文档库 最新最全的文档下载
当前位置:文档库 › DEFORM功能简介与工程应用Deform锻压工艺计算机模拟-安世亚太

DEFORM功能简介与工程应用Deform锻压工艺计算机模拟-安世亚太

铸造过程模拟仿真

铸造过程模拟仿真 1、概述 在铸造生产中,铸件凝固过程是最重要的过程之一,大部分铸造缺陷产生于这一过程。凝固过程的数值模拟对优化铸造工艺,预测和控制铸件质量和各种铸造缺陷以及提高生产效率都非常重要。 凝固过程数值模拟可以实现下述目的: 1)预知凝固时间以便预测生产率。 2)预知开箱时间。 3)预测缩孔和缩松。 4)预知铸型的表面温度以及内部的温度分布,以便预测金属型表面熔接情况,方便金属型设计。 5)控制凝固条件[1]。 为预测铸应力,微观及宏观偏析,铸件性能等提供必要的依据和分析计算的基础数据。作为铸造工艺过程计算机数值模拟的基础,温度场模拟技术的发展历程最长,技术也最成熟。温度场模拟是建立在不稳定导热偏微分方程的基础上进行的。考虑了传热过程的热传导、对流、辐射、结晶潜热等热行为。所采用的计算方法主要有:有限差分法、有限元法、边界元法等;所采用的边界条件处理方法有N方程法、温度函数法、点热流法、综合热阻法和动态边界条件法;潜热处理方法有:温度回升法、热函法和固相率法。 自丹麦Forsound于1962年第一次采用电子计算机模拟铸件凝固过程以来,为铸造工作者科学地掌握与分析铸造工艺过程提出了新的方法与思路,在全世界范围内产生了积极的影响,许多国家的专家与学者陆续开展此项研究工作。在铸造工艺过程中,铸件凝固过程温度场的数值模拟计算相对简单,因此,各国的专家与学者们均以铸件凝固过程的温度场数值模拟为研究起点。继丹麦人之后,美国在60年代中期开始进行大型铸钢件温度场的计算机数值模拟计算研究,且模拟计算的结果与实测温度场吻合良好;进入70年代后,更多的国家加入了铸件凝固过程数值模拟的研究行列中,相继开展了有关研究与应用,理论研究与实际应用各具特色。其中有代表性的研究人员有美国芝加哥大学的R.D.Pehlke教授、佐治亚工学院的J.Berry教授、日本日立研究所的新山英辅教授、大阪大学的大中逸雄教授、德国亚探工业大学的P.Sham教授和丹麦科技大学的P.N.Hansen教授等。我国的铸件凝固过程温度场数值模拟研究始于70年代末期,沈阳铸造研究所的张毅高级工程师与大连工学院的金俊泽教授在我国率先开展了铸造工艺过程的计算机数值模拟研究工作,虽然起步较晚,但研究工作注重与生产实践密切结合,取得了较好的应用效果,形成了我国在这一研究领域的研究特色[2]。 1988年5月,在美国佛罗里达州召开的第四届铸造和焊接计算机数值模拟会议上,共有来自10个研究单位的从事铸造凝固过程计算机数值模拟技术研究的专家和学者参加了会议组织的模拟斧锤型铸件凝固过程的现场比赛。由于该铸件在几何形状上属复杂类型,模拟计算有一定的难度。从比赛结果看,绝大部分的模拟结果与实际测温结果相吻合。此次比赛得出如下结论[8]: l)铸件凝固过程的计算机模拟达到了相当的水平,如三维自动刻分、三维模拟计算、三维温度场显示等,并产生了一些软件包,如日立公司的HICASS、丹麦的Geomesh、大阪大学的SOLAM及亚琛的CASTS等。 2)模拟计算的结果都接近实测,这说明有限差分、有限元和边界元这三种计算方法对温度场计算都能满足精度要求,同时也说明了铸件凝固过程温度场计算机模拟计算技术已趋成熟。

deform模拟常见问题

1.我用deform模拟轧制过程时,推动块(pusher)和轧件(slab)再整个运动过程中始终粘在一起,我设置多个轧辊速度都不能使其分离,为什么?请高手指点? (1)你给推动块设置一个速度时间曲线就可以了吧,让它在某一时间停下来,不就分离了 2.DEFORM的一些参数跟我们传统理工科的习惯很不一致,导致建模、模拟的时候经常会莫名的出错,而且很难找出问题出在哪里!比如:(1) 边界条件设置(BDRY)中的压强(pressure)——按照我们的习惯,施加在面上的应为压应力(因为是压强嘛),如果想设置为拉应力的话,要取负值;可在DEFORM中却是相反的。不信你建个简单的立方体模型,上下面加压(正的值),模拟结果很明显是物体被拉长了!(2) 旋转方向设置——如果从旋转轴的箭头方去看,我们通常以顺时针为正;可是在DEFORM中是反过来的!而且有的时候你选了轴,可在用系统选定旋转中心点后(俗称小绿帽),刚刚选好的轴会更改,本来你选的-X,它有时会变成+X(很奇怪!),出现这种情况只能通过正负值的设定来改变旋转方向了。特别是在轧制、旋压加工的时候,千万要看准工作辊旋转方向!(3)边界条件设置(BDRY)中的力(force)——这地方的正负值仅仅是决定方向的,更值得注意的地方是:有时候你设置的拉力或张力在生成DB文件的时候不写入的(可能是DEFORM有个许可范围,你设置的值溢出了),也就是说你的边界力是没有加上去的,模拟的时候为零。还要注意,你输入的力值是加在每个所选的节点上的,举例:你想在面上加载100kN的力,面上节点数为100,这时你在力值的输入窗口所写的值应为1kN。类似的细节问题还有很多,一不小心或稍有不熟悉就可能出问题,而且很难排查出,最伤人了! (1)正应力—拉、负应力—压是常识呀;旋转方向的判别采用右旋定则,即右手握住旋转轴,大拇指伸直与旋转轴正向一致。 3.我用Dform 3D进行轧制模拟,起初用稳态ALE模型,但是轧件扭曲很严重,计算很快就终止了。换成增量ALE以后,便基本顺利完成了轧制的模拟(模拟

