文档库 最新最全的文档下载
当前位置:文档库 › 传动力学第2讲_拉格朗日运动方程

传动力学第2讲_拉格朗日运动方程

传动力学第2讲_拉格朗日运动方程
传动力学第2讲_拉格朗日运动方程

第二章 用拉格朗日方程建立系统数学模型

第二章 用拉格朗日方程建立系统的数学模型 §2.1概述 拉格朗日方程——属于能量法,推导中使用标量,直接对整个系统建模 特点:列式简洁、考虑全面、建模容易、过程规范 适合于线性系统也适合于非线性系统,适合于保守系统,也适合于非保守系统。 §2.2拉格朗日方程 1. 哈密尔顿原理 系统总动能 ),,,,,,,(321321N n q q q q q q q q T T = (2-1) 系统总势能 ),,,,(321t q q q q U U N = (2-2) 非保守力的虚功 N N nc q Q q Q q Q W δδδδ ++=2211 (2-3) 哈密尔顿原理的数学描述: 0)(2 1 21 =+-??t t nc t t dt W dt U T δδ (2-4) 2. 拉格朗日方程: 拉格朗日方程的表达式: ),3,2,1()(N i Q q U q T q T dt d i i i i ==??+??-?? (2-5) (推导:) 将系统总动能、总势能和非保守力的虚功的表达式代入哈密尔顿原理式中(变分驻值原理),有 0)( 22112211221122112 1 =+++??-??-??-??++??+??+??+??+??? dt q Q q Q q Q q q T q q U q q U q q T q q T q q T q q T q q T q q T N N N N N N N N t t δδδδδδδδδδδδ (2-6) 利用分步积分

dt q q T dt d q q T dt q q T i t t i t t i i i t t i δδδ?? ??-??=??21212 1 )(][ (2-7) 并注意到端点不变分(端点变分为零) 0)()(21==t q t q i i δδ (2-8) 故 dt q q T dt d dt q q T i i t t i t t i δδ)(212 1 ??-=???? (2-9) 从而有 0)])([2 1 1 =+??-??+??- ?∑=dt q Q q U q T q T dt d i i i t t i i N i δ ( (2-10) 由变分学原理的基本引理: (设 n 维向量函数M(t),在区间],[0f t t 内处处连续,在],[0f t t 内具有二阶连续导 数,在f t t ,0处为零,并对任意选取的n 维向量函数)(t η,有 ? =f t t T dt t M t 0 0)()(η 则在整个区间],[0f t t 内,有 0)(≡t M ) 我们可以得到: 0)(=+??-??+??- i i i i Q q U q T q T dt d (2-11) 即 i i i i Q q U q T q T dt d =??+??-??)( (2-12) 对非保守系统,阻尼力是一种典型的非保守力,如果采用线性粘性阻尼模型, 则阻尼力与广义速度}{q 成正比,在这种情况下,可引入瑞利耗散(耗能)函数D , }]{[}{2 1 q C q D T ≡ (2-13) 阻尼力产生的广义非保守力为:

《理论力学 动力学》 第三讲 第二类拉格朗日方程的应用

2、第二类拉格朗日方程 的应用

例1质量为m 1的物块C 以细绳跨过定滑轮B 联于点A, A ,B 两轮皆为均质圆盘,半径为R ,质量为m 2, 弹簧刚度为k ,质量不计 。 A C O x

A O C x

例2已知:如图所示的运动系统中,重物M 1的质量为m 1,可沿光滑水平面移动。摆锤M 2的质量为m 2,两个物体用长为l 的无重杆连接 。M 1 M 2 φ C 求:此系统的运动微分方程。 2、第二类拉格朗日方程的应用 解:系统有两个自由度,选M 1的水平坐标x 1和φ为广 义坐标, 并将质点位置用广义坐标表示: 111212,0;sin ,cos x x y x x l y l j j ===-=将上式两端对时间t 求导数得: 111212,0;cos sin x x y x x l y l j j j j ===-=-&&&&&&&&,系统的动能为:222122211()22T m x m x y =++&&&2 2212111()(2cos )22 m l m m x l x j j j =++-&&&&选质点M 2在最低处时的位置为系统的零势能位置,则系统的势能为: ) cos 1(2j -=gl m V 系统的主动力为有势力,此为保守系统,可写出系统的动势,运用保守系统的拉格朗日方程求解,此处我们运用一般形式的第二类拉格朗日方程求解。 d 0(12)d k T T Q k N t q q ????--==?÷??L &,,,注意:零势能位置的选取不是唯一的。选取原则:计算方便

