文档库 最新最全的文档下载
当前位置:文档库 › 初一代数式的变形整式与分式

初一代数式的变形整式与分式

初一代数式的变形整式与分式
初一代数式的变形整式与分式

[文件] sxjsck0009 .doc

[科目] 数学

[关键词] 初一/代数式/整式/分式

[标题] 代数式的变形(整式与分式)

[内容]

代数式的变形(整式与分式)

在化简、求值、证明恒等式(不等式)、解方程(不等式)的过程中,常需将代数式变形,现结合实例对代数式的基本变形,如配方、因式分解、换元、设参、拆项与逐步合并等方法作初步介绍.

1. 配方

在实数范围内,配方的目的就是为了发现题中的隐含条件,以便利用实数的性质来解题.

例1 (1986年全国初中竞赛题)设a 、b 、c 、d 都是整数,且m=a 2+b 2,n=c 2+d 2,mn 也可以表示成两个整数的

平方和,其形式是______.

解mn=(a 2+b 2)(c 2+d 2)

=a 2c 2+2abcd+b 2d 2+a 2d 2+b 2c 2-2abcd

=(ac+bd)2+(ad-bc)2

=(ac-bd)2+(ad+bc)2,

所以,mn 的形式为(ac+bd)2+(ad-bc)2或(ac-bd )2+(ad+bc)2.

例2(1984年重庆初中竞赛题)设x 、y 、z 为实数,且

(y-z)2+(x-y)2+(z-x)2

=(y+z-2x)2+(z+x-2y)2+(x+y-2z)2. 求)1)(1)(1()

1)(1)(1(222++++++z y x xy zx yz 的值.

解 将条件化简成

2x 2+2y 2+2z 2-2xy-2x 2-2yz=0

∴(x-y)2+(x-z)2+(y-z)2=0

∴x=y=z,∴原式=1.

2.因式分解

前面已介绍过因式分解的各种典型方法,下面再举几个应用方面的例子.

例3(1987年北京初二数学竞赛题)如果a 是x 2-3x+1=0的根,试求

1825222

345+-+-a a a a a 的值.

解 ∵a 为x 2-3x+1=0的根,

∴ a 2-3a+1=0,,且132+a a

=1. 原式.

1131

3)32)(13(22

232-=+-=+-+++-=a a a a

a a a a a

说明:这里只对所求式分子进行因式分解,避免了解方程和复杂的计算.

3.换元

换元使复杂的问题变得简洁明了.

例4 设a+b+c=3m,求证:

(m-a)3+(m-b)3+(m-c)3-3(m-a)(m-b)(m-c)=0.

证明 令p=m-a,q=m-b,r=m-c 则

p+q+r=0.

P 3+q 3+r 3-3pqr=(p+q+r)(p 2+q 2+r 2-pq-qr-rp)=0

∴p 3+q 3+r 3-3pqr=0

即 (m-a)3+(m-b)3+(m-c)3-3(m-a)(m-b)(m-c)=0

例5 (民主德国竞赛试题) 若67890123475678901235

,67890123455678901234==B A ,试比较A 、B 的大小.

解 设 ,y x A =则,2

1++=y x B

)2(2)2()1()2(21+-=++-+=++-y y y

x y y x y y x y x y x .

∵2x >y ∴2x-y >0, 又y >0, 可知.021

++-y x y x ∴A >B.

4.设参

当已知条件以连比的形式出现时,可引进一个比例系数来表示这个连比.

例6 若,a c z

c b y

b a x

-=-=-求x+y+z 的值.

解 令,k a c z

c b y b a x =-=-=-

则有 x=k(a-b), y=(b-c)k z=(c-a)k,

∴x+y+z=(a-b)k+(b-c)k+(c-a)k=0.

例7 已知a 、b 、c 为非负实数,且a 2+b 2+c 2=1,

31111

11

-=???

??++???

??++???

??+b a c a c b c b a ,求a+b+c 的值.

解 设 a+b+c=k

则a+b=k-c ,b+c=k-a,a+c=k-b. 由条件知,3-=???

??++??? ??++???

??+ab b a c ac c a b bc c b a

即 .32

2

2-=-+-

+-ab c ck ac b bk bc a ak

∴a 2k-a 3+b 2k-b 3+c 2k-c 3=-3abc,

∴(a 2+b 2+c 2)k+3abc=a 3+b 3+c 3.

∵a 2+b 2+c 2=1,

∴k=a 3+b 3+c 3-3abc

=(a+b)3-3a 2b-3ab 2+c 3-3abc

=(a+b+c)[(a+b)2+c 2-(a+b)c]-3ab(a+b+c),

=(a+b+c)(a 2+b 2+c 2-ab-bc-ca),

∴k=k(a 2+b 2+c 2-ab-bc-ac),

∴k(a 2+b 2+c 2-ab-bc-ca-1)=0,

∴k(-ab-bc-ac)=0.

若K=0, 就是a+b+c=0.

若-ab-bc-ac=0,

即 (a+b+c)2-(a 2+b 2+c 2)=0,

∴(a+b+c)2=1,

∴a+b+c=±1

综上知a+b+c=0或a+b+c=±1

5.“拆”、“并”和通分

下面重点介绍分式的变形:

(1) 分离分式 为了讨论某些用分式表示的数的性质,有时要将一个分式表示为一个整式和一个分式的代数和. 例8(第1届国际数学竞赛试题)证明对于任意自然数n ,分数3144

21++n n 皆不可约.,

证明 如果一个假分数可以通约,化为带分数后,它的真分数部分也必定可以通约.

,3141

713144

21+++=++n n n n 而 ,171

2173

14++=++n n n 显然171

+n 不可通约,故173

14++n n 不可通约,从而3144

21++n n 也不可通约.

(2) 表示成部分分式 将一个分式表示为部分分式就是将分式化为若干个真分式的代数和.

例9 设n 为正整数,求证:

21

)12)(12(1

531

311

+-++?+?n n

证明 令1212)12)(12(1

+--=+-k B

k A k k 通分,,)12)(12()()(21212+-++-=+--k k B A k B A k B k A

比较①、②两式,得A-B=0,且A+B=1,即A=B=21

. ∴),121

121

(21

)12)(12(1

+--=+-k k k k

令k=1,2,…,n 得 )12)(12(1

531

311+-++?+?n n

.

