文档库 最新最全的文档下载
当前位置:文档库 › 全等三角形问题中常见的辅助线倍长中线法

全等三角形问题中常见的辅助线倍长中线法

全等三角形问题中常见的辅助线倍长中线法
全等三角形问题中常见的辅助线倍长中线法

D

C

B

A

全等三角形问题中常见的辅助线——倍长中线法

△ABC 中,AD 是BC 边中线

方式1:直接倍长,(图1): 延长AD 到E ,使DE=AD ,连接BE 方式2:间接倍长

1) (图2)作CF ⊥AD 于F ,作BE ⊥AD 的延长线于E, 连接BE 2) (图3)延长MD 到N ,使DN=MD ,连接CD

【经典例题】

例1已知,如图△ABC 中,AB=5,AC=3, 则中线AD 的取值范围是_________.

(提示:画出图形,倍长中线AD ,利用三角形两边之和大于第三边)

例2:已知在△ABC 中,AB=AC ,D 在AB 上,E 在AC 的延长线上, DE 交BC 于F ,且DF=EF. 求证:BD=CE.(提示:方法1:过D 作DG ∥AE 交BC 于G ,证明ΔDGF ≌ΔCEF

E

D

A

B

C

F

D

C

B

A N

D

C

B

A

M

E

D

F

C B

A

方法2:过E 作EG ∥AB 交BC 的延长线于G ,证明ΔEFG ≌ΔDFB

方法3:过D 作DG ⊥BC 于G ,过E 作EH ⊥BC 的延长线于H ,证明ΔBDG ≌ΔECH )

例3、如图,△ABC 中,E 、F 分别在AB 、AC 上,DE ⊥DF ,D 是中点,试比较BE+CF 与EF 的大小.

变式:如图,AD 为ABC ?的中线,DE 平分BDA ∠交AB 于E ,DF 平分ADC ∠交AC 于F. 求证:EF CF BE >+ (提示:方法1:在DA 上截取DG=BD ,连结EG 、FG , 证明ΔBDE ≌ΔGDE ΔDCF ≌ΔDGF 所以BE=EG 、CF=FG 利用三角形两边之和大于第三边

方法2:

倍长ED 至H ,连结CH 、FH ,证明FH=EF 、CH=BE ,利用三角形两边之和大于第三边)

例4:已知在△ABC 中,AD 是BC 边上的中线,E 是AD 上一点,且BE=AC ,延长BE 交AC 于F ,求证:AF=EF (提示:方法1:倍长AD 至G ,连接BG ,证明ΔBDG ≌ΔCDA 三角形BEG 是等腰三角形。

_

D _

F _

C _

B _

E _

A _

D _

F _

C _

B _

E _

A

方法2:倍长ED.试一试,怎么证明?)

例5、如图,△ABC中,BD=DC=AC,E是DC的中点,求证:AD平分∠BAE. (提示:倍长AE至M,连接DM)

D

B

E

D C B

A

B

变式一:已知CD=AB ,∠BDA=∠BAD ,AE 是△ABD 的中线,

求证:∠C=∠BAE

提示:倍长AE 至F ,连结DF,证明ΔABE ≌ΔFDE (SAS ),进而证明ΔADF ≌ΔADC (SAS )

变式二:已知CD=AB ,∠BDA=∠BAD ,AE 是△ABD 的中线,

求证:2AE =AC 。

(提示:借鉴变式一的方法)

例6:已知:如图,在ABC ?中,AC AB ≠,D 、E 在BC 上,且DE=EC ,过D 作BA DF //交AE 于点F ,DF=AC. 求证:AE 平分BAC ∠ 提示:

方法1:倍长AE 至G ,连结DG

_ A _

B _

D _

E _

C _

F

方法2:倍长FE 至H ,连结CH 【练习】

1、在四边形ABCD 中,AB ∥DC ,E 为BC 边的中点,∠BAE=∠EAF ,AF 与DC 的延长线相交于点F 。试探究线段AB 与AF 、CF 之间的数量关系,并证明你的结论

提示:延长AE 、DF 交于G,证明AB=GC 、AF=GF ,所以AB=AF+FC

2、已知:如图,

ABC 中,

C=90

,CM

AB 于M ,AT 平分

BAC 交CM 于D ,交BC 于T ,过D 作DE//AB

交BC 于E ,求证:CT=BE.

提示:过T 作TN ⊥AB 于N , 证明ΔBTN ≌ΔECD

F

E

A

B

C

D

A

B

C

M

T

E

_ A _

B _

D _

E _

C _

F

3、在△ABC中,AD平分∠BAC,CM⊥AD于M,若AB=AD,求证:2AM=AC+AB。

4、△ABC中,AD是边BC上的中线,DA⊥AC于点A,∠BAC=120°,

求证:AB=2BC.

5、如图,AB=AE,AB⊥AE,AD=AC,AD⊥AC,点M为BC的中点,求证:DE=2AM

2017中学考试全等三角形专题(8种辅助线地作法)

全等三角形问题中常见的辅助线的作法【三角形辅助线做法】 图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。 角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。 线段垂直平分线,常向两端把线连。要证线段倍与半,延长缩短可试验。 三角形中两中点,连接则成中位线。三角形中有中线,延长中线等中线。 1.等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题 2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形 3.角平分线在三种添辅助线 4.垂直平分线联结线段两端 5.用“截长法”或“补短法”:遇到有二条线段长之和等于第三条线段的长, 6.图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形 7.角度数为30、60度的作垂线法:遇到三角形中的一个角为30度或60度,可以从角一边上一点向角的另一边作垂线,目的是构成30-60-90的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。从而为证明全等三角形创造边、角之间的相等条件。 8.计算数值法:遇到等腰直角三角形,正方形时,或30-60-90的特殊直角三角形,或40-60-80的特殊直角三角形,常计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角,从而为证明全等三角形创造边、角之间的相等条件。 常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。 1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变 换中的“对折”法构造全等三角形. 2)遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的 思维模式是全等变换中的“旋转”法构造全等三角形. 3)遇到角平分线在三种添辅助线的方法,(1)可以自角平分线上的某一点向角的两边作垂