代入拉格朗日方程得到: 1212110()cos T T m m x m l x x j j ??==+-??&&&,2 121221d ()()cos sin d T m m x m l m l t x j j j j ?=+-+×?&&&&&&1 0x V Q x ?=-=?先计算)cos 1(2j -=gl m V 22 212111()(2cos )22 m l T m m x l x j j j =++-&&&&2 21221sin cos T T m lx m l m lx j j j j j j ??==-??&&&&&,2 22121d ()cos sin d T m l m lx m lx t j j j j j ?=-+×?&&&&&&&2sin V Q m gl j j j ?=-=-?2 12122()cos sin 0m m x m l m l j j j j +-+×=&&&&&(cos sin )sin 0m l l x x m gl j j j j j -+×+=&&&&&&2、第二类拉格朗日方程的应用 x 1φ 再计算

(完整word版)拉格朗日方程的应用及举例08讲

1 拉格朗日方程的应用及举例 拉格朗日方程有以下几个特点:(1)拉格朗日方程适用于完整系统,可以获得数目最少的运动微分方程,即可以建立与自由度数目相同的n 个方程,是一个包含n 个二阶常微分方程组,方程组的阶数为2n 。求解这个方程组可得到以广义坐标描述的系统运动方程。(2)拉格朗日方程的形式具有不变性。对于任意坐标具有统一的形式,即不随坐标的选取而变化。特别是解题时有径直的程序可循,应用方便。(3)所有的理想约束的约束反力均不出现在运动微分方程中。系统的约束条件愈多,这个特点带来的便利越突出。(4)拉格朗日方程是以能量的观点建立起来的方程,只含有表征系统运动的动能和表征主动力作用的广义力,避开了力、速度、加速度等矢量的复杂运算。(5)拉格朗日方程不但可以建立相对惯性系的运动,还可以直接建立相对非惯性系的动力学方程,只要写出的动能是绝对运动的动能即可,至于方程所描述的运动是对什么参考系的运动,则取决于所选的广义坐标。 纵观拉格朗日方程,看出分析力学在牛顿力学的基础上,提出严密的分析方法,从描述系统的位形到建立微分方程都带有新的飞跃。我们还应看到,虽然拉格朗日方法在理论上和应用上都有重要的价值,但是,牛顿力学的价值并未降低,特别是它的几何直观性和规格化的方法使人乐于应用,由于计算机的广泛使用,牛顿一欧拉方法又有所发展。我们将会看到,用拉格朗日方程求解,在获得数量最少的运动微分方程时,其求导过程有时过于繁琐,并有较多的耦合项。 应用拉格朗日方程建立动力学方程时,应首先建立以广义坐标q 和广义速度q 表示的动能函数和广义力Q 。为此,首先讨论动能的计算和广义力的计算,在此基础上,再讨论拉格朗日方程的应用。 一、动能的计算 对于系统的动能,可以写出关于广义速度q 的齐次函数的表达式。在实际计算中,应用理论力学的有关知识就可以建立以广义坐标和广义速度所表达的动能函数。 例1-1 已知质量为m ,半径为r 的均质圆盘D ,沿OAB 直角曲杆的AB 段只滚不滑。圆盘的盘面和曲杆均放置在水平面上。已知曲杆以匀角速度ω1绕通过O 点的铅直轴转动,试求圆盘的动能。 解:取广义坐标x 和?,x 为圆盘与曲杆接触点到曲杆A 点的距离,?为曲杆OAB 的转角,? = ω1t 。 应用柯尼希定理求圆盘的动能。为此,先求圆盘质心C 的速度和相对于质心平动坐标