21

1211211211215131

31121 ???

??

+-=?????

?

??? ??+--++???

??-+??? ??-=n n n

(3)通分 通分是分式中最基本的变形,例9的变形就是以通分为基础的,下面再看一个技巧性较强的例子.

例10(1986年冬令营赛前训练题) 已知.0222=-+-+-c ab c b ac b a bc a

求证:0)()()(222222=-+-+-c ab c b ac b a bc a .

证明 .)

)((2222222

22c ab b ac c b ac bc ab c ab c b ac b a bc a --+-+-=---=- .

0)

)()(()()()(.)

)()(()(.)

)()(()(.)

)()(()(2222222222222222

22222222222222222222222222222222=---+-+-+-+++-+-=-+-+-∴---+-+-=----+-+-=-----++-=-∴c ab b ac a bc b a c b ab c a c a bc ac b a c b ac bc ab c ab c b ac b a bc a c ab b ac a bc c a c b ab c a c ab c c ab a bc b ac c a bc ac ab b ac b c ab b ac a bc c b ac bc ab a bc a 同理

6.其他变形

例11 (1985年全国初中竞赛题)已知x(x ≠0,±1)和1两个数,如果只许用加法、减法和1作被除数的除法三种运算(可用括号),经过六步算出x 2.那么计算的表达式是______.

解 x 2=x(x+1)-x .1

111)1(11x x x x x x -+-=-+= 或 x 2=x(x-1)+x

.1111)1(11x x

x x x x +--=+-= 例12 (第3届美国中学生数学竞赛题)设a 、b 、c 、d 都是正整数,且a 5=b 4,c 3=d 2,c-a=19,求d-b.

解 由质因数分解的唯一性及a 5=b 4,c 3=d 2,可设a=x 4,c=y 2,故

19=c-a=(y 2-x 4)=(y-x 2)(y+x 2)

?????=+=-∴.

19,122x y x y 解得 x=3. y=10. ∴ d-b=y 3-x 5=757 练 习 七

1选择题

(1)(第34届美国数学竞赛题)把25321,1,x

x x x x +++相乘,其乘积是一个多项式,该多项式的次数是( ) (A )2 (B )3 (C )6 (D )7 (E )8

(3) 已知,111b a b a +=+则b

a a

b +的值是( ). (A)1 (B)0 (C)-1 (D)3

(3)(第37届美国中学数学竞赛题)假定x 和y 是正数并且成反比,若x 增加了p%,则y 减少了( ).

七年级数学《代数式》习题(含答案)

七年级数学《代数式》—巩固提高 一、耐心填一填: 1、32x y 5-的系数是 2、当x= __________时,的值为自然数; 3 12-x 3、a 是 13的倒数,b 是最小的质数,则2 1a b -= 。 4、三角形的面积为S ,底为a ,则高h= __________ 5、去括号:-2a 2 - [3a 3 - (a - 2)] = __________ 6、若-7x m+2y 与-3x 3y n 是同类项,则m n += 7、化简:3(4x -2)-3(-1+8x )= 8、y 与10的积的平方,用代数式表示为________ 9、当x=3时,代数式 ________1 3 2的值是--x x 10、当x=________时,|x|=16;当y=________时,y 2=16; 二、精心选一选: 1、 a 的2倍与b 的 3 1 的差的平方,用代数式表示应为( ) A 22 312b a - B b a 3122- C 2 312??? ??-b a D 2 312?? ? ??-b a 2、下列说法中错误的是( ) A x 与y 平方的差是x 2-y 2 B x 加上y 除以x 的商是x+ x y C x 减去y 的2倍所得的差是x-2y D x 与y 和的平方的2倍是2(x+y)2 3、已知2x 6y 2和321,9m - 5mn -173 m n x y - 是同类项则的值是 ( ) A -1 B -2 C -3 D -4 4、已知a=3b, c= ) (c b a c b a ,2a 的值为则-+++ A 、7 12 D 611C 115B 511、、、 5、已知:a<0, b>0,且|a|>|b|, 则|b+1|-|a-b|等于( )

代数式恒等变形及答案

代数式恒等变形 A 卷 1、若3265122-+ -+=+--x b x a M x x x ,a 、b 是常数,则( ) A 、M 是一个二次多项式 B 、M 是一个一次多项式 C 、6=++b a M D 、10=-+M b a 答案:C 解答:由已知等式得:()()6522656512222+---+++-+=+--x x b M x b a M Mx x x x ∴()()b M x b a M Mx x 226522--+++-+= ∴?? ???-=--=++-=1 236051b a M b a M M ,解得:??? ??=-==831 b a M 提示:利用待定系数法解决问题。 2、(2002年重庆市初中竞赛题)若012192=+- x x ,则=+441 x x ( ) A 、411 B 、16121 C 、1689 D 、4 27 答案:C 解答:∵0≠x ∴2191= + x x ,411 122=+x x ∴16892112 2244 =-??? ? ?+=+x x x x 提示:本题的关键是利用2112 22 -??? ? ?+=+x x x x 进行化简。 3、(2001年全国初中数学竞赛)若143=-x x ,则552128234+--+x x x x 的值是( ) A 、2 B 、4 C 、6 D 、8 答案:D 解答:∵143=-x x ∴()()8523252434255212833234=+-+=+--+-=+--+x x x x x x x x x x x x 提示:本题利用添项与拆项进行分解整体代入,本题也可以利用已知逐步降次解决问题。

初中奥数恒等变形知识点及习题2019

初中奥数恒等变形知识点及习题2019 恒等概念是对两个代数式来说,如果两个代数式里的字母换成任意的数值,这两个代数式的值都相等,就说这两个代数式恒等. 表示两个代数式恒等的等式叫做恒等式. 如:a+b=b+a;2x+5x=7x都是恒等式.而t2+6=5t,x+7=4都不是恒等式.以前学过的运算律都是恒等式. 将一个代数式换成另一个和它恒等的代数式,叫做恒等变形(或恒等变换). 以恒等变形的意义来看,它不过是将一个代数式,从一种形式变为另一种形式,但有一个条件,要求变形前和变形后的两个代数式是恒等的,就是“形”变“值”不变. 如何判断一个等式是否是恒等式,通常有以下两种判断多项式恒等的方法. 1.如果两个多项式的同次项的系数都相等,那么这两个多项式是恒等的. 如2x2+3x-4和3x-4+2x2当然恒等,因为这两个多项式就是同一个. 反之,如果两个多项式恒等,那么它们的同次项的系数也都相等(两个多项的常数项也看作是同次项). 2.通过一系列的恒等变形,证明两个多项式是恒等的. 如:如果ax2+bx+c=px2+qx+r是恒等式,那么必有:a=p,b=q,c=r 例:求b、c的值,使下面的恒等成立. x2+3x+2=(x-1)2+b(x-1)+c ① 解一:∵①是恒等式,对x的任意数值,等式都成立