全等三角形之倍长中线法资料讲解

课题:《全等三角形之巧添辅助线——倍长中线法》 【方法精讲】常用辅助线添加方法一一倍长中线 △ ABC中,AD是BC边中线方式1 :直接倍长延长AD至U E, 例2: ABC中,AD是BAC的平分线,且BD=CD,求证AB=AC 方法1:作DE丄AB于E,作DF 丄AC于F,证明二次全等 方法2 :辅助线同上,利用面积 方法3 :倍长中线AD E 方式2 :间接倍长 作CF丄AD于F,作BE丄AD的延长线于E延长MD到 C 【经典例题】 例1 :△ ABC中,AB=5, AC=3求中线AD的取值范围. 提示:画出图形,倍长中线AD,利用三角形两边之和大于第三边 N,使DN=MD连接CN C 例3:已知在△ ABC中,AB=AC , D在AB 上, E在AC的延长线上,DE交BC于F,且DF=EF ,求证:BD=CE 方法1 :过D作DG // AE交BC于G,证明△ DGF^A CEF 使DE=AD,连接BE

方法2:过E 作EG // AB 交BC 的延长线于 G ,证明△ EFG^A DFB 方法3:过D 作DG 丄BC 于G,过E 作EHL BC 的延长线于 H,证明A BDG^A ECH 例4:已知在△ ABC 中,AD 是BC 边上的中线,E 是AD 上一点,且BE=AC ,延长BE 交AC 于F ,求证:AF=EF 例5:已知:如图,在 ABC 中,AB 求证:AE 平分 BAC 方法1倍长AE 至G ,连结DG 方法2:倍长FE 至H ,连结CH 例 6:已知 CD=AB ,/ BDA= / BAD , AE 是厶 ABD 的中线,求证:/ C=Z BAE 提示:倍长 AE 至F ,连结DF,证明A ABE^A FDE ( SAS ,进而证明A ADF ^A ADC( SAS A 提示:倍长 AD 至G ,连接BG ,证明A BDG^A CDA 三角形BEG 是等腰三角形 AC , D E 在 BC 上,且 DE=EC 过 D 作 DF // BA 交 AE 于点 F , DF=AC. 第1题图

2017中考全等三角形专题(8种辅助线的作法)

全等三角形问题中常见得辅助线得作法【三角形辅助线做法】 图中有角平分线,可向两边作垂线。也可将图对折瞧,对称以后关系现。 角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试瞧。 线段垂直平分线,常向两端把线连。要证线段倍与半,延长缩短可试验。 三角形中两中点,连接则成中位线。三角形中有中线,延长中线等中线。 1、等腰三角形“三线合一”法:遇到等腰三角形,可作底边上得高,利用“三线合一”得性质解题 2、倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形 3、角平分线在三种添辅助线 4、垂直平分线联结线段两端 5、用“截长法”或“补短法”: 遇到有二条线段长之与等于第三条线段得长, 6、图形补全法:有一个角为60度或120度得把该角添线后构成等边三角形 7、角度数为30、60度得作垂线法:遇到三角形中得一个角为30度或60度,可以从角一边上一点向角得另一边作垂线,目得就是构成30-60-90得特殊直角三角形,然后计算边得长度与角得度数,这样可以得到在数值上相等得二条边或二个角。从而为证明全等三角形创造边、角之间得相等条件。 8、计算数值法:遇到等腰直角三角形,正方形时,或30-60-90得特殊直角三角形,或40-60-80得特殊直角三角形,常计算边得长度与角得度数,这样可以得到在数值上相等得二条边或二个角,从而为证明全等三角形创造边、角之间得相等条件。 常见辅助线得作法有以下几种:最主要得就是构造全等三角形,构造二条边之间得相等,二个角之间得相等。 1)遇到等腰三角形,可作底边上得高,利用“三线合一”得性质解题,思维模式就是全等变 换中得“对折”法构造全等三角形. 2)遇到三角形得中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用得思 维模式就是全等变换中得“旋转”法构造全等三角形. 3)遇到角平分线在三种添辅助线得方法,(1)可以自角平分线上得某一点向角得两边作垂

全等三角形中常见辅助线的添加方法

全等三角形中常见辅助线的添加方法举例 一. 有角平分线时,通常在角的两边截取相等的线段,构造全等三角形。 例:如图1:已知AD 为△ABC 的中线,且∠1=∠2,∠3=∠4,求证:BE +CF >EF 。 二、有以线段中点为端点的线段时,常延长加倍 此线段,构造全等三角形。 例::如图2:AD 为△ABC 的中线,且∠1=∠2,∠3=∠4,求证:BE +CF >EF 三、有三角形中线时,常延长加倍中线,构造 全等三角形。 例:如图3:AD 为 △ABC 的中线,求证:AB +AC >2AD 。 图3 练习:已知△ABC ,AD 是BC 边上的中线,分别以AB 边、AC 边为直角边各向形外作等腰直角三角形,如图4, 求证EF =2AD 。 A B C D E F N 1 图1234 2 图A B C D E F M 123 4A B C D E A B C D E F 4 图

四、截长补短法作辅助线。 例如:已知如图5:在△ABC 中,AB >AC ,∠1=∠2,P 为AD 上任一点。 求证:AB -AC >PB -PC 。 五、延长已知边构造三角形: 例如:如图6:已知AC =BD ,AD ⊥AC 于A ,BC ⊥BD 于B , 求证:AD =BC 六、有和角平分线垂直的线段时,通常把这条线段延长。 例如:如图8:在Rt △ABC 中,AB =AC ,∠BAC =90°,∠1=∠2,CE ⊥BD 的延长于E 。求证:BD =2CE 7 七、连接已知点,构造全等三角形。 例如:已知:如图9;AC 、BD 相交于O 点,且AB =DC ,AC =BD ,求证:∠A =∠D 。 八、取线段中点构造全等三有形。 例如:如图10:AB =DC ,∠A =∠D 求证:∠ABC =∠DCB 。 A B C D N M P 5图12A B C D E 6 图O D B A 110 图O 10图D C B A M N