拉格朗日方程

拉格朗日方程,因约瑟夫·路易斯·拉格朗日而命名,是拉格朗日力学的主要方程,可以用来描述物体的运动,特别适用于理论物理的研究。拉格朗日方程的功能相等于牛顿力学中的牛顿第二定律。 简介 拉格朗日方程:对于完整系统用广义坐标表示的动力方程,通常系指第二类拉格朗日方程,是法国数学家J.-L.拉格朗日首先导出的。 通常可写成: 式中T为系统用各广义坐标qj和各广义速度q'j所表示的动能;Qj为对应于qj的广义力;N(=3n-k)为这完整系统的自由度;n 为系统的质点数;k为完整约束方程个数。 从虚位移原理可以得到受理想约束的质点系不含约束力的平衡方程,而动静法(达朗贝尔原理)则将列写平衡方程的静力学方法应用于建立质点系的动力学方程,将这两者结合起来,便可得到不含约束力的质点系动力学方程,这就是动力学普遍方程。而拉格朗日方程则是动力学普遍方程在广义坐标下的具体表现形式。 拉格朗日方程可以用来建立不含约束力的动力学方程,也可以用来在给定系统运动规律的情况下求解作用在系统上的主动力。如

果要想求约束力,可以将拉格朗日方程与动静法或动量定理(或质心运动定理)联用。 通常,我们将牛顿定律及建立在此基础上的力学理论称为牛顿力学(也称矢量力学),将拉格朗日方程及建立在此基础上的理论称为拉格朗日力学。拉格朗日力学通过位形空间描述力学系统的运动,它适合于研究受约束质点系的运动。拉格朗日力学在解决微幅振动问题和刚体动力学的一些问题的过程中起了重要的作用。 应用 用拉格朗日方程解题的优点是:①广义坐标个数通常比x坐标少,即N<3n,故拉氏方程个数比直角坐标的牛顿方程个数少,即运动微分方程组的阶数较低,问题易于求解;②广义坐标可根据约束条件作适当的选择,使力学问题的运算简化,并且不必考虑约束力;③T和L都是标量,比力的矢量关系式更易表达,因此较易列出动力方程。下面是两个例子: ①图1是一个半径为a、质量为m1的圆盘,它的中心用铰链与质量为m2的直杆相连。此杆的另一端用铰链固接在半径为b的空心圆筒的中心O;杆长l=b-a。圆盘绕O点摆动。杆的动能为

《理论力学》

《理论力学》一 一.填空题 1. 限制质点运动的物体(如曲线、曲面等 )称为( 约束 )。 2.惯性力( 约束 )对应的反作用力,( 称作 )牛顿第三定律。 3. 如果力只是位置的函数,并且它的旋度等于零,即满足 0F F F z y x )(z y x =?? ???? = ??k j i r F 则这种力叫做( 惯性力 )。 4.真实力与参考系的选取( 无关 ),而惯性力却与参与系的选取(相关)。 5.质点系的动能等于质心的动能与各质点相对(速度矢量和)的动能之和。 6. 限制质点运动的物体(如曲线、曲面等 )称为(约束 )。 7.同一质点系中各质点之间的相互作用力称为(约束反力 ) 二.选择题 1. e a r r θθθθ)2(&&&&+=称为质点的( C )。 a. 法向加速度 b. 切向加速度 c. 横向加速度 d. 径向加速度 2.][)(r F m en '??-=ωω称为A a.平动惯性力 b.离心惯性力 c.科氏惯性力 3. ττdt dv a = 称为质点的( C )。 a. 法向加速度 b. 横向加速度 c. 切向加速度 d. 径加速度 4. 质点系中所有内力对任一力矩的矢量和A a. 等于零 b. 不等于零 c. 不一定等于零 5. e a r r r r )(2θ&&&-=称为质点的( A )。 a.径向加速度 b.横向加速度 c.切向加速度 d.法向加速度 6.质点系内力所作的功A a. 等于零 b. 不等于零 c. 不一定等于零 7. n a v n ρ 2 = 称为质点的( B )。 a. 横向加速度 b. 法向加速度 c. 径向加速度 d. 切向加速度 8.如果作用在质点上的力都是保守力,或虽是非保守力作用但非保守力不作功 或所作功之和等于零。则质点系机械能A

