有编号为1、2、3的3个盒子和10个相同的小球,现把10个小球全部装入3个盒子中,使得每个盒子所装球数不小于盒子的编号数,这种装法共有 种 种 种 种

5.将7只相同的小球全部放入4个不同盒子,每盒至少1球的方法有多少种

6.某中学从高中7个班中选出12名学生组成校代表队,参加市中学数学应用题竞赛活动,使代表中每班至少有1人参加的选法有多少种 十二、对应的思想

1.在100名选手之间进行单循环淘汰赛(即一场比赛失败要退出比赛),最后产生一名冠军,问要举行几场 十三、找规律

1.在1~20共20个整数中取两个数相加,使其和大于20的不同取法共有多少种

解:分类标准一,固定小加数.小加数为1时,大加数只有20这1种取法;小加数为2时,大加数有19或20两种取法;小加数为3时,大加数为18,19或20共3种取法…小加数为10时,大加数为11,12,…,20共10种取法;小加数为11时,大加数有9种取法…小加数取19时,大加数有1种取法.由分类计数原理,得不同取法共有1+2+…+9+10+9+…+2+1=100种.

分类标准二:固定和的值.有和为21,22,…,39这几类,依次有取法10,9,9,8,8, …,2,2,1,1种.由分类计数原理得不同取法共有10+9+9+…+2+2+1+1=100种.

2.从1到100的自然数中,每次取出不同的两个数,使它们的和大于一百,则不同的取法有

种种种种

十四、实验——写出所有的排列或组合

1.将数字1,2,3,4填入标号1,2,3,4的四个方格中,每个格填一个,则每一个方格的标号与所填的数字均不同的填法有种.

???=种.

解:列表排出所有的分配方案,共有3+3+3=9种,或33119

未归类几道题

1.从数字0,1,3,5,7中取出不同的三位数作系数,可以组成多少个不同的一元二次方程

ax+bx+c=0其中有实根的方程有多少个

变式:若直线Ax+By+C=0的系数A、B可以从0,1,2,3,6,7这六个数字中取不同的数值,则这些方程所表示的直线条数是(A)

2.在100件产品中,有98件合格品,2件不合格品.从这100件产品中任意抽出3件

(1)一共有多少种不同的抽法

(2)抽出的3件中恰好有一件是不合格品的抽法有多少种

(3)抽出的3件中至少有一件是不合格品的抽法有多少种

双互不相同的鞋子混装在一只口袋中,从中任意抽取4只,试求各有多少种情况出现如下结果(1)4只鞋子没有成双;(2) 4只鞋子恰好成双;

(3) 4只鞋子有2只成双,另2只不成双

是集合M={a,b,c,d}到N{0,1,2}的映射,且f(a)+f(b)+f(c)+f(d)=4,则不同的映射有多少个

解:根据a,b,c,d 对应的象为2的个数分类,可分为三类:

第一类,没有一个元素的象为2,其和又为4,则集合M 所有元素的象都为1,这样的映射只有1个

第二类,有一个元素的象为2,其和又为4,则其余3个元素的象为0,1,1,这样的映射有C41C3 1C22个

第三类,有两个元素的象为2,其和又为4,则其余2个元素的象必为0,这样的映射有C42C22个

根据加法原理共有 1+ C41C3 1C22 +C42 C22=19个

5.四个不同的小球放入编号为1,2,3,4的四个盒子中,则恰有一个空盒的方法共有多少种

6.由12个人组成的课外文娱小组,其中5个人只会跳舞,5个人只会唱歌,2个人既会跳舞又会唱歌,若从中选出4个会跳舞和4个会唱歌的人去排演节目,共有多少种不同选法

排列、组合练习题参考答案: 1.

2936

C = 2.

2972

A =

3.解析:设男生有n 人,则女生有(8-n )人,由题意得

()

213831(8)6902n n n n C C A n --??=

?-?= 即()1(8)30n n n --=

用选支验证选(B )

4.分类:①恰有两个杯盖和茶杯的编号相同的盖法有

25220

C ?=种;

②恰有三个杯盖和茶杯的编号相同的盖法有3

510

C =种;

③无恰有四个杯盖和茶杯的编号相同的盖法,只有五个杯盖和茶杯的编号完全相同的盖法1种。 故选(B )31种。 5 .分类:①1奇4偶:

14

6530

C C = ②3奇2偶:

32

65200

C C = 选(A )

6.分步:

1

22652240

C C ??=选(A )

7.间接法:

33106

C C -

或分类:

1221346464

C C +C C +C

8. 间接法:

10

471047

A A A

-

9. 间接法:

33

208C C -

10.对应:一交点对应1

l 、2

l 上各两点:

22

3418

C C =个选(A )

11. 分类:①英语翻译从单会英语中选派:

32

5460

C C =

②英语翻译选派中一人既会英语又会日语:225330

C C =

填90

12. 分步:2

45245

A A A

选(D )

13.元素与位置:以冠军为位置,选人:5

777777????=

14.432

756002357=???①5432120???=;②43224??=

15. 分步:5433180???= 填180

16.消序:99

6

6789A A =??=504 或分步插空:789??=504 或39A

17.先分组后分配:222

3

64233

3C C C A A ? 或位置分析:222642C C C

18. 先分组后分配:

3213

6313

C C C A

懂英语

1

懂日语

5

6

A

4

B

8

8

19. 位置分析:

3122

8542 C C C C

20.(1)仿17题;(2)先分组后分配:

3213

6313 C C C A

21. 先分组后分配:

332

3 852

3

2

2

C C C

A

A

?

