文档库 最新最全的文档下载
当前位置:文档库 › 实验报告解析—微生物多样性(扩增子-16S rDNA测序)

实验报告解析—微生物多样性(扩增子-16S rDNA测序)

实验报告解析—微生物多样性(扩增子-16S rDNA测序)
实验报告解析—微生物多样性(扩增子-16S rDNA测序)

实验报告解析—微生物多样性(扩增子/16S rDNA测

序)

展开全文

1.实验报告的主体框架内容

a)封面信息

b)项目实施信息

c)元基因组DNA提取过程及结果

d)PCR扩增过程及结果

e)样品是否成功的判定标准

a)封面信息

主要包含:客、服双方的主要联系人相关信息,样品对接人,

实验操作组及实验主要负责人信息,报告生成时间、项目名称及唯一标识号等方面内容。

主要目的:用于追溯实验流程过程,客、服双方在实验方面内容的沟通及对接。

b)项目实施信息

主要包含:样品的详细情况(客户方提供的每例样品的名称、服务方提供的每例样品在服务方内部查询及流转的唯一名称、样品类型等方面内容),以及每例样品在实验后是否有剩余的统计情况。

主要目的:让客户方了解每一个样本的基本情况;与服务方内部的对应关系,便于查询;实验操作后,样品的剩余情况或其他需要备注的特殊情况。

c)元基因组DNA提取过程及结果

主要包含:提取过程的核心步骤概括;参考文献或试剂盒使用说明书;DNA质量检测的方法;结果展示与汇总(DNA 完整性的检测电泳图,浓度及纯度的测定结果,获取核酸溶液的总体积等必要信息)。

主要目的:使得客户方了解提取的环节和细节;实验过程的最终情况及质控情况。

d)PCR扩增过程及结果

主要包含:扩增16srDNA的哪些区域,引物名称及引物序列;每例样品的稀释情况汇总(DNA溶液的消耗、稀释终浓度

等);PCR扩增最终反应体积及扩增条件;扩增结果检测电泳图及结果汇总等。

主要目的:了解扩增过程实验详情、质控情况;样品实验成功及失败的情况,便于调整下一步实验计划和安排。

e)样品是否成功的判定标准

主要包含:对结果等级判别进行标准化并给予确切描述。主要目的:解释和说明结果成功或失败的原因。

2. 实验结果内容的体现及判定

实验结果内容体现:在报告中,此部分往往是通过汇总表格进行体现。表格体现比较清晰且有条理。因此,报告中表格部分,往往是每例样品的具体信息,若关注样品的具体情况,需要留意报告中的每一份表格内容。

结果的判定:结果的判定依据往往在报告最末处给出的评判标准(可能以表格形式进行给出评判标准,也可能文字形式进行陈述),包含直接判定或等级(等第)划分等情况。

3. 实验方法的获取与撰写

报告中往往包含量实验的流程,核心步骤和基本方法。如何进行获取和撰写?

a. 毕业论文中实验方法的获取与撰写:

毕业论文中往往要求撰写明确的方法及步骤,抽提环节可以略过报告中的简要步骤的描述,直接根据参考文献或者使用的操作说明书进行具体方法的获取,在毕业论文中直接进行

撰写使用;PCR扩增环节,根据报告提供的PCR扩增引物、试剂(试剂货号)等信息可以获得试剂生产商提供的使用说明书,根据说明书、报告中给出的体系和反应条件,完成毕业论文中该部分的撰写工作;报告中提供的胶图,统计的数据可以直接使用。

b. 科技论文中实验方法的获取与撰写

1)根据报告中提供的参考文献进行参考性撰写,或者利用操作说明书和报告中写明的主要步骤进行汇总撰写。

例如:TheXX sample was suspended in XX μl ofsterile lysis buffer in 2 ml screw-cap tube containing Xgglass beads. This mixture was vortexed vigorously then incubate at XX ℃for XXh. After incubation by bead beating for XX min at maximum speed. ……【汇总自:试剂盒操作说明书】

DNA was extracted byfollowing the manufacturer’s instructions for bacterial DNA extraction usingXXX Kit (Production information, Nation).【直接告知使用哪种试剂盒进行操作】The primers F1 and R2were used to amplify the VX1~VX2 region of each sample by PCR. PCR reactionswere run in a PCR system using the following program: X min of denaturation atX ℃followed by XX cycles of Xminat X ℃(denaturation), X min for annealing at X ℃, and X min at X℃(elongation), with a final extension at X℃for X min.

2)直接引用报告中提供的参考文献

例如:DNA was extracted using amethod described by XX[reference].

