文档库 最新最全的文档下载
当前位置:文档库 › 双馈感应风力机并网运行的仿真

双馈感应风力机并网运行的仿真

双馈感应风力机并网运行的仿真
双馈感应风力机并网运行的仿真

双馈感应风电机并网运行的简单仿真

学号:201521401036 姓名:刘香 学院:电气工程 班级:s1551

摘要:风电场并网运行时会对电网产生一定影响。本文首先阐述了主体双馈异步发电机的

基本情况;详细阐明了风速模型的四种类型及其独立的仿真;感应发电机的并网运行;重点是基于Matlab/Simulink 软件平台,建立风电场与电力系统的模型,在电压调节模式下,由风速变化、电压暂降等双馈感应风电机并网引起的常见故障进行仿真试验。

关键词:双馈感应风力机;并网;Matlab/Simulink ; 1 前言

风力发电机组是实现将风能转换为电能的能量转换系统,它包括风力机和风力发电机。经风力机风轮将风能转换成机械能;由于发电机转子的转动使机械能转化为电能。本文中的双馈异步发电机(DFIG )是变速恒频型,电力电子频率变换设备是交-直-交型变频器。双馈异步发电机的定子绕组与电网直接相连,转子绕组通过频率变换器供给频率可调的交流励磁电流。

2 风速模型

风速为风力机提供原动力,风速模型的建立不受整个风电机组模型其它环节的影响,可以独立进行。可以分为四分量模型:基础风、阵风、渐变风、随机风。

2.1基础风模型

基本风对风力机的影响表现在反映风力机输出的额定功率大小,可以由风电场所测得的威布尔分布参数近似表示.

式(1)中的A 、K 表示威布尔分布的尺度参数和形状参数,??? ??

K +

Γ11代表伽马函数。

基本风风速为 12.5m/s ,仿真时间为 0~10s ,基本风始终存在,MATLAB 仿真程序见附

录1,仿真图如图1所示。

图 1 基本风仿真曲线

2.2阵风模型

风速突然变化的特性可以用阵风模型来表示,当风力机遇到突然变化的干扰可以用它来

表示。

.1212max ???

?

??

---=R R R R T T T t V V γ

G IG G

IG IG IG COS G

T T t T T t T T t V V +>+≤≤

?

??= 00

其中,式中的T G ,T IG ,V Gmax 分别表示阵风的周期(s )、启动时间(s )、最大值(m/s )。 阵风起始时间为 2.5s ,持续时间TG= 5.5s ,阵风最大风速为 6.5m/s ,阵风风速 MATLAB 仿真程序见附录2,仿真曲线图如图2所示。

图 2 阵风风速仿真曲线

2.3渐变风模型

风速随时间变化的特性用渐变风模型来表示。在风电系统的动态仿真中,可以用它来表示系统受到平稳过渡的力矩时的动态特性。

R R R R R R R R R R T T T T T T T T V V V +≥+<≤<≤

???=222211max 0

0tttt

γ

其中,VRmax,TR,T1R,T2R 分别表示渐变风的最大速度(m/s )、

持续时间(s )、起始时间(s )、终止时间(s )

仿真曲线的开始时刻风速为 0,2.5s 时开始有渐变风,经过 5s

的时间渐变风峰值达到最

大值 6.5m/s ,渐变风在最大值持续 2.5s 之后停止。渐变风风速MATLAB 仿真程序见附录,仿真曲线如图3所示。

图 3 渐变风风速仿真

2.4随机风模型

风的不稳定性分量用随机性来表示,随机产生的风速用随机噪声风表示。

()[]()

i i N

i N S V ?ωωωγ-?=∑=cos 21

i 2

/1 ⑷

()????

???

?????????????? ??+=?????

??-=3

4

22i

2

1221μπωπωωωωγi N i i F F K S i 其中, 式中:Ψi 是0~2π之间均匀分布的随机变量;KN 表示地表粗糙系数,实际工程中KN=0.004;F 表示随机风的扰动范围,单位是m2;μ表示相对高度的平均风速;N 表示频谱采样点数; ωi 表示各采样频率。 随机风的仿真曲线如图4所示

图 4 随机风风速仿真曲线

由于实际作用在风力机上的风速是 4 种风速模型的任意组合,因此我们用风 速模型的一般式来表示

N R G B V V V V V +++=

3感应发电机并网运行

感应发电机并网运行机之后,不但要向电网输送有功功率,还须从电网吸收无功功率。供给发电机励磁,以及补充定子和转子因漏磁消耗掉的无功功率。这部分无功功率单靠从电网吸收是远远不够的,风力发电机组一般会在感应发电机与电网连接处并联无功补偿器,以提供一定的无功功率。

4双馈感应风电机并网运行仿真分析

4.1风力发电系统的仿真描述

本文是应用 MATLAB/Simpowersysterms 来开发的。所建立的模型容量6*1.5MW 的风电场,经过变压器和线路连接到 25kV 的配电系统中,再经30KM 25kV 电压等级的输电线路连接到 120kV 高压输电系统中。其中额定电压为2.3KV 、额定功率2MVA 的发电机是由一个功率1.68MW 、功率因数0.93PF 的感应电动机,并联一个200kW 电阻负载组成,连接在母线B25上。500kW 的负荷连接到风电场575V 总线上。双馈感应风电机组并网运行的Matlab 仿真图

如图所示:

图7 双馈感应风电机并网运行仿真图

风力发电机和感应电动机负载有保护系统,其监测电压、电流和风力机风速,此外监测DFIG 的直流线电压。风力发电机组是由转子感应发电机和“交-直-交”IGBT基于PWM的变换器组成。连接到母线B25节点的200MVA的地方负荷及其中的组成部分感应电动机保护系统的仿真图如图所示:

图 8 200MVA地方负荷与保护系统风力发电机的保护系统如图所示:

图 9 风力发电机的保护系统

DFIG技术通过优化风力机调速器从低风速中提取最大能量,同时使风力机械应力最小化,达到充分利用风能的效果。图10展示了风速在5m/s到16.2m/S时风轮机的机械功率"通过控制系统,双馈感应发电机能够沿着红色曲线运行。

图 10 变速恒频风力机组的功率特性曲线

4.2风电场电压调节模式仿真结果

设置一个渐变风程序,即起始风速设置为 4m/s。t=5s 时,风速慢慢增加,到 t=15s 时,风速增加到 14m/s,且假定风电场内 6 台风机遇到的风况相同。风电场的运行模式为电压调节模式。图11为风速变化时,风电场各参数的变化。

图 12 风速变化时风电场参数

当t=5s 时,双馈感应风电机组输出的有功功率开始增大,大约在t=25s时,其输出功率达到额定值 9MW。且其输出功率的运行轨迹类似于图 10所示的 DFIG 最大功率运行轨迹,即红线所示。在这个时间段内,风力机转速由大概0.7pu增大到约为1.2pu.桨距角从 0°增到约0.75°,开始限制风力机转速以减少输出功率。观察风电机组输出电压和无功功率。输出电压(B575)始终为1pu。但是风电机组输出电流随着输出功率增大而增大,最终约为

0.9pu。风力机出力不断增加,为使风电场输口电压恒定,吸收了 0.68Mvar 无功功率(相当于产生的无功为 Q=-0.68Mvar)。变频器直流电压只在风速发生变化时产生一点微小的谐波

图 11 风速变化时电网参数

图11为风速变化时电网参数的变化情况。当风速增大时,节点 B120、B25、B575 处的电压都略微有所波动。且在t=25s之后电压水平都保持在了稳定水平。2MW 发电厂输出的有功功率开始下降,并且由开始向系统输出功率到后来从系统吸收功率。2MW 发电厂发出的无功功率增加,明该电厂由起初的从电网吸收无功功率转为了向电网输出无功功率。

