文档库 最新最全的文档下载
当前位置:文档库 › 短时傅里叶变换

短时傅里叶变换

短时傅里叶变换
短时傅里叶变换

短时距傅里叶变换(英文:short-time Fourier transform, STFT,又称short-term Fourier transform)是和傅里叶变换相关的一种数学变换关系,用以决定时变信号其局部段落之弦波成份的频率与相位。

简单来说,在连续时间的例子,一个函数可以先乘上仅在一段时间不为零的窗函数(window function)再进行一维的傅里叶变换。再将这个窗函数沿着时间轴挪移,所得到一系列的傅里叶变换结果排开则成为二维表象。数学上,这样的操作可写为:

其中w(t)是窗函数,通常是翰氏窗函数(Hann window)或高斯函数的“丘型”分布,中心点在零,而x(t)是待变换的信号。X(τ,ω)本质上是x(t)w(t?τ)的傅里叶变换,乃一个复函数代表了信号在时间与频率上的强度与相位。

短时傅里叶变换(STFT,short-time Fourier transform,或 short-term Fourier transform))是和傅里叶变换相关的一种数学变换,用以确定时变信号其局部区域正弦波的频率与相位。

它的思想是:选择一个时频局部化的窗函数,假定分析窗函数g(t)在一个短时间间隔内是平稳(伪平稳)的,移动窗函数,使f(t)g(t)在不同的有限时间宽度内是平稳信号,从而计算出各个不同时刻的功率谱。短时傅里叶变换使用一个固定的窗函数,窗函数一旦确定了以后,其形状就不再发生改变,短时傅里叶变换的分辨率也就确定了。如果要改变分辨率,则需要重新选择窗函数。短时傅里叶变换用来分析分段平稳信号或者近似平稳信号犹可,但是对于非平稳信号,当信号变化剧烈时,要求窗函数有较高的时间分辨率;而波形变化比较平缓的时刻,主要是低频信号,则要求窗函数有较高的频率分辨率。短时傅里叶变换不能兼顾频率与时间分辨率的需求。短时傅里叶变换窗函数受到W.Heisenberg不确定准则的限制,时频窗的面积不小于2。这也就从另一个侧面说明了短时傅里叶变换窗函数的时间与频率分辨率不能同时达到最优。

MAtlab傅里叶变换实验报告

班级信工142 学号 22 姓名何岩实验组别实验日期室温报告日期成绩报告内容:(目的和要求,原理,步骤,数据,计算,小结等) 1.求信号的离散时间傅立叶变换并分析其周期性和对称性; 给定正弦信号x(t)=2*cos(2*pi*10*t),fs=100HZ,求其DTFT。 (a)代码: f=10;T=1/f;w=-10:0.2:10; t1=0:0.0001:1;t2=0:0.01:1; n1=-2;n2=8;n0=0;n=n1:0.01:n2; x5=[n>=0.01]; x1=2*cos(2*f*pi*t1); x2=2*cos(2*f*pi*t2); x3=(exp(-j).^(t2'*w)); x4=x2*x3; subplot(2,2,1);plot(t1,x1); axis([0 1 1.1*min(x2) 1.1*max(x2)]); xlabel('x(n)');ylabel('x(n)'); title('原信号x1'); xlabel('t');ylabel('x1'); subplot(2,2,3);stem(t2,x2); axis([0 1 1.1*min(x2) 1.1*max(x2)]); title('原信号采样结果x2'); xlabel('t');ylabel('x2'); subplot(2,2,2);stem(n,x5); axis([0 1 1.1*min(x5) 1.1*max(x5)]); xlabel('n');ylabel('x2'); title('采样函数x2'); subplot(2,2,4);stem(t2,x4); axis([0 1 -0.2+1.1*min(x4) 1.1*max(x4)]); xlabel('t');ylabel('x4'); title('DTFT结果x4'); (b)结果: 2.用以下两个有限长序列来验证DTFT的线性、卷积和共轭特性; (n) x1(n)=[1 2 3 4 5 6 7 8 9 10 11 12];x2(n)=R 10 (1)线性:(a)代码: w=linspace(-8,8,10000); nx1=[0:11]; nx2=[0:9]; x1=[1 2 3 4 5 6 7 8 9 10 11 12];

