文档库 最新最全的文档下载
当前位置:文档库 › 厌氧氨氧化(ANAMMOX)和全程自养脱氮(CANON)

厌氧氨氧化(ANAMMOX)和全程自养脱氮(CANON)

厌氧氨氧化(ANAMMOX)和全程自养脱氮(CANON)
厌氧氨氧化(ANAMMOX)和全程自养脱氮(CANON)

厌氧氨氧化(ANAMMOX)和全程自养脱氮(CANON) 【格林大讲堂】

厌氧氨氧化是指在厌氧条件下氨氮以亚硝酸盐为电子受体直接被氧化成氮气的过程。

厌氧氨氧化(Anaerobicammoniaoxidation,简称ANAMMOX)是指在厌氧条件下,以Planctomycetalessp为代表的微生物直接以NH4+为电子供体,以NO2-或NO3-为电子受体,将NH4+、NO2-或NO3-转变成N2的生物氧化过程。

武汉格林环保有完善的服务体系和配套的专业环境工程团队,秉着崇高的环保责任和义务长期维护提供免费的污水处理解决方案,是湖北省工业废水运营管理行业中的品牌。18年来公司设计并施工了上百个交钥匙式的污水处理工程。

该过程利用独特的生物机体以硝酸盐作为电子供体把氨氮转化为N2,最大限度的实现了N的循环厌氧硝化,这种耦合的过程对于从厌氧硝化的废水中脱氮具有很好的前景,对于高氨氮低COD的污水由于硝酸盐的部分氧化,大大节省了能源。目前推测厌氧氨氧化有多种途径。

其中一种是羟氨和亚硝酸盐生成N2O的反应,而N2O可以进一步转化为氮气,氨被氧化为羟氨。另一种是氨和羟氨反应生成联氨,联氨被转化成氮气并生成4个还原性[H],还原性[H]被传递到亚硝酸还原系统形成羟氨。第三种是:一方面亚硝酸被还原为NO,NO被还原为N2O,N2O再被还原成N2;另一方面,NH4+被氧化为NH2OH,

NH2OH经N2H4,N2H2被转化为N2。

厌氧氨氧化工艺的优点:可以大幅度地降低硝化反应的充氧能耗;免去反硝化反应的外源电子供体;可节省传统硝化反硝化反应过程中所需的中和试剂;产生的污泥量极少。厌氧氨氧化的不足之处是:到目前为止,厌氧氨氧化的反应机理、参与菌种和各项操作参数不明确。

全程自养脱氮的全过程实在一个反应器中完成,其机理尚不清楚。Hippen等人发现在限制溶解氧(DO浓度为0.8·1.0mg/l)和不加有机碳源的情况下,有超过60%的氨氮转化成N2而得以去除。

同时通过实验证明在低DO浓度下,细菌以亚硝酸根离子为电子受体,以铵根离子为电子供体,最终产物为氮气。有实验用荧光原位杂交技术监测全程自养脱氮反应器中的微生物,发现在反应器处于稳定阶段时即使在限制曝气的情况下,反应器中任然存在有活性的厌氧氨氧化菌,不存在硝化菌。有85%的氨氮转化为氮气。鉴于以上理论,全程自养脱氮可能包括两步第一是将部分氨氮氧化为烟硝酸盐,第二是厌氧氨氧化。

浅谈厌氧氨氧化及其工艺的研究

浅谈厌氧氨氧化及其工艺的研究 摘要厌氧氨氧化工艺是生物脱氮领域里不断发展起来的新工艺。由于厌氧氨氧化生物脱氨技术在经济方面的优势,成为近来研究的热点。目前,我国对该技术的研究主要处于实验室小试阶段,缺少中试及以上规模厌氧氨氧化工程的实际应用。综述列举了厌氧氨氧化工艺的应用及出现的一些问题,从而为该技术更深入的研究奠定了基础,同时对该技术的进一步发展提出了展望。 关键词厌氧氨氧化;SHARON/ANAMMOX;OLAND;前景 目前,随着工农业生产的发展和人民生活水平的提高,含氮化合物的排放量急剧增加,引起了严重的水体环境污染和水质富营养化问题,许多湖泊水体已不能发挥其正常功能进而影响了工农业和渔业生产。近年来,国内外学者一直在寻找一种低能耗、高效率的新型生物脱氮技术。就目前情况而言,厌氧氨氧化由于是自养的微生物过程、不需要外加碳源以及反硝化、污泥产率低,成为国内外学者研究的热点问题。 1厌氧氨氧化原理 厌氧氨氧化反应是由奥地利理论化学家Engelbert Broda在1977年根据反应的自由能计算而提出的。后来在荷兰Delft技术大学一个中试规模的反硝化流化床中发现了ANAMMOX工艺。厌氧氨氧化是指在厌氧或缺氧条件下,微生物直接以NH4+作为电子供体,以NO3-或NO2-作为电子受体,将NH4+、NO3-或NO2-转变成N2的生物氧化过程。反应方程式如下: NH4++0.85O2→0.435N2+0.13N03-+1.3H2O+1.4H+ (1) ANAMMOX工艺在发生反硝化反应时不需外加碳源。因为反应所产生的吉布斯自由能能够维持自养细菌的生长,这一现象是摩德尔等对使用硫化物作电子供体的流化床反应器中自养菌反硝化运行工况进行仔细观测和研究发现的。 1)存在的问题。厌氧氨氧化工艺启动缓慢,世界上第一座生产性装置的启动时间长达3.5年,过长的启动时间是其工程应用的重大障碍。 厌氧氨氧化菌为自养菌,以CO2为碳源,无需有机物,因此厌氧氨氧化工艺适于处理C/N值较低的含氮废水。在大多数的实际废水中,有机物往往与氨氮共存,不利于厌氧氨氧化菌的生长。厌氧氨氧化的基质为氨和亚硝酸盐,均具毒性,尤以亚硝酸盐毒性更大。厌氧氨氧化工艺的运行稳定性是其工程应用必须解决的重大难题。 2)解决的方法。研究证明,厌氧氨氧化工艺的启动过程依次呈现菌体自溶、活性迟滞、活性提高和活性稳定等4个阶段。为此可采取如下控制对策:①在菌体自溶阶段,消除接种物中的残留有机物,控制反硝化所致的pH过高;②在活