4. 整体实验细节的整理与明确

获取实验报告后,可以获知哪些具体信息:

a) 寄送的原始样本在实验后是否有剩余:在项目实施的汇总表中会针对每例样本进行分别统计汇总。

b) 实验时获得了多少DNA溶液:提取完成后会汇总提取信息包含浓度、OD值、提取终体积等,此时终体积的统计即为每例样本最终的获得的量。

c) 实验过程中消耗了多少DNA溶液:Nanodrop定量消耗1-2μL;电泳检测一般消耗2μL;PCR扩增稀释一般使用2-5μL,以上是实验过程的主要消耗量,具体每个环节消耗多少根据具体报告中展示为准。

d) DNA溶液是否有剩余:提取获得的终体积减去实验中的消耗,若大于零,就一定有剩余

e) PCR过程为什么要稀释DNA:DNA提取后浓度参差不齐,稀释到同一浓度进行扩增,增加样本之间的可比性,增加了比较分析时的可信度。

用16S-rDNA方法鉴定细菌种属

用16S-rDNA方法鉴定细菌种属

用16S rDNA方法鉴定细菌种属 一、实验目的 1. 掌握16S rDNA对细菌进行分类的原理及方法; 2. 掌握DNA提取、PCR原理及方法、DNA片段回收等实验操作。 二、实验原理 细菌rRNA(核糖体RNA)按沉降系数分为3种,分别为5S、16S和23S rRNA。16S rDNA是细菌染色体上编码16S rRNA相对应的DNA序列,存在于所有细菌染色体基因中。 16SrDNA鉴定是指用利用细菌16SrDNA序列测序的方法对细菌进行种属鉴定。包括细菌基因组DNA提取、16SrDNA特异引物PCR扩增、扩增产物纯化、DNA 测序、序列比对等步骤。是一种快速获得细菌种属信息的方法。 16S rDNA是细菌的系统分类研究中最有用的和最常用的分子钟,其种类少,含量大(约占细菌RNA 含量的80%),分子大小适中,存在于所有的生物中,其进化具有良好的时钟性质,在结构与功能上具有高度的保守性,素有“细菌化石”之称。在大多数原核生物中rDNA都具有多个拷贝,5S、16S、23S rDNA的拷贝数相同。16S rDNA由于大小适中,约1.5Kb左右,既能体现不同菌属之间的差异,又能利用测序技术较容易地得到其序列,故被细菌学家和分类学家接受。

16SrRNA 的编码基因是16SrDNA ,但是要直接将 16SrRNA 提取出来很困难,因为易被广泛存在的RNase 降解,因而利用16S rDNA 鉴定细菌,其技术路线如下: 细菌基因组的提取: PCR 的基本原理 : PCR 技术的基本原理 类似于DNA 的天然复制过程,其特异性依赖于与靶序列两端互补的 寡核苷酸引物。PCR 由变性--退火--延伸三个基本反应步骤构成: ①模板DNA 的变性:模板DNA 经加热至93℃左右一定时间后,使模板DNA 双链或经PCR 扩增形成的双链DNA 解离,使之成为单链,以便它与引物结合,为下轮反应作准备; ②模板DNA 与引物的退火(复性):模板DNA 经加热变性成单链后,温度降至55℃左右,引 物与模板DNA 单链的互补序列配对结合; 纯化DNA 分离出DNA

DNA测序常见问题及分析

DNA测序过程可能遇到的问题及分析 对于一些生物测序公司(如Invitrogen等),我们的菌液或质粒经过PCR和酶切鉴定都没问题,但几天后的测序结果却无法另人满意。 为什么呢? PCR产物直接进行测序,在PCR产物长度以后将无反应信号,机器将产生许多N值。这是由于Taq酶能够在PCR反应的末端非特异性地加上一个A碱基,我们所用的T载体克隆PCR产物就是应用该原理,通常PCR产物结束的位点,PCR产物测序一般末端的一个碱基为A(绿峰),也就是双脱氧核甘酸ddNTP终止反应的位置之前的A,A后的信号会迅速减弱。 N值情况一般是由于有未去除的染料单体造成的干扰峰。该干扰峰和正常序列峰重叠在一起,有时机器377以下的测序仪无法正确判断出为何碱基。有时,在序列的起始端的小片段容易丢失,导致起始区信号过低,机器有时也无法正确判读。在序列的3’端易产生N值。一个测序反应一般可以读出900bp以上的碱基(ABI3730可以达到1200bp),但是,只有一般600bp以前的碱基是可靠的,理想条件下,多至700bp的碱基都是可以用的。一般在650bp以后的序列,由于测序毛细管胶的分辩率问题,会有许多碱基分不开,就会产生N值。测序模板本身含杂合序列,该情况主要发生在PCR产物直接测序,由于PCR产物本身有突变或含等位基因,会造成在某些位置上有重叠峰,产生N值。这种情况很容易判断,那就是整个序列信号都非常好,只有在个别位置有明显的重叠峰,视杂合度不同N值也不同。 测序列是从引物3’末端后第一个碱基开始的,所以就看不到引物序列。有两种方法可以得到引物序列。1.对于较短的PCR产物 (<600bp),可以用另一端的引物进行测序,从另一端测序可以一直测通,可以在序列的末端得到该引物的反向互补序列。对于较长的序列,一个测序反应测不通,就只能将PCR产物片段克隆到载体中,用载体上的通用引物(T7/SP6)进行测序。载体上的通用引物与所插入序列间