短时傅立叶变换试验

短时傅立叶变换试验 为了克服傅立叶变换的时频局部化方面的不足,也是为了对时域信号作局部分析,D.Gabor 于1946年提出了窗口傅立叶变换(简记为WFT )。 WFT 的公式形式 ()(,)()()j w t R G f w b f t w t b e d t -=-?()(,)()()j w t R G f w b f t w t b e d t -=-? 其中,实函数w(t)为是时窗函数,窗函数w(t)具有较强的衰减性,所以要精心选择窗函数。 下面是一个短时傅立叶变换的代码程序 function timefreq(x,Nw,window) % 待分析信号,行向量,Nw 时窗宽度 subplot(2,2,1); plot(real(x));%描绘待分析信号 X=fft(x);%快速傅里叶变换 X=fftshift(X);%调整0频位置 subplot(2,2,2); plot(abs(X));%描绘幅度谱 Lap=Nw/2;%重叠宽度 Tn=(length(x)-Lap)/(Nw-Lap);%计算分段数目 nfft=2^ceil(log2(Nw));%做fft 的点数 TF=zeros(Tn,nfft);%时频矩阵 for i=1:Tn if(strcmp(window,'rec')) Xw=x((i-1)*10+1:i*10+10);%加窗矩形处理 elseif(strcmp(window,'Hamming')) Xw=x((i-1)*10+1:i*10+10).*Hamming(Nw)';%加hamming 处理 elseif(strcmp(window,'Blackman')) Xw=x((i-1)*10+1:i*10+10).*Blackman(Nw)';%加black 处理 elseif(strcmp(window,'Gauss')) Xw=x((i-1)*10+1:i*10+10).*Gauss(Nw)';%加Gauss 处理 else return; end temp=fft(Xw,nfft);%求fft temp=fftshift(temp);%调整0频位置 TF(i,:)=temp;%保存分段fft 结果 end %绘制时频分析结果 subplot(2,2,3); fnew=((1:nfft)-nfft/2)/nfft; tnew=(1:Tn)*Lap; [F,T]=meshgrid(fnew,tnew); mesh(T,F,abs(TF)); xlabel('n');ylabel('w');zlabel('Gf');

短时傅里叶变换matlab程序

function [Spec,Freq]=STFT(Sig,nLevel,WinLen,SampFreq) %计算离散信号的短时傅里叶变换; % Sig 待分析信号; % nLevel 频率轴长度划分(默认值512); % WinLen 汉宁窗长度(默认值64); % SampFreq 信号的采样频率(默认值1); if (nargin <1), error('At least one parameter required!'); end; Sig=real(Sig); SigLen=length(Sig); if (nargin <4), SampFreq=1; end if (nargin <3), WinLen=64; end if (nargin <2), nLevel=513; end nLevel=ceil(nLevel/2)*2+1; WinLen=ceil(WinLen/2)*2+1; WinFun=exp(-6*linspace(-1,1,WinLen).^2); WinFun=WinFun/norm(WinFun); Lh=(WinLen-1)/2; Ln=(nLevel-1)/2; Spec=zeros(nLevel,SigLen); wait=waitbar(0,'Under calculation,please wait...'); for iLoop=1:SigLen, waitbar(iLoop/SigLen,wait); iLeft=min([iLoop-1,Lh,Ln]); iRight=min([SigLen-iLoop,Lh,Ln]); iIndex=-iLeft:iRight; iIndex1=iIndex+iLoop; iIndex2=iIndex+Lh+1; Index=iIndex+Ln+1; Spec(Index,iLoop)=Sig(iIndex1).*conj(WinFun(iIndex2)); end; close(wait); Spec=fft(Spec); Spec=abs(Spec(1:(end-1)/2,:));

傅立叶变换的原理、意义和应用

傅立叶变换的原理、意义和应用 1概念:编辑 傅里叶变换是一种分析信号的方法,它可分析信号的成分,也可用这些成分合成信号。许多波形可作为信号的成分,比如正弦波、方波、锯齿波等,傅里叶变换用正弦波作为信号的成分。 参考《数字信号处理》杨毅明著,机械工业出版社2012年发行。 定义 f(t)是t的周期函数,如果t满足狄里赫莱条件:在一个周期内具有有限个间断点,且在这些间断点上,函数是有限值;在一个周期内具有有限个极值点;绝对可积。则有下图①式成立。称为积分运算f(t)的傅里叶变换, ②式的积分运算叫做F(ω)的傅里叶逆变换。F(ω)叫做f(t)的像函数,f(t)叫做 F(ω)的像原函数。F(ω)是f(t)的像。f(t)是F(ω)原像。 ①傅里叶变换 ②傅里叶逆变换 中文译名 Fourier transform或Transformée de Fourier有多个中文译

名,常见的有“傅里叶变换”、“付立叶变换”、“傅立叶转换”、“傅氏转换”、“傅氏变换”、等等。为方便起见,本文统一写作“傅里叶变换”。 应用 傅里叶变换在物理学、电子类学科、数论、组合数学、信号处理、概率论、统计学、密码学、声学、光学、海洋学、结构动力学等领域都有着广泛的应用(例如在信号处理中,傅里叶变换的典型用途是将信号分解成幅值谱——显示与频率对应的幅值大小)。 相关 * 傅里叶变换属于谐波分析。 * 傅里叶变换的逆变换容易求出,而且形式与正变换非常类似; * 正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解.在线性时不变的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号的响应来获取; *卷积定理指出:傅里叶变换可以化复杂的卷积运算为简单的乘积运算,从而提供了计算卷积的一种简单手段; * 离散形式的傅立叶变换可以利用数字计算机快速地算出(其算法称为快速傅里叶变换算法(FFT)).[1] 2性质编辑 线性性质 傅里叶变换的线性,是指两函数的线性组合的傅里叶变换,等于