三角形全等之倍长中线(类倍长一)(人教版)(含答案)

学生做题前请先回答以下问题 问题1:“三角形全等”的辅助线: 见中线,要________,________之后___________,全等之后_________,_________. 问题2:倍长中线的作法,图中的虚线为辅助线,请叙述图1、图2的辅助线. 三角形全等之倍长中线(类倍长一)(人教版) 一、单选题(共4道,每道25分) 1.已知:如图,点E是BC的中点,∠BAE=∠D. 求证:AB=CD. 如图,先在图上走通思路后再填写空格内容: ①因为点E是BC的中点,考虑延长AE到点F,使EF=AE,连接CF; ②进而利用全等三角形的判定_________,证明_______≌_______; ③由全等可得________________;

④结合已知条件∠BAE=∠D,得∠F=∠D,在△DCF中,利用________________,可得CF=CD,等量代换得AB=CD. 以上空缺处依次所填最恰当的是( ) A.②SAS,△ABE,△ECF; ③AB=CF; ④等角对等边 B.②SAS,△ABE,△DEC; ③AB=CF,∠BAE=∠F; ④等边对等角 C.②SA S,△ABE,△FCE; ③∠ABE=∠FCE,∠BAE=∠F; ④等边对等角 D.②SAS,△ABE,△FCE; ③AB=FC,∠BAE=∠F; ④等角对等边 答案:D 解题思路:

试题难度:三颗星知识点:三角形全等之倍长中线 2.已知:如图,点E是BC的中点,∠BAE=∠D. 求证:AB=CD. 证明:如图,延长DE到点F,使EF=DE,连接BF.

∵E是BC的中点 ∴BE=CE 在△BEF和△CED中 ∴△BEF≌△CED(SAS) ∴____________________________ ∵∠BAE=∠D ____________________________ ∴AB=CD 请你仔细观察下列序号所代表的内容: ①BF=CD,∠EBF=∠C; ②BF=CD,∠F=∠D; ③; ④. 以上空缺处依次所填最恰当的是( ) A.①③ B.②③ C.①④ D.②④ 答案:B 解题思路:

全等三角形中常用辅助线(经典)

三角形中的常用辅助线 课程解读 一、学习目标: 归纳、掌握三角形中的常见辅助线 二、重点、难点: 1、全等三角形的常见辅助线的添加方法。 2、掌握全等三角形的辅助线的添加方法并提高解决实际问题的能力。 三、考点分析: 全等三角形是初中数学中的重要内容之一,是今后学习其他知识的基础。判断三角形全等的公理有SAS、ASA、AAS、SSS和HL,如果所给条件充足,则可直接根据相应的公理证明,但是如果给出的条件不全,就需要根据已知的条件结合相应的公理进行分析,先推导出所缺的条件然后再证明。一些较难的证明题要构造合适的全等三角形,把条件相对集中起来,再进行等量代换,就可以化难为易了。 典型例题 人说几何很困难,难点就在辅助线。辅助线,如何添?把握定理和概念。还要刻苦加钻研,找出规律凭经验。 全等三角形辅助线 找全等三角形的方法: (1)可以从结论出发,寻找要证明的相等的两条线段(或两个角)分别在哪两个可能全等的三角形中; (2)可以从已知条件出发,看已知条件可以确定哪两个三角形全等; (3)可从条件和结论综合考虑,看它们能确定哪两个三角形全等; (4)若上述方法均不可行,可考虑添加辅助线,构造全等三角形。 三角形中常见辅助线的作法: ①延长中线构造全等三角形; ②利用翻折,构造全等三角形; ③引平行线构造全等三角形; ④作连线构造等腰三角形。 常见辅助线的作法有以下几种: (1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”。 例1:如图,ΔABC是等腰直角三角形,∠BAC=90°,BD平分∠ABC交AC于点D,CE垂直于BD,交BD的延长线于点E。求证:BD=2CE。

全等三角形常用辅助线做法

五种辅助线助你证全等 姚全刚 在证明三角形全等时有时需添加辅助线,对学习几何证明不久的学生而言往往是难点?下面介绍证明全等时常见的五种辅助线,供同学们学习时参考. 一、截长补短 一般地,当所证结论为线段的和、差关系,且这两条线段不在同一直线上时,通常可以考虑用 截长补短的办法:或在长线段上截取一部分使之与短线段相等;或将短线段延长使其与长线段相等. 例1.如图1,在△ ABC 中,/ ABC=60 ° , AD、CE 分别平分/ BAC、/ ACB .求证: AC=AE+CD . 分析:要证AC=AE+CD , AE、CD不在同一直线上.故在AC上截取AF=AE,则只要证明 CF=CD . 证明:在AC上截取AF=AE,连接OF. ?/ AD、CE 分别平分/ BAC、/ ACB,/ ABC=60 ° ???/ 1 + Z 2=60 ° ,A Z 4=Z 6= / 1 + Z 2=60 ° . 显然,△ AEO ◎△ AFO,?/ 5= / 4=60 ° ,?/ 7=180° — (/ 4+ / 5) =60 ° 在厶DOC 与厶FOC 中,/ 6= / 7=60°,/ 2= / 3, OC=OC ???△ DOC ◎△ FOC, CF=CD ? AC=AF+CF=AE+CD 截长法与补短法,具体作法是在某条线段上截取一条线段与特定线段相等, 或是将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明。这种作 法,适合于证明线段的和、差、倍、分等类的题目。

例2:如图甲,AD// BC 点E在线段AB上,/ ADE=/CDE / DC=Z ECB 求证: CD=AD F BC 思路分析: 1)题意分析:本题考查全等三角形常见辅助线的知识:截长法或补短法。 2)解题思路:结论是CDAC+BC,可考虑用“截长补短法”中的“截长”,即在CD上截取CF=CE,只要再证DF=DA即可,这就转化为证明两线段相等的问题,从而达到简化问题的目的。 解答过程: 证明:在CD上截取CF=BC如图乙 6 = CS CE= CE ???△ FCE^A BCE(SAS, ???/ 2=Z 1。 又??? AD// BC ???/ ADG-Z BCD:180°, ???/ DC+Z CD=90°,