16S_rDNA鉴定细菌的方法

16S rDNA鉴定细菌的方法 细菌16S rDNA鉴定主要分为7个部分: 1.提取细菌基因组DNA, 2.设计/选择引物进行PCR扩增,电泳检测纯度与大小。 3.琼脂糖凝胶电泳分离 4.胶回收目的片段 5.目的片段测序。 6.BLAST比对获取相似片段。 7.构建系统进化树 试剂: 1.1培养基:通常选择组分简单且细菌生长良好的培养基(培养基组分过于复杂会影响DNA 的提取效果,也可以在裂解细菌前用TE缓冲液对菌体进行洗涤。)。 1.2 1M Tris-HCl (pH7.4, 7.6, 8.0)(1L):121.1g Tris,加浓盐酸约(70ml, 60ml, 42ml),高温高压灭菌后,室温保存。冷却到室温后调pH,每升高1℃,pH大约下降0.03个单位。 1.3 0.5M EDTA(pH8.0)(1L):186.1g Na2EDTA?2H2O,用NaOH调pH至8.0(约20g),高温高压灭菌,室温保存。 1.410×TE Buffer(pH7.4,7.6,8.0)(1L):组分:100 mM Tris-HCl,10 mM EDTA。1M Tris-HCl (pH7.4,7.6,8.0)取100ml,0.5M EDTA(pH8.0)取20ml。高温高压灭菌,室温保存。1×TE Buffer用10×TE Buffer稀释10倍即可。 1.5 10%SDS(W/V):称10g,68℃加热溶解,用浓盐酸调pH至7.2。室温保存。用之前在65℃溶解。配置时要戴口罩。 6、5M NaCl:称292.2gNaCl,高温高压灭菌,4℃保存。 7、CTAB/NaCl(10%CTAB,0.7M NaCl):溶解4.1g NaCl,加10g CTAB(十六烷基三甲基溴化铵),加热搅拌。用之前在65℃溶解。 8、氯仿/异戊醇:按氯仿:异戊醇=24:1(V/V)的比例加入异戊醇。 9、酚/氯仿/异戊醇(25:24:1):按苯酚与氯仿/异戊醇=1:1的比例混合Tris-HCl平衡苯酚与氯仿/异戊醇。 10、TAE缓冲液:使用液1×:0.04 mol/L Tris-乙酸,0.001 mol/L EDTA。浓储存液50×:242g Tris,57.1 ml 冰醋酸,100 ml 0.5 mol/L EDTA (pH8.0)。 11、6×上样缓冲液(100 ml):0.25%溴酚蓝(BPB),40%蔗糖,10 mmol/L EDTA (pH8.0)(0.2 ml),4℃保存。 12、0.6%琼脂糖凝胶:称取0.3g琼脂糖用TAE溶液配置50 ml。 13、EB:10 mg/ml。称取1g溴化乙锭定容至100ml。棕色瓶室温避光保存。EB的工作浓度为0.5ug/ml。当配置50ml 琼脂糖凝胶时加入EB为2.5ul。(因EB是剧毒物质,目前很多实验室用生物荧光染料替代,常用的有Gelred等) 14、蛋白酶K:20 mg/ml 溶于水,-20℃保存,反应浓度50 ug/ml,反应缓冲液:0.01 mol/L Tris (pH 7.8), 0.005 mol/L EDTA, 5% SDS,反应温度37-56℃。无需预处理。 15、RNase A:10 mg/ml。25 mg RNase A 加1M Tris(pH 7.5)25ul,2.5M NaCl 15ul,无菌水2460 ul,于100℃加热15分钟,缓慢冷却至室温,分装成小份保存于-20℃。(为避