设x=1,代入①,得 12+3×1+2=(1-1)2+b(1-1)+c c=6 再设x=2,代入①,因为已得c=6,故有22+3×2+2=(2-1)2+b(2-1)+6 b=5 ∴x2+3x+2=(x-1)2+5(x-1)+6 解二:将右边展开 x2+3x+2=(x-1)2+b(x-1)+c =x2-2x+1+bx-b+c =x2+(b-2)x+(1-b+c) 比较两边同次项的系数,得出

八年级数学下册《分式第二讲分式方程》知识点及典型例习题.doc

【知识要点】 1. 分式方程的概念以及解法 ; 2. 分式方程产生增根的原因 3. 分式方程的应用题 【主要方法】 2. 1. 分式方程主要是看分母是否有外未知数 ; 解分式方程的关健是化分式方程为整式方程 ; 方程两边同乘以最简公分 母. 3. 解分式方程的应用题关健是准确地找出等量关系, 恰当地设末知数 . 2019-2020 年八年级数学下册《分式第二讲 分式方程》知识点和典型例习题 题型一:用常规方法解分式方程 【例 1】解下列分式方程 ( 1) 1 3 ;( 2) 2 1 0 ;( 3) x 1 4 1 ;( 4) 5 x x 5 x 1 x x 3 x x 1 x 2 1 x 3 4 x 提示易出错的几个问题: ①分子不添括号;②漏乘整数项;③约去相同因式至使漏根; ④忘 记验根 . 题型二:特殊方法解分式方程 【例 2】解下列方程 ( 1) x 4 x 4 4 ; ( 2) x 7 x 9 x 10 x 6 x 1x x 6 x 8 x 9 x 5 提示:( 1)换元法,设 x y ;( 2)裂项法, x 7 1 1 . x 1 x 6 x 6 【例 3】解下列方程组 1 1 1 (1) x y 2 1 1 1 (2) y z 3 1 1 1 (3) z x 4 题型三:求待定字母的值 【例 4】若关于 x 的分式方程 2 1 m 有增根,求 m 的值 . x 3 x 3

【例 5】若分式方程 2 x a 1的解是正数,求 a 的取值范围 . x 2 提示: 2 a 0 且 x 2 , a 2 且 a 4 . x 3 题型四:解含有字母系数的方程 【例 6】解关于 x 的方程 x a c b x d (c d 0) 提示:( 1) a, b, c, d 是已知数;( 2) c d 0 . 题型五:列分式方程解应用题 练习: 1.解下列方程: ( 1) x 1 2x 0 ; (2) x 2 4 ; x 1 1 2x x 3 x 3 ( 3) 2x 3 2 ; (4) 7 3 1 7 x 2 x 2 x 2 x 2 x x x 2 x 2 1 ( 5) 5x 4 2x 5 1 (6) 1 1 1 1 2x 4 3x 2 2 x 1 x 5 x 2 x 4 ( 7) x x 9 x 1 x 8 x 2 x 7 x 1 x 6 2.解关于 x 的方程: ( 1) 1 1 2 (b 2a) ;( 2) 1 a 1 b (a b) . a x b a x b x 3.如果解关于 x 的方程 k 2 x 会产生增根,求 k 的值 . x 2 x 2 4.当 k 为何值时,关于 x 的方程 x 3 (x k 2) 1 的解为非负数 . x 2 1)( x 5.已知关于 x 的分式方程 2a 1 a 无解,试求 a 的值 . x 1 (二)分式方程的特殊解法 解分式方程,主要是把分式方程转化为整式方程,通常的方法是去分母,并且要检验, 但对一些特殊的分式方程,可根据其特征,采取灵活的方法求解,现举例如下: 一、交叉相乘法 例 1.解方程: 1 x 3 x 2 二、化归法 例 2.解方程: 1 2 0 1 x 2 x 1

初一数学代数式知识点概括

第四章代数式 用字母表示数的规范格式: 1.数和表示数的字母相乘,或字母和字母相乘时,乘号可以省略不写,或用“.”来代替。 2. 当数和字母相乘,省略乘号时,要把数字写到前面,字母写后面。如:100a或100?a,na或n?a。 3. 后面接单位的相加式子要用括号括起来。如:(5s )时 4. 除法运算写成分数形式 5. 带分数与字母相乘时,带分数要写成假分数的形式。 面积公式: 正方形面积=边长X 边长 长方形面积=长X宽 三角形面积= 圆形面积= 周长公式: 三角形周长=三边之和 正方形周长=边长×4 长方形周长=(长+宽)×2 圆的周长= 行程问题 路程=时间×速度 速度=路程÷时间 时间=路程÷速度 价格问题 总价=单价×数量 单价=总价÷数量 数量=总价÷单价 代数式:由数和表示数的字母,同运算符号连接而成的数学表达式——代数式(单个字母和数字也是代数式) 列代数式时要注意 (1)语言叙述中关键词的意义,如“大”“小”“增加”“减少” “倍”“几分之几”等词语与代数式中的运算符号之间的关系.