MATLAB实验傅里叶分析

MATLAB实验傅里叶分析

实验七 傅里叶变换 一、实验目的 傅里叶变换是通信系统、图像处理、数字信号处理以及物理学等领域内的一种重要的数学分析工具。通过傅里叶变换技术可以将时域上的波形分 布变换为频域上的分布,从而获得信号的频谱特性。MATLAB 提供了专门的函数fft 、ifft 、fft2(即2维快速傅里叶变换)、ifft2以及fftshift 用于实现对信号的傅里叶变换。本次实验的目的就是练习使用fft 、ifft 以及fftshift 函数,对一些简单的信号处理问题能够获取其频谱特性(包括幅频和相频特性)。 二、实验预备知识 1. 离散傅里叶变换(DFT)以及快速傅里叶变换(FFT)简介 设x (t )是给定的时域上的一个波形,则其傅里叶变换为 2()() (1)j ft X f x t e dt π∞--∞=? 显然X ( f )代表频域上的一种分布(波形),一般来说X ( f )是复数。而傅里叶逆变换定义为: 2()() (2)j ft x t X f e df π∞-∞ =?

因此傅里叶变换将时域上的波形变换为频域上的波形,反之,傅里叶逆变换则将频域上的波形变换为时域上的波形。 由于傅里叶变换的广泛应用,人们自然希望能够使用计算机实现傅里叶变换,这就需要对傅里叶变换(即(1)式)做离散化处理,使 之符合电脑计算的特征。另外,当 把傅里叶变换应用于实验数据的分 析和处理时,由于处理的对象具有 离散性,因此也需要对傅里叶变换 进行离散化处理。而要想将傅里叶 变换离散化,首先要对时域上的波 形x (t )进行离散化处理。采用一个 时域上的采样脉冲序列: δ (t -nT ), n = 0, 1, 2, …, N -1; 可以实现上述目的,如图所示。其中N 为采样点数,T 为采样周期;f s = 1/T 是采样频率。注意采样时,采样频率f s 必须大于两倍的信号频率(实际是截止频率),才能避免混迭效应。 接下来对离散后的时域波形()()()(x t x t t n T x n T δ= -=的傅里叶变换()X f 进行离散处理。与上述做法类 似,采用频域上的δ脉冲序列: x (t δ x (t )δ t t t

傅里叶变换matlab代码

%傅里叶变换 clc;clear all;close all; tic Fs=128;%采样频率,频谱图的最大频率 T=1/Fs;%采样时间,原始信号的时间间隔 L=256;%原始信号的长度,即原始离散信号的点数 t=(0:L-1)*T;%原始信号的时间取值范围 x=7*cos(2*pi*15*t-pi)+3*cos(2*pi*40*t-90*pi/180)+3*cos(2*pi*30*t-90*pi/ 180); z=7*cos(2*pi*15*t-pi)+3*cos(2*pi*40*t-90*pi/180); z1=6*cos(2*pi*30*t-90*pi/180); z1(1:L/2)=0; z=z+z1; y=x;%+randn(size(t)); figure; plot(t,y) title('含噪信号') xlabel('时间(s)') hold on plot(t,z,'r--') N=2^nextpow2(L);%N为使2^N>=L的最小幂 Y=fft(y,N)/N*2; Z=fft(z,N)/N*2;%快速傅里叶变换之后每个点的幅值是直流信号以外的原始信号幅值的N/2倍(是直流信号的N倍) f=Fs/N*(0:N-1);%频谱图的频率取值范围 A=abs(Y);%幅值 A1=abs(Z); B=A; %让很小的数置零. B1=A1; A(A<10^-10)=0; % A1(A1<10^-10)=0; P=angle(Y).*A./B; P1=angle(Z).*A1./B1; P=unwrap(P,pi);%初相位值,以除去了振幅为零时的相位值 P1=unwrap(P1,pi); figure subplot(211) plot(f(1:N/2),A(1:N/2))%函数ffs返回值的数据结构具有对称性,因此只取前一半 hold on plot(f(1:N/2),A1(1:N/2),'r--') title('幅值频谱')