一代测序常见问题及解决策略

测序常见问题及解决策略 一、PCR常见问题 1.假阴性,不出现扩增条带 PCR出现假阴性结果,可从以下几个方面来寻找原因: 1)模板:①模板中有杂蛋白;②模板中有Taq酶抑制剂;③在提取制备模板时丢失过多;④模板核酸变性不彻底。 2)酶:酶失活或反应时忘了加酶。 3)Mg2+浓度:Mg2+浓度过高可降低PCR扩增的特异性,浓度过低则影响PCR 扩增产量甚至使PCR扩增失败而不出扩增条带。 4)反应条件:变性对PCR扩增来说相当重要,如变性温度低,变性时间短,极有可能出现假阴性;退火温度过低,可致非特异性扩增而降低特异性扩增效率退火温度过高影响引物与模板的结合而降低PCR扩增效率。 5)靶序列变异:靶序列发生突变或缺失,影响引物与模板特异性结合,或因靶序列某段缺失使引物与模板失去互补序列,其PCR扩增是不会成功的。 2.假阳性 假阳性:出现的PCR扩增条带与目的靶序列条带一致,有时其条带更整齐,亮度更高。常见原因有: 1)引物设计不合适:选择的扩增序列与非目的扩增序列有同源性,因而在进行PCR扩增时,扩增出的PCR产物为非目的性的序列。靶序列太短或引 物太短,容易出现假阳性。需重新设计引物。 2)靶序列或扩增产物的交叉污染:这种污染有两种原因:一是整个基因组或大片段的交叉污染,导致假阳性。这种假阳性可用以下方法解决:操作时应小心轻柔,防止将靶序列吸入加样枪内或溅出离心管外。二是空气中的 小片段核酸污染,这些小片段比靶序列短,但有一定的同源性。可互相拼接,与引物互补后,可扩增出PCR产物,而导致假阳性的产生,可用巢式PCR方法来减轻或消除。 3.出现非特异性扩增带 PCR扩增后出现的条带与预计的大小不一致,或大或小,或者同时出现特异性扩增带与非特异性扩增带。非特异性条带的出现,其原因:一是引物

16SrDNA 实验原理

一、实验原理 随着分子生物学的迅速发展,细菌的分类鉴定从传统的表型、生理生化分类进入到各种基因型分类水平,如(G+C)mol%、DNA杂交、rDNA指纹图、质粒图谱和16S rDNA序列分析等。 细菌中包括有三种核糖体RNA,分别为5S rRNA、16S rRNA、23S rRNA,rRNA基因由保守区和可变区组成。16S rRNA对应于基因组DNA上的一段基因序列称为16S rDNA。5S rRNA虽易分析,但核苷酸太少,仅几十bp,没有足够的遗传信息用于分类研究;23S rRNA含有的核苷酸数几乎是16S rRNA的两倍,分子量太大,分析较困难。而16S rRNA相对分子量在2kb左右,较为适合PCR 扩增,又具有保守性和存在的普遍性等特点,序列变化与进化距离相适应,序列分析的重现性极高,因此,现在一般普遍采用16S rRNA作为序列分析对象对微生物进行测序分析。 16SrRNA的编码基因是16SrDNA,但是要直接将16SrRNA提取出来很困难,因为易被广泛存在的RNase降解,因而利用16S rDNA鉴定细菌,其技术路线如下: PCR实验原理

即聚合酶链式反应,是指在DNA聚合酶催化下,以母链DNA为模板,以特定引物为延伸起点,通过变性、退火、延伸等步骤,体外复制出与母链模板DNA互补的子链DNA的过程。是一项DNA体外合成放大技术,能快速特异地在体外扩增任何目的DNA。 二、主要器具及试剂 PCR、电泳系统、DNA提取体系、Taq Polymerase、DNA Marker,溶菌酶、dNTP和E.coli JM109感受态细胞、pMD18-T Vector、琼脂糖、SDS裂解缓冲液、50×TAE电泳缓冲液贮存液、1×TE(pH 8.0) 三、操作方法 1. 细菌基因组总DNA的提取 接种纯化的菌株于LB液体培养基中,180 r/min,37 ℃培养过夜,按以下的方法提取细菌基因组总DNA。 (1)菌体收集:取1.5 mL新鲜的菌液于EP管中,12000 r/min离心30 s,弃净上清,收集菌体。 (2)辅助裂解:加100 μg/mL溶菌酶50 μL,37 ℃处理30min。 (3)裂解:向每管加入200 mL预冷的SDS裂解缓冲液,用吸管头迅速强烈抽吸以悬浮和裂解细菌细胞。 (4)向每管加入66 μL 5 mol/L NaCl,充分混匀后,12000 r/min离心10 min,除去蛋白质复合物及细胞壁等残渣。 (5)将上清转移到新EP管中,加入等体积的Tris-饱和酚,充分混匀,12000 r/min离心3 min,进一步沉淀蛋白质。 (6)取离心后的水层,加等体积的氯仿/异戊醇(体积比24:1),充分混匀后,12000 r/min离心3 min,去除苯酚。 (7)小心取上清,用预冷2倍体积的无水乙醇沉淀DNA,13000 r/min离心15 min,弃上清。 (8)用400 μL75%的乙醇洗涤沉淀2次。 (9)室温干燥后,用40 μL 1×TE溶解DNA。 (10)1.0%琼脂糖凝胶电泳检测基因组DNA。 (11)提取的基因组总DNA-40 ℃冰箱保存备用。