或分类,先确定住两人的房间——位置分析:

1233

3863 C C C C

重复题目: 先分组后分配:

23

43

C A或分类——位置分析:3211

421

C C C

22.捆绑:

532

532

8

8

1

28

A A A

A

=

选(B)

23. 插空:

43

45

A A24. 插空:3

4

A25. 插空:42

45

A A26. 插空:33

34

A C

27. 插空:

33

34

A A28.(A)3

8

C

29. 隔板法:

63

99

987

84

321

C C

??

===

??选(A)

30.1o先在编号为2、3的2个盒子分别放入1个小球、2个小球;

2o对余下7个小球用隔板法2615

C=。选(C)

31.对应的思想:100名选手之间进行单循环淘汰赛,最后产生一名冠军,要环淘99名选手,每淘汰1名选手,对应一场比赛。故要举行99场比赛。

32.[ 解法一]:找规律:固定小加数.小加数为1时,大加数只有20这1种取法;小加数为2时,大加数有19或20两种取法;小加数为3时,大加数为18,19或20共3种取法…小加数为10时,大加数为11,12,…,20共10种取法;小加数为11时,大加数有9种取法…小加数取19时,大加数有1种取法.由分类计数原理,得不同取法共有1+2+…+9+10+9+…+2+1=100种.

[法二]:固定和的值.有和为21,22,…,39这几类,依次有取法10,9,9,8,8, …,2,2,1,1种.由分类计数原理得不同取法共有10+9+9+…+2+2+1+1=100种.

以上两种方法是两种不同的分类。

33. 解:列表排出所有的分配方案,共有3+3+3=9种,或33119

???=种.

34.(1)

44

10

2

C?(2)2

10

C(3)122

109

2

C C??

35. 解:根据a,b,c,d对应的象为2的个数分类,可分为三类:

第一类,没有一个元素的象为2,其和又为4,则集合M所有元素的象都为1,这样的映射只有1个

第二类,有一个元素的象为2,其和又为4,则其余3个元素的象为0,1,1,这样的映射有112

432

C C C=12个

第三类,有两个元素的象为2,其和又为4,则其余2个元素的象必为0,这样的映射有

22

42

C C=6

根据加法原理共有1+

112

432

C C C+22

42

C C=1+12+6=19个

排列组合典型例题(带详细答案)

例1 用0到9这10 个数字.可组成多少个没有重复数字的四位偶数? 例2三个女生和五个男生排成一排 (1)如果女生必须全排在一起,可有多少种不同的排法? (2)如果女生必须全分开,可有多少种不同的排法? (3)如果两端都不能排女生,可有多少种不同的排法? (4)如果两端不能都排女生,可有多少种不同的排法? 例3 排一张有5个歌唱节目和4个舞蹈节目的演出节目单。 (1)任何两个舞蹈节目不相邻的排法有多少种? (2)歌唱节目与舞蹈节目间隔排列的方法有多少种? 例4某一天的课程表要排入政治、语文、数学、物理、体育、美术共六节课,如果第一节不排体育,最后一节不排数学,那么共有多少种不同的排课程表的方法. 例5现有3辆公交车、3位司机和3位售票员,每辆车上需配1位司机和1位售票员.问车辆、司机、售票员搭配方案一共有多少种? 例6下是表是高考第一批录取的一份志愿表.如果有4所重点院校,每所院校有3个专业是你较为满意的选择.若表格填满且规定学校没有重复,同一学校的专业也没有重复的话,你将有多少种不同的填表方法? 例77名同学排队照相. (1)若分成两排照,前排3人,后排4人,有多少种不同的排法?

(2)若排成两排照,前排3人,后排4人,但其中甲必须在前排,乙必须在后排,有多少种不同的排法? (3)若排成一排照,甲、乙、丙三人必须相邻,有多少种不同的排法? (4)若排成一排照,7人中有4名男生,3名女生,女生不能相邻,有多少种不面的排法? 例8计算下列各题: (1) 215 A ; (2) 66 A ; (3) 1 1 11------?n n m n m n m n A A A ; 例9 f e d c b a ,,,,,六人排一列纵队,限定a 要排在b 的前面(a 与b 可以相邻,也可以不相邻),求共有几种排法. 例10 八个人分两排坐,每排四人,限定甲必须坐在前排,乙、丙必须坐在同一排,共有多少种安排办法? 例11 计划在某画廊展出10幅不同的画,其中1幅水彩画、4幅油画、5幅国画,排成一行陈列,要求同一品种的画必须连在一起,并且不彩画不放在两端,那么不同陈列方式有 例12 由数字5,4,3,2,1,0组成没有重复数字的六位数,其中个位数字小于十位数的个数共有( ). 例13 用5,4,3,2,1,这五个数字,组成没有重复数字的三位数,其中偶数共有( ). 例14 用543210、、、、、共六个数字,组成无重复数字的自然数,(1)可以组成多少个无重 复数字的3位偶数?(2)可以组成多少个无重复数字且被3整除的三位数?