(2)要理清运算顺序和正确使用括号,以防出现颠倒等错误,例如“积的和”与“和的积”“平方差”“差的平方”等等 (3)在同一问题中,不同的数量必须用不同的字母表示. 代数式的值:一般地,用数值代替代数式里的字母,计算后所得的结果叫做代数式的值 单项式:由数与字母或字母与字母相乘组成的代数式叫做单项式,单独一个数或字母也叫做单项式,如0,1,a - 单项式的系数:单项式中的数字因数叫做这个单项式的系数; 单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数; 多项式:由几个单项式相加组成的代数式叫做多项式; 多项式的项:在多项式中,每个单项式叫做多项式的项,不含字母的项叫做常数项; 多项式的次数:次数最高的项的次数就是这个多项式的次数; 整式:单项式、多项式统称为整式。 注意:特别强调1 , x y x x y - + 等分母含有字母的代数式不是整式。 同类项:多项式中,所含字母相同,并且相同字母的指数也相同的项,叫做同类项所有常数项也看做同类项 合并同类项法则: 把同类项的系数相加,所得的结果作为系数,字母和字母的指数不变。 去括号法则:括号前是“+”号,把括号和它前面的“+”号去掉,括号里各项都不变号,括号前是“—”号,把括号和它前面的“—”号去掉,括号里各项都改变符号。

初中奥数恒等变形知识点归纳整理.pdf

初中奥数恒等变形知识点归纳整理 恒等概念是对两个代数式来说,如果两个代数式里的字母换成任意的数 值,这两个代数式的值都相等,就说这两个代数式恒等. 表示两个代数式恒等的等式叫做恒等式. 如:a+b=b+a;2x+5x=7x都是恒等式.而t2+6=5t,x+7=4都不是恒等式.以前学过的运算律都是恒等式. 将一个代数式换成另一个和它恒等的代数式,叫做恒等变形(或恒等变换). 以恒等变形的意义来看,它不过是将一个代数式,从一种形式变为另一种 形式,但有一个条件,要求变形前和变形后的两个代数式是恒等的,就是“形”变“值”不变. 如何判断一个等式是否是恒等式,通常有以下两种判断多项式恒等的方法. 1.如果两个多项式的同次项的系数都相等,那么这两个多项式是恒等的. 如2x2+3x-4和3x-4+2x2当然恒等,因为这两个多项式就是同一个.反之,如果两个多项式恒等,那么它们的同次项的系数也都相等(两个多项的常数项也看作是同次项). 2.通过一系列的恒等变形,证明两个多项式是恒等的. 如:如果ax2+bx+c=px2+qx+r是恒等式,那么必有:a=p,b=q,c=r例:求b、c的值,使下面的恒等成立. x2+3x+2=(x-1)2+b(x-1)+c ① 解一:∵①是恒等式,对x的任意数值,等式都成立 设x=1,代入①,得 12+3×1+2=(1-1)2+b(1-1)+c c=6

再设x=2,代入①,因为已得c=6,故有 22+3×2+2=(2-1)2+b(2-1)+6 b=5 ∴x2+3x+2=(x-1)2+5(x-1)+6 解二:将右边展开 x2+3x+2=(x-1)2+b(x-1)+c =x2-2x+1+bx-b+c =x2+(b-2)x+(1-b+c) 比较两边同次项的系数,得 由②得b=5 将b=5代入③得 1-5+c=2 c=6 ∴x2+3x+2=(x-1)2+5(x-1)+6 这个问题为依照x-1的幂展开多项式x2+3x+2,这个解题方法叫做待定系数法,它是先假定一个恒等式,其中含有待定的系数,如上例的b、c,然后根据恒等的意义或性质,列出b、c应适合的条件,然后求出待定系数值.

整式与分式必考知识典型例题专题

整式与分式必考知识典型例题专题 1、 理解整式与分式的区别,并能准确识别整式还是分式 2、 整式的乘方:a m ·a n =a m+n (a m )n =a mn (ab)n =a n b n a m ÷a n =a m+n a 0=1(a ≠0) 3、 单乘单,单乘多,多乘多,特殊的多乘多:(a+b)2 =a 2 +2ab+b 2 (a-b)2=a 2-2ab+b 2 (a+b)(a-b)= a 2-b 2 4、 因式分解:提公因式法:找公因式系数的最小公倍数,相同字母的最低次幂, 而后用多项式每一项除以公因式。 5、 公式法: a 2+2ab+ b 2=(a+b)2 a 2-2ab+ b 2=(a-b)2 a 2- b 2= (a+b)(a-b)(公式法关键在于准确的找准公式中的a 和b ) 注:一般考法:就是先提公因式而后用公式,所以因式分解先看能否提公因式而后才看两项还是三项确定用用公式。 6、 整式乘法是把积展开进行合并,结果为和的形式。 7、 因式分解是把和的形式化成为结果为积的形式。 典型例题: 1、 若x 2 +mx+4是关于x 的一次式的完全平方式,则m=_________________________。 2、 (2x -y )(y+x )-(2y+x )(2y -x ) (多乘多减“括号”) 3、 4 2 2 4 2 2 3 3 2 2 ()()()()()()x x x x x x x x +-?--?-?-(一定看清楚共 4项) 4、 [(x+y )2-(x -y )2]÷2xy (展开进行合并在除) 5、 )2)(4)(22 2 y x y x y x +--((展开进行合并结果注意不要倒回去) ))((y)-(x 2 y x y x -+-(区别完全平方公式和平方差公式)

初一数学代数式知识

初一数学代数式知识 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

初一数学基础知识讲义 第二讲:代数式的化简求值问题 一、知识链接 1. “代数式”是用运算符号把数字或表示数字的字母连结而成的式子。它包括整式、分式、二次根式等内容,是初中阶段同学们应该重点掌握的内容之一。 2.用具体的数值代替代数式中的字母所得的数值,叫做这个代数式的值。 注:一般来说,代数式的值随着字母的取值的变化而变化 3.求代数式的值可以让我们从中体会简单的数学建模的好处,为以后学习方程、函数等知识打下基础。 二、典型例题 例1.若多项式()x y x x x mx 537852222+--++-的值与x 无关, 求()[]m m m m +---45222的值. 分析:多项式的值与x 无关,即含x 的项系数均为零 因为()()83825378522222++-=+--++-y x m x y x x x mx 所以 m=4 将m=4代人,()[]44161644452222-=-+-=-+-=+---m m m m m m 利用“整体思想”求代数式的值 例2.x=-2时,代数式635-++cx bx ax 的值为8,求当x=2时,代数式 635-++cx bx ax 的值。 分析: 因为8635=-++cx bx ax 当x=-2时,8622235=----c b a 得到8622235-=+++c b a , 所以146822235-=--=++c b a 当x=2时,635-++cx bx ax =206)14(622235-=--=-++c b a 例3.当代数式532++x x 的值为7时,求代数式2932-+x x 的值. 分析:观察两个代数式的系数 由7532=++x x 得232=+x x ,利用方程同解原理,得6932=+x x 整体代人,42932=-+x x