16SrDNA的提取&鉴定

用16S rDNA方法鉴定细菌种属 一、实验目的 1. 掌握16S rDNA对细菌进行分类的原理及方法; 2. 掌握DNA提取、PCR原理及方法、DNA片段回收等实验操作。 二、实验原理 随着分子生物学的迅速发展,细菌的分类鉴定从传统的表型、生理生化分类进入到各种基因型分类水平,如(G+C)mol%、DNA杂交、rDNA指纹图、质粒图谱和16S rDNA序列分析等。 细菌中包括有三种核糖体RNA,分别为5S rRNA、16S rRNA、23S rRNA,rRNA基因由保守区和可变区组成。16S rRNA对应于基因组DNA上的一段基因序列称为16S rDNA。5S rRNA虽易分析,但核苷酸太少,没有足够的遗传信息用于分类研究;23S rRNA含有的核苷酸数几乎是16S rRNA的两倍,分析较困难。而16S rRNA相对分子量适中,又具有保守性和存在的普遍性等特点,序列变化与进化距离相适应,序列分析的重现性极高,因此,现在一般普遍采用16S rRNA作为序列分析对象对微生物进行测序分析。 利用16S rDNA鉴定细菌的技术路线: PCR的基本原理:必须已知部分序列设计出引物,10-30bp。

以此类推,呈几何级增长。一般进行25-35个扩增循环 DNA可扩增106~109倍。 三、实验步骤 (一)细菌基因组DNA提取 技术路线: 具体步骤: 1. 挑单菌落接种到10 mL LB培养基中37℃振荡过夜培养。(前期由老师完成) 2. 取2 mL培养液到2 mL Eppendorf管中,8000 rpm离心2分钟后倒掉上清液。 3. 再往同一离心管中2 mL培养液到2 mL Eppendorf管中,8000 rpm离心2分钟后倒掉上清液。 4. 加入200 μL 缓冲液GA,充分悬浮、混匀,将菌体彻底悬浮。 5. 再加入20 μL Protein K,混匀,55℃温育10分钟。(55℃为酶最适温度) 6. 加入220 μL缓冲液GB,混匀后,55℃温育10分钟。(实为50-60℃之间) 7. 加入220 μL 无水乙醇(降低体系粘稠度),充分混匀。将上清(挑去其中絮状杂质,少部分,会产生气泡,除不去))小心转入UNIQ-10柱(羟基纤维素膜,特异吸附核酸,因为吸附有限,所以损失核酸)中。13000 rpm(离心机最高设定实为10000rpm)离心5分钟,倒弃收集管内的液体。 6. 加入500 μL GD Solution,10000 rpm离心1分钟。

16SrDNA 实验原理

一、实验原理 随着分子生物学的迅速发展,细菌的分类鉴定从传统的表型、生理生化分类进入到各种基因型分类水平,如(G+C)mol%、DNA杂交、rDNA指纹图、质粒图谱与16S rDNA序列分析等。 细菌中包括有三种核糖体RNA,分别为5S rRNA、16S rRNA、23S rRNA,rRNA 基因由保守区与可变区组成。16S rRNA对应于基因组DNA上的一段基因序列称为16S rDNA。5S rRNA虽易分析,但核苷酸太少,仅几十bp,没有足够的遗传信息用于分类研究;23S rRNA含有的核苷酸数几乎就是16S rRNA的两倍,分子量太大,分析较困难。而16S rRNA相对分子量在2kb左右,较为适合PCR扩增,又具有保守性与存在的普遍性等特点,序列变化与进化距离相适应,序列分析的重现性极高,因此,现在一般普遍采用16S rRNA作为序列分析对象对微生物进行测序分析。 16SrRNA的编码基因就是16SrDNA,但就是要直接将16SrRNA提取出来很困难,因为易被广泛存在的RNase降解,因而利用16S rDNA鉴定细菌,其技术路线如下: PCR实验原理 即聚合酶链式反应,就是指在DNA聚合酶催化下,以母链DNA为模板,以特定