拉格朗日方程的应用及举例08讲

拉格朗日方程的应用及举例 拉格朗日方程有以下几个特点:(1)拉格朗日方程适用于完整系统,可以获得数目最少的运动微分方程,即可以建立与自由度数目相同的n个方程,是一个包含n个二阶常微分方程组,方程组的阶数为2n。求解这个方程组可得到以广义坐标描述的系统运动方程。(2)拉格朗日方程的形式具有不变性。对于任意坐标具有统一的形式,即不随坐标的选取而变化。特别是解题时有径直的程序可循,应用方便。(3)所有的理想约束的约束反力均不出现在运动微分方程中。系统的约束条件愈多,这个特点带来的便利越突出。(4)拉格朗日方程是以能量的观点建立起来的方程,只含有表征系统运动的动能和表征主动力作用的广义力,避开了力、速度、加速度等矢量的复杂运算。(5)拉格朗日方程不但可以建立相对惯性系的运动,还可以直接建立相对非惯性系的动力学方程,只要写出的动能是绝对运动的动能即可,至于方程所描述的运动是对什么参考系的运动,则取决于所选的广义坐标。 纵观拉格朗日方程,看出分析力学在牛顿力学的基础上,提出严密的分析方法,从描述系统的位形到建立微分方程都带有新的飞跃。我们还应看到,虽然拉格朗日方法在理论上和应用上都有重要的价值,但是,牛顿力学的价值并未降低,特别是它的几何直观性和规格化的方法使人乐于应用,由于计算机的广泛使用,牛顿一欧拉方法又有所发展。我们将会看到,用拉格朗日方程求解,在获得数量最少的运动微分方程时,其求导过程有时过于繁琐,并有较多的耦合项。 应用拉格朗日方程建立动力学方程时,应首先建立以广义坐标q和广义速度q 表示的动能函数和广义力Q。为此,首先讨论动能的计算和广义力的计算,在此基础上,再讨论拉格朗日方程的应用。 一、动能的计算 对于系统的动能,可以写出关于广义速度q 的齐次函数的表达式。在实际计算中,应用理论力学的有关知识就可以建立以广义坐标和广义速度所表达的动能函数。 例1-1已知质量为m,半径为r的均质圆盘D, 沿OAB直角曲杆的AB段只滚不滑。圆盘的盘面和曲 杆均放置在水平面上。已知曲杆以匀角速度 1绕通过 O点的铅直轴转动,试求圆盘的动能。 解:取广义坐标x和 ,x为圆盘与曲杆接触点到 曲杆A点的距离, 为曲杆OAB的转角, = 1t。 应用柯尼希定理求圆盘的动能。为此,先求圆盘质心C 的速度和相对于质心平动坐标标准

5第3章拉格朗日方程

第3章拉格朗日方程 以动力学普遍方程为基础,拉格朗日导出了两种形式的动力学方程,分别称为第一类和第二类拉格朗日方程。将达朗贝尔原理与虚位移原理相结合,建立起动力学普遍方程,避免了理想约束力的出现;再把普遍方程变为广义坐标形式,进一步转变为能量形式,导出了第二类拉格朗日方程,实现了用最少数目的方程描述动力系统;应用数学分析中的乘子法,采用直角坐标形式的普遍方程和约束方程而建立的一组动力学方程,是第一类拉格朗日方程,便于程式化处理约束动力系统问题。拉格朗日方程是分析力学得以发展之源。 3.1 第二类拉格朗日方程 第二类拉格朗日方程是分析力学中最重要的动力学方程,它给出动力学问题一个普遍、简单而又统一的解法。拉格朗日方程只适用于完整约束的质点系。 3.1.1 几个关系式的推证 为方便起见,在推导拉格朗日方程前,先推证几个关系式。 质点系由n个质点、s个完整的理想约束组成,它的自由度数为k= 3n–s,广义坐标数与自由度数相等。该系统中,任一质点M i的矢径r i可表示成广义坐标q1,q2,…,q k和时间t的函数,即 r i=r i(q1,q2,…,q k,t) i=1,2,…,n 它的速度 (3-1) i=1,2,…,n 式中称为h个广义坐标的广义速度,分别为广义坐标和时间的函数,与广义速度没有直接的关系。式(3-1)对求偏导数,则有 (3-2) 这是推证的第一个关系式,它表明,任一质点的速度对广义速度的偏导数等于其矢径对广义坐标的偏导数。为推证第二个关系式,将式(3-1)对广义坐标q j求偏导数, 或 (3-3) 这是第二个关系式,它表明,任一质点的速度对广义坐标的偏导数等于