排列组合问题经典题型解析含答案

排列组合问题经典题型与通用方法 1. 相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列 例1. A,B,C,D,E 五人并排站成一排,如果 A,B 必须相邻且B 在A 的右边,则不同的排法有( ) A 、60 种 B 、48 种 C 、36 种 D 、24 种 2. 相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几 个元素全排列,再把规定的相离的 几个元素插入上述几个元素的空位和两端 ? 例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是( ) A 、1440 种 B 、3600 种 C 、4820 种 D 、4800 种 3. 定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法 例3.A,B,C,D,E 五人并排站成一排,如果 B 必须站在A 的右边(A, B 可以不相邻)那么不同的排法有 ( ) 4. 标号排位问题分步法:把元素排到指定位置上, 可 先把某个元素按规定排入, 第二步再排另一个元素, 如 此继续下去,依次即可完成 ? 例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所 填数字均不相同的填法有( ) A 、6 种 B 、9 种 C 、11 种 D 、23 种 5. 有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法 例5.( 1 )有甲乙丙三项任务,甲需 2人承担,乙丙各需一人承担,从 10人中选出4人承担这三项任务, 不同的选法种数是( ) A 、1260 种 B 、2025 种 C 、2520 种 D 、5040 种 (2)12名同学分别到三个不同的路口进行流量的调查,若每个路口 6. 全员分配问题分组法: 例6.( 1)4名优秀学生全部保送到 3所学校去,每所学校至少去一名,则不同的保送方案有多少种? A 、24 种 B 、60 种 C 、90 种 D 、 120 种 4人,则不同的分配方案有( 4 4 4 C 12C 8C 4 种 4 4 3C 12C 8C C 、 C 12C 8 A 3 种

高中数学排列组合训练含答案

排列组合训练 一、单选题(共32题;共64分) 1.完成一项工作,有两种方法,有5个人只会用第一种方法,另外有4个人只会用第二种方法,从这9个人中选1个人完成这项工作,则不同的选法共有() A. 5种 B. 4种 C. 9种 D. 20种 2.如图所示十字路口来往的车辆,如果不允许回头,共有不同的行车路线有( ) A. 24种 B. 16种 C. 12种 D. 10种 3.甲乙两队进行排球比赛,已知在一局比赛中甲队获胜的概率是,没有平局.若采用三局两胜制比赛,即先胜两局者获胜且比赛结束,则甲队获胜的概率等于() A. B. C. D. 4.用10元、5元和1元来支付20元钱的书款,不同的支付方法的种数为() A. 3 B. 5 C. 9 D. 12 5.学校将位同学分别推荐到北京大学、上海交通大学、浙江大学三所大学参加自主招生考试,则每所大学至少推荐一人的不同推荐的方法种数为() A. B. C. D. 6.某一数学问题可用综合法和分析法两种方法证明,有5位同学只会用综合法证明,有3位同学只会用分析法证明,现任选1名同学证明这个问题,不同的选法种数有()种. A. 8 B. 15 C. 18 D. 30 7.现有6名同学去听同时进行的5个课外知识讲座,每名同学可自由选择其中的一个讲座,不同选法的种数是() A. B. C. D. 8.从6名男生和4名女生中选出3名志愿者,其中恰有1名女生的选法共有() A. 28种 B. 36种 C. 52种 D. 60种 9.6个人分乘两辆不同的汽车,每辆汽车最多坐4人,则不同的乘车方法种数为() A. 40 B. 50 C. 60 D. 70 10.一个教室有五盏灯,一个开关控制一盏灯,每盏灯都能正常照明,那么这个教室能照明的方法有种() A. 24 B. 25 C. 31 D. 32 11.某技术学院安排5个班到3个工厂实习,每个班去一个工厂,每个工厂至少安排一个班,则不同的安排方法共有()

高中数学排列组合经典题型全面总结版

高中数学排列与组合 (一)典型分类讲解 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排, 先排末位共有1 3C 然后排首位共有1 4C 最后排其它位置共有 34A 由分步计数原理得1 1 3 434 288C C A = 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法? 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元 素内部进行自排。由分步计数原理可得共有 522522480A A A =种不同的排法 练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20 三.不相邻问题插空策略 例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种? 解:分两步进行第一步排2个相声和3个独唱共有55A 种, 第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种 46 A 不同的方法,由分步计数原理,节目的不同顺序共有54 56A A 种 练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 30 四.定序问题倍缩空位插入策略 例4. 7人排队,其中甲乙丙3人顺序一定共有多少不同的排法 解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素 之间的全排列数,则共有不同排法种数是: 73 73/A A (空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有 47 A 种方法,其余的三个位置甲乙丙共有 1种坐法,则共有4 7A 种方法。 思考:可以先让甲乙丙就坐吗? (插入法)先排甲乙丙三个人,共有1种排法,再把其余4四人依次插入共有 方法 练习题:10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法? 5 10C 五.重排问题求幂策略 例5.把6名实习生分配到7个车间实习,共有多少种不同的分法 解:完成此事共分六步:把第一名实习生分配到车间有 7 种分法.把第二名实习生分配到车间也有7种分依此类推,由分步计数原 理共有6 7种不同的排法 练习题: 1. 某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插 法的种数为 42 4 4 3 允许重复的排列问题的特点是以元素为研究对象,元素不受位置的约束,可以逐一安排各个元素的位置,一般地n 不同的元素没有限制地安排在m 个位置上的排列数为n m 种