初中数学专题练习-整式、分式及二次根式

《数与式》 轻松过关 专题 第二讲:整式、分式及二次根式 知识回顾 (一)代数式 代数式,求代数式的值,代数式的分类 (二)整式 整式的有关概念,整式的运算,因式分解的概念, (三)分式 (四)二次根式 二次根式,最简二次根式,二次根式的运算, 自主学习 1.下列运算中,计算结果正确的个数是( ). (1)a 4·a 3=a 12; (2)a 6÷a 3=a 2; (3)a 5+a 5=a 10; (4)(a 3)2=a 9; (5)(-ab 2)2=ab 4; (6)?=-2 2212x x A .无 B .1个 C .2个 D .3个 2.如果关于x ,y 的单项式2ax m y 与5bx 2m -3y 是同类项, (1)求(9m -28)2009的值; (2)若2ax m y +5bx 2m -3y =0,并且xy ≠0,求(2a +5b )2009的值. 3.计算:(1)(3xy 3-9x 4y 2)÷3xy -(x 2-2xy )·4x 2. (2)(a +b -1)(a -b +1)-a 2+(b +2)2. 4.把下列各式分解因式: (1)6(a -b )2+8a (b -a ); (2)16x 2-(x 2+4)2; 5.(1)当x 取何值时,分式6 532+--x x x 无意义? (2)当x 取何值时,分式12 922---x x x 有意义?值为零? 6.已知12-=a ,化简求值:?+-÷++--+-2 4)44122(22a a a a a a a a 7.已知321=+x x ,求441x x +的值. 8.当x 为何值时,下列代数式有意义? .1)2(;3 22)1(232x x x x x -+----

七年级数学代数式 教案

§3.2 代数式 教学目标 (一)教学知识点 1.理解字母表示数的意义. 2.解释一些简单代数式的实际意义或几何背景. 3.能求出代数式的值. (二)能力训练要求 1.在具体情景中,进一步理解字母表示数的意义. 2.能解释一些简单代数式的实际背景或几何意义,发展符号感. 3.在具体情景中,能求出代数式的值,并解释它的实际意义. (三)情感与价值观要求 通过师生共同探讨用字母表示数,使学生感受到数学与日常生活及其他学科的密切联系,来提高学生的学习兴趣. 教学重点 1.用字母与代数式表示数量关系. 2.能用实际背景或几何意义解释代数式. 教学难点:用实际背景或几何意义解释代数式. 教学方法:讲练相结合 教具准备:多媒体课件 教学过程 Ⅰ.巧设情景问题,引入课题 上节课我们通过用火柴棒拼摆如图所示的正方形(出示课件). 找到了拼摆正方形的个数与所用火柴棒的根数之间的数量关系,为了简明地表示这个数量关系,我们引用了字母,即用字母表示数来表达了这个问题的数量关系,同学们想一想:如何用字母表示这个数量关系? 搭x个这样的正方形需要火柴棒:[4+3(x-1)]根,或[x+x+(x+1)]根.或(1+3x)根. 还有其他表达式吗? 搭x个这样的正方形需要火柴棒的根数,除以上表达式外,还可用[4x-(x-1)]来表示. 大家写好了吧?!来看黑板上这位同学写的式子,像这些式子及上节课书写的式子都是代

数式,我们这节课就来研究第二节:代数式.(algebraic expression) Ⅱ.讲授新课 代数式就是用基本的运算符号.............(.运算符号包括加、减、乘、除、乘方及后面要学到的平方.........................).把数、表示数的字母连接而成的式子,单独一个数或一个字母也是代数式.................................. 接下来,我们来看这位同学书写的代数式,跟你写的一样吗? [生甲]第2题我写的是6×(x +y )米,第3题是2+t ℃. 在书写代数式时,需要注意: (1)数字与字母、字母与字母、数字或字母与括号相乘时,乘号通常简写作“·”或者省略不写.如:4×a 可以写作4·a 或4a ,一般把数写在字母前面,数字与数字相乘一般仍用“×”号. (2)在实际问题中含有单位时,如果运算结果是和的形式时,要把整个的代数式括起来再写单位.如:温度由2℃上升t ℃后是(2+t )℃. (3)在代数式中出现除法运算时,一般按照分数的写法来写.如:三角形的底是a ,高是h ,则面积是:2ah 或ah 2 1. 好!现在我们知道了书写代数式的注意事项后,回头来看刚才的那5个填空题,你写对了吗?这位同学来说一下你的答案: (1)4a a 2 (2)(6x +6y )或6(x +y ) (3)(2+t )℃ (4)t s (5)(166-5n ) 33 表示数的字母有两个特征:(1)字母表示数具有任意性,如:第一节中搭正方形列的代数式的一种是:4+3(x -1),其中x 可以是1,2,3……,这些整数;边长是a cm 的正方形的周长是:4a .其中a 可以是任意正有理数.(2)字母表示数具有确定性.如:上面的例子中,搭200个这样的正方形需要_____根火柴棒,这时x 只能是200这个确定的数,所以根据问题的要求,用具体数值代替代数式中的字母,就可以求出代数式的值. 分析:(1)因为这个旅游团有成人和学生,所以要求该旅游团应付的门票费时,首先要求出成人需要多少门票费,学生需要多少.成人有x 人,每人10元,所以成人需要10x 元,学生有y 人,每人5元,学生需要5y 元,因此该旅游团应付的门票费是(10x +5y )元. (2)有了旅游团的确定人数,即给定了代数式中x 、y 的值后,只需用具体数值代替代数式