结构动力学拉格朗日方程

二、拉格朗日方程及其应用 虽然可以直接用牛顿第二定律或达朗贝尔原理建立多自由度系统的运动微分方程,但是在许多情况下应用拉格朗日方程法更为方便。这里用最简单的方式推导拉格朗日方程,以便更好地理解这个被广泛应用的方程的意义。我们知道,对于一能量守恒的系统,系统的动能和势能的总和是不变的,因此,它们的总和对时间的导数等于零,即: 式中:是系统的动能,它是系统广义速度的函数;是系统的势能,它是系统广义坐标 的函数。下面将说明,这两者分别可以用广义坐标和广义速度的二次型表示。 单自由度系统的动能和势能公式如下: 这个结论可以推广到多自由度系统。如下图4-6,使系统各质点产生位移 ,则在处的力为 (a) 设系统有个力作用,则系统总势能为: (b) 把公式(a)代入(b)中,得: (c) 若用矩阵符号,上式可写成: 若把改为更一般的广义坐标符号,上式变为: (d) 上式就是用广义坐标和刚度矩阵的二次型表示的系统势能表达式。

若以表示质量的速度,可以仿照单自由度系统动能的方法表示多自由度系统的动能: 或写成矩阵形式: 我们假设系统的动能只与广义速度有关而与广义坐标无关,对微振动这是成立的。下面来推导拉格朗日方程。为此,对进行全微分: (e) 将对求导,有: 将上式乘以并对从到求和,有: (f) 比较(a),(f)两式可知: (g) 对(g)进行一次微分,得 (h) (h),(e)两式相减可得: 根据守恒系统的原理,有 (i)

因为个广义坐标是独立的,不可能都等于零,因此要上式成立必须使 (j)当系统还作用有除有势力之外的附加力时, 外力在上所作的功将是 令,则可得: (4-8)式中是除有势力之外的所有外力,其中包括阻尼力,阻尼力可表示为: (4-9)

拉格朗日方程

拉格朗日方程 拉格朗日方程:对于完整系统用广义坐标表示的动力方程,通常系指第二类拉格朗日方程,是法国数学家J.-L.拉格朗日首先导出的。 通常可写成: 式中T为系统用各广义坐标qj和各广义速度q'j所表示的动能;Qj为对应于qj的广义力;N(=3n-k)为这完整系统的自由度;n 为系统的质点数;k为完整约束方程个数。 从虚位移原理可以得到受理想约束的质点系不含约束力的平衡方程,而动静法(达朗贝尔原理)则将列写平衡方程的静力学方法应用于建立质点系的动力学方程,将这两者结合起来,便可得到不含约束力的质点系动力学方程,这就是动力学普遍方程。而拉格朗日方程则是动力学普遍方程在广义坐标下的具体表现形式。 拉格朗日方程可以用来建立不含约束力的动力学方程,也可以用来在给定系统运动规律的情况下求解作用在系统上的主动力。如果要想求约束力,可以将拉格朗日方程与动静法或动量定理(或质心运动定理)联用。 通常,我们将牛顿定律及建立在此基础上的力学理论称为牛顿力学(也称矢量力学),将拉格朗日方程及建立在此基础上的理论称为拉格朗日力学。拉格朗日力学通过位形空间描述力学系统的运

动,它适合于研究受约束质点系的运动。拉格朗日力学在解决微幅振动问题和刚体动力学的一些问题的过程中起了重要的作用。 用拉格朗日方程解题的优点是:①广义坐标个数通常比x坐标少,即N<3n,故拉氏方程个数比直角坐标的牛顿方程个数少,即运动微分方程组的阶数较低,问题易于求解;②广义坐标可根据约束条件作适当的选择,使力学问题的运算简化,并且不必考虑约束力;③T和L都是标量,比力的矢量关系式更易表达,因此较易列出动力方程。