排列组合问题经典题型解析含答案

排列组合问题经典题型解析含答案

排列组合问题经典题型与通用方法 1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列. 例1.,,,, A B C D E五人并排站成一排,如果,A B必须相邻且B在A 的右边,则不同的排法有() A、60种 B、48种 C、36种 D、24种 2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端. 例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是() A、1440种 B、3600种 C、4820种 D、4800种 3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法. 例3.A,B,C,D,E五人并排站成一排,如果B必须站在A的右边(,A B可以不相邻)那么不同的排法有()A、24种 B、60种 C、90种D、120种

4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成. 例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有( ) A 、6种 B 、9种 C 、11种 D 、23种 5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法. 例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是( ) A 、1260种 B 、2025种 C 、2520种 D 、5040种 (2)12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有( ) A 、44412 8 4 C C C 种 B 、44412 8 4 3C C C 种 C 、44312 8 3 C C A 种 D 、 4441284 33 C C C A 种

排列组合知识点总结+典型例题及答案解析

排列组合知识点总结+典型例题及答案解析 一.基本原理 1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。 2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。 注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。 二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一 .m n m n A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从 1.公式:1.()()()()! ! 121m n n m n n n n A m n -=+---=…… 2. 规定:0!1= (1)!(1)!,(1)!(1)!n n n n n n =?-+?=+ (2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ?=+-?=+?-=+-; (3) 111111 (1)!(1)!(1)!(1)!!(1)! n n n n n n n n n +-+==-=- +++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。 1. 公式: ()()()C A A n n n m m n m n m n m n m m m ==--+= -11……!! !! 10 =n C 规定: 组合数性质: .2 n n n n n m n m n m n m n n m n C C C C C C C C 21011 =+++=+=+--…… ,, ①;②;③;④ 111 12111212211 r r r r r r r r r r r r r r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-++++ +=+++ +=++ +=注: 若1 2 m m 1212m =m m +m n n n C C ==则或 四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。

排列组合培优训练

排列组合强化训练 1.5人排一个5天的值日表,每天排一人值日,每人可以排多天或不排,但相邻两天不能排同一人,值日表排法的总数为( ) A.120 B.324 C.720 D.1280 2.一次考试中,要求考生从试卷上的9个题目中选6个进行答题,要求至少包含前5个题目中的3个,则考生答题的不同选法的种数是( ) A.40 B.74 C.84 D.200 3.以三棱柱的六个顶点中的四个顶点为顶点的三棱锥有( ) A.18个B.15个C.12个D.9个 4.从一架钢琴挑出的十个音键中,分别选择3个,4个,5个,…,10个键同时按下,可发出和弦,若有一个音键不同,则发出不同的和弦,则这样的不同的和弦种数是( ) A.512 B.968 C.1013 D.1024 5.用0,3,4,5,6排成无重复字的五位数,要求偶数字相邻,奇数字也相邻,则这样的五位数的个数是( ) A.36 B.32 C.24 D.20 6.现有一个碱基A,2个碱基C,3个碱基G,由这6个碱基组成的不同的碱基序列有( ) A.20个B.60个C.120个D.90个 7.现有男女学生共8人,从男生中选2人,从女生中选1人,分别参加数理化三科竞赛,共有90种不同方案,则男、女生人数可能是( ) A.2男6女B.3男5女C.5男3女D.6男2女 8.已知集合A={1,2,3},B={4,5,6},从A到B的映射f(x),B中有且仅有2个元素有原象,则这样的映射个数为( ) A.18 B.9 C.24 D.27 9.有五名学生站成一排照毕业纪念照,其中甲不排在乙的左边,又不与乙相邻,而不同的站法有( ) A.24种B.36种C.60种D.66种10.等腰三角形的三边均为正数,它们周长不大于10,这样不同形状的三角形的个数为( ) A.8 B.9 C.10 D.11 11.甲、乙、丙三同学在课余时间负责一个计算机房的周一至周六的值班工作,每天1人值班,每人值班2天,如果甲同学不值周一的班,乙同学不值周六的班,则可以排出不同的值班表有( ) A.36种B.42种C.50种D.72种 12.设有编号为1,2,3,4,5的五个小球和编号为1,2,3,4,5的五个盒子, 现将这五个球投放到五个盒子内,要求每个盒内放1个球,并且恰好有两个球的编号与盒子编号相同,则这样的投放方法总数为( ) A 60 B 48 C 30 D 20 13.一栋7层的楼房备有电梯,在一楼有甲、乙、丙三人进了电梯,则满足有且仅有一人要上7楼,且甲不在2楼下电梯的所有可能情况种数有_______. 14. 将7个相同的小球任意放入四个不同的盒子中,每个盒子都不空,共有