1—1代数式的恒等变换方法与技巧

1—1 代数式的恒等变换方法与技巧 一、代数式恒等的一般概念 定义1 在给定的数集中,使一个代数式有意义的字母的值,称为字母的允许值。字母的所有允许值组成的集合称为这个代数式的定义域。对于定义域中的数值,按照代数式所包含的运算所得出的值,称为代数式的值,这些值的全体组成的集合,称为代数式的值域。 定义2 如果两个代数式A 、B ,对于它们定义域的公共部分(或公共部分的子集)内的一切值,它们的值都相等,那么称这两个代数式恒等,记作A=B 。 两个代数式恒等的概念是相对的。同样的两个代数式在它们各自的定义域的某一个子集内是恒等,但 x =,在x≥0时成立,但在x<0时不成立。因此,在研究两个代数式恒等时,一定要首先弄清楚它们在什么范围内恒等。 定义3 把一个代数式变形成另一个与它恒等的代数式,这种变形称为恒等变换。 代数式的变形,可能引起定义域的变化。如lgx 2的定义域是(,0)(0,)-∞+∞U ,2lgx 的定义域是 (0,)+∞,因此,只有在两个定义域的公共部分(0,)+∞内,才有恒等式lgx 2=2lgx 。由lgx 2变形为2lgx 时, 定义域缩小了;反之,由2lgx 变形为lgx 2时,定义域扩大了。这种由恒等变换而引起的代数式定义域的变化,对研究方程和函数等相关问题时也十分重要。由于方程的变形不全是代数式的恒等变形,但与代数式的恒等变形有类似之处,因此,在本节里,我们把方程的恒等变形与代数式的恒等变形结合起来讨论。 例1:设p x =有实根的充要条件,并求出所有实根。 由于代数式的变形会引起定义域的改变,因此,在解方程时,尽量使用等价变形的方法求解。这样可避免增根和遣根的出现。 解: 原方程等价于222(0,0 x p x x x ?-=-??-≥≥?? 2 22222 (4)4448(2)441330440,0p x x p p x x x x p x ?-=??=+--?????≤≤?≤ ???? ≥??+-≤≥?? ? 222(4)8(2) 44,043p x p p x x ?-=??-??-?≤≤≥?? 由上式知,原方程有实根,当且仅当p 满足条件24(4)44 048(2)33 p p p p --≤≤?≤≤- 这说明原方程有实根的充要条件是4 03p ≤≤ 。这时,原方程有惟一实根x =。 二、恒等变换的方法与技巧 恒等变换的目的是使问题变得简单,便于求解。因此,式的恒等变换是根据需要进行的,根据不同问题的特点,有其不同的规律性。 1.分类变换 当式的变换受到字母变值的限制时,可对字母的取值进行分类,然后对每一类进行变换,以达到求解的目的。分类变换方法适用于式的化简与方程(组)的化简、求解。

代数式的恒等变形

代数式的恒等变形 一、常值代换求值法——“1”的妙用 例1 、 已知ab=1,求2 211 11b a +++的值 [解] 把ab=1代入,得 22 11 11b a +++ =22 b ab ab a ab ab +++ =b a a b a b ++ + =1 例2 、已知xyzt=1,求下面代数式的值: 分析 直接通分是笨拙的解法,可以利用条件将某些项的形式变一变. 解 根据分式的基本性质,分子、分母可以同时乘以一个不为零的式子,分式的值不变.利用已知条件,可将前三个分式的分母变为与第四个相同. 同理 练习:1 111,1=++++++++=c ca c b b c b a ab a abc 证明:若 二、配方法 例1、 若实数a 、b 满足a2b2+a2+b2-4ab+1=0,求b a a b + 之值。 [解] ∵a2b2+a2+b2-4ab+1 =(a2b2-2ab+1)(a2-2ab+b2) =(ab-1)2+(a-b)2 则有(ab-1)2+(a-b)2=0 ∴?? ?==-.1,0ab b a 解得?? ?==;1,1b a ?? ?-=-=.1,1b a 当a=1,b=1时,b a a b + =1+1=2 当a=-1,b=-1时, b a a b +=1+1=2 例1 设a 、b 、 c 、 d 都是整数,且m=a2+b2,n=c2+d2,mn 也可以表示成两个整数 的平方和,其形式是______. 解mn=(a2+b2)(c2+d2) =a2c2+2abcd+b2d2+a2d2+b2c2-2abcd =(ac+bd)2+(ad-bc)2

整式与分式知识点 (2)

中考复习 整式 2012年中考整式复习策略: 整式是初中代数的基础知识,也是学习分式、根式的基础;去添括号法则,合并同类项、乘法公式及幂的运算法则是本节的重点。在运算中根据题目特征,灵活运用公式是本节知识的关键。 一、中考要求: 1.考查整式的有关概念及计算,同类项与去括号,以及幂的相关性质和运算,了解乘法公式的几何背景,两个乘法公式的应用 2.会用提公因式法、公式法(直接用公式不超过两次)进行因式分解(指数是正整数) 二、知识要点: 1.代数式定义:用运算符号(加、减、乘、除、乘方、开方) 分类:???????????????单项式整式有理式多项式分式 无理式 代数式 把数与字母连接而成的式子。代数式中不能含:“=”“<”“>” 2.单项式:由数与字母的 组成的代数式叫做单项式(单独一个数或 也是单项式). 多项式:几个单项式的 叫做多项式. 整式: 与 统称整式. 2323x y z π-的系数是 ,次数是 . 3. 同类项:在一个多项式中,所含 相同并且相同字母的 也分别相等的项叫做同类项. 合并同类项的法则是 ___. 4. 幂的运算性质: a m ·a n = ; (a m )n = ; a m ÷a n =_____; (ab)n = . 5. 乘法公式: (1)平方差公式:(a +b )(a -b)= ; (2) 完全平方公式:(a +b)2= ; (a -b)2= . 6. 因式分解:把一个多项式化为几个整式的 的形式. 因式分解的方法:有 因式分解的一般步骤:一“提”(取公因式),二“用”(公式). 强调:分解因式要进行到每一个因式都不能再分解为止. 例如(1)2xy 9x -= (2)32 69x x x -+=

整式恒等变形

第8讲整式恒等变形 模块一恒等变形→降幂迭代与换元 基础夯实 题型一降幂迭代法与大除法 【例1】(第14届“希望杯”邀请赛试题)如果x2+x-1=0,那么x3+2x2+3=__________. 【练1】(1990年第一届希望杯初二第一试) 已知3x2+4x-7=0,求6x4+11x3-7x2-3x-7的值.