Magma铸造CAE模拟

Magma操作 STL导入 点击“preprocessor”进入“MAGMApre”界面,依次导入相应的构件,保存。

Mesh划分网格 如上图所示,Magma共提供以上四种划分网格方法:自动划分、标准划分、高级、高级2。其中,自动划分是指用户自己制定划分的总的网格数,Magma自动进行适当的调整划分实体,标准划分是指铸型等不需要很高精度的部分进行的一种比较粗略的划分,如果需要对某一部分进行更细的划分,那么用户可以在“高级”中进行制定网格大小,甚至可以在“高级2”中对更进一步的某些部分进行更细的网格划分。 自动划分是用户可以制定计算部分的大约网格数、是否生成壳、是否核心划分、是否针对解法5进行划分。 Solver5是一种针对复杂结构铸件的网格划分方法。 1.2.4 网格划分 1.根据网格总量划分 1)打开选择功能表enmeshment,则mesh generation的视窗就出现; 2)选择automatic ,输入网格总数量; 3)选择generate 划分。

按照网格总数划分 2.根据单元网格三维尺寸划分 标准高级更高级 1)操作步骤: (1)选择功能表enmeshment,则mesh generation的视窗即出现;

(2)选择standard模式定义标准的网格化参数(如图 1.2.4-2); (3)若standard模式不符划分需求,选择advanced和advanced2模式 ,来局部区域细分; 依据个人需求,改变预设的参数,参数说明后面3)中叙述。 (4)选择calculate,测试产生网格数; (5)假如接受测试结果,选择generate正式产生网格。 网格数量 2)划分准则 1、Wall thichness— 网格划分最小结构厚度。 2、Accuracy— 精度 3、Element size— 网格大小 4、Option。 其中Wall thichness和Element size一般设成一样大小。 3)参数说明 (1)wall thickness(壁厚) ─粗分网格; 几何中只要有壁厚小于设定值的地方就不会有网格产生,单位是mm 。

Deform 6.1 开式模锻模拟实例

一.DEFORM软件介绍 DEFORM系列软件是由位于美国Ohio Clumbus的科学成形技术公司(Science Forming Technology Corporation)开发的。该系列软件主要应用于金属塑性加工、热处理等工艺数值模拟、它的前身是美国Battelle实验室开发的ALPID软件。在1991年成立的SFTC公司将其商业化,目前,Deform软件已经成为国际上流行的金属加工数值模拟软件之一。 其主要软件产品有: 1. DEFORM-2D(二维) 适用于各种常见的UNIX工作站平台(HP,SGI,SUN,DEC,IBM)和Windows-NT 微机平台。可以分析平面应变和轴对称等二维模型。它包含了最新的有限元分析技术,既适用于生产设计,又方便科学研究。 2. DEFORM-3D(三维) 适用于各种常见的UNIX工作站平台(HP,SGI,SUN,DEC,IBM)和Windows-NT 微机平台。可以分析复杂的三维材料流动模型。用它来分析那些不能简化为二维模型的问题尤为理想。 3. DEFORM-PC(微机版) 适用于运行Windows 95,98和NT的微机平台。可以分析平面应变问题和轴对称问题。适用于有限元技术刚起步的中小企业。 4. DEFORM-PC Pro(Pro版) 适用于运行Windows 95,98和NT的微机平台。比DEFORM-PC功能强大,它包含了DEFORM-2D的绝大部分功能。 5. DEFORM-HT(热处理) 附加在DEFORM-2D和DEFORM-3D之上。除了成形分析之外,DEFORM-HT还能分析热处理过程,包括:硬度、晶相组织分布、扭曲、残余应力、含碳量等。 二.模锻模拟 2.1 创建一个新的题目 正确安装DEFORM 6.1后运行程序DEFORM-3D,其界面如下图所示。

铸造模拟

三个基本问题 1)什么是金属材料制备工艺? 通过一定的生产流程,获得可以作为工业或工程中使用的金属材料或者构件,这个过程称之为金属材料制备与加工。 2)什么是金属材料制备工艺的计算机模拟? 根据用户要求,基于一定的判据设计的制备与加工工艺过程,建立起数学物理模型,在计算机上进行造型、运算,并将得到的成千上万的数据综合在一起逼近研究对象的全貌,表达出成分工艺组织性能的演变规律,用形象的图形或者动画形式,显示出这些过程的直观画面称之为计算机模拟。 3)为什么进行金属材料制备工艺的计算机模拟? 基本的加工工艺 1)铸造,凝固成形,液固相变。 2)焊接,凝固成形,液固相变,热影响区晶粒长大。 3)压力加工,固态成形,固态相变。 4)热处理,固态相变。 5)冷成形模拟 模拟的框架1)前处理,造型,数据输入等 2)计算,算法的优化 3)后处理,模拟结果输出,判据函数 4)数据库 模拟具有实时性,模拟的准确性取决于模型的精度。 开展工艺模拟的目的 1)优化现有工艺 2)进行模具与新工艺设计 3)缩短设计、试制和生产周期,降低成本 4)工艺的可视化,工程师和模拟工作者之间能够共同分析出达到最佳工艺的判据标准 5)机理性分析 热加工过程的结果成型和改性:使材料的成分、组织、性能最后处于最佳状态 热加工工艺设计根据所要求的组织和性能,制定合理的热加工工艺,指导材料的热加工过程热加工工艺设计存在的问题 复杂的高温、动态、瞬时过程:难以直接观察,间接测试也十分困难 建立在“经验”、“技艺”基础上 解决方法 热加工工艺模拟技术:在材料热加工理论指导下,通过数值模拟和物理模拟,在实验室动态仿真材料的热加工过程,预测实际工艺条件下的材料的最后组织、性能和质量,进而实现热加工工艺的优化设计 热加工过程模拟的意义 认识过程或工艺的本质,预测并优化过程和工艺的结果(组织和性能) 与制造过程结合,实现快速设计和制造 热加工过程模拟的部分商业软件 铸造PROCAST, SIMULOR 锻压DEFORM, AUTOFORGE, SUPERFORGE 通用MARC, ABAQUS, ADINA, ANSYS 三种传热方式:热对流,热传导,热辐射。