快速傅里叶变换(FFT)原理及源程序

《测试信号分析及处理》课程作业 快速傅里叶变换 一、程序设计思路 快速傅里叶变换的目的是减少运算量,其用到的方法是分级进行运算。全部计算分解为M 级,其中N M 2log =;在输入序列()i x 中是按码位倒序排列的,输出序列()k X 是按顺序排列;每级包含2N 个蝶形单元,第i 级有i N 2 个群,每个群有12-i 个蝶形单元; 每个蝶形单元都包含乘r N W 和r N W -系数的运算,每个蝶形 单元数据的间隔为12-i ,i 为第i 级; 同一级中各个群的系数W 分布规律完全相同。 将输入序列()i x 按码位倒序排列时,用到的是倒序算法——雷德算法。 自然序排列的二进制数,其下面一个数总比上面的数大1,而倒序二进制数的下面一个数是上面一个数在最高位加1并由高位向低位仅为而得到的。 若已知某数的倒序数是J ,求下一个倒序数,应先判断J 的最高位是否为0,与2 N k =进行比较即可得到结果。如果J k >,说明最高位为0,应把其变成1,即2 N J +,这样就得到倒序数了。如果J k ≤,即J 的最高位为1,将最高位化为0,即2N J -,再判断次高位;与4N k =进行比较,若为0,将其变位1,即4 N J +,即得到倒序数,如果次高位为1,将其化为0,再判断下一位……即从高位到低位依次判断其是否为1,为1将其变位0,若这一位为0,将其变位1,即可得到倒序数。若倒序数小于顺序数,进行换位,否则不变,防治重复交换,变回原数。 注:因为0的倒序数为0,所以可从1开始进行求解。 二、程序设计框图 (1)倒序算法——雷德算法流程图

(2)FFT算法流程

傅里叶变换

研究生课程论文(作业)封面 ( 2014 至 2015 学年度第 1 学期) 课程名称:__________________ 课程编号:__________________ 学生姓名:__________________ 学号:__________________ 年级:__________________ 提交日期:年月日 成绩:__________________ 教师签字:__________________ 开课---结课:第周---第周 评阅日期:年月日 东北农业大学研究生部制

积分变换在工程上的应用 摘要:在现代数学中,傅里叶变换是一种非常重要的积分变换,且在数字信号处理中有着广泛的应用。本文首先介绍了傅里叶变换的基本概念、性质及发展情况;其次,详细介绍了分离变数法及积分变换法在解数学物理方程中的应用,并在分离变数法中对齐次方程及非齐次方程进行了区分。傅里叶变换在不同的领域有不同的形式,诸如现代声学,语音通讯,声纳,地震,核科学,乃至生物医学工程等信号的研究发挥着重要的作用。 关键词:傅里叶变换;偏微分方程;数字信号处理 1 概要介绍 积分变换无论在数学理论或其应用中都是一种非常有用的工具。最重要的积分变换有傅里叶变换、拉普拉斯变换。由于不同应用的需要,还有其他一些积分变换,其中应用较为广泛的有梅林变换和汉克尔变换,它们都可通过傅里叶变换或拉普拉斯变换转化而来。傅里叶变换的典型用途是将信号分解成幅值分量和频率分量。傅里叶变换将原来难以处理的时域信号转换成了易于分析的频域信号(信号的频谱),可以利用一些工具对这些频域信号进行处理、加工。最后还可以利用傅里叶反变换将这些频域信号转换成时域信号。要知道傅立叶变换算法的意义,首先要了解傅立叶原理的意义。傅立叶原理表明:任何连续测量的时序或信号,都可以表示为不同频率的正弦波信号的无限叠加。而根据该原理创立的傅立叶变换算法利用直接测量到的原始信号,以累加方式来计算该信号中不同正弦波信号的频率、振幅和相位。傅里叶变换能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。最初傅里叶分析是作为热过程的解析分析的工具被提出的。 1.傅里叶变换能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。最初傅里叶分析是作为热过程的解析分析的工具被提出的。——(1) 2.傅里叶变换的逆变换容易求出,而且形式与正变换非常类似。 3.正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解。在线性时不变的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号的响应来获取。 ()()()()()()?? ? ??-++=-? ? ∞ +∞ +∞ -.,200,]cos [1 其它连续点处, 在t f t f t f t f d d t f ωττωτπ 当()t f 满足一定条件时,在()t f 的连续点处有:

快速傅里叶变换原理及其应用(快速入门)

快速傅里叶变换的原理及其应用 摘要 快速傅氏变换(FFT),是离散傅氏变换的快速算法,它是根据离散傅氏变换的奇、偶、虚、实等特性,对离散傅立叶变换的算法进行改进获得的。它对傅氏变换的理论并没有新的发现,但是对于在计算机系统或者说数字系统中应用离散傅立叶变换,可以说是进了一大步。傅里叶变换的理论与方法在“数理方程”、“线性系统分析”、“信号处理、仿真”等很多学科领域都有着广泛应用,由于计算机只能处理有限长度的离散的序列,所以真正在计算机上运算的是一种离散傅里叶变换. 虽然傅里叶运算在各方面计算中有着重要的作用,但是它的计算过于复杂,大量的计算对于系统的运算负担过于庞大,使得一些对于耗电量少,运算速度慢的系统对其敬而远之,然而,快速傅里叶变换的产生,使得傅里叶变换大为简化,在不牺牲耗电量的条件下提高了系统的运算速度,增强了系统的综合能力,提高了运算速度,因此快速傅里叶变换在生产和生活中都有着非常重要的作用,对于学习掌握都有着非常大的意义。 关键词快速傅氏变换;快速算法;简化;广泛应用