厌氧氨氧化工艺如何处理污水

厌氧氨氧化工艺如何处理污水 1 引言 随着科技的迅速发展,工业化和城市化程度的不断提高,水体富营养化的问题日益严重,使得水资源更加紧张.而氮是引起水体富营养化的主要因素.所以越来越多的国家和地区制定了氮排放标准.因此,研究开发经济、高效的脱氮技术已成为水污染控制工程领域的研究重点. 生物处理法作为19 世纪末废水处理新型技术,与物化处理法相比具有处理费用低,不会对环境造成二次污染等优点.因此,生物处理法至今已成为世界各国污水二、三级处理的主要手段.众所周知氮元素可在相应微生物的作用下转化成各种氧化态和化学形式(目前已知的生物氮循环途径如图 1所示),因此在污水生物脱氮处理中衍生了大量组合工艺.而厌氧氨氧化过程是目前最捷径的生物脱氮过程,因此被誉为最具前景的污水脱氮工艺.为了更好的将厌氧氨氧化工艺应用到实际规模中,本文着重对厌氧氨氧化菌的发现及其与污水处理中常见细菌的协同与竞争关系进行了详细的综述.旨在为厌氧氨氧化工艺在污水生物处理中的应用提供理论依据,并为今后厌氧氨氧化工艺的研究方向提出一些意见. 图 1 氮循环示意图 2 厌氧氨氧化概述 早在1976年,Broda预言在自然界中存在一种以NO-2或NO-3作为电子受体把NH+4氧化成N2的化能自养型细菌.直到1995年,Mulder等处理酵母废水的反硝化流化床反应器内发现了NH+4消失的现象,从而证实了厌氧氨氧化反应的存在. 厌氧氨氧化(Anaerobic ammonium oxidation,Anammox)是在缺氧条件下以亚硝酸盐(NO-2)为电子受体将氨(NH+4)转化成氮气(N2),同时伴随着以亚硝酸盐为电子供体固定CO2并产生硝酸盐(NO-3)的生物过程.执行该过程的微生物称之为厌氧氨氧化菌(Anaerobic ammonium oxidation bacteria,AAOB),其化学计量学方程式如下: 1NH+4+1.32NO-2+0.066HCO-3+0.13H+→ 1.02N2+0.26NO-3+0.066CH2O0.5N0.15+ 2.03H2O

厌氧氨氧化反应器资料总结

厌氧氨氧化的反应器 一、全球运行的厌氧氨氧化的工程实例 表1-2 全球运行的厌氧氨氧化工程实例 Table 1-2 Application of ANAMMOX in the world SHARON-ANAMMOX工艺由荷兰TU Delft大学研究开发,该工艺流程分成两段,第一段是在好氧反应器中将一半的NH4+转化为NO2-,第二段是在厌氧反应器中将剩余的NH4+和NO2-一起直接转化为N2。

图1-7短程硝化与厌氧氨氧化结合工艺流程 Figure1-7The combined SHARON-ANAMMOX process 二、SHARON-ANNOMMOX工艺反应器资料 AN A MM OX的生化反应式为: 因此AN A MM OX反应器进水要求有氨氮和亚硝氮且比例最好为1:1。而S H AR ON工艺的生化反应式为: SHARON(短程反硝化)反应装置 SHARON常用SBR、CSTR反应装置

SHARON(短程反硝化)反应条件控制 (1)当溶解氧(DO)浓度在1.1-1.5mg/L、氨氮负荷0.029kgNH4+--N/KgVSS.d 和PH 值在7.3-7.8时,可以使亚硝酸盐得到稳定积累,出水亚硝态/总硝态氮大于90%,出水NO2--N/NH4+-N接近1.0,满足厌氧氨氧化的进水要求。(2)实现短程硝化的关键是在硝化阶段实现NO2--N的积累,国内外的研究都是着眼于积累NO2--N的控制条件。根据国内外文献报道,SHARON工艺的操作温度以30~35℃为宜,pH适应控制在7.4~8.3之间,溶解氧浓度己控制在1.0~1.5mg/L范围,供氧方式可采用间歇曝气。基质中游离氨浓度调控在5~10mg/L范围内有利于实现短程硝化,污泥(以VSS计)氨负荷为 0.02~1.67kg/(kg·d),泥龄在1~2.5天。 (3)大量国内外试验表明,在废水温度较高、Do较低条件下,利用亚硝酸菌和硝酸菌的不同生长速度,通过控制水力停留时间,将生长速率较慢的硝酸菌冲走,使亚硝酸菌大量积累,可以使短程反硝化成功运行。 ANNOMMOX反应器