全等三角形之辅助线(习题及答案)

全等三角形之辅助线(习题) 例题示范 例1:已知:如图,在△ABC 中,∠C =90°,D 是AB 边上一点,AD =AC ,过点D 作DE ⊥AB ,交BC 于点E . 求证:CE =DE . 【思路分析】1 读题标注:2梳理思路: 要证CE =DE ,考虑把这两条线段放在两个三角形中证全等,利用全等三角形对应边相等来证明. 观察图形,发现不存在全等的三角形. 结合条件,AC =AD ,∠C =∠ADE =90°,考虑连接AE ,证明△ACE ≌△ADE . 【过程书写】 证明:如图,连接AE ∵DE ⊥AB ∴∠ADE =90° ∵∠C =90° ∴∠C =∠ADE 在Rt △ACE 和Rt △ADE 中 AE AE AC AD =??=?(公共边)(已知)∴Rt △ACE ≌Rt △ADE (HL ) ∴CE =DE (全等三角形对应边相等) 过程规划:1.描述辅助线:连接AE 2.准备条件:∠C =∠ADE =90°3.证明△ACE ≌△ADE 4.由全等性质得,CE = DE

巩固练习1.已知:如图,B ,C ,F ,E 在同一条直线上,AB ,DE 相交于点G ,且BC =EF ,GB =GE ,∠A =∠D .求证:DC =AF . 2.已知:如图,∠C =∠F ,AB =DE ,DC = AF ,BC =EF .求证:AB ∥DE .过程规划: 过程规划:

3.已知:如图,AB∥CD,AD∥BC,E,F分别是AD,BC的 中点.求证:BE=DF. 4.已知:如图,在正方形ABCD中,AD=AB,∠DAB=∠B=90°, 点E,F分别在AB,BC上,且AE=BF,AF交DE于点G.求证:DE⊥AF.

三角形全等之倍长中线

三角形全等之倍长中线 课前预习 1. 填空 (1)三角形全等的判定有: 三边分别___________的两个三角形全等,即(____); 两边和它们的_____分别相等的两个三角形全等,即(____); 两角和它们的_____分别相等的两个三角形全等,即(____); 两角和其中一个角的______分别相等的两个三角形全等,即(____); 斜边和_______边分别相等的两个直角三角形全等,即(____). (2)要证明两条边相等或者两个角相等,可以考虑放在两个三角形中证________;要证明两个三角形全等需要准备______组条件,这三组条件里面必须有______;然后依据判定进行证明,其中AAA ,SSA 不能证明两个三角形全. 2. 想一想,证一证 已知:如图,AB 与CD 相交于点O ,且O 是AB 的中点. (1)当OC =OD 时,求证:△AOC ≌△BOD ; (2)当AC ∥BD 时,求证:△AOC ≌△BOD . O B C D A ? 知识点睛 1. “三角形全等”辅助线: 见中线,要__________,构造______________. 2. 中点的思考方向: ① (类)倍长中线 延长AD 到E ,使DE =AD , 延长MD 到E ,使DE =MD , 连接BE 连接CE D C B A M A B C D

②平行夹中点 F E D C B A 延长FE 交BC 的延长线于点G ? 精讲精练 1. 如图,在△ABC 中,AD 为BC 边上的中线. (1)按要求作图:延长AD 到点E ,使DE =AD ;连接BE . (2)求证:△ACD ≌△EBD . (3)求证:AB +AC >2AD . (4)若AB =5,AC =3,求AD 的取值范围. 2. 如图,在△ABC 中,AD 平分∠BAC ,且BD =CD . 求证:AB =AC . 3. 如图,CB 是△AEC 的中线,CD 是△ABC 的中线,且AB =AC . 求证:①CE =2CD ;②CB 平分∠DCE . D C B A D B A D C B A

全等三角形几种常见辅助线精典题型

全等三角形几种常见辅助线精典题型 一、截长补短 1、已知ABC ?中,60A ∠=,BD 、CE 分别平分ABC ∠和.ACB ∠,BD 、CE 交于点O ,试判断BE 、CD 、BC 的数量关系,并加以证明. 2、如图,点M 为正三角形ABD 的边AB 所在直线上的任意一点(点B 除外),作60DMN ∠=?,射线MN 与DBA ∠外角的平分线交于点N ,DM 与MN 有怎样的数量关系? 3、如图,AD ⊥AB ,CB ⊥AB ,DM =CM =a ,AD =h ,CB =k ,∠AMD =75°,∠BMC =45°,求AB 的长。 4、已知:如图,ABCD 是正方形,∠FAD =∠FAE . 求证:BE +DF =AE . N E B M A D D O E C B A M D C B A F D A

5、以ABC ?的AB 、AC 为边向三角形外作等边ABD ?、ACE ?,连结CD 、BE 相交于点O .求证:OA 平分DOE ∠. 6、如图所示,ABC ?是边长为1的正三角形,BDC ?是顶角为120?的等腰三角形,以D 为顶点作一个60?的MDN ∠,点M 、N 分别在AB 、AC 上, 求AMN ?的周长. 7、如图所示,在ABC ?中,AB AC =,D 是底边BC 上的一点,E 是线段AD 上的一点,且2BED CED BAC ∠=∠=∠,求证2BD CD =. 8、 五边形ABCDE 中,AB =AE ,BC +DE =CD ,∠ABC +∠AED =180°,求证:AD 平分∠CDE F A B C D E O O E D C B A N M D C B A E D B A E B A

全等三角形辅助线画法

五种辅助线助你证全等 在证明三角形全等时,有时需添加辅助线,下面介绍证明全等时常见的五种辅助线,可以帮助你更好的学习。 一、截长补短 一般地,当所证结论为线段的和、差关系,且这两条线段不在同一直线上时,通常可以考虑用截长补短的办法:或在长线段上截取一部分使之与短线段相等;或将短线段延长使其与长线段相等. 例1.如图1,在△ABC中,∠ABC=60°,AD、CE分别平分∠BAC、∠ACB.求证:AC=AE+CD. 分析:要证AC=AE+CD,AE、CD不在同一直线上.故在AC上截取AF=AE,则只要证明CF=CD. 证明:在AC上截取AF=AE,连接OF.