Abstract Fast Fourier Transform (FFT), is a discrete fast Fourier transform algorithm, which is based on the Discrete Fourier Transform of odd and even, false, false, and other characteristics of the Discrete Fourier Transform algorithms improvements obtained. Its Fourier transform theory has not found a new, but in the computer system or the application of digital systems Discrete Fourier Transform can be said to be a big step into. Fourier transform theory and methods in the "mathematical equation" and "linear systems analysis" and "signal processing, simulation," and many other areas have a wide range of applications, as the computer can only handle a limited length of the sequence of discrete, so true On the computer's operation is a discrete Fourier transform. Fourier Although all aspects of computing in the calculation has an important role, but its calculation was too complicated, a lot of computing system for calculating the burden is too large for some Less power consumption, the slow speed of operation of its system at arm's length, however, have the fast Fourier transform, Fourier transform greatly simplifying the making, not in power at the expense of the conditions to increase the speed of computing systems, and enhance the system The comprehensive ability to improve the speed of operation, the Fast Fourier Transform in the production and life have a very important role in learning to master all have great significance. Key words Fast Fourier Transform; fast algorithm; simplified; widely used

线性调频信号短时傅里叶变换MATLAB

%%%%%%%%%% 线性调频信号%%%%%%%%%%%%%%%%%%%%%%%%%% clear all k=50; fs=250; n=0:1000-1; x=exp(j*pi*k*(n/fs).^2); subplot(221); plot(n/fs,real(x)); title('线性调频信号'); xlabel('时间'); ylabel('振幅'); %%%%%%%%%%%%%% 线性调频信号频谱%%%%%%%%%%%%%%%%%%%%%%%%% P=fft(x); subplot(222); plot(n/length(n)*fs,abs(P)); title('线性调频信号频谱'); xlabel('频率'); ylabel('振幅'); %%%%%%%%%%%%%%% 短时傅立叶变换%%%%%%%%%%%%%%%%%%%%%%% N=40; NFFT=512; N1=round((1000-N)*2/N+1); w=gausswin(N); %w=hanning(N); %w=rectwin(N); %w=hamming(N); %w=blackman(N); w=rot90(w); STFT=zeros(N1,NFFT); for i=1:N1; xt=x((i-1)*N/2+1:(i-1)*N/2+N); xt=xt.*w; %加高斯窗 STFT(i,:)=fft(xt,NFFT); end fn=(1:NFFT)*fs/NFFT; tn=(1:N1)*N/2/fs; [F,T]=meshgrid(fn,tn); subplot(223); mesh(F,T,abs(STFT)); title('STFT'); xlabel('频率'); ylabel('时间');

短时傅里叶变换

短时距傅里叶变换(英文:short-time Fourier transform, STFT,又称short-term Fourier transform)是和傅里叶变换相关的一种数学变换关系,用以决定时变信号其局部段落之弦波成份的频率与相位。 简单来说,在连续时间的例子,一个函数可以先乘上仅在一段时间不为零的窗函数(window function)再进行一维的傅里叶变换。再将这个窗函数沿着时间轴挪移,所得到一系列的傅里叶变换结果排开则成为二维表象。数学上,这样的操作可写为: 其中w(t)是窗函数,通常是翰氏窗函数(Hann window)或高斯函数的“丘型”分布,中心点在零,而x(t)是待变换的信号。X(τ,ω)本质上是x(t)w(t?τ)的傅里叶变换,乃一个复函数代表了信号在时间与频率上的强度与相位。 短时傅里叶变换(STFT,short-time Fourier transform,或 short-term Fourier transform))是和傅里叶变换相关的一种数学变换,用以确定时变信号其局部区域正弦波的频率与相位。 它的思想是:选择一个时频局部化的窗函数,假定分析窗函数g(t)在一个短时间间隔内是平稳(伪平稳)的,移动窗函数,使f(t)g(t)在不同的有限时间宽度内是平稳信号,从而计算出各个不同时刻的功率谱。短时傅里叶变换使用一个固定的窗函数,窗函数一旦确定了以后,其形状就不再发生改变,短时傅里叶变换的分辨率也就确定了。如果要改变分辨率,则需要重新选择窗函数。短时傅里叶变换用来分析分段平稳信号或者近似平稳信号犹可,但是对于非平稳信号,当信号变化剧烈时,要求窗函数有较高的时间分辨率;而波形变化比较平缓的时刻,主要是低频信号,则要求窗函数有较高的频率分辨率。短时傅里叶变换不能兼顾频率与时间分辨率的需求。短时傅里叶变换窗函数受到W.Heisenberg不确定准则的限制,时频窗的面积不小于2。这也就从另一个侧面说明了短时傅里叶变换窗函数的时间与频率分辨率不能同时达到最优。