Deform-3d热处理模拟操作全解

Deform-3d热处理模拟操作 热处理工艺在机械制造中占有十分重要的地位。随着机械制造现代化和热处理质量管理现代化的发展,对热处理工艺提出了更高的要求。热处理工艺过程由于受到加热方式、冷却方式、加热温度、冷却温度、加热时间、冷却时间等影响,金属内部的组织也会发生不同的变化,因此是个十分复杂的过程,同时工艺参数的差异,也会造成热处理加工对象硬度过高过低、硬度不均匀等现象。Deform-3d 软件提供一种热处理模拟模块,可以帮助热处理工艺员,通过有限元数值模拟来获得正确的热处理参数,从而来指导热处理生产实际。减少批量报废的质量事故发生。 热处理模拟,涉及到热应力变形、热扩散和相变等方面,因此计算很复杂,软件采用牛顿迭代法,即牛顿-拉夫逊法进行求解。它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法。多数方程不存在求根公式,因此求精确根非常困难,甚至不可能,从而寻找方程的近似根就显得特别重要。方法使用函数f(x)的泰勒级数的前面几项来寻找方程f(x) = 0的根。牛顿迭代法是求方程根的重要方法之一,其最大优点是在方程f(x) = 0的单根附近具有平方收敛,而且该法还可以用来求方程的重根、复根等。 但由于目前Deform-3d软件的材料库只带有45钢、15NiCr13和GCr15等三种材料模型,而且受到相变模型的局限,因此只能做淬火和渗碳淬火分析,更多分析需要进行二次开发。 本例以45钢热处理淬火工艺的模拟过程为例,通过应用Deform-3d 热处理模块,让读者基本了解热处理工艺过程有限元模拟的基本方法与步骤。 1 、问题设置 点击“文档”(File)或“新问题”(New problem),创建新问题。在弹出的图框中,选择“热处理导向”(heat treatment wizard),见图1。 图1 设置新问题 2、初始化设置 完成问题设置后,进入前处理设置界面。首先修改公英制,将默认的英制

铸造模拟软件讲解

PROCAST ProCAST由法国ESI公司开发的综合的铸造过程软件解决方案,有20多年的历史,提供了很多模块和工程工具来满足铸造工业最富挑战的需求。基于强大的有限元分析,它能够预测严重畸变和残余应力,并能用于半固态成形,吹芯工艺,离心铸造,消失模铸造、连续铸造等特殊工艺。 procast 百科名片 ProCast软件界面 ProCAST由法国ESI公司开发的综合的铸造过程软件解决方案,有20多年的历史,提供了很多模块和工程工具来满足铸造工业最富挑战的需求。基于强大的有限元分析,它能够预测严重畸变和残余应力,并能用于半固态成形,吹芯工艺,离心铸造,消失模铸造、连续铸造等特殊工艺。 目录 适用范围材料数据库 模拟分析能力 分析模块 ProCAST特点 模拟过程 展开 适用范围 材料数据库 模拟分析能力 分析模块 ProCAST特点 模拟过程 展开 ProCast应用(10张) 编辑本段适用范围 ProCAST适用于砂型铸造、消失模铸造、高压铸造、低压铸造、重力铸造、

软件操作界面 倾斜浇铸、熔模铸造、壳型铸造、挤压铸造、触变铸造、触变成形、流变铸造。由于采用了标准化、通用的用户界面,任何一种铸造过程都可以用同一软件包ProCAST进行分析和优化。它可以用来研究设计结果,例如浇注系统、通气孔和溢流孔的位置,冒口的位置和大小等。实践证明,ProCAST可以准确地模拟型腔的浇注过程,精确地描述凝固过程。可以精确地计算冷却或加热通道的位置以及加热冒口的使用。 编辑本段材料数据库 ProCAST可以用来模拟任何合金,从钢和铁到铝基、钴基、铜基、镁基、镍基、钛基和锌基合金,以及非传统合金和聚合体。ESI旗下的热物理仿真研究开发队伍汇集了全球顶尖的五十多位冶金、铸造、物理、数学、计算力学、流体力学和计算机等多学科的专家,专业从事ProCAST和相关热物理模拟产品的开发。得益于长期的联合研究和工业验证,使得通过工业验证的材料数据库不断地扩充和更新,同时,用户本身也可以自行更新和扩展材料数据。除了基本的材料数据库外,ProCAST还拥有基本合金系统的热力学数据库。这个独特的数据库使得用户可以直接输入化学成分,从而自动产生诸如液相线温度、固相线温度、潜热、比热和固相率的变化等热力学参数。 编辑本段模拟分析能力 ProCAST可以分析缩孔、裂纹、裹气、冲砂、冷隔、浇不足、应力、变形、模具寿命、工艺开发及可重复性。ProCAST几乎可以模拟分析任何铸造生产过程中可能出现的问题,为铸造工程师提供新的途径来研究铸造过程,使他们有机会看到型腔内所发生的一切,从而产生新的设计方案。其结果也可以在网络浏览器中显示,这样对比较复杂的铸造过程能够通过网际网络进行讨论和研究。 编辑本段分析模块 ProCAST是针对铸造过程进行流动一传热一应力耦合作出分析的系统。它主要由8个模块组成:有限元网格划分MeshCAST基本模块、传热分析及前后处理(Base License)、流动分析(Fluid flow)、应力分析(Stress)、热辐射分析(Radiation)、显微组织分析(Micromodel)、电磁感应分析(Electromagnetics)、反向求解(Inverse),这些模块既可以一起使用,也可以根据用户需要有选择地使用。对于普通用户,ProCAST应有基本模块、流动分析模块、应力分析模块和网格划分模块。 1)传热分析模块 本模块进行传热计算,并包括ProCAST的所有前后处理功能。传热包括