引物为延伸起点,通过变性、退火、延伸等步骤,体外复制出与母链模板DNA互补的子链DNA的过程。就是一项DNA体外合成放大技术,能快速特异地在体外扩增任何目的DNA。 二、主要器具及试剂 PCR、电泳系统、DNA提取体系、Taq Polymerase、DNA Marker,溶菌酶、dNTP与E、coli JM109感受态细胞、pMD18-T Vector、琼脂糖、SDS裂解缓冲液、50×TAE电泳缓冲液贮存液、1×TE(pH 8、0) 三、操作方法 1、细菌基因组总DNA的提取 接种纯化的菌株于LB液体培养基中,180 r/min,37 ℃培养过夜,按以下的方法提取细菌基因组总DNA。 (1)菌体收集:取1、5 mL新鲜的菌液于EP管中,12000 r/min离心30 s,弃净上清,收集菌体。 (2)辅助裂解:加100 μg/mL溶菌酶50 μL,37 ℃处理30min。 (3)裂解:向每管加入200 mL预冷的SDS裂解缓冲液,用吸管头迅速强烈抽吸以悬浮与裂解细菌细胞。 (4)向每管加入66 μL 5 mol/L NaCl,充分混匀后,12000 r/min离心10 min,除去蛋白质复合物及细胞壁等残渣。 (5)将上清转移到新EP管中,加入等体积的Tris-饱与酚,充分混匀,12000 r/min 离心3 min,进一步沉淀蛋白质。 (6)取离心后的水层,加等体积的氯仿/异戊醇(体积比24:1),充分混匀后,12000 r/min离心3 min,去除苯酚。 (7)小心取上清,用预冷2倍体积的无水乙醇沉淀DNA,13000 r/min离心15 min,弃上清。 (8)用400 μL75%的乙醇洗涤沉淀2次。 (9)室温干燥后,用40 μL 1×TE溶解DNA。 (10)1、0%琼脂糖凝胶电泳检测基因组DNA。 (11)提取的基因组总DNA-40 ℃冰箱保存备用。 2、PCR扩增细菌的16S rDNA

16SrDNA序列在微生物的分类鉴定上的应用

16SrDNA序列在微生物的分类鉴定上的应用 摘要 随着生物技术的迅速发展,16SrDNA分析技术在微生物分类鉴定及分子检测中得到广泛应用。根据16SrDNA的保守域和高变域,可以进行种属的鉴定。16SrDNA分析技术克服了传统生物培养法的限制,操作方便,检测快,准确度高且灵敏度高,已被广泛应用到菌种鉴定、群落对比分析、群落中系统发育及种群多样性的评估,是一种客观且可信度高的分类方法。 关键词 16SrDNA 微生物分类鉴定 传统的微生物分类是根据菌落的形态特征和生理生化特性,对菌种进行纯培养分离,然后从形态学、生理生化反应特征及免疫学特性加以鉴定。但近几十年来,传统微生物分类鉴定得到了巨大的革新,许多新技术和方法在微生物分类中得到广泛应用,使微生物分类鉴定从一般表型特征的鉴定,深化到遗传特性的鉴定。 1.微生物形态比较分类法的局限性 1.1 不能正确反映微生物形态 由于微生物菌群在进行纯培养时,不可避免地会造成菌株的富集或衰减,人为地改变了原始菌群的微生物生态构成,对研究结果造成了较大的偏差①。这样在应用上就只能局限于对简单环境下的微生物的研究,而对复杂环境下的微生物不能加以有效分析,严重影响了微生物基因组的研究。 1.2微生物资源大量丢失 许多研究研究表明,在自然环境中有相当多的菌种(约90%~99%)用纯培养方法无法培养出来。同时,纯培养分离方法采用配制简单的营养基质和固定的培养温度,忽略了气候变化和生物相互作用的影响,这种人工环境与原生境的偏差使得可培养的种类大大减少,仅占环境微生物总数的0.1%~1%②。因此,由于绝大多数微生物无法培养得到,丢失了大量微生物资源,对微生物多样性的认识较片面。 1.3不能保证分类的准确性和科学性 对形态特征、理化特征、菌体某些化学成分等特征完全相同时,可较准确的分类,但是对某特性中有某些差异的,往往难以判断。而且,方法繁琐耗时。 2. 16SrDNA及其鉴定依据 2.1 16SrDNA简介 16SrDNA是编码原核生物核糖体小亚基rRNA(16SrRNA)的基因,长度约1500bp,是细菌分类学研究中最常用、最有用的“分子钟”, 其序列包含10 个可变区( variable region ) 和与之相间的11 个恒定区( constantregion) ,可变区因细菌而异,且变异程度与细菌的系统发育密切相关。。Woese等③与Olsen等④基于16SrDNA的分析构建了现已被公认的全生命系统进化树。越来越多的细菌依据16SrDNA 被正确分类或重分类,尤其是许多环境中的细菌⑤、⑥ ,如Funke等将棒杆菌依赖细胞毒性1组及类似棒杆菌重新确定为放线菌的一个新种,即钮氏放线菌种, Bennasar等通过比较14株施氏假单胞菌的7个基因型(DNA2DNA杂交同源