题型二 整体代入消元法 【例2】(第14届希望杯1试)若x +y =-1,求x 4+5x 3y +x 2y +8x 2y 2+xy 2+5xy 3+y 4的值. 【练2】当x -y =1时,求x 4-xy 3-x 3y -3x 2y +3xy 2+y 4的值. 题型三 换元法 强化挑战 【例3】化简(y +z -2x )2+(z +x -2y )2+(x +y -2z )2-3(y -z )2-3(x -y )2-3(x -z )2. 【练3】已知x ,y ,z 为有理数(y -z )2+(z -x )2+(x -y )2=(y +z -2x )2+(x +z -2y )2+(x +y -2z )2,求()()() ()()()222111111yz zx xy x y z ++++++的值. 模块二 恒等变形→因式分解与不定方程 题型一 因式分解 基础夯实 【例4】(1)已知a 5-a 4b -a 4+a -b -1=0,且2a -3b =1,则a 3+b 3的值等于________. (2)若a 4+b 4=a 2-2a 2b 2+b 2+6,则a 2+b 2=________. 【练4】(1)若x 满足x 5+x 4+x =-1则x +x 2+x 3+…+x 2012=__________. (2)已知15x 2-47xy +28y 2=0,求x y 的值. 强化挑战 【例5】已知:a 、b 、c 为三角形的三条边,且a 2+4ac +3c 2-3ab -7bc +2b 2=0,求证:2b =a +c . 【练5】(1)在三角形ABC 中,a 2-16b 2-c 2+6ab +10bc =0,其中a ,b ,c 是三角形的三边,求证:a +c =2b .

整式与分式必考知识典型例题专题

整式与分式必考知识典型例题专题 1、 理解整式与分式的区别,并能准确识别整式还是分式 2、 整式的乘方:a m ·a n =a m+n (a m )n =a mn (ab)n =a n b n a m ÷a n =a m+n a 0=1(a ≠0) 3、 单乘单,单乘多,多乘多,特殊的多乘多:(a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 2 (a+b)(a-b)= a 2-b 2 4、 因式分解:提公因式法:找公因式系数的最小公倍数,相同字母的最低次幂, 而后用多项式每一项除以公因式。 5、 公式法: a 2+2ab+b 2=(a+b)2 a 2-2ab+b 2=(a-b)2 a 2- b 2= (a+b)(a-b)(公式法关键在于准确的找准公式中的a 和b ) , 注:一般考法:就是先提公因式而后用公式,所以因式分解先看能 否提公因式而后才看两项还是三项确定用用公式。 6、 整式乘法是把积展开进行合并,结果为和的形式。 7、 因式分解是把和的形式化成为结果为积的形式。 典型例题: 1、 若x 2+mx+4是关于x 的一次式的完全平方式,则 m=_________________________。 2、 (2x -y )(y+x )-(2y+x )(2y -x ) (多乘多减“括号”) 3、 4224223322()()()()()()x x x x x x x x +-?--?-?-(一定看清楚共4项) < 4、 5、 [(x+y )2-(x -y )2]÷2xy (展开进行合并在除)

6、 )2)(4)(22 2y x y x y x +--((展开进行合并结果注意不要倒回去) ))((y)-(x 2y x y x -+-(区别完全平方公式和平方差公式) 7、 (-m+n) (-m -n)(正确找准公式里的ab 是关键) " 8、 先化简再求值()()()737355322 -----a a a ,其中a=-2 9、 2)2 331(2y x --(先处理完全平方公式展开,而后于2相乘,注意符号) 10、 已知ab=2 a+b=3 求(a-b)2 =(a+b)2-4ab; a 2+b 2=(a+b)2-2ab 11、 ? 12、 因式分解(1)16(m -n ) 2-9(m +n )2 (2)9x 2-(x -2y ) 2 (3)-4(x +2y )2+9(2x -y )2 (4)3375a a -= ; (5)39a b ab -= 2224m m n -= ; < (6)-a 2+4ab-4b 2= 分式:1、分母中含有字母是分式 2、分式的有无意义“分母”≠0有意义,等于0无意义; 3、分式的值为0(分子为0值为0,但保证分母不等于0) 4、分式的基本性质(分式分子分母的每一项乘以或除以一个不

七年级数学代数式试题(含答案)

七年级上数学代数式期末复习测试卷 班级 姓名 一、选择题 1.下列各组代数式中,是同类项的是( ) A .5x 2y 与 15xy B .-5x 2y 与15yx 2 C .5ax 2与15 yx 2 D .83与x 3 2.下列式子合并同类项正确的是 ( ) A .3x +5y =8xy B .3y 2-y 2=3 C .15ab -15ba =0 D .7x 3-6x 2=x 3.同时含有字母a 、b 、c 且系数为1的五次单项式有( ) A .1个 B .3个 C .6个 D .9个 4.右图中表示阴影部分面积的代数式是 ( ) A .ab +bc B .c(b -d)+d(a -c) C .ad +c(b -d) D .ab -cd 5.圆柱底面半径为3 cm ,高为2 cm ,则它的体积为( ) A .97π cm 2 B .18π cm 2 C .3π cm 2 D .18π2 cm 2 6.下列运算正确的是( ) A 、2x +3y =5xy B 、5m 2·m 3=5m 5 C 、(a —b )2=a 2—b 2 D 、m 2·m 3=m 6 7.下列各式中去括号正确的是( ) A 、2 2 (22)22x x y x x y --+=-++ B 、()m n mn m n mn -+-=-+- C 、(53)(2)22x x y x y x y --+-=-+ D 、(3)3ab ab --+= 8.张如图1的长为a ,宽为b (a >b )的小长方形纸片,按图2的方式不重叠地放在矩形ABCD 内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S ,当BC 的长度变化时,按照同样的放置方式,S 始终保持不变,则a ,b 满足( ) A . a =b B . a =3b C . a =b D . a =4b 9.下列合并同类项中,错误的个数有( ) (1)321x y -=,(2)2 2 4 x x x +=,(3)330mn mn -=,(4)2 2 45ab ab ab -=