Deform使用简明步骤

Deform-3D(version6.1)使用步骤 Deform—3D是对金属体积成形进行模拟分析的优秀软件,最近几年的工业实践证明了 其在数值模拟方面的准确性,为实际生产提供了有效的指导。Deform—3D的高度模块化、友好的操作界面、强大的处理引擎使得它在同类模拟软件中处于领先地位。 以下将分为模拟准备、前处理、求解器、后处理四部分简要介绍Deform—3D的使用步骤。 一、模拟准备 模拟准备阶段主要是为模拟时所用的上模、下模、坯料进行实体造型,装配,并生成数据文件。 实体造型可通过UG、Pro-e、Catia、Solidworks等三维作图软件进行设计,并按照成形 要求进行装配,最后将装配体保存为STL格式的文件。该阶段需要注意的是STL格式的文件名不能含有中文字符;另外对于对称坯料,为了节省求解过程的计算时间并在一定程度上提 高模拟精度(增加了网格数量),可把装配体剖分为1/4,1/8或更多后再进行保存。 二、前处理 前处理是整个数值模拟的重要阶段,整个模拟过程的工艺参数都需要在该阶段设置,各参数设置必须经过合理设置后才能保证模拟过程的高效性和模拟结果的准确性。 首先打开软件,新建(new problem)→选择前处理(Deform-3D preprocessor)→在存放位置(Problem location)选项卡下选择其他(other location)并浏览到想要存放deform 模拟文件的文件夹→下步的problem name可任意填写。注意:所有路径不能含有中文字符。 之后会打开新的界面,点击模拟控制(simulation controls)→改变单位(units)为SI,接受 弹出窗口默认值;选中模式(mode)选项卡下热传导(heat transfer)。 导入坯料、模具并设置参数: 导入毛坯: 1、general:通常采用刚塑性模型即毛坯定义为塑性(plastic),之后导入的模具定义为刚性 (rigid);温度(temperature):根据成形要求设定坯料预热温度(温热成形时一定注意); 材料(material):点击load选择毛坯材料,若材料库中没有对应的材料可选择牌号相近 的。 2、geometry:importgeometry from a file:从保存的STL格式文件中找到坯料,导入后会在 左侧窗口显示出预览,然后点击check GEO检查模型,务必保证出现下图椭圆中数值。

基于虚拟现实的铸造工艺流程仿真

基于虚拟现实的铸造工艺流程仿真 大部分机械工程专业的学生并没有真正意义上的进行铸造工艺实验,多数是从书上获得理论知识,或者是在金工实习时,听或观察老师的操作,使得很多学生并不熟悉真正的铸造是如何进行的。针对这种情况,本文利用虚拟现实的技术仿真铸造工艺的流程,使得学生可以在没有现实设备的基础下,也能依靠自学或者书本的知识,自己进行虚拟的铸造实验。 铸造工艺有很多类型,本文选择了压力铸造工艺流程的仿真。压力铸造是一种精密的铸造技术,是一种不可或缺的铸造技术,也是机械工程专业的学生必须掌握的铸造技术。虚拟现实技术综合利用计算机仿真技术、计算机图形学等等多种技术,通过产生视觉、听觉等,使得用户产生一种身临其境的感觉。其中很多软件能实现这种技术,本文采用了容易掌握和理解的EON Studio来实现压铸工艺的仿真。 本文首先对压力铸造作了简介,对其四种类型:热室压力铸造、冷室卧式压力铸造、冷室立式压力铸造和冷室全立式压力铸造的工艺流程进行了详细的分析,并且选择了热室压力铸造和冷室卧式压力铸造进行工艺仿真。而后简单介绍了EON Studio的重要功能,采用多种节点的配合作用,实现了对压力铸造工艺流程的仿真。 I

第一章绪论 1.1 选题的背景及意义 机械工程是社会发展和国民经济建设的基础学科之一。机械类专业人才的培养在整个教育中是非常重要的一部分。但我国机械专业的教学长期以来沿用原苏联的教学模式。而这种教学模式存在着严重的弊端,例如专业口径较窄、专业划分过细、内容相对过深、体系过于陈旧。随着我国的新技术的迅速发展,使机械工程、机械制造比以前的时代发生了根本性变化。这种传统的机械类教学模式必须彻底改革,不然就不会有创新。 实验教学是一种将课本知识结合到实际的教学方式,实验教学不仅巩固了学生课本上的基础知识,而且还能够培养学生的实际操作能力和动脑能力。由于机械专业属于工科类教学,对学生的实践动手操作能力要求极高,所以实验教学是提高机械工程专业学生实践动手操作能力的一个重要教学环节。 但是由于各种条件的限制,比如操作实验设备难度大、缺乏实验设备、容易精密仪器损坏、实验时间和资源的消耗大等,学生缺乏大量去尝试的机会,也因此这的相当数量的实验创新教学不能正常开展,另外一些抽象性的实验在现实情景中很难实现,例如铸造等等,从而耽误了对学生动手实践能力的培养。将虚拟现实技术应用在实验教学中,可使虚拟出来的效果接近真实实验效果[1]。 铸造成型在现代加工中占有不可或缺的地位,是制造生产复杂零件最灵活的方法。铸造实习是金工实习重要的环节之一,通过铸造实习学生可以学习到常规的铸造工艺,同时也能够了解到基本先进的铸造技术。但是因为受到我国传统教育思想的影响,实验教学的模式一直有一下几个方面的问题: (1)教学方法基本上还是老师带学生的模式,老师做学生在一旁看和模仿,过多的约束使学生难以发挥自己的想象空间,形成了一种被动的模仿实习,而不是由学生自己摸索得到的知识。在过去的实习教学中,都是由指导老师示范砂型的制作过程,然后由学生进行模仿进行操作,然而大部分学生做出来的作品都是基本的形状; (2)后续的浇注过程没有得到很好的展开,学生很难对砂型铸造的后续金属浇注过程有一个直观的认识,例如不同金属熔炼所需要具备的条件、浇注前金属液体的微观状态、铸件的成型过程以及铸件可能产生的缺陷等。而且在这种情况下学生很容易失去对实习的兴趣以及实习的成就感,从而打击到了学生实习的积极性,并且影响到部分同学的学习热情; (3)学生在实际操作之前没有得到相关实习的理论教学。例如学生没有掌握砂型铸造的要点,有的学生不是十分了解基本操作步骤。 华南理工大学机械工程虚拟仿真实验教学中心是首批国家级虚拟仿真实验教学中