船用柴油机氮氧化物排放控制技术规则修正案

船用柴油机氮氧化物排放控制技术规则修正案MEPC 58/23/Add.1 船用柴油机氮氧化物排放控制技术规则修正案 (2008年氮氧化物技术规则) 引言 前言 1997年9月26日,《经1978年议定书修正的〈1973年国际防止船舶造成污染公约〉》(MARPOL 73/78)当事国大会以大会决议2通过了《船用柴油机氮氧化物排放控制技术规则》(《氮氧化物技术规则》)。《防污公约》附则VI,《防止船舶造成空气污染规则》于2005年5月19日生效后,该附则第13条适用的所有船用柴油机都必须符合本规则的规定。2005年7月,环保会第53届会议同意修订《防污公约》附则VI和《氮氧化物技术规则》。2008年10月,环保会第58届会议完成了审议,本《氮氧化物技术规则》(以下简称本规则)就是该过程取得的结果。 作为一般性的背景信息,在燃烧过程中形成氮氧化物的先决条件是氮和氧。这些成分一起构成柴油机吸入空气的99,。在燃烧过程中氧气将被消耗,多余氧气的数量是空气/燃料比的函数,柴油机在此情况下运转。氮在燃烧过程中大多未起反应;但有很小一部分将被氧化形成多种形式的氮氧化物。能够形成的氮氧化物(NO)包括一氧化氮(NO)和二氧化氮(NO),其总量主要是火焰或燃烧温X2 度的函数,以及存在于燃料中有机氮(如果存在)数量的函数,氮氧化物的形成还是氮和多余氧气在柴油机燃烧过程中暴露在高温下时间的函数。换句话说,燃烧温度愈高(如高峰值压力、高压缩比、高供油比率等),所形成的氮氧化物总量就越大。通常低速柴油机所形成的氮氧化物量比高速机要大。氮氧化物能引起酸化,形成对流层臭氧,营养富集等不良环境影响,对全球人类健康造成危害。

厌氧氨氧化基础知识累积

一、世界Anammox的工程应用概述 (2016.12.19生物工程学报)厌氧氨氧化(Anaerobic ammonium oxidation,ANAMMOX)工艺因其高效低耗的优势,在废水生物脱氮领域具有广阔的应用前景。在过去的20年中,许多基于ANAMMOX反应的工艺得以不断研究和应用。综述了各种形式的ANAMMOX工艺,包括短程硝化-厌氧氨氧化、全程自养脱氮、限氧自养硝化反硝化、反硝化氨氧化、好氧反氨化、同步短程硝化-厌氧氨氧化-反硝化耦合、单级厌氧氨氧化短程硝化脱氮工艺。对一体式和分体式工艺运行条件进行了比较,结合ANAMMOX工艺工程(主要包括移动床生物膜,颗粒污泥和序批式反应器系统)应用现状,总结了工程化应用过程中遇到的问题及其解决对策,在此基础上对今后的研究和应用方向进行了展望。今后的研究重点应集中于运行条件的优化和水质障碍因子的解决,尤其是工艺自动化控制系统的开发和特殊废水对工艺性能影响的研究。 厌氧氨氧化(Anaerobicammonium oxidation,ANAMMOX) 工艺,最初由荷兰Delft工业大学于20 世纪末开始研究,并于本世纪初成功开发应用的一种新型废水生物脱氮工艺。它以20 世纪90 年代发现的ANAMMOX 反应(1) 为基础,该反应在厌氧条件下以氨为电子供体,亚硝酸盐为电子受体反应生成氮气,在理念和技术上大大突破了传统的生物脱氮工艺。ANAMMOX 工艺具有脱氮效率高、运行费用低、占地空间小等优点,在污水处理中发展潜力巨大。目前该工艺在处理市政污泥液领域已日趋成熟,位于荷兰鹿特丹Dokhaven 污水厂的世界上首个生产性规模的ANAMMOX 装置容积氮去除速率(NRR) 更是高达9.5 kg N/(m3·d)。此外,ANAMMOX 工艺在发酵工业废水、垃圾渗滤液、养殖废水等高氨氮废水处理领域的推广也逐步开展,在世界各地的工程化应用也呈星火燎原之势。 本文介绍了不同形式的ANAMMOX 工艺,通过比较其运行条件,并结合ANAMMOX 工艺工程应用现状,总结了该工艺工程化应用面临的问题和解决对策,在此基础上对今后的研究和应用方向进行了展望。

氮氧化物控制原理及技术

氮氧化物排放控制原理及新技术 李俊华,陈亮,常化振,郝吉明清华大学环境科学与工程系 (通讯地址:清华大学环境系,100084,Tel:62771093,email:lijunhua@https://www.wendangku.net/doc/4c6901223.html,) 摘要:NOx排放量逐年增加,造成区域酸沉降趋势不断恶化,大气中二次颗粒物臭氧(O3)和微细可吸入颗粒物(PM2.5)居高难下,严重影响人体健康和生态环境质量。本文介绍了我国NOx排放趋势,重点讨论了NOx控制原理及关键控制技术的研究进展。基于目前烟气脱硝技术存在的问题,提出了脱硝催化剂原材料和制备工艺国产化、针对我国不同煤种研究催化剂适应性的问题,以及下一步燃煤烟气协同污染控制最新研究方向。 关键词:氮氧化物,燃煤烟气,稀燃汽车,排放,脱硝催化剂,协同控制 1我国NOx排放现状 《国家环境保护“十一五”规划》提出确保实现SO2减排目标,实施燃煤电厂脱硫工程,实施酸雨和SO2污染防治规划,重点控制高架源的SO2和NOx排放,综合改善城市空气环境质量。随着“十一五”期间对电厂实施烟气脱硫效果明显,大气SO2浓度及硫沉降均有所下降。但NOx作为一类主要的大气污染物,在我国其排放量仍在增加,不仅对人体健康造成直接危害,同时也不仅会造成空气中NO2浓度的增加、区域酸沉降趋势不断恶化,还会使对流层O3浓度增加,并在空气中形成微细颗粒物(PM),影响大气环境质量[1,2]。 我国以煤为主的能源结构和发电结构,使得燃煤成为NOx的最大来源,全国NOx排放量的67%来自煤炭燃烧,其中燃煤电厂是NOx排放的最大分担者。2007年全国NOx排放量为1643.4万吨,工业排放NOx1261.3万吨,其中火电厂排放811万吨,占全国NOx排放量的49.4%,占工业NOx排放的64.3%[3]。今年NOx排放量将达到1800万吨,未来若无控制措施,NOx排放在2020年将达到3000万吨以上,届时我国将成为世界上第一大NOx排放国,污染将进一步加重,污染进一步加重。我国于2004年1月1日起执行的《火电厂大气污染物排放标准》(GB13223—2003),将新建燃煤电厂的氮氧化物的排放浓度控制在450mg/Nm3。对于氮氧化物污染严重和环境容量有限的经济发达地区,当地政府提出了更高的排放要求,如北京为了迎接2008年奥运会,将NOx排放标准严格到100mg/Nm3。因此针对重点源开展NOx排放控制原理及新技术的研究变得十分必要和迫切。 2固定源烟气NOx排放控制原理及技术