排列组合练习题及答案精选

排列组合习题精选 一、纯排列与组合问题: 1. 从9人中选派2人参加某一活动,有多少种不同选法? 2. 从9人中选派2人参加文艺活动,1人下乡演出,1人在本地演出,有多少种不同选派方法? 3. 现从男、女8名学生干部中选出2名男同学和1名女同学分别参加全校“资源”、“生态” 和“环保”三个夏令营活动,已知共有 90种不同的方案,那么男、女同学的人数是( ) A.男同学2人,女同学6人 B. 男同学3人,女同学5人 C.男同学5人,女同学3人 D. 男同学6人,女同学2人 4. 一条铁路原有m 个车站,为了适应客运需要新增加n 个车站(n>1),则客运车票增加了58 种(从甲站到乙站与乙站到甲站需要两种不同车票),那么原有的车站有() A.12个 B.13 个 C.14 个 D.15 个 答案:1、 2 2 72 3 、选 B. 设男生n 2 1 3 2 2 9 9 n 8 n3 。、mn m C 362、A 人,则有C C A 904 A A58 选 C. 二、相邻问题: 1. A 、B 、C 、D 、E 五个人并排站成一列,若A 、B 必相邻,则有多少种不同排法? 2. 有8本不同的书,其中3本不同的科技书,2本不同的文艺书,3本不同的体育书,将这 些书竖排在书架上,则科技书连在一起,文艺书也连在一起的不同排法种数为() A.720 B.1440 C.2880 D.3600 答案:1. 2 4 3 2 5 2 4 3 2 5 AA 48(2)选BAAA1440 三、不相邻问题: 1. 要排一个有4个歌唱节目和3个舞蹈节目的演出节目单,任何两个舞蹈节目都不相邻,有多少种不同排法? 1

高中排列组合知识点汇总和典型例题[全]

一.基本原理 1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。 2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。 注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。 二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一 .m n m n A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从 1.公式:1.()()()()! ! 121m n n m n n n n A m n -= +---=…… 2. 规定:0!1= (1)!(1)!,(1)!(1)!n n n n n n =?-+?=+ (2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ?=+-?=+?-=+-; (3)111111(1)! (1)! (1)!(1)! !(1)! n n n n n n n n n +-+==-=-+++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。 1. 公式: ()()()C A A n n n m m n m n m n m n m m m ==--+= -11……!! !! 10 =n C 规定: 组合数性质:.2 n n n n n m n m n m n m n n m n C C C C C C C C 21011=+++=+=+--……,, ①;②;③;④ 111 12111212211 r r r r r r r r r r r r r r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-+++++=++++=+++=注: 若1 2 m m 1212m =m m +m n n n C C ==则或 四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。 2.解排列、组合题的基本策略 (1)两种思路:①直接法; ②间接法:对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉。这是解决 排列组合应用题时一种常用的解题方法。 (2)分类处理:当问题总体不好解决时,常分成若干类,再由分类计数原理得出结论。注意: 分类不重复不遗漏。即:每两类的交集为空集,所有各类的并集为全集。 (3)分步处理:与分类处理类似,某些问题总体不好解决时,常常分成若干步,再由分步计 数原理解决。在处理排列组合问题时,常常既要分类,又要分步。其原则是先分类,后分步。 (4)两种途径:①元素分析法;②位置分析法。 3.排列应用题: (1)穷举法(列举法):将所有满足题设条件的排列与组合逐一列举出来; (2)、特殊元 素优先考虑、特殊位置优先考虑; (3).相邻问题:捆邦法: 对于某些元素要求相邻的排列问题,先将相邻接的元素“捆绑”起来,看作一“大”元素与其余元素排列,然后再对相邻元素内部进行排列。 (4)、全不相邻问题,插空法:某些元素不能相邻或某些元素要在某特殊位置时可采用插空

完整版排列组合练习题及答案

排列组合》 一、排列与组合 1. 从9 人中选派2 人参加某一活动,有多少种不同选法? 2. 从9人中选派2人参加文艺活动,1人下乡演出,1人在本地演出,有多少种不同选派方法? 3. 现从男、女8名学生干部中选出2名男同学和1 名女同学分别参加全校“资源”、“生态” 和“环保”三个夏令营活动,已知共有90 种不同的方案,那么男、女同学的人数是 A.男同学2人,女同学6人 B.男同学3人,女同学5人 C. 男同学5人,女同学3人 D. 男同学6人,女同学2人 4. 一条铁路原有m个车站,为了适应客运需要新增加n个车站(n>1),则客运车票增加了58 种(从甲站到乙站与乙站到甲站需要两种不同车票),那么原有的车站有 A.12 个 B.13 个 C.14 个 D.15 个 5.用0,1 ,2,3,4,5 这六个数字, (1 )可以组成多少个数字不重复的三位数? (2)可以组成多少个数字允许重复的三位数? (3)可以组成多少个数字不允许重复的三位数的奇数? (4)可以组成多少个数字不重复的小于1000 的自然数? (5)可以组成多少个大于3000,小于5421 的数字不重复的四位数? 二、注意附加条件 1.6 人排成一列(1 )甲乙必须站两端,有多少种不同排法? (2)甲乙必须站两端,丙站中间,有多少种不同排法? 2. 由1 、2、3、4、5、6 六个数字可组成多少个无重复数字且是6 的倍数的五位数? 3. 由数字1 ,2,3,4,5,6,7 所组成的没有重复数字的四位数,按从小到大的顺序排列起来,第379 个数是 A.3761 B.4175 C.5132 D.6157 4. 设有编号为1、2、3、4、5 的五个茶杯和编号为1、2、3、4、5的五个杯盖,将五个杯盖盖在

高中排列组合知识点汇总及典型例题(全)