DEFORM模拟步数设置

DEFORM模拟控制(二):模拟步数设置 DEFORM通过在离散的时间增量上生成一系列的FEM解来解决与时间有关的非线性解。在每一个时间增量中,有限元单元中的每个节点的速度,温度以及其他关键变量都基于边界条件,工件材料的热力性质或者前面步数的结果决定。这个前面步数的结果怎么理解呢? 其实就是当你模拟完一个操作后,这个操作的模拟结果继续作为下一个操作的输入。另外其他状态变量都基于这些关键变量,并且随着时间的增量更新。在DEFORM中,时间步的长短,模拟的步数,都是通过模拟控制中的Simulation Steps来控制的,见下图。 1 开始步数(Starting step number) 如果模拟开始的是一个新的数据库,那么这里的值就是数据库中的第一步,通常是-1,假如模拟是在一个旧的数据库基础上继续模拟,那么这里的值就是旧数据库的最后一步。这里需要注意的是,不要人为修改这个值,不然会覆盖掉原来的数据库内容,除非你确实需要从旧数据库的某一步进行操作。

小提示:步数数字前面的符号表示的是此步是由前处理器(人为的生成数据库或者自动重画网格)生成的,而不是由模拟过程生成的。 2 模拟步数(Number of simulation steps) 这个很好理解,就是定义模拟的总步数,当模拟达到这个设定的值时就会停止计算。除非计算出问题无法收敛,还有一种情况就是定义了停止条件,即后面会讲到的Stop功能,这时候,定义的步数就不起作用了,你可以尽可能的往大了设。 这里需要注意的是,加入你要通过Stop功能来控制模拟结束,那么这里的模拟步数设置不能小于达到Stop条件所需步数,不然就会按模拟步数停止计算。 打个比方,假如你想设置上模下压5mm停止,你设置了停止条件Y方向位移5m m,并且你设置的下模下压速度是1mm/step,然后你这里设置的模拟步数为4,那么模拟就只走4步,这时候只压下了4mm,没达到你预设的5mm,但你往大了设没关系,比如,设置个100步,1000步,10000步都可以,它就走5步。 也就是说啊,这个模拟步数控制和Stop控制是同等级的,那个先满足要求就停止计算。 3 存储步长(Step increment to save) 顾名思义啊,存储步长就是设置计算结果多少步存在电脑里。这个设置主要考虑两点。一个是存储容量,假如硬盘空间不够,那就把步长设置大一点,稀疏一点,这

(完整word版)DEFORM-2D有限元模拟正反挤压

学生学号123456 实验课成绩 武汉理工大学 学生实验报告书 实验课程名称材料成型CAE综合实验 开课学院材料学院 指导老师姓名 学生姓名 学生专业班级成型0802班 2011 —2012 学年第一学期

实验课程名称:材料CAE综合实验 实验项目名称DEFORM-2D软件的操作与实例演练 实验成绩 实验者专业班级成型0802 组别 同组者实验日期年月日第一部分:实验分析与设计(可加页) 一、实验内容描述(问题域描述) 1.了解认识DEFORM-2D软件的窗口界面。 2.了解DEFORM-2D界面中各功能键的作用。 3.掌握利用DEFORM-2D有限元建模的基本步骤 。 4.学会进入前处理、后处理操作。 5.学会对DEFORM-2D模拟得出的图像进行数值分析,得出结论 二、实验基本原理与设计(包括实验方案设计,实验手段的确定,试验步骤等,用硬件逻辑 或者算法描述) DEFORM是一套基于有限元的工艺仿真系统,用于分析金属成形及其相关工业的各种成形工艺和热处理工艺。通过在计算机上模拟整个加工过程,帮助工程师和设计人员:设计工具和产品工艺流程,减少昂贵的现场试验成本。提高工模具设计效率,降低生产和材料成本。缩短新产品的研究开发周期。 DEFORM-2D适用于各种常见的UNIX工作站平台(HP,SGI,SUN,DEC,IBM)和Windows-NT微机平台。可以分析平面应变和轴对称等二维模型。它包含了最新的有限元分析技术,既适用于生产设计,又方便科学研究。 三、主要仪器设备及耗材 1.计算机 2.DEFORM-2D软件

第二部分:实验调试与结果分析(可加页) 一、调试过程(包括调试方法描述、实验数据记录,实验现象记录,实验过程发现的问题等)DEFORM-2D软件操作流程: 一、前处理 1. 创建新的问题 打开DEFORM-2D软件,单击,“New Problem”,设置好存储路径,文件名改为英文。 2.设置模拟控制 单击,打开Simulation Control窗口,设置单位为SI,如图,其他默认不变。 3.添加新对象 单击两下,添加工件,凸模,凹模。如图1所示 图1 4.建立工件模型 可导入工件模型,单击按钮,也可以新建工件模型,单击,,,进入编辑界面,输入各参数,如图2 图2 5.划分网格 单击,设置网格数,如图3所示 6.选择材料 单击,这材料列表选择材料,如图4所示,材料选择后单击 确定。