∵AD、CE分别平分∠BAC、∠ACB,∠ABC=60° ∴∠1+∠2=60°,∴∠4=∠6=∠1+∠2=60°. 显然,△AEO≌△AFO,∴∠5=∠4=60°,∴∠7=180°-(∠4+∠5)=60° 在△DOC与△FOC中,∠6=∠7=60°,∠2=∠3,OC=OC ∴△DOC≌△FOC,CF=CD ∴AC=AF+CF=AE+CD. 二、中线倍长 三角形问题中涉及中线(中点)时,将三角形中线延长一倍,构造全等三角形是常用的解题思路. 例2.已知三角形的两边长分别为7和5,那么第三边上中线长x的取值范围是(). 分析:要求第三边上中线的取值范围,只有将将中线与两个已知边转移到同一个三角形中,然后利用三角形的三边关系才能进行分析和判断.

解:如图2所示,设AB=7,AC=5,BC上中线AD=x.延长AD至E,使DE = AD=x. ∵AD是BC边上的中线,∴BD=CD ∠ADC=∠EDB(对顶角)∴△ADC≌△EDB ∴BE=AC=5 ∵在△ABE中AB-BE<AE<AB+BE 即7-5<2x<7+5∴1<x<6

倍长中线构造全等三角形

巧添辅助线——倍长中线 【夯实基础】 例:ABC ?中,AD 就是BAC ∠的平分线,且BD=CD,求证AB=AC 方法1:作D E ⊥AB 于E,作D F ⊥AC 于F,证明二次全等 方法2:辅助线同上,利用面积 方法3:倍长中线AD 【方法精讲】常用辅助线添加方法——倍长中线 △ABC 中 方式1: 延长AD 到E, AD 就是BC 边中线 使DE=AD, 连接BE 方式2:间接倍长 作CF ⊥AD 于延长MD 到N, 作BE ⊥AD 的延长线于使DN=MD, 连接BE 连接CD 【经典例题】 例1:△ABC 中,AB=5,AC=3,求中线AD 的取值范围 提示:画出图形,倍长中线AD,利用三角形两边之与大于第三边 例2:已知在△ABC 中,AB=AC,D 在AB 上,E 在AC 的延长线上,DE 交BC 于F,且DF=EF,求证:BD=CE 方法1:过D 作DG ∥AE 交BC 于G,证明ΔDGF ≌ΔCEF 方法2:过E 作EG ∥AB 交BC 的延长线于G,证明ΔEFG ≌ΔDFB 方法3:过D 作DG ⊥BC 于G,过E 作EH ⊥BC 的延长线于H 证明ΔBDG ≌ΔECH

例3:已知在△ABC 中,AD 就是BC 边上的中线,E 就是AD 上一点,且BE=AC,延长BE 交AC 于F,求 证:AF=EF 提示:倍长AD 至G ,连接BG,证明ΔBDG ≌ΔCDA 三角形BEG 就是等腰三角形 例4:已知:如图,在ABC ?中,AC AB ≠,D 、E 在BC 上,且DE=EC,过D 作BA DF //交AE 于点F,DF=AC 、 求证:AE 平分BAC ∠ 提示: 方法1:倍长AE 至G,连结DG 方法2:倍长FE 至H,连结CH 例5:已知CD=AB,∠BDA=∠BAD,AE 就是△ABD 的中线,求证:∠C=∠BAE 提示:倍长AE 至F,连结DF 证明ΔABE ≌ΔFDE(SAS) 进而证明ΔADF ≌ΔADC(SAS) 【融会贯通】 1、在四边形ABCD 中,AB ∥DC,E 为BC 边的中点,∠BAE=∠EAF,AF 与DC 的延长线相交于点F 。试探究线段AB 与AF 、CF 之间的数量关系,并证明您的结论 提示:延长AE 、DF 交于G 证明AB=GC 、AF=GF 所以AB=AF+FC B 第 1 题图 A B F D E C

全等三角形中做辅助线的技巧

全等三角形中做辅助线的技巧 口诀: 三角形 图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。 角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。 线段垂直平分线,常向两端把线连。线段和差及倍半,延长缩短可试验。 线段和差不等式,移到同一三角去。三角形中两中点,连接则成中位线。 三角形中有中线,延长中线等中线。 一、由角平分线想到的辅助线 口诀: 图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。 角平分线具有两条性质:a 、对称性;b 、角平分线上的点到角两边的距离相等。对于有角平分线的辅助线的作法,一般有两种。 ①从角平分线上一点向两边作垂线; ②利用角平分线,构造对称图形(如作法是在一侧的长边上截取短边)。 通常情况下,出现了直角或是垂直等条件时,一般考虑作垂线;其它情况下考虑构造对称图形。至于选取哪种方法,要结合题目图形和已知条件。 与角有关的辅助线 (一)、截取构全等 图1-1 B

如图1-1,∠AOC=∠BOC ,如取OE=OF ,并连接DE 、DF ,则有△OED ≌△OFD ,从而为我们证明线段、角相等创造了条件。 例1. 如图1-2,AB//CD ,BE 平分∠BC D ,C E 平分∠BCD ,点E 在AD 上,求证:BC =AB+CD 。 例2. 已知:如图1-3,AB=2AC ,∠BAD=∠CAD ,DA=DB ,求证DC ⊥AC 例3. 已知:如图1-4,在△ABC 中,∠C=2∠B,AD 平分∠BAC ,求证:AB -AC=CD 分析:此题的条件中还有角的平分线,在证明中还要用到构造全等三角形,此题还是证明线段的和差倍分问题。用到的是截取法来证明的,在长的线段上截取短的线段,来证明。试试看可否把短的延长来证明呢? 练习 1. 已知在△ABC 中,AD 平分∠BAC ,∠B=2∠C ,求证:AB+BD=AC 图1-2 D B C 图 1-4 A B C