2代数式恒等变形

代数式的恒等变形 代数式的恒等变形是初中代数的重要内容,它涉及的基础知识较多,主要有整式、分式与根式的基本概念及运算法则,因式分解的知识与技能技巧等等,因此代数式的恒等变形是学好初中代数必备的基本功之一. 两个代数式,如果对于字母在允许范围内的一切取值,它们的值都相等,则称这两个代数式恒等.把一个代数式变换成另一个与它恒等的代数式叫做代数式的恒等变形.恒等式的证明,就是通过恒等变形证明等号两边的代数式相等. 证明恒等式,没有统一的方法,需要根据具体问题,采用不同的变形技巧,使证明过程尽量简捷.一般可以把恒等式的证明分为两类:一类是无附加条件的恒等式证明;另一类是有附加条件的恒等式的证明.对于后者,同学们要善于利用附加条件,使证明简化.在化简、求值、证明恒等式(不等式)、解方程(不等式)的过程中,常需将代数式变形,代数式的基本变形有配方、因式分解、换元、设参、拆项与逐步合并等方法。下面结合例题介绍恒等式证明中的一些常用方法与技巧. 一.设参数法 如果代数式字母较多,式子较繁,为了使求值简便,有时可增设一些参数(也叫辅助未知数),以便沟通数量关系,这叫作设参数法.如果题中的已知条件是以连比形式出现,可引入参数k ,用它表示连比的比值,以便把它们分割成几个等式. 例1.已知x y z a b b c c a == ---,求x+y+z 的值。 例2.已知 ()() 23a b b c c a a b b c c a +++==---,a ,b ,c 互不相等, 求证:8a+9b+5c=0. 二.由繁到简和相向趋进 恒等式证明最基本的思路是“由繁到简”(即由等式较繁的一边向另一边推导)和“相向趋进”(即将等式两边同时转化为同一形式). 例3.已知x+y+z=xyz ,证明: x(1-y 2)(1-z 2)+y(1-x 2)(1-z 2)+z(1-x 2)(1-y 2)=4xyz .

分式的恒等变形(一)

分式的恒等变形(一) (1)已知2202010a a -+=,则代数式2220202403911a a a -+++的值是__________。 【答案】由已知可得12020a a + =,原式()212202012120202019a a a a =-+++=-++= (2)已知2410a a ++=,则代数式42321912192a a a a a ++++的值是__________。 【答案】由已知可得14a a +=-,22114a a +=,原式22119333211219a a a a + +===++ (3)已知4x y +=-,12xy =-,则1111 y x x y +++++的值是__________。 【答案】由已知可得2240x y +=,原式()()()()()()22 11402423411412115y x x y ++++?-+===-++-+-+ (4)已知4ab x a b = +,则2222x a x b x a x b +++--的值是__________。 【答案】由已知可得()4ab a b x =+, 原式()()()()()()()()() 222222222228222224x a x b x b x a x a b x x ab x a x b x a b x ab x a b x +-++--+-====---++-+ (5)已知612ab a b bc b c ?=??-??=?-?,则ac a c -的值是_________。 【答案】取倒数后两式相加得 14a c ac -=,所以4ac a c =- (6)解方程: ()()()()()111333669218 x x x x x x x ++=++++++ 【答案】裂项相消,111339218x x x ??-= ?++??,解得2x =

七年级数学代数式试题

代数式与列代数式 知识要点: 1.代数式的概念:用基本的运算符号(指加,减,乘,除,乘方 )把数或表示 数的字母连结而成的式子叫做代数式。单独一个数或字母也 是代数式。 2. 代数式的书写: (1)系数写在字母前面 (2)带分数写成假分数的形式 (3)除号用分数线“-”代替 (4)字母之间的乘法要省略,或用“?”代替。 典型例题 例1 在10,x 2,b a 2-,r c π2=, s t ,a <0中,代数式的个数有( ) A 、5个 B 、4个 C 、3个 D 、2个 例2 下列代数式中,书写正确的是( ) A. ab ·2 B. a ÷4 C. -4×a ×b D. xy 213 E. mn 35 F. -3×6 例3(1) 某市出租车收费标准为:起步价5元,3千米后每千米价1.2元,则乘坐出租车走x(x ﹥3)千米应付______________元. (2)一个两位数,个位上的数字是为 a ,十位上的数字为 b ,则这个两位数是 (3)若 n 为整数,则奇数可表示为 ,则偶数可表示为 , 例4 下列各题中,错误的是( ) A. 代数式.,22的平方和的意义是y x y x + B. 代数式5(x+y)的意义是5与(x+y)的积 C. x 的5倍与y 的和的一半,用代数式表示为2 5y x + D. 比x 的2倍多3的数,用代数式表示为2x+3 例5 当x=1时,代数式13++qx px 的值为2005,求x=-1时,代数式13++qx px 的值.

强化练习 一、填空题 1. 代数式2a-b 表示的意义是_____________________________. 2. 列代数式:⑴设某数为x,则比某数大20%的数为_______________. ⑵a 、b 两数的和的平方与它们差的平方和________________. 3. 有一棵树苗,刚栽下去时,树高 2.1米,以后每年长0.3米,则n 年后的树高为________________,计算10年后的树高为_________米. 4. 某音像社对外出租光盘的收费方法是:每张光盘在出租后的头两天每天收0.8元,以后每天收0.5元,那么一张光盘在出租后第n 天(n >2的自然数)应收租金_________________________元. 5. 观察下列各式:12+1=1×2,22+2=2×3,32+3=3×4------ 请你将猜想到的规律用自然数n(n ≥1)表示出来______________________. 6. 一个两位数,个位上的数是a ,十位上的数字比个位上的数小3,这个两位数为_________, 当a=5时,这个两位数为__ _______. 二、选择题 1. 某品牌的彩电降价30%以后,每台售价为a 元,则该品牌彩电每台原价为( ) A. 0.7a 元 B.0.3a 元 C.a 310 元 D. a 7 10元 2. 根据下列条件列出的代数式,错误的是( ) A. a 、b 两数的平方差为a 2-b 2 B. a 与b 两数差的平方为(a-b)2 C. a 与b 的平方的差为a 2-b 2 D. a 与b 的差的平方为(a-b)2 3. 如果,0)1(22=-++b a 那么代数式(a+b)2005的值为( ) A. –2005 B. 2005 C. -1 D. 1 4. 笔记本每本m 元,圆珠笔每支n 元,买x 本笔记本和y 支圆珠笔,共需( ) A. ( mx+ny )元 B. (m+n)(x+y) C. (nx+my )元 D. mn(x+y) 元 5. 当x=-2,y=3时,代数式4x 3-2y 2的值为( ) A. 14 B. –50 C. –14 D. 50 三、解答题 1. 已知代数式3a 2-2a+6的值为8, 求12 32+-a a 的值.

相关文档
相关文档 最新文档