MAtlab傅里叶变换实验报告

M A t l a b傅里叶变换实 验报告 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

班级信工142 学号 22 姓名何岩实验组别 实验日期室温报告日期成绩 报告内容:(目的和要求,原理,步骤,数据,计算,小结等) 1.求信号的离散时间傅立叶变换并分析其周期性和对称性; 给定正弦信号x(t)=2*cos(2*pi*10*t),fs=100HZ,求其DTFT。(a)代码: f=10;T=1/f;w=-10::10; t1=0::1;t2=0::1; n1=-2;n2=8;n0=0;n=n1::n2; x5=[n>=]; x1=2*cos(2*f*pi*t1); x2=2*cos(2*f*pi*t2); x3=(exp(-j).^(t2'*w)); x4=x2*x3; subplot(2,2,1);plot(t1,x1); axis([0 1 *min(x2) *max(x2)]); xlabel('x(n)');ylabel('x(n)'); title('原信号x1'); xlabel('t');ylabel('x1'); subplot(2,2,3);stem(t2,x2); axis([0 1 *min(x2) *max(x2)]); title('原信号采样结果x2'); xlabel('t');ylabel('x2'); subplot(2,2,2);stem(n,x5); axis([0 1 *min(x5) *max(x5)]); xlabel('n');ylabel('x2'); title('采样函数x2'); subplot(2,2,4);stem(t2,x4); axis([0 1 +*min(x4) *max(x4)]); xlabel('t');ylabel('x4'); title('DTFT结果x4'); (b)结果: 2.用以下两个有限长序列来验证DTFT的线性、卷积和共轭特性;

快速傅里叶变换(FFT)的原理及公式

快速傅里叶变换(FFT)的原理及公式 原理及公式 非周期性连续时间信号x(t)的傅里叶变换可以表示为 式中计算出来的是信号x(t)的连续频谱。但是,在实际的控制系统中能够得到的是连续信号x(t)的离散采样值x(nT)。因此需要利用离散信号x(nT)来计算信号x(t)的频谱。 有限长离散信号x(n),n=0,1,…,N-1的DFT定义为: 可以看出,DFT需要计算大约N2次乘法和N2次加法。当N较大时,这个计算量是很大的。利用WN的对称性和周期性,将N点DFT分解为两个N/2点 的DFT,这样两个N/2点DFT总的计算量只是原来的一半,即(N/2)2+(N/2)2=N2/2,这样可以继续分解下去,将N/2再分解为N/4点DFT等。对于N=2m点的DFT都可以分解为2点的DFT,这样其计算量可以减少为(N/2)log2N 次乘法和Nlog2N次加法。图1为FFT与DFT-所需运算量与计算点数的关系曲线。由图可以明显看出FFT算法的优越性。 将x(n)分解为偶数与奇数的两个序列之和,即

x1(n)和x2(n)的长度都是N/2,x1(n)是偶数序列,x2(n)是奇数序列,则 其中X1(k)和X2(k)分别为x1(n)和x2(n)的N/2点DFT。由于X1(k)和X2(k)均以N/2为周期,且WN k+N/2=-WN k,所以X(k)又可表示为: 上式的运算可以用图2表示,根据其形状称之为蝶形运算。依此类推,经过m-1次分解,最后将N点DFT分解为N/2个两点DFT。图3为8点FFT的分解流程。 FFT算法的原理是通过许多小的更加容易进行的变换去实现大规模的变换,降低了运算要求,提高了与运算速度。FFT不是DFT的近似运算,它们完全是等效的。 关于FFT精度的说明: 因为这个变换采用了浮点运算,因此需要足够的精度,以使在出现舍入误差时,结果中的每个组成部分的准确整数值仍是可辨认的。为了FFT的舍入误差,应该允许增加几倍log2(log2N)位的二进制。以256为基数、长度为N字节的数

短时傅里叶变换的有关资料

短时傅里叶变换短时傅里叶变换(STFT,short-time Fourier transform,或short-term Fourier transform))是和傅里叶变换相关的一种数学变换,用以确定时变信号其局部区域正弦波的频率与相位。它的思想是:选择一个时频局部化的窗函数,假定分析窗函数g(t)在一个短时间间隔内是平稳(伪平稳)的,移动窗函数,使f(t)g(t)在不同的有限时间宽度内是平稳信号,从而计算出各个不同时刻的功率谱。短时傅里叶变换使用一个固定的窗函数,窗函数一旦确定了以后,其形状就不再发生改变,短时傅里叶变换的分辨率也就确定了。如果要改变分辨率,则需要重新选择窗函数。短时傅里叶变换用来分析分段平稳信号或者近似平稳信号犹可,但是对于非平稳信号,当信号变化剧烈时,要求窗函数有较高的时间分辨率;而波形变化比较平缓的时刻,主要是低频信号,则要求窗函数有较高的频率分辨率。短时傅里叶变换不能兼顾频率与时间分辨率的需求。短时傅里叶变换窗函数受到W.Heisenberg不确定准则的限制,时频窗的面积不小于2。这也就从另一个侧面说明了短时傅里叶变换窗函数的时间与频率分辨率不能同时达到最优。 短时距傅里叶变换 维基百科,自由的百科全书 汉漢▼