(完整版)几种证明全等三角形添加辅助线的方法

教学过程 构造全等三角形几种方法 在几何解题中,常常需要添加辅助线构造全等三角形,以沟通题设与结论之间的联系。现分类加以说明。 一、延长中线构造全等三角形 例1. 如图1,AD是△ABC的中线,求证:AB+AC>2AD。 证明:延长AD至E,使AD=DE,连接CE。如图2。 ∵AD是△ABC的中线,∴BD=CD。 又∵∠1=∠2,AD=DE, ∴△ABD≌△ECD(SAS)。AB=CE。 ∵在△ACE中,CE+AC>AE, ∴AB+AC>2AD。

二、沿角平分线翻折构造全等三角形 例2. 如图3,在△ABC中,∠1=∠2,∠ABC=2∠C。求证:AB+BD=AC。 证明:将△ABD沿AD翻折,点B落在AC上的E点处,即:在AC上截取AE=AB,连接ED。如图4。 ∵∠1=∠2,AD=AD,AB=AE, ∴△ABD≌△AED(SAS)。 ∴BD=ED,∠ABC=∠AED=2∠C。 而∠AED=∠C+∠EDC, ∴∠C=∠EDC。所以EC=ED=BD。 ∵AC=AE+EC,∴AB+BD=AC。 三、作平行线构造全等三角形 例3. 如图5,△ABC中,AB=AC。E是AB上异于A、B的任意一点,延长AC到D,使CD=BE,连接DE交BC于F。求证:EF=FD。 证明:过E作EM∥AC交BC于M,如图6。 则∠EMB=∠ACB,∠MEF=∠CDF。 ∵AB=AC,∴∠B=∠ACB。 ∴∠B=∠EMB。故EM=BE。 ∵BE=CD,∴EM=CD。

又∵∠EFM=∠DFC,∠MEF=∠CDF, ∴△EFM≌△DFC(AAS)。EF=FD。 四、作垂线构造全等三角形 例4. 如图7,在△ABC中,∠BAC=90°,AB=AC。M是AC边的中点。AD ⊥BM交BC于D,交BM于E。求证:∠AMB=∠DMC。 证明:作CF⊥AC交AD的延长线于F。如图8。 ∵∠BAC=90°,AD⊥BM, ∴∠FAC=∠ABM=90°-∠BAE。 ∵AB=AC,∠BAM=∠ACF=90°, ∴△ABM≌△CAF(ASA)。 ∴∠F=∠AMB,AM=CF。 ∵AM=CM,∴CF=CM。 ∵∠MCD=∠FCD=45°,CD=CD, ∴△MCD≌△FCD(SAS)。所以∠F=∠DMC。 ∴∠AMB=∠F=∠DMC。 五、沿高线翻折构造全等三角形 例5. 如图9,在△ABC中,AD⊥BC于D,∠BAD>∠CAD。求证:AB>AC。

珍藏二——_全等三角形证明辅助线作法之倍长中线问题

几何综合部分倍长中线问题 巧添辅助线——倍长中线 【夯实基础】 例:ABC ?中,AD是BAC ∠的平分线,且BD=CD,求证AB=AC 方法1:作D E⊥AB于E,作D F⊥AC于F,证明二次全等 方法2:辅助线同上,利用面积 方法3:倍长中线AD 【方法精讲】常用辅助线添加方法——倍长中线 △ABC中方式1:延长AD到E, AD是BC边中线使DE=AD, 连接BE 方式2:间接倍长

几何综合部分倍长中线问题 2 作CF⊥AD于F,延长MD到N, 作BE⊥AD的延长线于E 使DN=MD, 连接BE 连接CD 【经典例题】 例1:△ABC中,AB=5,AC=3,求中线AD的取值范围 例2:已知在△ABC中,AB=AC,D在AB上,E在AC的延长线上,DE交BC于F,且 BD=CE 例3:已知在△ABC中,AD是BC边上的中线,E是AD上一点,且BE=AC,延长BE交AC于F,求证:AF=EF B

几何综合部分 倍长中线问题 3 提示:倍长AD 至G ,连接BG ,证明ΔBDG ≌ΔCDA 三角形BEG 是等腰三角形 例4:已知:如图,在ABC ?中,AC AB ≠,D 、E 在BC 上,且DE=EC ,过D 作BA DF //交AE 于点F ,DF=AC. 求证:AE 平分BAC ∠ 提示: 方法1:倍长AE 至G ,连结DG 方法2:倍长FE 至H ,连结CH 例5:已知CD=AB ,∠BDA=∠BAD ,AE 是△ABD 的中线,求证:∠C=∠BAE 提示:倍长AE 至F ,连结DF 证明ΔABE ≌ΔFDE (SAS ) 进而证明ΔADF ≌ΔADC (SAS ) 第 1 题图 A B F D E C

全等三角形问题中常见的辅助线倍长中线法

D C B A 全等三角形问题中常见的辅助线——倍长中线法 △ABC 中,AD 是BC 边中线 方式1:直接倍长,(图1): 延长AD 到E ,使DE=AD ,连接BE 方式2:间接倍长 1) (图2)作CF ⊥AD 于F ,作BE ⊥AD 的延长线于E, 连接BE 2) (图3)延长MD 到N ,使DN=MD ,连接CD 【经典例题】 例1已知,如图△ABC 中,AB=5,AC=3, 则中线AD 的取值范围是_________. (提示:画出图形,倍长中线AD ,利用三角形两边之和大于第三边) 例2:已知在△ABC 中,AB=AC ,D 在AB 上,E 在AC 的延长线上, DE 交BC 于F ,且DF=EF. 求证:BD=CE.(提示:方法1:过D 作DG ∥AE 交BC 于G ,证明ΔDGF ≌ΔCEF E D A B C F D C B A N D C B A M

E D F C B A 方法2:过E 作EG ∥AB 交BC 的延长线于G ,证明ΔEFG ≌ΔDFB 方法3:过D 作DG ⊥BC 于G ,过E 作EH ⊥BC 的延长线于H ,证明ΔBDG ≌ΔECH ) 例3、如图,△ABC 中,E 、F 分别在AB 、AC 上,DE ⊥DF ,D 是中点,试比较BE+CF 与EF 的大小.