一.基本原理 1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。 2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。 注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。 二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一 .m n m n A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从 1.公式:1.()()()()! ! 121m n n m n n n n A m n -= +---=…… 2. 规定:0!1= (1)!(1)!,(1)!(1)!n n n n n n =?-+?=+ (2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ?=+-?=+?-=+-; ' (3)111111 (1)!(1)!(1)!(1)!!(1)! n n n n n n n n n +-+==-=-+++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。 1. 公式: ()()()C A A n n n m m n m n m n m n m m m ==--+= -11……!! !! 10=n C 规定: 组合数性质:.2 n n n n n m n m n m n m n n m n C C C C C C C C 21011=+++=+=+--……,, ① ;②;③;④ 11112111212211r r r r r r r r r r r r r r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-+++++=+++ +=++ +=注: 若1 2 m m 1212m =m m +m n n n C C ==则或 四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。 " 2.解排列、组合题的基本策略 (1)两种思路:①直接法; ②间接法:对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉。这是解决 排列组合应用题时一种常用的解题方法。 (2)分类处理:当问题总体不好解决时,常分成若干类,再由分类计数原理得出结论。注意: 分类不重复不遗漏。即:每两类的交集为空集,所有各类的并集为全集。 (3数原理解决。在处理排列组合问题时,常常既要分类,又要分步。其原则是先分类,后分步。 (4 3.排列应用题: (1)穷举法(列举法):将所有满足题设条件的排列与组合逐一列举出来; (2)、特殊元 素优先考虑、特殊位置优先考虑; ) (3).相邻问题:捆邦法: 对于某些元素要求相邻的排列问题,先将相邻接的元素“捆绑”起来,看作一“大”元素与其余元素排列,然后再对相邻元素内部进行排列。 (4)、全不相邻问题,插空法:某些元素不能相邻或某些元素要在某特殊位置时可采用插空

排列组合专题复习及经典例题详解

排列组合专题复习及经典例题详解 1.学习目标 掌握排列、组合问题的解题策略 2.重点 (1)特殊元素优先安排的策略: (2)合理分类与准确分步的策略; (3)排列、组合混合问题先选后排的策略; (4)正难则反、等价转化的策略; (5)相邻问题捆绑处理的策略; (6)不相邻问题插空处理的策略. 3.难点 综合运用解题策略解决问题. 4.学习过程: (1)知识梳理 m种不完成一件事,有几类办法,在第一类办法中有1.分类计数原理(加法原理):1mm种不同的方法,类型办法中有种不同的方法……在第n同的方法,在第2类办法中有n2N?m?m?...?m 种不同的方法.那么完成这件事共有n12m种不步有个步骤,做第12.分步计数原理(乘法原理):完成一件事,需要分成n1mm种不同的方法;那么完成这步有种不同的方法……,做第同的方法,做第2步有n n2N?m?m?...?m种不同的方法.件事共有n12特别提醒: 分类计数原理与“分类”有关,要注意“类”与“类”之间所具有的独立性和并列性; 分步计数原理与“分步”有关,要注意“步”与“步”之间具有的相依性和连续性,应用这两个原理进行正确地分类、分步,做到不重复、不遗漏. 3.排列:从n个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n m?nm?n 时叫做全排列. 时叫做选排列,排列个不同元素中取出m个元素的一个,4.排列数:从n个不同元素中,取出m(m≤n)个元素的所有排列的个数,叫做从n个不同m P. 个元素的排列数,用符号表示元素中取出m n n!?m)?Nmn(m?)...()(1n?2n?m1)??,n、?(?Pnn5.排列数公式: n(n?m)!1mmm?mPPP??排列数具有的性质:nn1?n特别提醒: 规定0!=1 1 6.组合:从n个不同的元素中,任取m(m≤n)个不同元素,组成一组,叫做从n个不同元素中取m个不同元素的一个组合. 7.组合数:从n个不同元素中取m(m≤n)个不同元素的所有组合的个数,叫做从n个m C. 个不同元素的组合数,用符号表示不同元素中取出m nm Pn(n?1)(n?2)...(n?m?1)n!mn???C.组合数公式:8 nm)!m!(n?m!mP mmn?mmmm?1C?CC?C?C;②组合数的两个性质:①nnnnn?1特别提醒:排列与组合的联系与区别. 联系:都是从n个不同元素中取出m个元素. 区别:前者是“排成一排”,后者是“并成一组”,前者有顺序关系,后者无顺序关系.

排列组合与二项式定理的综合练习题

排列组合与二项式定理的综合应用 1.已知(1+a x )(1+x)5的展开式中x 2 的系数为5,则a = (A )-4 (B )-3 (C )-2 (D )-1 2.若52345012345(23)x a a x a x a x a x a x -=+++++,则:等于() A .55 B .-l C .52 D .52- 3,则的值为 A . B .C 4.学校计划利用周五下午第一、二、三节课举办语文、数学、英语、理综4科的专题讲座,每科一节课,每节至少有一科,且数学、理综不安排在同一节,则不同的安排方法共有() A.36种 B.30种 C.24种 D.6种 5.4位同学每人从甲、乙、丙3门课程中选修1门,则恰有2人选修课程甲的不同选法共有 (A) 12种 (B) 24种 (C) 30种 (D)36种 6.()()8 x y x y -+的展开式中27x y 的系数为________.(用数字填写答案) 7.(x-2)6的展开式中3x 的系数为.(用数字作答) 8.已知(1+x)+(1+x)2+(1+x)3+…+(1+x)8=a 0+a 1x +a 2x 2+…+a 8x 8,则a 1+a 2+a 3+…+a 8=________. 9.有3名男生,4名女生,在下列不同要求下,求不同的排列方法总数: (1)选其中5人排成一排; (2)排成前后两排,前排3人,后排4人; (3)全体排成一排,甲不站在排头也不站在排尾; (4)全体排成一排,女生必须站在一起; (5)全体排成一排,男生互不相邻; (6)全体排成一排,甲、乙两人中间恰好有3人. 10.7个人排成一排,按下列要求各有多少种排法? (1)其中甲不站排头,乙不站排尾; (2)其中甲、乙、丙3人必须相邻; (3)其中甲、乙、丙3人两两不相邻; (4)其中甲、乙中间有且只有1人; (5)其中甲、乙、丙按从左到右的顺序排列. 2312420)()(a a a a a +-++16-16