测序常见问题解答

1.为什么需要新鲜的菌液? 首先,新鲜的菌液易于培养,可以获得更多的DNA,同时最大限度地保证菌种的纯度. 2.如何提供菌液? 如果您提供新鲜菌液,用封口膜封口以免泄漏;也可以将培养好的4—5ml菌液沉淀下来,倒去上清以方便邮寄。同时邮寄时最好用盒子以免邮寄过程中压破. 3.如何制作穿刺菌? 用灭菌过1.5ml或2ml离心管加入LB琼脂(7g/L)斜面凝固,用接种针挑取分散良好的单菌落穿过琼脂直达管底,不完全盖紧管盖适当温度培养过夜,然后盖紧盖子加封口膜,室温或4度保存。 4.PCR产物直接测序有什么要求? 1).扩增产物必须特异性扩增,条带单一.如果扩增产物中存在非特异性扩增产物,一般难以得到好的测序结果;.2)必须进行胶回收纯化;3)DNA纯度在16—2.0之间.浓度50ng/ul以上. 5.为什么PCR产物直接测序必须进行Agarose胶纯化? 如果不进行胶纯化而直接用试剂盒回收,经常会导致测序出现双峰甚至乱峰。这主要是非特异性扩增产物或者原来的PCR引物去除不干净所导致。大多所谓的PCR"纯化试剂盒"实际上只是回收产物而不能起到纯化的作用的。对于非特异性扩增产物肯定无法去除,而且通常他们不能够完全去除所有的PCR引物,这会造成残留的引物在测序反应过程中参与反应而导致乱峰。 6.如何进行PCR产物纯化? PCR产物首先必须用Agarose胶电泳,将特异扩增的条带切割下,然后纯化。使用凝胶回收试剂盒回收.产物用ddH2O溶解。 7.PCR产物直接测序的好处? A) PCR产物直接测序可以反映模板的真实情况. B) 省去克隆的实验费用和时间. C) PCR产物测序正确的片段进行下一步克隆实验使结果更有保障. D) 混合模板进行PCR的产物直接测序可以发现其中的点突变. 8.对用于测序的质粒DNA的要求有哪些? 对测序模板DNA的一般要求:1).DNA纯度要求高,1.6—2.0之间,不能有混合模板,也不能含有RNA,染色体DNA,蛋白质等;2).溶于ddH2O中,溶液不能含杂质,如盐类,或EDTA等螯合剂,将干扰测序反应正常进行。 9.如何鉴定质粒DNA浓度和纯度? 我们使用水平琼脂糖凝胶电泳,并在胶中加入0.5ug/ml的EB(电泳缓冲液中不必加EB),加一个已知浓度的标准样品。电泳结束以后在紫外灯下比较亮度,判断浓度和纯度。此方法可以更直接、准确地判断样品中是否含有染色体DNA、RNA等,也可以鉴别抽提的质粒DNA的不同构型。 质粒DNA的3种构型是指在抽提质粒DNA过程中,由于各种原因的影响,使得超螺旋的共价闭合环状结构的质粒(SC)的一条链断裂,变成开环状(OC)分子,如果两条链发生断裂,就变成为线状(L)分子。这3种分子有不同的迁移率,通常,超螺旋型(SC)迁移速度最快,其次为线状(L)分子,最慢为开环状(OC)分子。使用紫外分光光度计检测,或者用溴乙锭-标准浓度DNA比较法只能检测抽提到的产物中的浓度,甚至由