4.3 120kV系统发生电压暂降的仿真结果

将风电场控制模式设置为电压调节模式,观察120kV 系统发生电压暂降对电网造成的影响,如图12所示,2MW厂输出电流只出现了一定的谐波扰动,没有降为0,2MW发电厂不再被切除。发电机原动机转速没有受到影响,输出有功功率功率除出现短暂的谐波之外,幅值总体保持在一定值(0.6MW)。无功功率下降到接近-5Mvar,表明风电场向电网输出了接近5Mvar 对的无功功率。120kV 系统发生电压暂降对电网及其附属电厂没有造成太大影响,只引起了电压、电流及输出功率产生了短暂的谐波。

图 12 120kV系统发生电压暂降的电网参数120kV 系统出现电压暂降对风电场参数造成的影响,如图13所示

图 13 120kV系统发生电压暂降的风电场参数

由于风电场采用电压调节模式,使得风电场输出电压保持在了1p.u.。的电压水平,但在电压暂降的开始和结束瞬间出现了较大的谐波电压。风电场输出电流出现了较大范围的波动,这是由于风电场输出无功功率所致。风力机转速没有受到电压暂降的影响,始终保持定值,因此风电场输出功率保持在1.9MW水平。只是在电压暂降的开始和结束阶段出现了较大的谐波影响。

总结以上分析:当大系统发生电压暂降时,并且系统缺乏无功功率的情况下,风电场采用功率补偿模式运行,会对电网上其他发电厂和用户造成影响,甚至可能造成系统电压跌落和谐波。但如果风电场采用电压调节模式运行,就会对系统4的无功功率起到补偿的作用,这一措施可以有效地改善电网电压水平。

附录

1基本风模型仿真曲线MATLAB程序:

A=4.0215;

K=0.2893; %输入威布尔分布曲线尺度参数、形状参数

t=0:0.01:10; %输入仿真时间及采样时间

V=A*gamma(K); %输入威布尔分布公式

plot(t,V,'r-') %输入基本绘图指令

xlabel('时间(s)') %标注x轴名称

ylabel('风速(m/s)') %标注y轴名称

title('基本风速仿真曲线') %标注图形标题

grid on %增添网格线

legend('VB') %标注图例标注

text(3,12.6,'基本风\rightarrow') %增加文本标注

2阵风模型模型仿真曲线MATLAB程序:

t=0:0.01:10;

T1G=2.5;TG=5.5;

VGmax=6.5;

y=2*pi*[(t/TG)-(T1G/TG)];

Vcos=(VGmax/2)*[1-cos(y)];

VG=0.*(t=T1G&t<=T1G+TG)+0.*(t>T1G+TG);

plot(t,VG,'r')

grid on

xlabel('时间(s)')

ylabel('风速(m/s)')

title('阵风风速仿真曲线')

axis([0,10,-1,7])

legend('VG')

text(2.65,3.5,'阵风\rightarrow')

3渐变风模型仿真曲线MATLAB程序:

t=0:0.01:11;

TR=2.5;T1R=2.5;T2R=7.5;

VRmax=6.5;

Vr=VRmax*[1-(t-T2R)/(T1R-T2R)];

VR=0.*(t=T1R&t=T2R&t=T2R+T R);

plot(t,VR,'r')

grid on

xlabel('时间(s)')

ylabel('风速(m/s)')

title('渐变风风速仿真曲线')

axis([0,11,-0.5,8])

legend('VR')

text(3.5,3.5,'渐变风\rightarrow')

4随机风模型仿真曲线MATLAB程序:

N=10;

dw=0.001;

f=rand(100,1);

fi=2*pi*f;

Kn=0.004;

F=2000;

u=13;

i=1;

sum=15

while(i<=100) %调用while循环语句

wi=(i-1/2)*dw;

Srwi=(2*Kn*F^2*abs(wi))/(pi^2*(1+((F*wi)/(u*pi))^2)^(4/3)); sum=2*sqrt(Srwi*dw)*cos(wi-fi);

plot(i,sum,'r:');

hold on

i=i+1;

end

grid on

xlabel('时间(s)')

ylabel('风速(m/s)')

title('随机风风速仿真曲线')

参考文献

[1]Matlab帮助

[2]李俊峰,高虎,马玲娟.我国风力发电现状和展望[J].中国科技投资,2007(11):12-15

[3]徐凯.国内外风力发电现状及发展趋势[J].中国高新技术企业,2007(13):34-36

[4]荆龙.鼠笼异步电机风力发电系统的优化控制[D].北京交通大学,2008

[5]艾斯卡尔.变速恒频交流励磁风力发电机系统及其控制原理研究[D].河海大学,2004

[6]雷巧红.双馈感应风电机组并网运行动态仿真分析及研究[D].太原理工大学,2007

[7]孙建锋.风电场建模和仿真研究[D].清华大学,2004

[8]吴茜琼.风电场并网运行对电力系统影响的仿真分析[D].南昌大学,2007

[9]刘长道.鄱阳湖风电系统并网运行仿真分析[D].南昌大学,2008

[10]吴俊玲.大型风电场并网运行的若干技术问题研究[D].清华大学,2004

双馈风力发电模拟实验机组

双馈风力发电模拟实验机组 双馈风电机组(又称:双馈风力发电机模拟试验台),是风力发电行业广泛应用的模拟实验机组,该机组具有模拟变速恒频风力机组并网发电的功能及特性,是风电行业科学研究、教学实验的理想产品。 双馈风电机组分为拖动单元、控制单元、发电单元、测量单元。 本机组使用原动电机为拖动单元,电动机通过联轴器拖动双馈发电机。用户可根据设计的实验目的由控制单元调节电动机转速,达到宽范围模拟大自然风速变化引起的发电机发电状况之变化。用户通过开放式测量单元,可以根据自己的实验需求给定发电机转矩,通过控制双馈发电机的功率输出,达到变速恒频风力机组的并网发电等过程各参数的实验研究。通过机组故障模拟,达到对机组常见故障的认识和处理方法。 拖动单元的原动机选用异步电动机(也可选用永磁同步电动机、交流同步电动机、直流电动机):模拟机组因风速变化而引起的转速变化。 发电单元选用双馈发电机(也可选用永磁同步发电机、直流发电机、交流异步发电机,交流同步发电机):双馈发电机变速恒频发电。 控制单元选用变频器控制拖动电机转速,用以模拟风速的变化,同时可以方便的通过计算机控制变频器实现电机的转速调节模拟风机出力。 测量单元选用光电编码器采集发电机的转子位置和实时转速,光电编码器安装于发电机后端输出轴上(两台电机联轴间也可安装扭矩传感器,用于测量轴功率和转速);选用电压、电流、频率等测量传感元件及检测显示表面板、按键,开关模块等,对电量信号进行采集、分析、处理。 机组实现变速恒频风力机组发电状态的模拟,包括转速、转矩、发电量及有功、无功调节。拖动单元:模拟机组因风速变化而引起的转速变化。 机组模拟实验内容 1、风力发电机接线形式实验 2、空载运转实验 3、风速模拟实验 4、转距模拟实验