排列组合专题复习及经典例题详解

排列组合专题复习及经典例题详解 1. 学习目标 掌握排列、组合问题的解题策略 2.重点 (1)特殊元素优先安排的策略: (2)合理分类与准确分步的策略; (3)排列、组合混合问题先选后排的策略; (4)正难则反、等价转化的策略; (5)相邻问题捆绑处理的策略; (6)不相邻问题插空处理的策略. 3.难点 综合运用解题策略解决问题. 4.学习过程: (1)知识梳理 1.分类计数原理(加法原理):完成一件事,有几类办法,在第一类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法……在第n 类型办法中有n m 种不同的方法,那么完成这件事共有n m m m N +++=...21种不同的方法. 2.分步计数原理(乘法原理):完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法……,做第n 步有n m 种不同的方法;那么完成这件事共有n m m m N ???=...21种不同的方法. 特别提醒: 分类计数原理与“分类”有关,要注意“类”与“类”之间所具有的独立性和并列性; 分步计数原理与“分步”有关,要注意“步”与“步”之间具有的相依性和连续性,应用这两个原理进行正确地分类、分步,做到不重复、不遗漏. 3.排列:从n 个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列,n m <时叫做选排列,n m =时叫做全排列. 4.排列数:从n 个不同元素中,取出m(m≤n)个元素的所有排列的个数,叫做从n 个不同元素中取出m 个元素的排列数,用符号m n P 表示. 5.排列数公式:)、(+∈≤-= +---=N m n n m m n n m n n n n P m n ,)! (!)1)...(2)(1( 排列数具有的性质:11-++=m n m n m n mP P P 特别提醒: 规定0!=1

排列组合问题经典题型(含解析)

排列组合问题经典题型与通用方法 1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列. 例1.,,,, A B C D E五人并排站成一排,如果,A B必须相邻且B在A的右边,则不同的排法有() A、60种 B、48种 C、36种 D、24种 2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端. 例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是() A、1440种 B、3600种 C、4820种 D、4800种 3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法. 例3.A,B,C,D,E五人并排站成一排,如果B必须站在A的右边(,A B可以不相邻)那么不同的排法有()A、24种 B、60种 C、90种 D、120种 4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成. 例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有() A、6种 B、9种 C、11种 D、23种 5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法. 例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是() A、1260种 B、2025种 C、2520种 D、5040种 (2)12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有() A、 444 1284 C C C 种 B、 444 1284 3C C C 种 C、 443 1283 C C A 种 D、 444 1284 3 3 C C C A种 6.全员分配问题分组法: 例6.(1)4名优秀学生全部保送到3所学校去,每所学校至少去一名,则不同的保送方案有多少种? (2)5本不同的书,全部分给4个学生,每个学生至少一本,不同的分法种数为() A、480种 B、240种 C、120种 D、96种 7.名额分配问题隔板法: 例7:10个三好学生名额分到7个班级,每个班级至少一个名额,有多少种不同分配方案? 8.限制条件的分配问题分类法: 例8.某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案? 9.多元问题分类法:元素多,取出的情况也多种,可按结果要求分成不相容的几类情况分别计数再相加。 例9(1)由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的共有()A、210种 B、300种 C、464种 D、600种 (2)从1,2,3…,100这100个数中,任取两个数,使它们的乘积能被7整除,这两个数的取法(不计顺序)共有多少种? (3)从1,2,3,…,100这100个数中任取两个数,使其和能被4整除的取法(不计顺序)有多少种?