[编辑]与傅里叶转换在概念上的区别 将信号做傅里叶变换后得到的结果,并不能给予关于信号频率随时间改变的任何信息。以下的例子作为说明: 傅里叶变换后的频谱和短时距傅里叶转换后的结果如下: 傅里叶转换后, 横轴为频率(赫兹) 短时距傅里叶转换, 横轴为时间( 秒 ) , 纵轴 为频率(赫兹) 由上图可发现,傅里叶转换只提供了有哪些频率成份的信息,却没有提供时间信息;而短时傅里叶转换则清楚的提供这两种信息。这种时频分析的方法有利于频率会随着时间改变的信号(例如:音乐信号、语音信号等)分析。 [编辑]定义 [编辑]数学定义 简单来说,在连续时间的例子,一个函数可以先乘上仅在一段时间不为零的窗函数再进行一维的傅里叶变换。再将这个窗函数沿着时间轴挪移,所得到一系列的傅里叶变换结果排开则成为二维表象。数学上,这样的操作可写为: 另外也可用角频率来表示:

连续时间信号傅里叶级数分析及MAtlAB实现

课程设计任务书 学生姓名:专业班级: 指导教师:工作单位: 题目: 连续时间信号傅里叶级数分析及MATLAB实现 初始条件: MATLAB 6.5 要求完成的主要任务: 深入研究连续时间信号傅里叶级数分析的理论知识,利用MA TLAB强大的图形处理功能,符号运算功能以及数值计算功能,实现连续时间周期信号频域分析的仿真波形。 1.用MATLAB实现周期信号的傅里叶级数分解与综合。 2.用MATLAB实现周期信号的单边频谱及双边频谱。 3.用MATLAB实现典型周期信号的频谱。 4.撰写《MATLAB应用实践》课程设计说明书。 时间安排: 学习MATLAB语言的概况第1天 学习MATLAB语言的基本知识第2、3天 学习MATLAB语言的应用环境,调试命令,绘图能力第4、5天 课程设计第6-9天 答辩第10天 指导教师签名:年月日 系主任(或责任教师)签名:年月日

目录 摘要................................................................................................................................................ I Abstract .......................................................................................................................................... II 绪论. (1) 1 MATLAB简介 (2) 1.1 MATLAB语言功能 (2) 1.2 MATLAB语言特点 (2) 2 傅里叶级数基本原理概要 (4) 2.1 周期信号的傅里叶分解 (4) 2.2 三角形式和指数形式傅里叶级数及各系数间的关系 (4) 2.3 周期信号的频谱 (5) 3 用MATLAB实现周期信号的傅立叶级数分解与综合 (6) 3.1 合成波形与原波形之间的关系 (6) 3.2 吉布斯现象 (6) 4 用MATLAB实现周期信号的单边频谱及双边频谱。 (8) 4.1 单边,双边(幅度,相位)频谱及其关系 (8) 4.1.1单边,双边(幅度,相位) (8) 4.1.2 单边,双边频谱关系 (9) 4.2以单边幅度频谱为例,研究脉冲宽度与频谱的关系 (10) 4.3以单边幅度频谱为例,研究脉冲周期与频谱的关系 (11) 5用MATLAB实现典型周期信号的频谱 (13) 5.1 周期方波脉冲频谱的MATLAB实现 (13) 5.2 周期三角波脉冲频谱的MATLAB 实现 (14) 6 小结及心得体会 (17) 参考文献 (18) 附录: (19)

图像处理与傅里叶变换原理与运用

图像处理与傅里叶变换 1背景 傅里叶变换是一个非常复杂的理论,我们在图像处理中集中关注于其傅里叶离散变换离散傅立叶变换(Discrete Fourier Transform) 。 1.1离散傅立叶变换 图象是由灰度(RGB )组成的二维离散数据矩阵,则对它进行傅立叶变换是离散的傅立叶变换。 对图像数据f(x,y)(x=0,1,… ,M-1; y=0,1,… ,N-1)。则其离散傅立叶变换定义可表示为: 式中,u=0,1,…, M-1;v= 0,1,…, N-1 其逆变换为 式中,x=0,1,…, M-1;y= 0,1,…, N-1 在图象处理中,一般总是选择方形数据,即M=N 影像f(x,y)的振幅谱或傅立叶频谱: 相位谱: 能量谱(功率谱) ) 1(2exp ),(1),(101 ∑∑ -=-=????? ???? ??+-= M x N y N vy M ux i y x f MN v u F π) 2(2exp ),(1),(101 ∑∑ -=-=????? ???? ??+= M u N v N vy M ux i v u F MN y x f π) ,(),(),(2 2 v u I v u R v u F +=[] ),(/),(),(v u R v u I arctg v u =?) ,(),(),(),(222v u I v u R v u F v u E +==