氮氧化物控制技术

工业锅炉NOx控制技术指南 (试行) 环境保护部华南环境科学研究所

目次 1 适用范围 (1) 2 引用文件 (1) 3 术语和定义 (1) 3.1工业锅炉INDUSTRIAL BOILER (1) 3.2氮氧化物NITROGEN OXIDES,NO X (1) 3.3控制技术CONTROL TECHNOLOGY (1) 4 工业锅炉氮氧化物排放特性 (1) 5 氮氧化物控制技术 (2) 5.1低氮燃烧技术 (2) 5.2选择性非催化还原脱硝技术 (3) 5.3选择性催化还原脱硝技术 (6) 5.4化学吸收技术 (9) 5.5组合技术 (10) 6 控制技术选用建议 (10) ii

1 适用范围 本指南适用于以煤、油和气为燃料,单台出力10~65 t/h的蒸汽锅炉、各种容量的热水锅炉及有机热载体锅炉;各种容量的层燃炉、抛煤机炉。 使用型煤、水煤浆、煤矸石、石油焦、油页岩、生物质成型燃料等的锅炉,参照本指南。 本指南不适用于以生活垃圾、危险废物为燃料的锅炉。 2 引用文件 下列文件中的条款通过本指南的引用而成为本指南的条款。凡是不注日期的引用文件,其最新版本适用于本指南。 GB 13271 锅炉大气污染物排放标准 HJ 462 工业锅炉及炉窑湿法烟气脱硫工程技术规范 HJ 562 火电厂烟气脱硝工程技术规范选择性催化还原法 HJ 563 火电厂烟气脱硝工程技术规范选择性非催化还原法 DB44/765 广东省地方标准锅炉大气污染物排放标准 3 术语和定义 3.1 工业锅炉industrial boiler 指提供蒸汽或热水以满足生产工艺、动力以及采暖等需要的锅炉。 3.2 氮氧化物nitrogen oxides, NOx 指由氮、氧两种元素组成的化合物。工业锅炉烟气中的氮氧化物主要为一氧化氮(NO)和二氧化氮(NO2)两种。 3.3 控制技术control technology 针对生活、生产过程中产生的各种环境问题,为减少污染物的排放,从整体上实现高水平环境保护所采用的与某一时期的技术、经济发展水平和环境管理要求相适应,在公共基础设施和工业部门得到应用的,适用于不同应用条件的一项或多项改进、可行的污染防治工艺和技术。 4 工业锅炉氮氧化物排放特性 工业锅炉排放的氮氧化物(NOx)来自燃料燃烧过程,主要类型包括:空气中的氮气在高温下被氧 1

SO2和NOx控制技术和策略

燃煤SO2、NOx污染控制技术现状和减排对策 一、燃煤SO2、NOx污染控制技术概况 在我国现有的火电机组中,燃煤机组约占93%,烧煤造成的环境污染已成为制约我国国民经济和社会持续发展的一个重要影响因素。大量原有的和新建的燃煤发电站和大中型燃煤工业锅炉等还是主要采用烟气脱硫等技术及其革新方法,来解决燃煤污染防治问题。 对于我国,减少SO2污染的最经济的方法是:停止燃烧S≥3%的高硫劣质原煤,改用低硫优质煤以及采用燃烧前对原煤洗选,对原煤洗选可脱除原煤所含硫分中约占一半的黄铁矿硫中的40%。它能实用于S≥1%的中、高硫原煤,是投资和运行费用相对减少的技术措施。另外采用燃烧中的脱硫技术,即家庭和工业锅炉中采用掺有脱硫剂的型煤、循环流化床锅炉和煤粉炉炉内喷钙增湿活化技术。目前在技术管理上有可能大幅度减排SO2的技术还是在燃煤量相对集中的大用户(发电厂等)采用燃烧中和燃烧后的烟气脱硫技术。其中,湿法烟气脱硫可除硫95%以上,但是投资费用约占发电厂总投资的12-15%,日常运行费用也较贵。 与NOx相比,SO2排放控制技术经济的可行性好,环境效益大。减小SO2排放的控制措施有洗煤、化学脱硫、煤的气化或液化等燃烧前脱硫,和采用型煤脱硫、流化床燃烧脱硫或炉内喷钙等燃烧中脱硫,以及燃烧后的烟气脱硫。国际上有多种脱硫技术已经工业化,我国业已开展脱硫技术研究多年,特别是电力行业已有一些成功的试点工程。减少NOx排放量可选用控制技术目前在工业上已成功运行的有二类,一类是改进燃烧技术减少燃烧过程NOx的产生量,以采用低氮燃烧技术为宜;另一类是采用氨选择性催化还原法净化燃烧尾气。削减单位NOx排放量所需费用高于SO2,其原材料的来源也较困难。 二、减排对策 减排对策包括清洁煤技术、节能、重点行业SO2排放技术以及SO2排放的经济技术政策。 清洁煤技术是指在煤炭从开发到利用全过程中,旨在减少污染排放与提高利用效率的加工、燃烧、转化及污染控制等新技术。主要包括煤炭洗选、加工(型煤、水煤浆)、转化(煤炭气化、煤炭液化)、先进燃烧技术(常压循环流化床、加压流化床、整体煤气化联合循环、高效低污染燃烧器)、烟气精华(除尘、脱氮)等方面的内容。 清洁煤技术可主要分为煤炭加工和煤炭的高效洁净燃烧技术,煤炭加工包括煤炭洗选、型煤和水煤浆;而煤炭的高效洁净燃烧技术主要指燃煤锅炉的和发电技术,包括循环流化床、增压流化床、煤气化联合循环和煤炭气化。 循环流化床(CFBC) 是目前国外清洁煤技术中一项成熟的技术,且正在向大型化发展,其煤种适应性广,燃烧效率高,且与采用煤粉炉尾部烟气净化装置进行烟道气脱硫相比,它不仅能脱SO2,而且可减少NOx,投资成本和运行费用也比较低。国外目前运行、在建和计划建设的循环流化床技术发电锅炉已达250多台。我国目前循环流化床技术只相当于发达国家八十年代初的水平,在建设75吨/时及以下的小型循环流化床方面有一定的经验,但脱硫、除尘、防磨等配套技术还有待完善。 增压流化床发电技术(PFBC) 该技术由于实现了联合循环,发电技术高于CFBC发电技术。目前瑞典、日本、美国、