双馈式风力发电机剖析

双馈式风力发电机 【摘要】随着地球能源的日益紧缺,环境污染的日益加重,风能作为可再生绿色能源越来越被人们重视,风力发电技术成为世界各国研究的重点。变速恒频发电技术是一种新型风力发电技术,其主要优点在于风轮以变速运行。通过调节发电机转子电流的大小、频率和相位,从而实现转速的调节。而其中双馈发电机构成的风力发电系统已经成为目前国际上风力发电的必然趋势。 关键词:风能风力发电变速恒频双馈式发电机 一、风力发电 风能作为一种清洁的可再生能源,越来越受到世界各国的重视。 风力发电:把风的动能转变成机械动能,再把机械能转化为电力动能,这就是风力发电。 风力发电在芬兰、丹麦等国家很流行;中国也在西部地区大力提倡。我国的风力资源极为丰富,绝大多数地区的平均风速都在每秒3米以上,特别是东北、西北、西南高原和沿海岛屿,平均风速更大;有的地方,一年三分之一以上的时间都是大风天。在这些地区,发展风力发电是很有前途的。风力发电正在世界上形成一股热潮,因为风力发电不需要使用燃料,也不会产生辐射或空气污染。 风力发电的原理:是利用风力带动风车叶片旋转,再透过增速机将旋转的速度提升,来促使发电机发电。依据目前的风车技术,大约是每秒三米的微风速度(微风的程度),便可以开始发电。风力发电机因风量不稳定,故其输出的是13~25V变化的交流电,须经充电器整流,再对蓄电瓶充电,使风力发电机产生的电能变成化学能。然后用有保护电路的逆变电源,把电瓶里的化学能转变成交流220V市电,才能保证稳定使用。 风力发电所需要的装置,称作风力发电机组。这种风力发电机组,大体上可分风轮(包括尾舵)、发电机和铁塔三部分。 风轮是把风的动能转变为机械能的重要部件,它由两只(或更多只)螺旋桨形的叶轮组成。当风吹向浆叶时,桨叶上产生气动力驱动风轮转动。桨叶的材料要求强度高、重量轻,目前多用玻璃钢或其它复合材料(如碳纤维)来制造。(现在还有一些垂直风轮,s型旋转叶片等,其作用也与常规螺旋桨型叶片相同)

双馈异步发电机原理

双馈异步发电机 双馈异步发电机是一种绕线式感应发电机,按转子类型分为有刷和无刷两种,无刷发电机即为鼠笼型发电机,由于鼠笼型风力发电机励磁控制困难,无法最大限度的利用风能,所以目前很少应用;有刷发电机即为双馈异步发电机,具备易于控制转矩和速度、能工作在恒频变速状态、电机可以超同步和超容量运行、驱动变流器的总额定功率可以降低到电机容量的1/4等方面的优点,是本文介绍的重点。 双馈异步发电机变速恒频风力发电机的核心部件。此类发电机主要由电机本体和冷却系统两大部分组成。电机本体由定子、转子和轴承系统组成,冷却系统分为水冷、空空冷和空水冷三种结构。 双馈异步发电机的定子绕组直接与电网相连,转子绕组通过变频器与电网连接,转子绕组电源的频率、电压、幅值和相位按运行要求由变频器自动调节,机组可以在不同的转速下实现恒频发电,满足用电负载和并网的要求。由于采用了交流励磁,发电机和电力系统构成了"柔性连接",即可以根据电网电压、电流和发电机的转速来调节励磁电流,精确的调节发电机输出电压,使其能满足要求。 异步电动机运行时,电磁转矩和转向相同,即转差率>0;异步发电机运行时,电磁转矩和转速方向相反,转差率<0,发电机的功率随该负转差率绝对值的增大而提高。当双馈发电

机的转子绕组通过三相低频电流时,在转子中会形成一个低速旋转磁场,这个磁场的旋转速度与转子的机械转速相叠加,使其等于定子的同步转速,从而在发电机定子绕组中感应出相应于同步转速的工频电压。当风速变化时,转速随之而变化,相应地改变转子电流的频率和旋转磁场的速度,就会使定子输出频率保持恒定。 双馈发电机通过控制转子励磁,使定子的输出频率保持在工频。当发电机的转速低于气隙旋转磁场的转速时,发电机处于亚同步速运行,为了保证发电机发出的频率与电网频率一致,需要变频器向发电机转子提供正相序励磁,给转子绕组输入一个其旋转磁场方向与转子机械方向相同的励磁电流,此时转子的制动转矩与转子的机械转向相反,转子的电流必须与转子的感应电动势反方向,转差率减小,定子向电网馈送电功率,而变频器向转子绕组输入功率。当发电机的转速高于气 五一长假除了旅游还能做什么?辅导补习美容养颜家庭家务加班须知

双馈式感应发电机(DFIG)说明

双馈式感应发电机(DFIG)简介 大明 双馈电机(或称为交流励磁电机),它早在四十年代就已经出现。随着电力电子技术和数字控制技术的发展,双馈电机在电气性能方面所具有的一系列优点和巨大的潜力,已经引起国外的高度重视。双馈式感应发电机(Doubly-Fed Induction Generator, DFIG) 使用绕线式转子,由于电力可经由转子侧之电力转换器双向流动,因此发电机馈入电力系统的界面同时包括定子侧(Line side)及转子侧(Rotor side),其电力转换器功率仅为发电机额定功率之20~30%,故成本较低,而且发电机可变速围可达同步转速之±30%,因此性能/价格比值最高,为目前大型风力发电机中最普遍采用之组态。全球前10大风力发电机制造商的产品中有六成以上的变速风力发电机采用双馈式感应发电机,本文将介绍双馈式感应发电机的基本原理与特性。 一、双馈式感应发电机(DFIG)基本原理 双馈式感应发电机(DFIG)是在同步发电机和异步发电机的基础上发展起来的一种新型发电机,其转子具有三相励磁绕组结构。当通以某一频率(转差频率)的交流电时,就会产生一个相对转子旋转的磁场,转子的实际转速加上交流励磁产生的旋转磁场所对应的转速等于同步转速,则在电机气隙中形成一个同步旋转磁场,在定子侧感应出同步频率的感应电势。从定子侧看,这与同步发电机直流励磁的转子以同步转速旋转时,在电机气隙中形成一个同步旋转的磁场是等效的。 双馈式感应发电机与一般感应发电机不同之处在于联接其转子侧之PWM脉宽调变电力转换器具有四象限之运转能力,电力转换器提供低频(转差频率)的交流电流(或电压)进行励磁,调节励磁电流(或电压)的幅值、频率、相位,来实现定子恒频恒压输出,其定子输出特性与同步发电机十分类似,所以有一些文献指出,双馈式感应发电机可以视为同步发电机与感应发电机之综合体。 从能量流动的特性来看,与采用直流励磁的同步发电机相比,同步发电机励磁的可调量只有直流励磁电流的幅值一个,所以同步发电机励磁一般只能对无效功率进行调节,而双馈式感应发电机,其励磁的可调量除了励磁电流的幅值外,还有励磁电流的频率和相位。通过改变励磁电流的频率可以改变发电机的转速,达到调速的目的;通过改变励磁电流的相位,来改变发电机的空载电势与电力系统电压向量之间的相对位置,从而改变发电机的功率角,可以调节发电机的有效功率。 一般感应电机(异步电机) : (1)在转子转速低于同步转速时,处于电动工作状态, (2)当转子转速高于同步转速时,处于发电工作状态,而对于双馈式电机来说,除了上述两种工作状态之外,还具有另外两种工作状态 : (3)欠同步发电工作状态, (4)过同步电动工作状态。双馈式感应发电机之欠同步与过同步转速发电时之功率流向分别如图一(a)及图一(b)所示。其中,s为转差率,Ps为DFIG定子输出功率,Pg为DFIG输出至电力系统之功率。