变式:如图,AD 为ABC ?的中线,DE 平分BDA ∠交AB 于E ,DF 平分ADC ∠交AC 于F. 求证:EF CF BE >+ (提示:方法1:在DA 上截取DG=BD ,连结EG 、FG , 证明ΔBDE ≌ΔGDE ΔDCF ≌ΔDGF 所以BE=EG 、CF=FG 利用三角形两边之和大于第三边 方法2: 倍长ED 至H ,连结CH 、FH ,证明FH=EF 、CH=BE ,利用三角形两边之和大于第三边) 例4:已知在△ABC 中,AD 是BC 边上的中线,E 是AD 上一点,且BE=AC ,延长BE 交AC 于F ,求证:AF=EF (提示:方法1:倍长AD 至G ,连接BG ,证明ΔBDG ≌ΔCDA 三角形BEG 是等腰三角形。 _ D _ F _ C _ B _ E _ A _ D _ F _ C _ B _ E _ A

倍长中线构造全等三角形

倍长中线构造全等三角 形 -CAL-FENGHAI.-(YICAI)-Company One1

巧添辅助线——倍长中线 【夯实基础】 例:ABC ?中,AD是BAC ∠的平分线,且BD=CD,求证AB=AC 方法1:作DE⊥AB于E,作DF⊥AC于F,证明二次全等方法2:辅助线同上,利用面积 方法3:倍长中线AD 【方法精讲】常用辅助线添加方法——倍长中线 △ABC中 AD到E, AD是BC边中线, 连接BE 方式2 ⊥AD于F, AD的延长线于 连接 【经典例题】 例1:△ABC中,AB=5,AC=3,求中线AD的取值范围 提示:画出图形,倍长中线AD,利用三角形两边之和大于第三边 例2:已知在△ABC中,AB=AC,D在AB上,E在AC的延长线上,DE交BC于F,且DF=EF,求证:BD=CE 方法1:过D作DG∥AE交BC于G,证明ΔDGF≌ΔCEF 方法2:过E作EG∥AB交BC的延长线于G,证明ΔEFG 方法3:过D作DG⊥BC于G,过E作EH⊥BC 证明ΔBDG≌ΔECH 2

3 例3:已知在△ABC 中,AD 是BC 边上的中线,E 是AD 上一点,且BE=AC ,延长BE 交 AC 于F ,求证:AF=EF 提示:倍长AD 至G ,连接BG ,证明ΔBDG ≌ΔCDA 三角形BEG 是等腰三角形 例4:已知:如图,在ABC ?中,AC AB ≠,D 、E 在BC 上,且DE=EC ,过D 作BA DF //交AE 于点F ,DF=AC. 求证:AE 平分BAC ∠ 提示: 方法1:倍长AE 至G ,连结DG 方法2:倍长FE 至H ,连结CH 例5:已知CD=AB ,∠BDA=∠BAD ,AE 是△ABD 的中线,求证:∠C=∠BAE 提示:倍长AE 至F ,连结DF 证明ΔABE ≌ΔFDE (SAS ) 进而证明ΔADF ≌ΔADC (SAS ) 【融会贯通】 1、在四边形ABCD 中,AB ∥DC ,E 为BC 边的中点,∠BAE=∠EAF ,AF 与DC 的延长线相交于点F 。试探究线段AB 与AF 、CF 之间的数量关系,并证明你的结论 提示:延长AE 、DF 交于G 证明AB=GC 、AF=GF 所以AB=AF+FC B 第 1 题图 A B F D E C

八年级数学全等三角形--倍长中线法经典例题

倍长中线法 知识网络详解: 中线是三角形中的重要线段之一,在利用中线解决几何问题时,常常采用“倍长中线法”添加辅助线. 所谓倍长中线法,就是将三角形的中线延长一倍,以便构造出全等三角形,从而运用全等三角形的有关知识来解决问题的方法. 倍长中线法的过程:延长某某到某点,使某某等于某某,使什么等于什么(延长的那一条),用SAS 证全等(对顶角) 倍长中线最重要的一点,延长中线一倍,完成SAS 全等三角形模型的构造。 【方法精讲】常用辅助线添加方法——倍长中线 △ABC 中 方式1: 延长AD 到E , AD 是BC 边中线 使DE=AD , 连接BE 方式2:间接倍长 作CF ⊥AD 于F , 延长MD 到N , 作BE ⊥AD 的延长线于E 使DN=MD , 连接BE 连接CN 经典例题讲解: 例1:△ABC 中,AB=5,AC=3,求中线AD 的取值范围 D A B C E D A B C F E D C B A N D C B A M

例2:已知在△ABC 中,AB=AC ,D 在AB 上,E 在AC 的延长线上,DE 交BC 于F ,且DF=EF ,求证:BD=CE 过D 作DG//AC 例3:已知在△ABC 中,AD 是BC 边上的中线,E 是AD 上一点,且BE=AC ,延长BE 交AC 于F ,求证:AF=EF 例4:已知:如图,在ABC ?中,AC AB ≠,D 、E 在BC 上,且DE=EC ,过D 作BA DF //交AE 于点F ,DF=AC. 求证:AE 平分BAC ∠ F E D A B C F E C A B D A B F D E C