氮氧化物控制技术的综述

燃煤电厂氮氧化物控制技术的综述 摘要:随着社会的发展,工业发展速度加快,大气的污染状况也越来越严重,近几年,由于生产和发展的需要,我国在石油化工、机动车辆的生产上突飞猛进,虽然在一定程度上推动了社会的发展,但对大气环境却造成了比较严重的污染。目前,国际上对大气环境保护越来越重视,声音越来越强烈,我国也出台了些相关的法律法规以保护大气环境。由于氮氧化合物对大气污染影响特别严重并且来源广泛,因此,对大气污染过程中氮氧化物的研究越发迫切。 关键字:氮氧化物、严重、迫切。 Abstract With the development of society, the industrial development speed, the air pollution status also more and more serious, in recent years, due to the production and the need for the development of our country in the petroleum chemical industry, motor vehicle production by leaps and bounds, although in a certain extent by the development of the society, but to atmosphere but caused serious pollution. Now, the atmosphere environment protection pay more and more attention to, the voice is more and more intense, our country also introduced some relevant laws and regulations to protect the air environment. Because of nitric oxide of atmospheric pollution source especially serious influence and widely, therefore, the air pollution in the process of nitrogen oxides more urgent research Keywords: nitrogen oxide 、serious、urgent. 1 大气污染过程中的主要污染物 经调查,大气的污染主要包括氧化碳、碳氢化合物、氮氧化合物、铅、二氧化硫、二氧化碳、微粒、醛类、粉尘、电辐射、噪声等。目前,在工农业生产、开发过程中,氮氧化物的无序排放对环境的影响极大。 2 大气污染过程中氮氧化物的主要来源、生成机理及危害 2.1 大气中氮氧化合物的主要来源 大气污染过程中氮氧化合物主要来自三方面:工业污染、生活污染、交通污染 ①工业污染主要是由于在工业生产过程中(特别是在石油化工企业)燃烧化石燃料而产生的,它主要包括二部分:一是在工艺生产过程中排放的泄漏的气体污染物,如化工厂及煤制气厂;二是在工业生产用的各种锅炉、窑炉排放的污染物;

论厌氧氨氧化工艺的应用进展

论厌氧氨氧化工艺的应用进展 本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意! 厌氧氨氧化(anaerobic ammonium oxidation,Anammox)工艺因其无需外加有机碳源、脱氮负荷高、运行费用低、占地空间小等优点,已被公认为是目前最经济的生物脱氮工艺之一。近年来,国内外对厌氧氨氧化工艺的研究取得了大量的实验室成果。但是,一方面由于厌氧氨氧化菌(anaerobicammonium oxidizing bacteria,AnAOB)生长缓慢(倍增时间长达11 天)、细胞产率低[m(VSS)/m(NH4+-N)=/g)、对环境条件敏感,另一方面由于实际废水成分复杂,常含有AnAOB 的抑制物质,限制了厌氧氨氧化工艺在实际工程中的大规模应用。因此,有必要对近年来国内外厌氧氨氧化工艺的应用实例和经验进行系统总结,推动该工艺的进一步工业化应用,使之在污水脱氮处理领域发挥更积极的作用。本文介绍了AnAOB 的生物多样性和厌氧氨氧化工艺形式的多样性,重点综述了厌氧氨氧化技术在处理各类废水中的实验室研究和工程应用情况。 1 厌氧氨氧化菌生物多样性