变速恒频双馈风力发电机的主要优点和基本原理

变速恒频双馈风力发电机的原理和优点研究 变速恒频发电技术 变速恒频发电技术是一种新型风力发电技术,其主要优点在于风轮以变速运行。这一调速系统和变桨距调节技术环节结合起来,就构成了变速恒频风力发电系统。其调节方法是:起动时通过调节桨距控制发电机转速;并网后在额定风速以下,调节发电机的转矩使转速跟随风速变化,保持最佳叶尖速比以获得最大风能;在额定风速以上,采用失速与桨距双重调节、减少桨距调节的频繁动作,限制风力机获取的能量,保证发电机功率输出的稳定性和良好的动态特性,提高传动系统的柔性。上述方式目前被公认为最优化的调节方式,也是未来风电技术发展的主要方向。其主要优点是可大范围调节转速,使风能利用系数保持在最佳值;能吸收和存储阵风能量,减少阵风冲击对风力发电机产生的疲劳损坏、机械应力和转矩脉动,延长机组寿命,减小噪声;还可控制有功功率和无功功率,改善电能质量。尽管变速系统与恒速系统相比,风电转换装置中的电力电子部分比较复杂和昂贵,但成本在大型风力发电机组中所占比例并不大,因而大力发展变速恒频技术将是今后风力发电的必然趋势。 目前,采用变速恒频技术的风力发电机组,由于采用不同类型的发电机,并辅之相关的电力电子变流装置,配合发电机进行功率控制,就构成了形式多样的变速恒频风力发电系统。主要有以下几类:鼠笼型异步发电机变速恒频风力发电系统、绕线式异步发电机变速恒频风力发电系统、同步发电机变速恒频风力发电系统、双馈发电机变速恒频风力发电系统。其中,由双馈发电机构成的变速恒频控制方案是在转子电路实现的,采用双馈发电方式,突破了机电系统必须严格同步运行的传统观念,使原动机转速不受发电机输出频率限制,而发电机输出电压和电流的频率、幅值和相位也不受转子速度和瞬时位置的影响,变机电系统之间的刚性连接为柔性连接。基于诸多优点,由双馈发电机构成的变速恒频风力发电系统已经成为目前国际上风力发电方面的研究热点和必然的发展趋势。

基于Matlab的双馈异步风力发电机风电场仿真

基于Matlab的双馈异步风力发电机风电场仿真 仿真对象是一个由6台1.5MW双馈异步风力发电机组组成的9MW的风电场。这个风电场连接着一个25kv的分布式发电系统,它的电能通过35km长,电压等级为25kv的馈线(B25)输入到120kv的电网上。 一、仿真过程及结果分析 1、风速变化,风机的反映。 初始风速设定为8m/s,时间到t=4s,风速增长到14m/s。开始仿真。 图1 风速突然变化时输出的曲线(voltage regulation 模式)

有功功率随转速平稳的增长,用了18秒的时间到达额定9MW。这段时间内风机转速从0.8pu增长到1.21pu。桨距角从0度增长到0.76度,用来限制机械功率。通过调控无功功率来维持电压在1pu。额定功率时,风机吸收了0.68Mvar,从而控制电压不变。 图2 风速突然变化时输出曲线(Var regulation 模式)无功控制模式下,保持功率因数不变,从电网吸收一部分无功来并网(达到同步转速),因吸收无功,电压上升。 2、110kv系统电压突然下降的仿真。 风速不变8m/s。设置5s发生一次0.15pu的电压下降(在Time variation of 中选择Amplitude)。确保风机为无功控制。

图3 110kv电压突然下降(Var Regulation 模式) 用电设备的电流降至0,电动机转速逐渐下降。用电设备被分离出电网。 图4 110kv电压突然下降(voltage regulation模式) 采用Voltage regulation控制模式,用电设备没有被分出电网。因为电压下降时,风电场发出无功功率。

双馈发电机工作原理

第七章双馈风力发电机工作原理 我们通常所讲的双馈异步发电机实质上是一种绕线式转子电机,由于其定、转子都能向电网馈电,故简称双馈电机。双馈电机虽然属于异步机的范畴,但是由于其具有独立的励磁绕组,可以象同步电机一样施加励磁,调节功率因数,所以又称为交流励磁电机,也有称为异步化同步电机。 同步电机由于是直流励磁,其可调量只有一个电流的幅值,所以同步电机一般只能对无功功率进行调节。交流励磁电机的可调量有三个:一是可调节的励磁电流幅值;二是可改变励磁频率;三是可改变相位。这说明交流励磁电机比同步电机多了两个可调量。 通过改变励磁频率,可改变发电机的转速,达到调速的目的。这样,在负荷突变时,可通过快速控制励磁频率来改变电机转速,充分利用转子的动能,释放或吸收负荷,对电网扰动远比常规电机小。 改变转子励磁的相位时,由转子电流产生的转子磁场在气隙空间的位臵上有一个位移,这就改变了发电机电势与电网电压相量的相对位移,也就改变了电机的功率角。这说明电机的功率角也可以进行调节。所以交流励磁不仅可调节无功功率,还可以调节有功功率。 交流励磁电机之所以有这么多优点,是因为它采用的是可变的交流励磁电流。但是,实现可变交流励磁电流的控制是比较困难的,本章的主要内容讲述一种基于定子磁链定向的矢量控制策略,该控制策略可以实现机组的变速恒频发电而且可以实现有功无功的独立解耦控制,当前的主流双馈风力发电机组均是采用此种控制策略。 一、双馈电机的基本工作原理 设双馈电机的定转子绕组均为对称绕组,电机的极对数为p,根据旋转磁场理论,当定子对称三相绕组施以对称三相电压,有对称三相电流流过时,会在电机的 n称为同步转速,它与电网频率气隙中形成一个旋转的磁场,这个旋转磁场的转速 1

双馈风力发电机并网运行控制及仿真

双馈风力发电机并网运行控制及仿真 结合双馈异步风力发电机的运行特点,将矢量控制技术应用到双馈异步风力发电机并网控制中。构建了风力发电机空载并网与最大追踪控制策略,设计了基于LabVIEW、PXI8840及Compact RIO9035的硬件在环仿真系统。通过PXI能够观测到并网前、后定、转子电流、电压、功率等变化情况,为新型风力发电并网控制策略的研究提供了一个公共平台。 标签:双馈;矢量控制;最大风能追踪;LabVIEW;PXI Abstract:According to the operational characteristics of doubly-fed asynchronous wind turbine,vector control technology is applied to grid-connected control of doubly-fed asynchronous wind turbine. The no-load grid-connected and maximum tracking control strategy of wind turbine is constructed,and the hardware in loop simulation system based on LabVIEW,PXI8840 and Compact RIO9035 is designed. The changes of current,voltage,power and so on before and after the grid connection can be observed by PXI,which provides a common platform for the research on the grid-connected control strategy of new wind power. Keywords:doubly-fed;vector control;maximum wind energy tracking;LabVIEW;PXI 1 概述 風能作为一种可再生能源,具有高效,清洁等特点。风力发电技术在世界范围内也得到迅速发展[1,2]。 双馈异步风力发电机(Doubly-Fed Induction Generator,DFIG)机组,通过控制发电机励磁,实现在发电机转速可调情况下的并网运行。采用矢量控制技术调节励磁,可以有效的调节发电机输出功率,在实现最大风能利用效率的同时,还可以调节电网的功率因数,提高电网的稳定性等[3-6]。 本文分析了DFIG机组运行特性,将定子磁链定向的矢量控制技术运用到机组控制策略中,制定控制策略。建立了基于LabVIEW的仿真系统,验证采用矢量控制技术对DFIG并网控制和最大风能追踪控制的精准性。 2 发电机的运行控制 2.1 发电机空载数学模型 为了准确调节DFIG并网前、后的端电压,本文采用磁场定向的矢量控制。为此,首先建立发电机内磁场定向旋转d-q坐标系的数学模型。