1.2快速傅里叶变化 可分离性的优点是二维的傅立叶变换或逆变换由两个连续的一维傅立叶变换变换来实现,对于一个影像f(x,y),可以先沿着其每一列求一维傅立叶变换,再对其每一行再求一维变换 正变化 逆变换 由于二维的傅立叶变换具有可分离性,故只讨论一维快速傅立叶变换。 正变换 逆变换 由于计算机进行运算的时间主要取决于所用的乘法的次数。 按照上式进行一维离散由空间域向频率域傅立叶变换时,对于N 个F ∑ ∑∑∑ -=-=-=-=? ???? ? ?????? ? = ?? ???? +=1 1 0101 )(2exp ),(1 )(2exp ),(1 )(2exp ),(1),(N v N u N u N v N vy i v u F N N ux i v u F N N vy ux i v u F NN y x f πππ∑ -=?? ? ???-= 1 2exp )(1)(N x N ux i x f N u F π∑ ∑ ∑∑ -=-=-=-=? ???? ? -?????? ? -= ?? ???? +-= 1 1 101 )(2exp ),(1 )( 2exp ),(1 )(2exp ),(1),(N y N x N x N y N vy i y x f N N ux i y x f N N vy ux i y x f NN v u F πππ∑ -=?? ????= 1 2exp )(1)(N u N ux i u F N x f π

傅里叶变换matlab代码

傅里叶变换m a t l a b代 码 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

%傅里叶变换 clc;clear all;close all; tic Fs=128;%采样频率,频谱图的最大频率 T=1/Fs;%采样时间,原始信号的时间间隔 L=256;%原始信号的长度,即原始离散信号的点数 t=(0:L-1)*T;%原始信号的时间取值范围 x=7*cos(2*pi*15*t-pi)+3*cos(2*pi*40*t-90*pi/180)+3*cos(2*pi*30*t-90*pi/180); z=7*cos(2*pi*15*t-pi)+3*cos(2*pi*40*t-90*pi/180); z1=6*cos(2*pi*30*t-90*pi/180); z1(1:L/2)=0; z=z+z1; y=x;%+randn(size(t)); figure; plot(t,y) title('含噪信号') xlabel('时间(s)') hold on plot(t,z,'r--')

N=2^nextpow2(L);%N为使2^N>=L的最小幂 Y=fft(y,N)/N*2; Z=fft(z,N)/N*2;%快速傅里叶变换之后每个点的幅值是直流信号以外的原始信号幅值的N/2倍(是直流信号的N倍) f=Fs/N*(0:N-1);%频谱图的频率取值范围 A=abs(Y);%幅值 A1=abs(Z); B=A; %让很小的数置零. B1=A1; A(A<10^-10)=0; % A1(A1<10^-10)=0; P=angle(Y).*A./B; P1=angle(Z).*A1./B1; P=unwrap(P,pi);%初相位值,以除去了振幅为零时的相位值 P1=unwrap(P1,pi); figure subplot(211) plot(f(1:N/2),A(1:N/2))%函数ffs返回值的数据结构具有对称性,因此只取前一半 hold on

5.图像的频域增强及傅里叶变换

5. 图像的频域增强及傅里叶变换 傅立叶变换在图像处理中有非常非常的作用。因为不仅傅立叶分析涉及图像处理的很多方面,傅立叶的改进算法,比如离散余弦变换,gabor与小波在图像处理中也有重要的分量。 印象中,傅立叶变换在图像处理以下几个话题都有重要作用: 1.图像增强与图像去噪 绝大部分噪音都是图像的高频分量,通过低通滤波器来滤除高频——噪声; 边缘也是图像的高频分量,可以通过添加高频分量来增强原始图像的边缘; 2.图像分割之边缘检测 提取图像高频分量 3.图像特征提取: 形状特征:傅里叶描述子 纹理特征:直接通过傅里叶系数来计算纹理特征 其他特征:将提取的特征值进行傅里叶变换来使特征具有平移、伸缩、旋转不变性 4.图像压缩 可以直接通过傅里叶系数来压缩数据;常用的离散余弦变换是傅立叶变换的实变换;傅立叶变换 傅里叶变换是将时域信号分解为不同频率的正弦信号或余弦函数叠加之和。连续情况下要求原始信号在一个周期内满足绝对可积条件。离散情况下,傅里叶变换一定存在。冈萨雷斯版<图像处理>里面的解释非常形象:一个恰当的比喻是将傅里叶变换比作一个玻璃棱镜。棱镜是可以将光分解为不同颜色的物理仪器,每个成分的颜色由波长(或频率)来决定。傅里叶变换可以看作是数学上的棱镜,将函数基于频率分解为不同的成分。当我们考虑光时,讨论它的光谱或频率谱。同样,傅立叶变换使我们能通过频率成分来分析一个函数。 傅立叶变换有很多优良的性质。比如线性,对称性(可以用在计算信号的傅里叶变换里面);时移性:函数在时域中的时移,对应于其在频率域中附加产生的相移,而幅度频谱则保持不变;频移性:函数在时域中乘以,可以使整个频谱搬移w。这个也叫调制定理,通讯里面信号的频分复用需要用到这个特性(将不同的信号调制到不同的频段上同时传输);卷积定理:时域卷积等于频域乘积;时域乘积等于频域卷积(附加一个系数)。(图像处理里面这个是个重点) 信号在频率域的表现 在频域中,频率越大说明原始信号变化速度越快;频率越小说明原始信号越平缓。当频

相关文档
相关文档 最新文档