全等三角形几何证明-常用辅助线

几何证明-常用辅助线 (一)中线倍长法: 例1、求证:三角形一边上的中线小于其他两边和的一半 1 已知:如图,△ ABC 中,AD 是 BC 边上的中线,求证:AD < - (AB+AC) 2 1 分析:要证明AD < - (AB+AC),就是证明AB+AO2AD 也就是证明两条线段之和大于第三 2 条线段,而我们只能用“三角形两边之和大于第三边”,但题中的三条线段共点,没有构 成一个三角形,不能用三角形三边关系定理,因此应该进行转化。待证结论AB+AC>2A 中, 出现了 2AD 即中线AD 应该加倍。 证明:延长 AD 至E,使DE=AD 连CE 则AE=2AD 在厶 ADBm EDC 中, AD= DE ZADB= ZEDC BD= DC ???△ ADB^A EDC(SAS) ??? AB=CE 又在厶ACE 中, AC+C 呂 AE 1 ??? AC+AB>2AD 即 AD < - (AB+AC) 2 小结:(1)涉及三角形中线问题时,常采用延长中线一倍的办法,即 中线倍长法。它可以 将分居中线两旁的两条边 AB AC 和两个角/ BAD 和/CAD 集中于同一个三角形中,以利于 问题的获解。 课题练习:ABC 中,AD 是 BAC 的平分线,且BD=CD 求证AB=AC N, 作BE! AD 的延长线于E 连接BE E 例3:A ABC 中, AB=5 AC=3求中线AD 的取值范围 例4:已知在△ ABC 中, AB=AC D 在AB 上, E 在AC 的延长线上,DE 交BC 于 F , 且 DF=EF 求证:BD=CE 课堂练习:已知在△ ABC 中,AD 是BC 边上的中线, AC 于 F ,求证:AF=EF 例5:已知:如图,在 ABC 中,AB AC , D E 上,且 DE=EC 过 D 作 DF //BA 交 AE 于点 F , DF=AC. 例2:中线一倍辅助线作法 作 CF 丄 AD 于 F , A ^式 1:延长 AD 到 E , / 使 DE=AD B ————(连接BE 方式2:间接倍长 延长MD 到 使 DN=M P 连接CD A C △ ABC 中 AD 是BC 边中线 D

全等三角形之手拉手模型、倍长中线-截长补短法

手拉手模型 要点一:手拉手模型 特点:由两个等顶角的等腰三角形所组成,并且顶角的 顶点为公共顶点 结论:(1)△ABD ≌△AEC (2)∠α+∠BOC=180° (3)OA 平分∠BOC 变形: 例1.如图在直线ABC 的同一侧作两个等边三角形ABD ?与BCE ?,连结AE 与CD ,证明 (1)DBC ABE ??? (2)DC AE = (3)AE 与DC 之间的夹角为? 60 (4)DFB AGB ??? (5)CFB EGB ??? (6)BH 平分AHC ∠ (7)AC GF // 变式精练1:如图两个等边三角形ABD ?与BCE ?,连结AE 与CD , 证明(1)DBC ABE ???

(2)DC AE = (3)AE 与DC 之间的夹角为? 60 (4)AE 与DC 的交点设为H ,BH 平分AHC ∠ 变式精练2:如图两个等边三角形ABD ?与BCE ?,连结AE 与CD , 证明(1)DBC ABE ??? (2)DC AE = (3)AE 与DC 之间的夹角为?60 (4)AE 与DC 的交点设为H ,BH 平分AHC ∠ 例2:如图,两个正方形ABCD 与DEFG ,连结CE AG ,,二者相交于点H 问:(1)CDE ADG ???是否成立? (2)AG 是否与CE 相等? (3)AG 与CE 之间的夹角为多少度? (4)HD 是否平分AHE ∠? 例3:如图两个等腰直角三角形ADC 与EDG ,连结CE AG ,,二者相交 于点H 问:(1)CDE ADG ???是否成立? (2)AG 是否与CE 相等?

(3)AG 与CE 之间的夹角为多少度? (4)HD 是否平分AHE ∠? 例4:两个等腰三角形ABD ?与BCE ?,其中BD AB =,,EB CB =α=∠=∠CBE ABD ,连结AE 与CD , 问:(1)DBC ABE ???是否成立? (2)AE 是否与CD 相等? (3)AE 与CD 之间的夹角为多少度? (4)HB 是否平分AHC ∠? 倍长与中点有关的线段 倍长中线类 ?考点说明:凡是出现中线或类似中线的线段,都可以考虑倍长中线,倍长中线的目的是可以旋转等长度的线段,从而达到将条件进行转化的目的。 【例1】 已知:ABC ?中,AM 是中线.求证:1 ()2 AM AB AC <+. M C B A 【练1】在△ABC 中,59AB AC ==,,则BC 边上的中线AD 的长的取值范围是什么? 【练2】如图所示,在ABC ?的AB 边上取两点E 、F ,使AE BF =,连接CE 、CF ,求证:AC BC +>EC FC +.

全等三角形之倍长中线法

全等三角形之倍长中线 1. 如图,AD 为△ABC 的中线. (1)求证:AB +AC >2AD . (2)若AB =5,AC =3,求AD 的取值范围. 2. 如图,在△ABC 中,AD 平分∠BAC ,且BD =CD . 求证:AB =AC . 3. 如图,CB 是△AEC 的中线,CD 是△ABC 的中线,且AB =AC . 求证:①CE =2CD ;②CB 平分∠DCE . D C B A C A D B A

4. 如图,在△ABC 中,D 是BC 边的中点,E 是AD 上一点,BE =AC , BE 的延长线交AC 于点F . 求证:∠AEF =∠EAF . 5. 如图,在△ABC 中,AD 交BC 于点D ,点E 是BC 的中点,EF ∥AD 交CA 的延长线于点F ,交 AB 于点G ,BG =CF . 求证:AD 为△ABC 的角平分线. 6. 如图,在四边形ABCD 中,AD ∥BC ,点E 在BC 上,点F 是CD 的中 点,且AF ⊥AB ,已知AD =2.7,AE =BE =5,求CE 的长. 7. 如图,在正方形ABCD 的边CB 的延长线上取一点E ,△FEB 为等腰直角三角形,∠FEB =90°, 连接FD ,取FD 的中点G ,连接EG ,CG . 求证:EG =CG 且EG ⊥CG . 1. 已知:如图,在梯形ABCD 中,AD ∥BC ,AB =AD +BC ,E 是CD 的中点. 求证:AE ⊥BE . F E D C A G F E D A F E D C B A G F E D C B A E D C B A

相关文档
相关文档 最新文档