双馈风力发电机

变速恒频双馈风力发电机励磁控制技术研究 摘要:双馈电机变速恒频(VSCF)风力发电系统,是通过调节转子绕组励磁电流的频率、幅值、相位和相序来实现变速恒频控制的。该文在分析双馈电机运行原理和励磁控制方法的基础上,设计和构建了基于80C196MC单片机的VSCF 双馈风力发电机的励磁控制试验系统。对变速恒频控制、恒压控制、并网控制以及亚同步速、同步速和超同步速三种不同运行状态之间的动态转换控制技术,进行了试验研究,为兆瓦级变速恒频双馈风力发电机励磁控制系统的设计奠定了基础。 关键词:风力发电机;变速恒频;双馈;励磁控制 1 引言 风力发电以其无污染和可再生性,日益受到世界各国的广泛重视,近年来得 到迅速发展。采用双馈电机的变速恒频风力发电系统与传统的恒速恒频风力发电 系统相比具有显著的优势,如风能利用系数高,能吸收由风速突变所产生的能量 波动以避免主轴及传动机构承受过大的扭矩和应力,以及可以改善系统的功率因 数等。 变速恒频双馈风力发电系统的核心技术是基于电力电子和计算机控制的交 流励磁控制技术。尽管可采用理论分析和计算机仿真对变速恒频风力发电系统控 制技术进行研究,然而由于仿真模型及其参数的非真实性和控制算法的非实时 性,仿真研究往往难以代替模拟系统的试验研究。本文在分析双馈电机运行原理 和励磁控制方法的基础上,设计和构建了基于80C196MC单片机的VSCF双馈风力 发电机的励磁控制试验系统,并对其控制技术进行了系统的试验研究。 2 VSCF风力发电机的工作原理 2.1 双馈电机的VSCF控制原理 VSCF风力发电系统主要由风力机、增速箱、双馈发电机、双向变流器和控制 器组成,其原理框图如图1。双馈发电机的定子绕组接电网,转子绕组由具有可 调节频率的三相电源激励,一般采用交-交变流器或交-直-交变流器供电。双馈 发电机可在不同的转速下运行,其转速随风速的变化可作适当的调整,使风力机 的运行始终处于最佳状态,以提高风能的利用率。当电机的负载和转速变化时,通

双馈式风力发电机结构原理及功率分析

双馈式风力发电机结构原理及功率分析 摘要:文章详细介绍了双馈式风力发电机组的机构组成、工作原理,分析了风力发电系统中双馈式风力发电机的工作特性,详尽分析了含双馈式风力发电机的系统中功率的流向以及流动过程。 关键字:双馈式风力发电机、原理、功率 the structure and principle and power analysis of doubly —fed induction generator bai wenjun (china three gorges university , college of electrical engineering & renewable energy , yichang 443002 , china)absrtact: this paper describe the structure and principle of the doubly—fed induction generator in detail , and then analysis the operating characteristics of the doubly—fed induction generator in the wind power generation system, at the last , analysis the flow and liquidity of the power system which contain the doubly—fed induction generator. keywords: doubly—fed induction generator, structure,power 0 引言 随着人们对可再生能源的重视和科学技术的进步,风电正受到越来越多的关注,其在整个电力系统中所占的比重也日益增加。众所周知,风电的产生正是通过风力推动桨叶转动,同时带动发电机的

双馈异步风力发电机(讲)

1.引言: 风力发电机组主要包括变频器,控制器,齿轮箱(视机型而定),发电机,主轴承,叶片等等部件,在这些部件中发电机目前国产化程度最高,它的价格约占机组的10%左右。发电机主要包 括2种机型:永磁同步发电机和异步发电机。永磁同步发电机低速运行时,不需要庞大的齿轮箱,但是机组体积和重量都很大,1.5MW 的永磁直驱发电机机舱会达到5米,整个重量达80吨。同时,永磁直驱发电机的单价较贵,技术复杂,制造困难,但是这种机型的优点是少了个齿轮箱,也就少了个故障点。异步发电机是由风机拖动齿轮箱,再带动异步发电机运行,因为叶片速度很低,齿轮箱可以变速100倍,以让风机在1500RPMF运行,目前流行的是双馈异步发电机,主要有1.25MV Y 1.5MV y 2MW三种机型,异步发电机的机组单价低,1KW大概需6000元左右,而且技术成熟,国产化高。 2.双馈异步发电机的原理: 所谓双馈,可以理解为定子、转子同时可以发出电能, 发电机原理理论上说只要有动力带动电动机,在电动机的定子侧就能直接发出电能。现代变速双馈风力发电机的工作原理就是通过叶轮将风能转变为机械转矩(即风轮转动惯量),通过主轴传动链,经过齿轮箱增速到异步发电机的转速后,通过励磁变流器励磁而将发电机的定子电能并入电网。如果超过发电机同步转速,转子也处于发电状态,通过变流器向电网馈电。双馈发电机正是由叶片通过齿轮箱

变速,带动电机高速旋转,同时转子接变频器,通过变频器PW M控制以达到定子侧输出相对完美正弦波,同时在额定转速下,转子侧也能同时发出电流,以达到最大利用风能效果。通俗的讲,就是要变频器控制转子电流,反馈到定子上面,保证定子发出相对完美的正弦无谐波电能,同时在额定转速下,转子也能发出功率出来。有个大致感觉是 1.5MW 发电机的定子发电量大概1200KV,转子大约300KV,转子侧发出的功率要在30%以下,总之越少越好这样可以让变频器功率小点。 3.双馈异步发电机的设计难点: 结构设计难点:因机舱封闭体积,风机运行环境非常恶劣,需要气温-30?55度之间正常运行,希望电机尺寸尽量小,风机对发电机重量有严格要求,部分厂家对转子转动惯量也有要求。发电机需要高速运行,但振速要小,通常要小于 2.8mm/s。此外对于水冷的电机入水温度较高,需要考虑维修和维护问题!比如轴承自动加油等!还有就是,整个发电机是倾斜运行的,大概4?5度的倾斜角度,这个在结构设计时候需要考虑??大家看到发电机的轴承就知道了。 电气设计难点:风机需要效率97%以上,由于转子绕组接变频 器,接变频器就会引发谐波电流,会引起铜耗,铁耗等!此外 定子转子承受很大冲击电压,提高绕组温升问题是优先考虑, 转子电流非常大,上千安培,滑环设计也是难点!电机会有轴 电流,需要考虑绝缘问题!同时高空运行需要防雷处理!转子 绕组线规非常大,成型困难!尽量控制转子输出功率尽量小于 30%,以缩小变频器的功率。