铸造过程的数值模拟

铸造过程的数值模拟 1零件分析 本次铸造过程的数值模拟所用的零件为方向盘,该零件结构复杂,并且在实际使用过程 中,需要承受较大的扭转力,因此选用镁合金并采用压铸工艺。此项工作需要在方向盘上建 立合适的浇注系统和溢流槽,进行充型模拟,得到合理的压铸方案。在建立浇注系统之前,需要合理选择分型面,然后选择浇注系统的内浇口位置,待浇注系统建立好之后,进行一次预模拟,从而确定溢流槽的数量和位置。 2工艺设计 2.1浇注系统 该铸件的分型面为铸件的最大截面,选定的浇注系统在铸件上的位置如下图所示。 rr 口斗+带〒 *”斗-T 已知数据有:压室直径60mm,压室速度0.1m/s-3m/s,铸件材料AM50A,方向盘质量 595g,压射温度685C。 查表取值:AM50A 镁合金密度1.75g/cm3;充填时间t= 0.05s;内浇口厚度b=2.5mm ; 取充填速度v仁50m/s。 铸件的体积v= — = —95 =340000mm 3; P 1.75 根据经验,可以取溢流槽的体积为铸件体积的10%,则溢流槽的体积v^ 34000mm3。 计算内浇口面积(V铸件+ V溢流槽) vt 二340 34 -50 0.05二149.6 2 mm

内浇口宽度 s c 2 b 冲头速度 4v 1s 4x 50 x149.6 “ , V ? 2 2 2.65 m / s nd 兀汽60 横浇道选用等宽横浇道 厚度 bh=10mm ,斜度10°,宽度B=( 1.25-3)An/bh ;圆角半径 r=2mm ,横浇道宽 2 度为 30mm 。增压时间 k=1.5s ,: =0.005 t = k : b 1.5 0.005 9 = 0.0675s 直浇道的设计 因为压室直径为60mm ,因此可以将直浇道与压室相连处的直径设计为 60mm ,直浇道 的高度为40mm ,拔模斜度为5 °。 2.2排溢系统 根据前面所述,溢流槽的总体积设计为铸件总体积的 10%,则v^ 34000mm 3。并且 设计三个溢流槽,分布在方向盘的圆周上,具体位置根据铸件最后充型位置确定。 根据经验和查表,溢流槽的桥部的尺寸与内浇道的尺寸的差距不宜过大, 因此选取溢流 槽的尺寸为 A=30mm , B=35mm , H=12mm ,a=9mm , b=22mm , c=1mm ,溢流槽桥部厚度 为h=1.3mm 。则溢流槽的仓部体积和为 v 溢=3 ^B_H = 3 30 35 37800mm 3。 149.6 治 30 mm

DEFORM模拟控制

DEFORM模拟控制:Simulation Step DEFORM通过在离散的时间增量上生成一系列的FEM解来解决与时间有关的非线性解。在每一个时间增量中,有限元单元中的每个节点的速度,温度以及其他关键变量都基于边界条件,工件材料的热力性质或者前面步数的结果决定。这个前面步数的结果怎么理解呢? 其实就是当你模拟完一个操作后,这个操作的模拟结果继续作为下一个操作的输入。另外其他状态变量都基于这些关键变量,并且随着时间的增量更新。在DEFORM中,时间步的长短,模拟的步数,都是通过模拟控制中的Simulation Steps来控制的,见下图。 1 开始步数(Starting step number)

如果模拟开始的是一个新的数据库,那么这里的值就是数据库中的第一步,通常是-1,假如模拟是在一个旧的数据库基础上继续模拟,那么这里的值就是旧数据库的最后一步。这里需要注意的是,不要人为修改这个值,不然会覆盖掉原来的数据库内容,除非你确实需要从旧数据库的某一步进行操作。 小提示:步数数字前面的符号表示的是此步是由前处理器(人为的生成数据库或者自动重画网格)生成的,而不是由模拟过程生成的。 2 模拟步数(Number of simulation steps) 这个很好理解,就是定义模拟的总步数,当模拟达到这个设定的值时就会停止计算。除非计算出问题无法收敛,还有一种情况就是定义了停止条件,即后面会讲到的Stop功能,这时候,定义的步数就不起作用了,你可以尽可能的往大了设。 这里需要注意的是,加入你要通过Stop功能来控制模拟结束,那么这里的模拟步数设置不能小于达到Stop条件所需步数,不然就会按模拟步数停止计算。 打个比方,假如你想设置上模下压5mm停止,你设置了停止条件Y方向位移5mm,并且你设置的下模下压速度是1mm/step,然后你这里设置的模

deform中晶粒模拟

晶粒模拟 1.输入变形主要文件 2.输入与晶粒有关的材料参数 3.输入最初的晶粒变量 4.运行模拟 5.准备及运行空冷模拟 6. 准备及运行水中淬火模拟 7.后处理 8.改变条件 介绍 本章的目的是介绍如何采用DEFORM2D晶粒模拟模拟锻 造过程及热处理过程中微观组织的变化。 再结晶度及平均晶粒尺寸是使用者最关心的参数,该模型中共有16中晶粒变量,他们都放在数据库中。 静态再结晶、中间动态再结晶、动态再结晶的演化机理和结晶成长都在模型中被计算。在每一个时间步里,基于时间、温度、应力、应力速率、演化历史,变形机制被定义,晶粒的变化被计算和更新。关于该模拟完整的解释在用户文档中有。 注意: 1)由于锻造过程的复杂性,对动态再结晶的同步模拟几乎是不可能的。实际上动态再结晶的计算是在变形过程之后。中间动态

再结晶,动态再结晶也是如此。这就是说,用户将看不到任何的 结果除非一个非变形的模拟(例如:热处理)跟在一个变形模拟的后面。 2)要完成一个完整的晶粒变化模拟,用户必须确定一个完整的热处理过程。特别是坯料必须在模拟结束时彻底的冷却。 问题摘要 空冷水中淬火是一个既简单又让人头疼的过程,该问题 使用SI单位,轴对称。材料IN718,模具材料H13钢。 1.输入变形主要文件 做一个工作路径,打开DEFORM 2D,用Problem ID GRAIN_LAB, 打开前处理,装载KEY文件UPSET.KEY. 这个KEY文件包含了该模拟的所有信息。 2.输入与晶粒有关的材料参数 点击模拟控制按纽,激活“晶粒”,到材料中选择IN718,点击晶粒窗口,窗口显示如下: 激活meta-dynamic、grain growth,不激活其他俩个,输入以下数据到相应的矩阵。 最高应力 应变速率极限 中间动态再结晶动力 中间动态再结晶晶粒尺寸