迄今为止,已发现的AnAOB 有6 属18 种,构成了独立的厌氧氨氧化菌科(Anammoxaceae),并且AnAOB 广泛存在于自然生态系统中,如海洋沉积物、淡水沉积物、油田、厌氧海洋盆地、氧极小区、红树林地区、海洋冰块、淡水湖以及海底热泉等。AnAOB 的生态分布多样性是由自身的代谢多样性决定的,也正因如此,厌氧氨氧化在全球氮素循环中扮演重要角色,将其应用于不同水质含氮废水的治理也具有与生俱来的优势和不可估量的潜力。 2 厌氧氨氧化工艺形式多样性 基于厌氧氨氧化原理的工艺形式纷繁多样,包括分体式(两级系统)和一体式(单级系统)两种。一体式有CANON(completely autotrophic nitrogenremoval over nitrite)、OLAND(oxygen limitedautotrophic nitrification and denitrification)、DEAMOX(denitrifying ammonium oxidation)、DEMON(aerobic deammonification)、SNAP(simultaneous partial nitrification,anammox anddenitrification)、SNAD(single-stage nitrogen removalusing anammox and partial nitritation)等工艺;分体式主要有SHARON(single reactor for high activityammonia removal over nitrite)-anammox 工艺。随着工程经验越来越丰富,一体化系统正日益得到青

厌氧氨氧化

厌氧氨氧化作用即在厌氧条件下由厌氧氨氧化菌利用亚硝酸盐为电子受体,将氨氮氧化为氮气的生物反应过程。这种反应通常对外界条件(pH值、温度、溶解氧等)的要求比较苛刻,但这种反应由于不需要氧气和有机物的参与,因此对其研究和工艺的开发具有可持续发展的意义。 厌氧氨氮化一般前置短程硝化工艺,将废水中的一部分氨氮转化成亚硝酸盐。目前在处理焦化废水、垃圾渗滤液等废水方面已经有成功的运用实例。 厌氧氨氧化是一个微生物反应,反应产物为氮气。具有一些优点:由于氨直接作反硝化反应的电子供体,可免去外源有机物(甲醇),既可节约运行费用,也可防止二次污染;由于氧得到有效利用,供氧能耗下降;由于部分氨没有经过硝化作用而直接参与厌氧氨氧化反应,产酸量下降,产碱量为零,这样可以减少中和所需的化学试剂,降低运行费用,也可以减轻二次污染。 厌氧氨氧化反应是一种化能自养的古菌(俗称Anammox)的反应。简单式为:1NH4+ + 1NO2- → N2 + 2H2O。如果在化学方程式里加入微生物本身,则为:1NH4+ + 1.32NO2- + 0.066 HCO3- + 0.13H+ → 1.02N2 + 0.26 NO3- + 0.066 CH2O0.5N0.15 + 2.03H2O 该古菌为自养型,只需无机碳源CO2,并且在全球碳循环过程中发挥着很重要的作用。在目前污水的氨氮处理上被广为看好。但是由于亚硝酸根含量在大部分污水是不够显著的,所以anammox技术要结合其他技术来使用,比如已经在荷兰鹿特丹投产的Sharon+anammox工艺,就是结合了短程硝化和厌氧氨氧化工艺,还是比较成功的。 利用混合污泥培养厌氧氨氧化颗粒污泥

氮氧化物控制原理及技术

氮氧化物排放控制原理及新技术 中国环境学会 2011年03月31日 李俊华,陈亮,常化振,郝吉明清华大学环境科学与工程系 (通讯地址:清华大学环境系,100084,Tel:62771093,email:lijunhua@https://www.wendangku.net/doc/4c6901223.html,) 摘要:NOx排放量逐年增加,造成区域酸沉降趋势不断恶化,大气中二次颗粒物臭氧(O3)和微细可吸入颗粒物(PM2.5)居高难下,严重影响人体健康和生态环境质量。本文介绍了我国NOx排放趋势,重点讨论了NOx控制原理及关键控制技术的研究进展。基于目前烟气脱硝技术存在的问题,提出了脱硝催化剂原材料和制备工艺国产化、针对我国不同煤种研究催化剂适应性的问题,以及下一步燃煤烟气协同污染控制最新研究方向。 关键词:氮氧化物,燃煤烟气,稀燃汽车,排放,脱硝催化剂,协同控制 1 我国NOx排放现状 《国家环境保护“十一五”规划》提出确保实现SO2减排目标,实施燃煤电厂脱硫工程,实施酸雨和SO2污染防治规划,重点控制高架源的SO2和NOx排放,综合改善城市空气环境质量。随着“十一五”期间对电厂实施烟气脱硫效果明显,大气SO2浓度及硫沉降均有所下降。但NOx作为一类主要的大气污染物,在我国其排放量仍在增加,不仅对人体健康造成直接危害,同时也不仅会造成空气中NO2浓度的增加、区域酸沉降趋势不断恶化,还会使对流层O3浓度增加,并在空气中形成微细颗粒物(PM),影响大气环境质量[1,2]。 我国以煤为主的能源结构和发电结构,使得燃煤成为NOx的最大来源,全国NOx排放量的67%来自煤炭燃烧,其中燃煤电厂是NOx排放的最大分担者。2007年全国NOx排放量为1643.4万吨,工业排放NOx1261.3万吨,其中火电厂排放811万吨,占全国NOx排放量的49.4%,占工业NOx排放的64.3%[3]。今年NOx排放量将达到1800万吨,未来若无控制措施,NOx排放在2020年将达到3000万吨以上,届时我国将成为世界上第一大NOx排放国,污染将进一步加重,污染进一步加重。我国于2004年1月1日起执行的《火电厂大气污染物排放标准》(GB13223—2003),将新建燃煤电厂的氮氧化物的排放浓度控制在450mg/Nm3。对于氮氧化物污染严重和环境容量有限的经济发达地区,当地政府提出了更高的排放要求,如北京为了迎接2008年奥运会,将NOx排放标准严格到100mg/Nm3。因此针对重点源开展NOx排放控制原理及新技术的研究变得十分必要和迫切。