双馈发电机工作原理

双馈发电机工作原理 双馈风力发电机是时下应用比较广泛的风机,它的特殊之处在于其定子绕组和转子绕组都直接或间接地与电网相连,定子侧绕组产生的工频交流电直接馈入电网,转子侧的功率通过整流逆变装置上网。与一般的异步发电机相比,双馈风机允许发电机转速在一定范围内波动,因为转子侧(相当于励磁绕组)中电流的大小和频率可以通过整流逆变装置进行调节,从而在转速发生变化的情况下,维持定子侧输出功率频率的恒定。 暂态建模资料 摘要 随着风力发电并网容量的快速增加,风电接入对电网运行性能的影响越加 明显。联网运行双馈感应风电机组的运行特性对电网的安全稳定运行有着重要 的影响。 本文对联网运行双馈感应风电机组的仿真建模、运行控制及模型的有效性 进行了研究分析,主要包括以下内容: 分析了两相同步旋转坐标系下双馈感应风电机组数学模型的特点,建立了 双馈感应风电机组联网运行电磁暂态模型,对不同运行条件下双馈感应风电机 组的运行特性进行了仿真模拟,深入了解了双馈感应风电机组的联网运行特性。 建立了联网运行双馈感应风电机组运行控制策略,在此基础上,构建了控 制系统传递函数模型,分析了PI控制器参数选择对控制系统性能的影响,提出 了PI控制器参数设置的方法。 提出了电网发生对称性故障时双馈感应风电机组的短路电流计算简化模 型,为评估双馈感应风电机组短路对电网继电保护装置的影响提供了有效的计 算模型。 设计了风电机组联网短路试验方案,分析了短路试验数据识别出风电机组 厂家未提供的风电机组撬杠保护动作值,并仿真重现了风电机组联网短路试验, 仿真数据与试验数据相吻合,验证了所构建系统模型和仿真系统的有效性。 研究现状 由于风能是一种随即性很强的一种能源,不能像火力发电、水力发电那样 可以预先调度,因此大规模的风力发电的接入对电网的经济、安全、稳定运行 带来了诸多不利的影响,对系统调频、调压、调峰带来了困难。同时由于风电 机组大多包含有对运行条件要求很高的电力电子变流器,在一些运行方式下电 网的扰动对风电机组的正常运行也会带来一定的影响,严重时可能会引起风电 机组跳闸,造成电网功率大幅波动,威胁着电网的运行安全,而从系统持续运 行的角度考虑,通常希望风电机组具有一定的故障穿越能力,能够在一定的故 障情况下持续联网运行,因此对联网运行风电机组的运行特性,需要进行深入 的研究。 目前联网运行的风电机组可分为恒速恒频风电机组(CSCF)及变速恒频风 电机组(VSCF)两种,恒速恒频风电机组是指在发电过程中保持转速不变的风 电机组,所采用的发电机主要是同步发电机及鼠笼式感应发电机,前者运行于同步转速,

双馈异步风力发电机(西莫讲堂)

主讲人:aser 关键词:双馈异步风力发电机 协助讨论: Edwin_Sun lidb856 pat baizengchen g zslzsl xfq7111 wayne 会议摘要: 1. 引言: 风力发电机组主要包括变频器,控制器,齿轮箱(视机型而定),发电机,主轴承,叶片等等部件,在这些部件中发电机目前国产化程度最高,它的价格约占机组的10%左右。发电机主要包括2种机型:永磁同步发电机和异步发电机。永磁同步发电机低速运行时,不需要庞大的齿轮箱,但是机组体积和重量都很大,1.5MW的永磁直驱发电机机舱

会达到5米,整个重量达80吨。同时,永磁直驱发电机的单价较贵,技术复杂,制造困难,但是这种机型的优点是少了个齿轮箱,也就少了个故障点。异步发电机是由风机拖动齿轮箱,再带动异步发电机运行,因为叶片速度很低,齿轮箱可以变速100倍,以让风机在1500RPM下运行,目前流行的是双馈异步发电机,主要有1.25MW,1.5MW,2MW三种机型,异步发电机的机组单价低,1KW大概需6000元左右,而且技 术成熟,国产化高。 2.双馈异步发电机的原理: 所谓双馈,可以理解为定子、转子同时可以发出电能,发电机原理理论上说只要有动力带动电动机,在电动机的定子侧就能直接发出电能。现代变速双馈风力发电机的工作原理就是通过叶轮将风能转变为机械转矩(即风轮转动惯量),通过主轴传动链,经过齿轮箱增速

到异步发电机的转速后,通过励磁变流器励磁而将发电机的定子电能并入电网。如果超过发电机同步转速,转子也处于发电状态,通过变流器向电网馈电。双馈发电机正是由叶片通过齿轮箱变速,带动电机高速旋转,同时转子接变频器,通过变频器PWM控制以达到定子侧输出相对完美正弦波,同时在额定转速下,转子侧也能同时发出电流,以达到最大利用风能效果。通俗的讲,就是要变频器控制转子电流,反馈到定子上面,保证定子发出相对完美的正弦无谐波电能,同时在额定转速下,转子也 能发出功率出来。有个大致感觉是 1.5MW发电机的定子发电量大概1200KW,转子大约300KW,转子侧发出的功率要在30%以下,总之越少越好这样可以让变频器功率小点。 3. 双馈异步发电机的设计难点: 结构设计难点:因机舱封闭体积,

双馈式-直驱式风力发电机的对比

双馈式\直驱式风力发电机的对比 【摘要】双馈式风力发电机与直驱式风力发电机是两种各有优势的机型,二者属于相互竞争的关系,同时它们也是相互促进的,这就是常说的有竞争就有进步,最终形成优势互补。本文对这两种机型分别进行了描述、比较,为这两种大型风力发电机的应用奠定一定的理论基础。 【关键词】齿轮箱;永磁电机;变速箱 前言 本文通过对直驱式和双馈式两种不同的风力发电机进行描述,并从二者的主要结构特性对其各自不同的优缺点进行分析阐述,以增进人们的了解,使其得到更好的应用充分发挥其自身机能和作用。 1、双馈式异步发电机 双馈式异步发电机实际是异步感应电机的一种变异,这种发电机始于上世纪80年代,日本日立公司、东芝公司和前苏联在这种发电机的研制和开发中都作出了显著的贡献。目前美国GE能源、EMD;德国VEM Sachsenwerk GmbH,LDW;瑞士ABB等公司的很多风力发电机产品,采用变速双馈风力发电的技术方案。目前,市场占有率最高的双馈变速恒频风力发电机组,其风轮桨距角可以调节,同时发电机可以变速,并输出恒频恒压电能,效率较高。在低于额定风速时,它通过改变转速和桨距角使机组在最佳尖速比下运行,输出最大的功率,而在高风速时通过改变桨距角使机组功率输出稳定在额定功率。这种形式的性价比和效率均较高,逆变器功率较小。调速范围达到30%额定转速,变流的容量只有系统容量的30%左右,变速恒频驱动和MPPT控制,有功、无功功率可独立进行控制。双馈异步发电机在结构上与绕线式异步电机相似,定子、转子均为三相对称绕组,转子绕组电流由滑环导入,定子接入电网,电网通过四象限AC-DC-AC 变频器向发电机的转子供电,提供交流励磁。但存在滑环和变速箱的问题,对电网的冲击较大。 由于风能的不稳定性和捕获最大风能的要求,发电机转速是在不断的变化,而且经常在同步转速上、下波动,为了实现风力机组的最大能量的追踪和捕获,满足电网对输入电力的要求,风力发电机必须变速恒频运行。在变速恒频风力发电机中,跨越同步速是变速恒频双馈风力发电机励磁控制关键技术之一。这要求转子交流励磁电源不仅要有良好的变频输入、输出特性,而且要有能量双向流动的能力。现有的技术是采用IGBT器件(绝缘栅双极晶体管)构成的PWM(脉宽调制)整流—PWM逆变型式的AC-DC-AC变频器作为其励磁电源,向发电机的转子绕组提供励磁电流,对定子实现定向矢量控制。控制电流由滑环导入,实现亚同步、同步和超同步运行方式之间的转换,采用这种技术的双馈式异步发电机其

双馈发电机原理讲解

一.双馈发电机原理讲解 二.风力发电机的主要类型 1.异步发电机 笼鼠式异步发电机 特点:应用于早期的风力发电机,离网型的小型发电机,结构简单,性能稳定,成本低。 缺点:并网运行时,转速必须超过同步转速,在风速较小的时候效率很差。一般做成大小两个发电机,或者改变定子绕组以改变同步转速,按照风速段转换。 绕线转子异步发电机 特点:转子绕组外接电阻,在风速变化的时候,改变外接电阻的大小以控制输出的功率。风速大的时候多余的能量可以消耗在转子电阻上。 双馈异步发电机 特点:使用双馈变频器对转子进行交流励磁,随着转子物理转速的变化,改变交流励磁的交流电的频率,幅值,相序以及相位,以使定子输出的电压幅值和电流频率保持恒定,同时可以向电网输出感性或容性的无功。 2.同步发电机 永磁同步发电机