Deform模拟说明书

第一章挤压工艺参数的确定 1.1 坯料及尺寸选择 挤压成品为φ60的黄铜(DIN CuZn40Pb2即HPb59-1)圆棒,为确保挤压过程有一定的挤压比确定坯料断面圆直径为φ90,长250mm的黄铜圆棒。 1.2 挤压温度 挤压材料是HPb59-1,为保证挤压时的高塑性第抗力,要求有一定的挤压温度,参考资料可知,对于挤压HPb59-1棒材,锭坯原始温度在580℃~630℃,又由于挤压本身是产热的,则挤压初始温度不可过高,否则挤压到一定温度有可能导致挤压坯料熔化,故此设计挤压温度选择500℃。在挤压时,为防止挤压温降过快,挤压筒需要预热,参考资料,挤压筒温度为350℃~400℃,此设计挤压筒温度为300℃。 1.3 挤压速度 在选择挤压速度时应综合考虑合金的可挤压性、制品质量要求、挤压设备能力等因素的影响,参考资料可知挤压HPb59-1棒材的挤压速度在1.6~6.4mm/s之间,但挤压时速度过大或过小均会导致挤压缺陷,且挤压速度过高时对挤压设备和挤压坯料的要求均会提高,挤压速度过小时,无法满足挤压生产效率,故此设计选择挤压速度为2mm/s。

第二章工模具设计 2.1 工模具结构分析 挤压成品为φ60mm的圆棒,挤压所需的工具有挤压筒、挤压垫和挤压模。挤压筒容纳高温锭坯,其外形尺寸应为三层材料的尺寸组合。为防止挤压力过大,挤压表面质量过差,挤压模使用锥模结构,如图2-1所示。 2.2 工模具尺寸设计 挤压所用坯料为φ90×30mm的黄铜圆棒,故挤压筒的内径、挤压垫的外径和锥模的入口锥直径均为90mm。 2.2.1 挤压垫尺寸设计 挤压垫做成圆形,其外径为φ90mm,厚度为直径的0.2~0.7倍(即18~63mm)。 2.2.2 挤压筒尺寸设计 挤压筒在挤压过程中防止坯料金属外流,内径与坯料尺寸匹配为φ90mm,挤压筒长度L t 计算式为: L t =(L max +L)+S+t 式中 L max ——锭坯最大长度,对铜合金为(1.5~2.5)D ; L——锭坯穿孔时金属增加的长度; t——模子进入挤压筒的深度; S——挤压垫厚度。 由此挤压筒长为320mm。挤压筒外径为内径的4~5倍,即360~450mm,取400mm。 2.2.3 挤压模具尺寸设计 挤压模具主要参数,如图2-1所示。 2.2. 3.1 模角α 锥模的模角在45°~60°,在此范围内的模挤压力最小。此设计使用模角为45°。 2.2. 3.2 工作带长度h g 和直径d g 工作带又称定径带,其用以保证制品尺寸和表面质量。挤压黄铜时工作带长度一般为8~12mm,此设计选用工作带长度为h g =10mm。 模子工作带直径与实际所挤压的制品直径并不相等。挤压棒材时的模孔直径为: d g =(1+k)d 式中d ——棒材的名义直径; k——裕量系数,对黄铜而言,裕量系数k=1%~1.2%。

DEFORM锻压模拟基本过程

DEFORM在锻造模拟的基本过程 一软件简介 DEFORM是一套基于有限元的工艺仿真系统,用于分析金属成形及其相关工业的各种成形工艺和热处理工艺。通过在计算机上模拟整个加工过程,帮助工程师和设计人员:设计工具和产品工艺流程,减少昂贵的现场试验成本。提高工模具设计效率,降低生产和材料成本。缩短新产品的研究开发周期。 金属塑性成形技术室现代制造业中金属加工的重要方法之一,它是金属在模具的外力作用下发生塑性变形,并被加工成棒材,板材,棺材以及各类机器零件,构件或日用器具的技术。 二下面以锻压为例来说明DEFORM在金属塑性成形的基本过程 1 导入毛坯几何文件并设置坯料基本属性 对于那些非刚性材料和考虑传热影响的刚体材料,必须按需要设置材料的属性。物体名默认Workpiece不变,物体类型采用默认的塑性体,温度默认为常温不改变。在前处理窗口中,选择材料库中的Steel->AISI-1045, COLD[70F(20C)]。对导入的几何体进行几何检查,只有质量符合的图形才能划分网格并计算。 2 进行网格的划分与重划分 网格划分太大会降低模拟精确度,网格划分太小可提高模拟准确性,但模拟时间增加,降低了效率。所以选择合适的网格划分方式和网格划分大小很重要。在这里网格划分数目选择默认的8000,如图表1。 3 导入上模文件与下模文件并分别设置运动参数(如图表2) 4 设置其他模拟参数、定义接触关系并检查生成的数据库文件 设置模拟步数为20,除非模拟意外终止,否则程序将运行至20步。设置存储增量为2,每两步保存一次,避免每步都保存,造成数据文件过大。设置With Constant DieDisplement为0.13,每步进行0.13in的计算。因为是冷锻,摩擦因数系统会设为0.12。有限元分析引擎把模拟计算的结果写在数据库文件中,该文件在前处理环节中产生,此时一些模拟信息(如材料属性、运动控制参数等)会被写入该文件。 5 模拟锻造过程与后处理。 锻造的实际生产过程是非常快的,但用deform软件可以提取任意时间段的变形情况。为了解变形情况,在塑性体上选择三点(如图表3),查看其载荷行程曲线如图表4。在实际生产过程中,下料的多少直接决定了最后锻件的飞边有无与多少。根据Pro/E设计的零件毛坯重量与模具的型腔尺寸,可得出所需方体的长宽高。若下的料质量不足,将会出现充型不完全,得不到完整的零件;若下的料过大,零件的飞边就会很大,甚至使模具胀开,不能完全闭合,从而使零件尺寸发生变化。所以有适当的飞边才能保证零件的质量 下面是