氮氧化物的形成及控制

氮氧化物的形成及控制技术 孙铁朦 (中南大学能源科学与工程学院,湖南长沙,410083) 摘要:随着我国经济的快速发展和能源生产与消费量的急速增长,氮氧化物排放量也随之增加。有关研究表明,氮氧化物排放加剧了大气酸沉降、光化学烟雾和城市灰霾的污染。由于氮氧化物可以在大气层中长距离输送,引起的全球性或区域性污染问题也日渐突出。如果对此不加以控制,氮氧化物的持续增加将会明显抵消掉二氧化硫减排所取得的重大环境效益。我国氮氧化物排放控制还处于起步阶段,氮氧化物排放控制技术有待进一步普及,并提出氮氧化物排放治理的一些方法。 关键词:氮氧化物;危害;控制技术。 The formation of nitrogen oxide and control technology Sun tie meng (School of Energy Science and Engineering, Central South University, Changsha 410083, China) Abstract: With the rapid growth of China's rapid energy production and consumption,nitrogen oxide emissions have increased. The study showed that nitrogen oxide emissions contribute to atmospheric acid deposition,photochemical smog and urban haze pollution. Due tolong-range transport of nitrogen oxides in the atmosphere which caused by global or regional pollution problems have become increasingly prominent. If this is left unchecked, the continued increase of the nitrogen oxides will be significantly offset by the significant environmental benefits achieved by the sulfur dioxide emission reduction. Due to nitrogen oxides emission reduction program in china is still in its initial stages,nitrogen oxide control technology needs further popularization and provide some methods on nitrogen oxide emission control. Key words:nitrogen oxide;damage:control technology. 1前言 氮氧化物是大气中主要的气态污染物之一,包括多种化合物,如氧化亚氮(N O)、一氧化 2 )、三氧化二氮(N2O3)、四氧化二氮(N2O4)和五氧化二氮(N2O5)等。其中氮(NO)、二氧化氮(NO 2 N2O3、N2O4、N2O5很不稳定,常温下很容易转化成NO和NO2。大气中含量较高的氮氧化物主O、NO和NO2。其中,NO和NO2是大气中主要的氮氧化物。 要包括N 2 自然界中的NOx主要来自雷电,森林草原火灾,氧化大气中的氮和土壤中微生物的消化作用,这些氮氧化物在大气系统中均匀分散,并参加在环境中的氮循环。人类活动产生的氮

厌氧氨氧化技术生物脱氮机理

厌氧氨氧化技术生物脱氮机理 摘要:在过去一个多世纪中,传统的废水生物脱氮技术硝化-反硝化工艺得到了非常广泛的应用,随着生物技术的发展,涌现出很多新型的废水生物脱氮技术,厌氧氨氧化便是其中之一。本文对厌氧氨氧化脱氮技术的作用机理和优缺点进行了分析。 关键词:生物脱氮;硝化;短程硝化;反硝化;厌氧氨氧化 Abstract: The traditional nitrification-denitrification process was widely used in the past century. With the development of biotechnology, many new biological nitrogen removal processes were put forward, such as anaerobic ammonium oxidation. This paper described the mechanisms and strengths-weaknesses of anaerobic ammonium oxidation technology. Keywords: biological nitrogen removal; nitrification; shortcut nitrification; denitrification; anaerobic ammonium oxidation 氮是维持生态系统营养物质循环的一种重要元素,然而由于人类活动对自然生态系统中氮素循环的干扰和破坏,使之成为引起水质恶化、生物多样性降低和生态系统失衡的主要因素之一,已经严重影响了人类正常的生产生活。对于氮素的污染控制己经受到了人们广泛的重视。在废水脱氮技术的研发应用中,各种行之有效的脱氮处理工艺得到了发展,构成了废水脱氮处理的技术体系。物化法除氮以其较为宽泛的适用性在工业废水脱氮中得到广泛发展,而生物法脱氮以低廉的成本、运行的简便等优点受到人们的青睐。 近些年来,随着生物技术的迅猛发展,国内外学者加强了对生物脱氮理论和技术的研究,多种氮转化途径被发现,新的脱氮反应机理被提出,由此产生了生物脱氮理念的革新,厌氧氨氧化生物脱氮便是其中之一[1]。 1 传统生物脱氮的原理 传统废水的生物脱氮是由两个阶段完成的。这条途径也可称之为全程(或完全)硝化—反硝化生物脱氮。 第一阶段为硝化阶段,这一阶段是在好氧条件下由亚硝酸菌和硝化菌等细菌将氨将转化为硝酸盐,其反应可用(1)和(2)式表示: NH4+ + 1.5O2 → NO2- +H2O +2H+(亚硝化过程,好氧) (1) 2NO2- +O2 → 2NO3- (硝化过程,好氧) (2)

厌氧氨氧化工艺影响因素

厌氧氨氧化工艺的影响因素研究 摘要:在稳定运行的厌氧氨氧化滤池基础上,研究了ph、有机物、溶解氧对厌氧氨氧化反应器运行性能的影响。结果表明:高、低ph会明显影响厌氧氨氧化反应器的脱氮性能,最适ph范围为7.65~8.25;一定浓度范围的有机物可以引起滤池内反硝化菌和厌氧氨氧化菌的协同作用,提高滤池的脱氮效果。溶解氧对厌氧氨氧化菌活性的抑制是可逆的。 关键词:厌氧氨氧化,ph,有机物,溶解氧 the study of the factors affecting on anammox process abstract: in this paper, the impacts of ph, organic compound, dissolved oxygen on the anammox reactor performance in the stable operation of anaerobic ammonium oxidation filter. the results indicated: high or low ph could influence the performance of nitrogen removal of the reactor, the appropriate range of ph is 7.65~8.25; a certain concentration of organic compound could improve the denitrification effect because of synergistic effect of denitrifying bacteria and anaerobic ammonium-oxidizing bacteria in the filter; the inhibition of dissolved oxygen on the activity anammox bacteria is reversible. keywords: anaerobic ammonium oxidation; ph; organic compound; dissolved oxygen.