特点:转子由永磁材料制成,结构简单,不易损坏和维护方便,容量可以做到很大。转子可以做成很多级,这样可以使其同步转速降低,配合全功率变流器,在低风速的时候也可以发电。一般用于海上风机。 直流励磁同步发电机 特点:现在的水力和火力发电机组使用的形式,转子由直流励磁,改变励磁电流的大小,可以调节输出的功率大小和因数。 三. 双馈异步发电机原理 1. 旋转磁场 旋转磁场就是一种极性和大小不变,且以一定转速旋转的磁场。从理论分析和实践证明,在对称三相绕组中流过对称三相交流电时会产生这种旋转磁场。 三相对称绕组就是三个外形、尺寸、匝数都完全相同、首端彼此互隔120o 、对称地放置到定子槽内的三个独立的绕组 由电网提供的三相电压是对称三相电压,由于对称三相绕组组成的三相负载是对 称三相负载,每相负载的复阻抗都相等,所以,流过三相绕组的电流也必定是对称三相电流。 2. 旋转磁场的转速和转向 () () ?-=?-==240sin 120sin sin t I i t I i t I i m C m B m A ωωω

双馈风力发电机工作原理

双馈异步风力发电机工作原理 我们通常所讲的双馈异步发电机实质上是一种绕线式转子电机,由于其定、转子都能向电网馈电,故简称双馈电机。双馈电机虽然属于异步机的范畴,但是由于其有独立的励磁绕组,可以像同步电机一样施加励磁,调节功率因数,所以又称为交流励磁电机,也有称为异步化同步电机。 同步电机由于是直流励磁,其可调量只有一个电流的幅值,所以同步电机一般只能对无功功率进行调节。交流励磁电机的可调量有三个:一是可调节励磁电流幅值;二是可改变励磁频率;三是可改变相位。这说明交流励磁电机比同步电机多了两个可调量,通过改变励磁频率,可改变电机的转速,达到调速的目的。这样,在负荷突变时,可通过快速控制励磁频率来改变电机转速,充分利用转子的动能,释放或者吸收负荷,对电网扰动远比常规电机小。改变转子励磁的相位时,由转子电流产生的转子磁场在气隙空间的位置上有一个位移,这就改变了发电机电势与电网电压相量的相对位置,也就改变了电机的功率角。这说明电机的功率角也可以进行调节。所以交流励磁不仅可以调节无功功率,也可以调节有功功率。 双馈电机的定转子绕组均为对称绕组,电机的极对数为 p,根据旋转磁场理论,当定子对称三相绕组施以对称三相电压,有对称三相电流流过时,会在电机的气隙中形成一个旋转的磁场,这个旋转磁场的转速 n1称为同步转速,它与电网频率 f1 及电机的极对数 p的关系如下:

P f n 1 160= 同样在转子三相对称绕组上通入频率为f 2 的三相对称电流,所 产生的旋转磁场相对于转子本身的旋转速度为: P f n 2260= 由上式可知,改变频率 f 2,即可改变 n 2,而且若改变通入转子三 相电流的相序,还可以改变此转子旋转磁场的转向。因此,若设n 1 为对应于电网频率为50Hz 时双馈发电机的同步转速,而n 为电机转子本身的旋转速度,则只要维持n ±n2=n1=常数,则双馈电机定子绕组的感应电势,如同在同步发电机时一样,其频率将始终维持为f 1 不变。 n ±n2=n1=常数 双馈电机的转差率 11n n n S -= ,则双馈电机转子三相绕组内通入的电流频率应为: 11 11122606060sf n n n Pn n n P Pn f =-=-==)( 根据上式表明:在异步电机转子以变化的转速转动时,只要在转子的三相对称绕组中通入转差频率(即f 1S )的电流,则在双馈电机 的定子绕组中就能产生50Hz 的恒频电势。所以根据上述原理,只要控制好转子电流的频率就可以实现变速恒频发电了。 根据双馈电机转子转速的变化,双馈发电机可有以下三种运行状态: (1) 亚同步运行状态。在此种状态下n

双馈异步发电机

有刷双馈式异步发电机 有刷双馈式异步发电机 双馈式异步发电机实际是异步感应电机的一种变异,双馈异步发电机通常为4极或6极,转速为1500r/min、1000r/min,如此高的转速是通过多级增速齿轮箱来实现的。这种发电机始于上世纪80年代,日本日立公司、东芝公司和前苏联在这种发电机的研制和开发中都作出了显著的贡献。目前美国GE能源、德国Fuhrl?nder等公司的很多风力发电机产品,采用变速双馈风力发电的技术方案。我国甘肃兰州电机有限责任公司、北车集团永济电机厂、四川东风电机厂有限公司也都先后研制成功了兆瓦级双馈式异步发电机。 双馈式电机分鼠笼式和绕线式两种。但是,鼠笼式感应发电机因其无法最大限度地利用风能,在风力发电机组中没有得到广泛应用。在风力发电机组中多选用绕线转子感应异步发电机,这种发电机在结构上与绕线式异步电机相似,由绕线转子异步发电机和在转子电路上带交流励磁器组成,定子、转子均为三相对称绕组,转子绕组电流由滑环导入,这种带滑环的双馈式电机被称之为有刷双馈发电机。 双馈式电机的定子接入电网,通过PWM(脉宽调制)AC-DC-AC变频器向发电机的转子绕组提供励磁电流,为了获得较好的输出电压电流波形,输出频率一般不超过输入频率的1/3。其容量一般不超过发电机额定功率的30%,通常只需配置一台1/4功率的变频器。其原理图如图1所示。 双馈式异步发电机向电网输出的功率由两部分组成,即直接从定子输出的功率和通过变频器从转子输出的功率。风力机的机械速度是允许随着风速而变化的。通过对发电机的控制使风力机运行在最佳叶尖速比,从而使整个运行速度的范围内均有最佳功率系数。 双馈式异步发电机的变速运行是建立在异步电机基础上的,众所周知异步电机既可作为电动机运行,也可作为发电机运行。我们将转子转速n与同步转速ns的差值定义为转差,转差与同步转速之比的百分值定义为转差率。在作电动机运行时,异步电动机转子的转速只能是略低于同步转速,此时产生的电磁转矩与转向相同,转差率>0。而作发电机运行时,转速总是略高于同步转速,其电磁转矩的方向与旋转方向相反,转差率<0,发电机的功率随该负转差率绝对值的增大而提高。 当双馈发电机的转子绕组通过三相低频电流时,在转子中会形成一个低速旋转磁场,这个磁场的旋转速度与转子的机械转速相叠加,使其等于定子的同步转速,从而在发电机定子绕组中感应出相应于同步转速的工频电压。当风速变化时,转速随之而变化,相应地改变转子电流的频率和旋转磁场的速度,就会使定子输出频率保持恒定。 当发电机的转速低于气隙旋转磁场的转速时,发电机处于亚同步速运行,为了保证发电机发出的频率与电网频率一致,需要变频器向发电机转子提供正相序励磁,给转子绕组输入一个其旋转磁场方向与转子机械方向相同的励磁电流,此时,转子的制动转矩与转子的机械转向相反,转子的电流必须与转子的感应反电动势反方向,转差率减小,定子向电网馈送电功率,而变频器向转子绕组输入功率;当发电机的转速高于气隙旋转磁场的转速时,发电