排列组合基础知识及习题分析

排列组合基础知识及习题分析 在介绍排列组合方法之前我们先来了解一下基本的运算公式! C53=(5×4×3)/(3×2×1) C62=(6×5)/(2×1)通过这2个例子看出 n C m n公式是种子数M开始与自身连续的N个自然数的降序乘积做为分子。 以取值N的阶层作 为分母 p53=5×4×3 p66=6×5×4×3×2×1 通过这2个例子 p m n=从M开始与自身连续N个自然数的降序乘积当N=M时即M的阶层排列、组合的本质是研究“从n个不同的元素中,任取m (m≤n)个元素,有序和无序摆放的各种可能性”.区别排列与组合的标志是“有序”与“无序”. 解答排列、组合问题的思维模式有二: 其一是看问题是有序的还是无序的?有序用“排列”,无序用“组合”;其二是看问题需要分类还是需要分步?分类用“加法”,分步用“乘法”. 分类:“做一件事,完成它可以有n类方法”,这是对完成这件事的所有办法的一个分类.分类时,首先要根据问题的特点确定一个适合于它的分类标准,然后在这个标准下进行分类;其次,分类时要注意满足两条基本原则:①完成这件事的任何一种方法必须属于某一类;②分别属于不同两类的两种方法是不同的方法. 分步:“做一件事,完成它需要分成n个步骤”,这是说完成这件事的任何一种方法,都要分成n个步骤.分步时,首先要根据问题的特点,确定一个可行的分步标准;其次,步骤的设置要满足完成这件事必须并且只需连续完成这n个步骤后,这件事才算最终完成. 两个原理的区别在于一个和分类有关,一个与分步有关.如果完成一件事有n类办法,这n 类办法彼此之间是相互独立的,无论那一类办法中的那一种方法都能单独完成这件事,求完成这件事的方法种数,就用加法原理;如果完成一件事需要分成n个步骤,缺一不可,即需要依次完成所有的步骤,才能完成这件事,而完成每一个步骤各有若干种不同的方法,求完成这件事的方法种类就用乘法原理. 在解决排列与组合的应用题时应注意以下几点: 1.有限制条件的排列问题常见命题形式:“在”与“不在”“邻”与“不邻” 在解决问题时要掌握基本的解题思想和方法: ⑴“相邻”问题在解题时常用“合并元素法”,可把两个以上的元素当做一个元素来看,这是处理相邻最常用的方法. ⑵“不邻”问题在解题时最常用的是“插空排列法”. ⑶“在”与“不在”问题,常常涉及特殊元素或特殊位置,通常是先排列特殊元素或特殊位置. ⑷元素有顺序限制的排列,可以先不考虑顺序限制,等排列完毕后,利用规定顺序的实情求出结果. 2.有限制条件的组合问题,常见的命题形式:“含”与“不含”“至少”与“至多”在解题时常用的方法有“直接法”或“间接法”. 3.在处理排列、组合综合题时,通过分析条件按元素的性质分类,做到不重、不漏,按事件的发生过程分步,正确地交替使用两个原理,这是解决排列、组合问题的最基本的,也是最重要的思想方法。. ***************************************************************************** 提供10道习题供大家练习

高考数学专题之排列组合综合练习

高考数学专题之排列组 合综合练习 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

1.从中选个不同数字,从中选个不同数字排成一个五位数,则这些五位数中偶数的个数为() A. B. C. D. 2.五个同学排成一排照相,其中甲、乙两人不排两端,则不同的排法种数为()A.33 B.36 C.40 D.48 3.某校从8名教师中选派4名同时去4个边远地区支教(每地1名教师),其中甲和乙不能都去,甲和丙只能都去或都不去,则不同的选派方案有() A.900种 B.600种 C.300种 D.150种 4.要从甲、乙等8人中选4人在座谈会上发言,若甲、乙都被选中,且他们发言中间恰好间隔一人,那么不同的发言顺序共有__________种(用数字作答). 5.有五名同学站成一排照毕业纪念照,其中甲不能站在最左端,而乙必须站在丙的左侧(不一定相邻),则不同的站法种数为__________.(用数字作答) 6.有个座位连成一排,现有人就坐,则恰有个空位相邻的不同坐法是 __________. 7.现有个大人,个小孩站一排进行合影.若每个小孩旁边不能没有大人,则不同的合影方法有__________种.(用数字作答) 8.(2018年浙江卷)从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成___________个没有重复数字的四位数.(用数字作答) 9.由0,1,2,3,4,5这6个数字共可以组成______.个没有重复数字的四位偶数. 10.将四个编号为1,2,3,4的小球放入四个编号为1,2,3,4的盒子中. (1)有多少种放法

排列组合典型例题

排列组合典型例题

典型例题一 例1 用0到9这10 个数字.可组成多少个没有重复数字的四位偶数? 分析:这一问题的限制条件是:①没有重复数字;②数字“0”不能排在千位数上;③个位数字只能是0、2、4、6、8、,从限制条件入手,可划分如下: 如果从个位数入手,四位偶数可分为:个位数是“0”的四位偶做,个位数是 2、4、6、8的四位偶数(这是因为零不能放在千位数上).由此解法一与二. 如果从千位数入手.四位偶数可分为:千位数是1、3、5、7、9和千位数是2、4、6、8两类,由此得解法三. 如果四位数划分为四位奇数和四位偶数两类,先求出四位个数的个数,用排除法,得解法四. 解法1:当个位数上排“0”时,千位,百位,十位上可以从余下的九个数字中任选3个来排列,故有3 A个; 9 当个位上在“2、4、6、8”中任选一个来排,

则千位上从余下的八个非零数字中任选一个,百位,十位上再从余下的八个数字中任选两个来排,按乘法原理有2 8181 4 A A A ??(个). ∴ 没有重复数字的四位偶数有 2296 179250428181439=+=??+A A A A 个. 解法2:当个位数上排“0”时,同解一有3 9 A 个;当个位数上排2、4、6、8中之一时,千位,百位,十位上可从余下9个数字中任选3个的排列数中减去千位数是“0”排列数得:) (28391 4 A A A -?个 ∴ 没有重复数字的四位偶数有 2296 1792504)(28391439=+=-?+A A A A 个. 解法3:千位数上从1、3、5、7、9中任选一个,个位数上从0、2、4、6、8中任选一个,百位,十位上从余下的八个数字中任选两个作排列有 2 81 515A A A ??个 干位上从2、4、6、8中任选一个,个位数上从余下的四个偶数中任意选一个(包括0在内),百位,十位从余下的八个数字中任意选两个作排列,有 2 81414A A A ??个 ∴ 没有重复数字的四位偶数有

相关文档
相关文档 最新文档