城市污水厌氧氨氧化生物脱氮研究进展

城市污水城市污水厌氧氨氧化厌氧氨氧化厌氧氨氧化生物脱氮研究进展生物脱氮研究进展 唐崇俭,郑 平 (浙江大学 环境工程系,浙江 杭州 310029) 摘 要:厌氧氨氧化菌可在厌氧条件下以亚硝酸盐为电子受体将氨氧化为氮气,是目前废水生物脱氮的研究热 点之一。小试的研究表明,该工艺的容积负荷可高达125kg N/(m 3 ·d)。城市污水处理厂污泥厌氧消化液以及城市 生活垃圾填埋场渗滤液都含有高氨氮浓度以及低有机物浓度,十分适合采用厌氧氨氧化工艺进行处理。目前,生 产性厌氧氨氧化工艺已在荷兰、丹麦和日本等国成功应用于这两类废水的脱氮处理,最大容积氮去除速率高达 9.5kg N/(m 3·d),显示了该工艺诱人的工程应用前景。本文分析了世界上第一个生产性厌氧氨氧化工艺处理城市 污水厂污泥厌氧消化液的运行情况,论述了厌氧氨氧化工艺在城市污水处理中面临的问题。结合课题组内的研究 结果,提出了一种新型的菌种流加式厌氧氨氧化工艺,并探讨了其在城市污水处理中的作用。 关键关键词词:厌氧氨氧化;城市污水;生物脱氮;工程应用 Application of Anammox Process in Municipal Wastewater Treatment Tang Chongjian, Zheng Ping (Department of Environmental Engineering, Zhejiang University, Hangzhou 310029, China ) Abstract : Under anoxic condition, anaerobic ammonium-oxidizing (Anammox) bacteria can oxidize ammonium to nitrogen gas using nitrite as electron acceptor. It becomes a topic issue on biological nitrogen removal from ammonium-rich wastewater due to some promising advantages such as low operational cost and super high volumetric loading rate. As reported, the nitrogen loading rate reached up to 125 kg N/(m 3·d). Characterized by high ammonium concentration and relatively low biodegradable organic content, the sludge digester liquor from the municipal wastewater treatment plant and the landfill leachate are demonstrated to be very suitable for application of Anammox process to realize high-rate nitrogen removal. The full-scale application of Anammox process has already been applied for nitrogen removal from sludge digester liquor and landfill leachate in The Netherlands, Japan and Denmark with the maximum nitrogen removal rate as high as 9.5 kg N/(m 3·d). Thus, the operation of the first full-scale Anammox reactor treating municipal sludge digester liquor was introduced, and the problems during the application of Anammox process in municipal wastewater treatment were discussed. An innovative Anammox process with sequential biocatalyst addition (SBA-Anammox process) was proposed to overcome the drawbacks and accelerate the application of Anammox process in municipal wastewater nitrogen removal.

兼氧FMBR工艺介绍-1

兼氧FMBR工艺介绍 1.1 兼氧FMBR工艺原理介绍 兼氧FMBR处理工艺是一种将膜分离技术与生物处理单元相结合的污水处理工艺,近年来倍受关注。兼氧FMBR工艺对生活污水、高浓度有机污水、难降解有机污水具有非常高的处理效率,本项目是生活污水,污水污染物含量高、可生化性好,非常适宜采用本处理工艺。兼氧FMBR系统示意见下图: 图1 兼氧FMBR系统示意图 兼氧FMBR工艺实现菌体共生,同步处理不同污染物,大幅提高系统适应能力、处理效率。 C----有机污泥“零”排放(低能耗) P----气化除磷降解(低能耗) N----厌氧氨氧化脱氮(低能耗) 突破好氧MBR工艺(能耗高、易堵膜)的瓶颈 兼氧FMBR的主要特点: 兼氧FMBR污泥以兼性厌氧菌为主,有机物的降解主要是通过形

成较高浓度的污泥在兼性厌氧性菌作用下完成的。大分子有机污染物是被逐步降解为小分子有机物,最终氧化分解为二氧化碳和水等稳定的无机物质。 由于兼性厌氧菌的生成不需要溶解氧的保证,所以降低了动力消耗。曝气的主要作用是对膜丝进行冲刷、震荡,同时产生的溶解氧正好被用来氧化部分小分子有机物和维持出水的溶解氧值。 a)兼氧FMBR工艺对CODcr的去除 兼性厌氧微生物在有氧的条件下,将污水中的一部分有机物用于合成新的细胞,将另一部分有机物进行分解代谢以便获得细胞合成所需的能量,其最终产物是CO2和H2O等稳定物质。在合成代谢与分解代谢过程中,溶解性有机物(如低分子有机酸等)直接进入细胞内部被利用,而非溶解有机物则首先被吸附在微生物表面,然后被胞外酶水解后进入细胞内部被利用。 b)兼氧FMBR工艺对氮的去除 在兼氧FMBR处理工艺系统中,兼有通过以下三种途径完成对氮的去除: I硝化-反硝化 膜区曝气气提作用,反应器内形成循环流动,使水在好氧区和缺氧区循环交替流动,形成好氧、缺氧连续交替不断的生物降解作用,在好氧条件下利用污水中硝化细菌将氮化物转化为硝酸盐,然后在缺氧条件下利用污水中反硝化细菌将硝酸盐还原成气态氮。在同一个反应器内实现了硝化反硝化。

相关文档