拉格朗日方程

学年论文 题目:光电效应的应用 学生:张韩佩 学号: 201212020104 院(系):理学院 专业:应用物理学 指导教师:罗道斌 2014 年 11月15日

目录 摘要......................................................... 关键字..................................................... Abstract (1) Key Words..................................................................1. 1引言 (1) 2 光电效应的概念 (1) 3光电效应的实验规律 (2) 4光电效应和经典理论的矛盾处 (5) 5光电效应的科学释 (7) 6光电效应在近代技术中的应用.......................... 6.1常用的光学器件............ 6.2常用光学器件的检测 7结束语 参考文献 (7)

光电效应的应用 物理121:指导教师:罗道斌 (陕西科技大学理学院陕西西安 710021) 摘要 本文介绍了光电效应的发现及其发展,简要叙述了爱因斯坦的光量子假说对光电子效益的解释及其通过实验来验证了爱因斯坦的光量子假说对光电效应解释的正确性,并介绍了光电效应在现代科学技术中的应用。 关键字:光电效应;光量子;频率;相对论 The Use Of The Lagrange Equation To Balance Abstract: By Lagrange's equations pushed to this article, and can cause the ap -plication of t he balanced system set out to illustrate the Lagrangian of the feasibility and ease of applicatio n of the balanced system, and illustrates a more typical issues and ways to solve the problem. Key Word s: Lagrange; balance; binding; generalized coordinates 1引言 牛顿运动力学[1]作为描述物体运动的重要方程大家都有了解,但本文介绍的拉格朗日方程,在力学体系特别是动力学体系有着举足轻重的地位,同时在平衡问题上也发挥了一定的作用,本文将带领大家了解并熟悉这一方程,和它在平衡问题上的运用. 2拉格朗日简介 拉格朗日方程 Lagrange equation 从虚位移原理可以得到受理想约束的质点系不含约束力的平衡方程,而动静法(达朗贝尔原理)则将列写平衡方程的静力学方法应用于建立质点系的动力学方程,

拉格朗日方程

论文提要 拉格朗日方程是拉格朗日力学的主要方程,可以用来描述物体的运动,特别适用于理论物理的研究。拉格朗日方程的功能相等于牛顿力学中的牛顿第二定律。 拉格朗日推导出两种形式的拉式方程,即第一类拉格朗日方程和第二类拉格朗日方程。第一类方程使用直角坐标及约束方程(用待定乘子法),因而方程组中的方程很多;第二类方程使用广义坐标、广义力及动能的概念,使方程组中的方程数大大减少(为广义做表数或自由度数)。 拉式方程由动力学普遍方程导出,他秉承了动力学普遍方程不需考虑约束力的优点。因而,对受完整约束的多自由度多刚体系统,比其它动力学方法简单(特别是保守系统,毋需求广义力)。

摘 要:拉格朗日方程是拉格朗日力学的主要方程,可以用来描述物体的运动,特别适用于理论物理的研究。拉格朗日方程的功能相等于牛顿力学中的牛顿第二定律。 拉式方程由动力学普遍方程导出,他秉承了动力学普遍方程不需考虑约束力的优点。因而,对受完整约束的多自由度多刚体系统,比其它动力学方法简单(特别是保守系统,毋需求广义力)。 关键词:拉格朗日方程 约束力 广义力 拉式方程是从能量的角度来描述动力学规律的,能量是整个物理学的基本物理量而且是标量,因此拉式方程为把力学规律推广到其它物理学领域开辟了可能性,成为力学与其它物理学分支相联系的桥梁。 一、 基本形式的拉格朗日方程 设体系由n 个质点组成,受k 个理想完整约束,其自由度为s=3n-k ,即需要s 个独立坐标即广义坐标,则 i r =i r ()12,,,,s q q q t ()5.3.1 i r δ =11i r q q δ?? +22i r q q δ?? +...,+i s s r q q δ?? =1s i s s r q q αδ=??∑ , 1,2,...,s α= ()2.3.5 在理想约束下,有 ()0=?-∑r r m F i i i i i δ ()3.3.5 将()2.3.5式代入()3.3.5式, ()() 011 1 1 =???? ? ??? ????-=????-∑∑∑∑====q q r r m F q q r r m F s n i i i i i s i n i i i i α ααα αα

相关文档
相关文档 最新文档