双馈式_直驱式风力发电机的对比

能源环境 双馈式、直驱式风力发电机的对比 哈电发电设备国家工程研究中心有限公司(黑龙江哈尔滨) 范磊 【摘 要】双馈式风力发电机与直驱式风力发电机是两种各有优势的机型,二者属于相互竞争的关系,同时它们也是相互促进的,这就是常说的有竞争就有进步,最终形成优势互补。本文对这两种机型分别进行了描述、比较,为这两种大型风力发电机的应用奠定一定的理论基础。 【关键词】齿轮箱;永磁电机;变速箱 前言 本文通过对直驱式和双馈式两种不同的风力发电机进行描述,并从二者的主要结构特性对其各自不同的优缺点进行分析阐述,以增进人们的了解,使其得到更好的应用充分发挥其自身机能和作用。 1、双馈式异步发电机 双馈式异步发电机实际是异步感应电机的一种变异,这种发电机始于上世纪80年代,日本日立公司、东芝公司和前苏联在这种发电机的研制和开发中都作出了显著的贡献。目前美国GE能源、EMD;德国VEM Sachsenwerk GmbH,LDW;瑞士ABB等公司的很多风力发电机产品,采用变速双馈风力发电的技术方案。目前,市场占有率最高的双馈变速恒频风力发电机组,其风轮桨距角可以调节,同时发电机可以变速,并输出恒频恒压电能,效率较高。在低于额定风速时,它通过改变转速和桨距角使机组在最佳尖速比下运行,输出最大的功率,而在高风速时通过改变桨距角使机组功率输出稳定在额定功率。这种形式的性价比和效率均较高,逆变器功率较小。调速范围达到30%额定转速,变流的容量只有系统容量的30%左右,变速恒频驱动和MPPT控制,有功、无功功率可独立进行控制。双馈异步发电机在结构上与绕线式异步电机相似,定子、转子均为三相对称绕组,转子绕组电流由滑环导入,定子接入电网,电网通过四象限AC-DC-AC变频器向发电机的转子供电,提供交流励磁。但存在滑环和变速箱的问题,对电网的冲击较大。 由于风能的不稳定性和捕获最大风能的要求,发电机转速是在不断的变化,而且经常在同步转速上、下波动,为了实现风力机组的最大能量的追踪和捕获,满足电网对输入电力的要求,风力发电机必须变速恒频运行。在变速恒频风力发电机中,跨越同步速是变速恒频双馈风力发电机励磁控制关键技术之一。这要求转子交流励磁电源不仅要有良好的变频输入、输出特性,而且要有能量双向流动的能力。现有的技术是采用IGBT器件(绝缘栅双极晶体管)构成的PWM(脉宽调制)整流—PWM逆变型式的AC-DC-AC变频器作为其励磁电源,向发电机的转子绕组提供励磁电流,对定子实现定向矢量控制。控制电流由滑环导入,实现亚同步、同步和超同步运行方式之间的转换,采用这种技术的双馈式异步发电机其转速控制范围可达到同步转速的60%。为了获得较好的输出电压电流波形,输出频率一般不超过输入频率的1/3。其容量一般不超过发电机额定功率的30%,通常只需配置一台1/4功率的变频器。 有刷双馈发电机存在滑环和变速箱的问题,运行可靠性差,需要经常维护,其维护保养费用远高于无齿轮箱变速永磁同步风力发电机,并且这种结构不适合运行在环境比较恶劣的风力发电系统中。近年来国内外风力发电机组故障率最高的部件当数齿轮箱,而齿轮箱的故障绝大多数是由于轴承的故障造成。 齿轮箱的效率可通过功率损失计算或在试验中实测得到。功率损失主要包括齿轮啮合、轴承摩擦、润滑油飞溅和搅拌损失、风阻损失、其它机件阻尼等。齿轮的效率在不同工况下是不一致的。风力发电齿轮箱的专业标准要求齿轮箱的机械效率应大于97%,是指在标准条件下应达到的指标。 2、直驱式永磁同步发电机 所谓“同步”发电机,就是指发电机转子磁场的转速(原动机产生)与定子磁场的转速(电力系统频率决定)相等。这种无齿轮箱变浆距变速的风力发电机组,其风轮轴直接与发电机联接。永磁同步发电机不需要励磁绕组和直流励磁电源,取消了容易出故障的转子上的集电环和电刷装置,成为无刷电机,不存在励磁绕组的铜损耗,比同容量的电励磁式的发电机效率高,结构简单,运行可靠。 这种风力发电机要求全功率变流器,在与电网合闸前,为避免电流冲击和转轴受到突然的扭矩,需要满足一定的并联条件,端电压、频率与电网必须相同。要求发电机具有高质量地将风能转化为频率、电压恒定的交流电,高效率地实现机电能量转换。 永磁直驱式风力发电机其特点是电机转速低,极数多,结构简单,无变速箱,可靠、长寿命,低噪声,大功率,无滑环,安装和维护费用低。但不足之处是体积大,有失磁之忧,且转子的制造难度比较大。同时这种风力发电机制造成本较高,是双馈变速恒频机的1.3倍。 德国埃纳康(Enercon GmbH)公司在1993年研制成功了直驱式风力发电机,1997年将产品推向了市场,这些高产能、运行维护成本低的先进机型有E-33、E-48、E-70等型号,已开发了容量为330kw、800kw、900kw、2000kw和2300kw的多种机型。2000年,瑞典ABB 公司成功研制了3兆瓦的巨型可变速风力发电机组,其中包括永磁式转子结构的高压风力发电机Windformer,该机高约70米、风扇直径约90米。2003年,日本三菱重工完成MWT-S2000型风力发电机的研制工作,这种直驱式风力发电机组采用的是永磁同步电机。2004年德国西门子公司通过收购世界著名的丹麦Bonus Energy(柏纳斯)公司也开发了直驱式风力发电机。 目前,还有荷兰Wi ndbrokers公司,荷兰Emerg ya Wi nd Technologies NV(EWT)、德国Innovative 公司,德国Vensys公司、德国Avavtis公司、瑞典的ABB等公司,韩国Unison公司和国内的新疆金风科技股份有限公司、湖南湘电风能有限公司、东风汽轮机厂、上海万德风力发电股份有限公司、广西银河艾万迪斯风力发电有限公司、常州新誉风力发电设备有限公司、哈尔滨电站设备集团公司、中国运载火箭技术研究院、江西麦德风能股份有限公司等都在研制直驱式风力发电机。 新疆金凤科技股份公司已在2006年与德国Vensys公司合作研制出1.5兆瓦直驱式风力发电机。2007年湘潭电机集团与日本原弘产株式会社合资组建的湖南湘电风能有限公司,并在2007年11月成功完成了2兆瓦直驱式永磁风力发电整机机组试车;广西银河艾万迪斯风力发电有限公司与德国AVAVTIS公司联合研制的2.5兆瓦直驱变桨风力发电也将于2008年下半年完成样机。永磁材料钕铁硼的最高工作温度较低。一般为80℃左右,在经过特殊处理的磁铁,其最高工作温度也只能是240℃。如果永磁同步发电机通风系统出现问题,过高的温度会造成永磁材料磁性能降低,甚至不可逆去磁。 尽管永磁电机已经过了几十年的研究,但其设计至今还没有一套系统的公式和经验曲线作为依据。变速恒频风力发电系统中的直驱永磁风力发电机的外形尺寸大、工作转速低,通常是一种扁平状的结构。 3、结论与展望 风电发展以来,直驱与双馈两种机型就一直是竞争关系。随着风电行业的继续发展,直驱与双馈两种机型的性能的优缺点会不断的显露出来,性能和成本会成为最主要的考核指标。

相关文档
相关文档 最新文档