铸造凝固过程数值模拟

铸造凝固过程数值模拟 时间:2007-4-11 9:03:44 1.1 概述 在铸造生产中,铸件凝固过程是最重要的过程之一,大部分铸造缺陷产生于这一过程。凝固过程的数值模拟对优化铸造工艺,预测和控制铸件质量和各种铸造缺陷以及提高生产效率都非常重要。 凝固过程数值模拟可以实现下述目的: 1)预知凝固时间以便预测生产率。 2)预知开箱时间。 3)预测缩孔和缩松。 4)预知铸型的表面温度以及内部的温度分布,以便预测金属型表面熔接情况,方便金属型设计。 5)控制凝固条件。 6)为预测铸应力,微观及宏观偏析,铸件性能等提供必要的依据和分析计算的基础数据。 铸件凝固过程数值模拟开始于60年代,丹麦FORSUND把有限差分法第一次用于铸件凝固过程的传热计算。之后美国HENZEL和KEUERIAN应用瞬态传热通用程序对汽轮机内缸体铸件进行数值计算,得出了温度场,计算结果与实测结果相当接近。这些尝试的成功,使研究者认识到用计算数值模拟技术研究铸件的凝固过程具有巨大

的潜力和广阔的前景。于是世界上许多国家都相继开展了铸件凝固过程数据模拟以及与之相关的研究工作。 1.2 数学模型的建立和程序设计 液态金属浇入铸型,它在型腔内的冷却凝固过程是一个通过铸型向环境散热的过程。在这个过程中,铸件和铸型内部温度分布要随时间变化。从传热方式看,这一散热过程是按导热、对流及辐射三种方式综合进行的。显然,对流和辐射的热流主要发生在边界上。当液态金属充满型腔后,如果不考虑铸件凝固过程中液态金属中发生的对流现象,铸件凝固过程基本上看成是一个不稳定导热过程。因此铸件凝固过程的数学模型正是根据不稳定导热偏微分方程建立的。但还必须考虑铸件凝固过程中的潜热释放。 基于分析和计算模型开发相应的程序,即可实现铸造凝固过程温度场的计算。 1.3 温度场的数值模拟 在热模拟中,温度场的数值模拟是最基本的,以三维温度场为主要内容的铸件凝固过程模拟技术已进入实用阶段,日本许多铸造厂采用此项技术。英国的Solstar系统由三维造型,网格自动剖分,有限差分传热计算,缩孔缩松预测,热物性数据库及图形处理等模块组成。

Deform模拟实验报告

第一章挤压模具尺寸及工艺参数的制定 1.1实验任务 已知:空心坯料Φ90×25mm,材料是黄铜(DIN-CuZn40Pb2),内径与挤压针直径相同。所要完成成品管直径26mm,模孔工作带直径36mm,模孔出口带直径46mm。 完成如下操作: (1)根据所知参数设计挤压模具主要尺寸和相关工艺参数,并运用AUTOCAD(或Pro/E)绘制坯料挤压过程平面图。 (2)根据所绘出的平面图形,在三维空间绘出三维图。并以STL格式分别输出各零件图形,并保存。 (3)运用DEFORM-3D模拟该三维造型,设置模拟参数,生成数据库,最终完成模拟过程。 1.2挤压温度的选取 挤压温度对热加工状态的组织、性能的影响极大,挤压温度越高,制品晶粒越粗大,挤制品的抗拉强度、屈服强度和硬度的值下降,延伸率增大。由于黄铜在730℃时塑性最高,而在挤压过程中由于变形、摩擦产热使配料温度升高,若把黄铜预热到730℃,坯料可能超过最佳塑性成型温度,所以选取坯料初始温度为500℃。挤压筒、挤压模具也要预热,以防止过大的热传递导致金属温度分布不均,影响制品质量,预热温度与坯料温度不能相差太大,故选取为300℃。 挤压速度的选取 挤压速度对制品组织与性能的影响,主要通过改变金属热平衡来实现。挤压速度低,金属热量逸散较多,致使挤压制品尾部出现加工组织;挤压速度高,锭坯与工具内壁接触时间短,能量传递来不及,有可能形成变形区内的绝热挤压过程,使金属的速度越来越高,导致制品表面裂纹。而且在保证产品质量和设备能量允许的前提下尽可能提高挤压速度。根据挤压流程可计算得挤压比为λ=13,故挤压垫速度为为1.5 mm/s。

第二章工模具尺寸 2.1挤压筒尺寸确定 2.1.1考虑坯料挤压过程中的热膨胀,取挤压筒内径为mm; 2.2.2挤压筒外径为,故挤压筒外径为mm; 2.2.3挤压筒长度 (2-1) 式中:—锭坯最大长度,对重金属管材为; —锭坯穿孔时金属增加的长度; —模子进入挤压筒的深度; —挤压垫厚度。 由于金属的内径与挤压针的直径相等,则锭坯穿孔时金属增加的长度L=0,改例中模子进入挤压筒的深度t=0,挤压垫厚度s=5mm mm 模子尺寸设计 模子的外形尺寸 模子的外圆直径和厚度主要是根据其强度和标准系列化来考虑的。它与挤压的型材类型和难挤压的程度及合金的性质有关。一般所挤压的材料的外接圆最大直径等于挤压筒内径的倍,故mm。对管材,模子的外径,故模子外径为mm。从提高模子的厚度和减轻弹性变形方面考虑,H由挤压机能力的大小选取,一般为20、25、30、40、50、70和100mm,取模子的高度mm。 模角 因为平模的挤压力较大,特别在挤压高温和高强度的合金时,模孔会因塑性变形而变小,所以选择锥模。锥模的最佳模角为,在此范围内的挤压力最小,而且在挤压有色金属时常采用,故选取锥角为。 工作带长度 工作带又称为定径带,是用以稳定制品尺寸表面质量的关键部分。由实践知道,挤压黄铜时工作带的长度取mm,故取工作带长度为mm。 工作带直径 根据尺寸偏差、冷却收缩量、模孔尺寸的变化确定其数值,工作带直径为 (2-2) 式中:—棒材名义直径; —裕量系数,一般黄铜取。 mm

相关文档