DNA测序结果中常见的几个问题

D N A测序结果中常见 的几个问题 公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

1 、为什么开始一段序列的信号很杂乱,几乎难以辨别 这主要是因为残存的染料单体造成的干扰峰所致,该干扰峰和正常序列峰重叠在一起;另外,测序电泳开始阶段电压有一个稳定期,所以经常有20-50 bp 的紧接着引物的片段读不清楚,有时甚至更长。 2 、为什么在序列的末端容易产生 N 值,峰图较杂 由于测序反应的信号是逐渐减弱的,所以序列末端的信号会很弱,峰图自然就会杂乱,加上测序胶的分辨率问题,如果碱基分不开,就会产生N 值,正常情况下ABI377测序仪能正确读出500个碱基的有效序列。 3 、测序结果怎么找不到我的引物序列 如果找不到测序所用的引物序列。这是正常的,因为引物本身是不被标记的,所以在测序报告中是找不到的;如果找不到克隆片段中的扩增引物,可能是您克隆的酶切位点距离您的测序引物太近,开始一段序列很杂,几乎难以辨别,有可能看不清或看不到扩增引物;另外插入片段的插入方向如果是反的,此时需找引物的互补序列。 4 、测序结果怎么看不到我克隆的酶切位点 可能的原因同上,您克隆的酶切位点距离您的测序引物太近,开始一段序列很杂,几乎难以辨别,有可能看不清或看不到酶切位点。通常我们会尽量选择距离酶切位点远点的引物,当然,若是样品出现意外原因,如空载、载体自连等,克隆的酶切位点也是看不到的。 5 、你测出的结果与我预想的不一致,给我的结果与我需要的序列有差距,这是怎么回事

首先,我们会核实给您的测序结果是否对应您的样品编号,如果对应的是您的样品,由于不知您的实验背景,测得的序列是否与您预想的结果一致我们无法判断,我们能做到的是检查发送给您的测序结果和您提供来的样品是否一致。 6 、序列图为什么会有背景噪音(杂带)是否会影响测序结果 序列图的背景杂带是由荧光染料引起,如果太强会影响测序结果,要看信噪比,我们给的结果信噪比大都在98%以上。 7 、测序结果为什么与标准序列有差别 原因可能有:样品个体之间的差别、测序准确率的问题,自动测序仪分析序列的准确并非100%,建议至少测一次双向,通过双向测序可以最大限度减少测序的错误。当然尽管我们有时做了最大努力,但还是保证不了和文献序列完全一致,但我们测序报告是客户样品序列的真实结果。 8 、 PCR 产物测序与克隆后测序序列为什么有差别 PCR 产物克隆到载体中进行测序,有两个方面可能序列有变化:首先,PCR 扩增过程中可能产生错配。将片段克隆到载体中也有可能发生突变;其次,测序的准确率并非100%。 9 、有杂合位点,但你们的报告上看不到杂合的信号! 如果在您认为应该出现杂合信号的位置上只出现单一的信号,那么可能是您样品突变的模板与正常的模板的比例没达到可以测出的浓度。测序反应的信号强度直接与模板的量有关,如果突变的模板所占的比例很低,仪器会自动将它作为背景信号了,很难检测出来。只有当测序反应体系中正常的和突变的模板量比较接近时,才能较可靠地检测到突变体

16SrDNA鉴定菌株的标准操作规程

16S r D N A鉴定菌株的标准操作规程

16SrDNA鉴定菌株的标准操作规程 1.适用范围 本标准规定了通过特定引物对细菌的16SrDNA片段进行PCR扩增,然后对扩增片段进行序列分析比对,快速获得细菌种属信息的操作规程。 本标准适用于未知细菌的快速种属分析,以及为细菌的生化鉴定提供指导信息。 2.方法和原理 16SrDNA鉴定是指用利用细菌16SrDNA序列测序的方法对细菌进行种属鉴定。包括细菌基因组DNA提取、16SrDNA特异引物PCR扩增、扩增产物纯化、DNA测序、序列比对等步骤。是一种快速获得细菌种属信息的方法。 细菌rRNA(核糖体RNA)按沉降系数分为3种,分别为5S、16S和23S rRNA。16S rDNA是细菌染色体上编码16S rRNA相对应的DNA序列。16S rDNA由于大小适中,约1.5Kb左右,既能体现不同菌属之间的差异,又能利用测序技术较容易地得到其序列,故被细菌学家和分类学家接受。 在 16S rRNA 分子中,可变区序列因细菌不同而异,恒定区序列基本保守,所以可利用恒定区序列设计引物,将16S rDNA片段扩增出来,利用可变区序列的差异来对不同菌属、菌种的细菌进行分类鉴定。 16SrDNA序列的前500bp序列变化较大,包含有丰富的细菌种属的特异性信息,所以对于绝大多数菌株来说,只需要第一对引物测前500bp序列即可鉴别出细菌的菌属。针对科学论文发表或是前500bp无法鉴别的情况,需要进行16SrDNA的全序列扩增和测序,得到较为全面的16SrDNA的序列信息。

由于测序仪一次反应最多只能测出700bp的有效序列,为了结果的可靠性,通常将16SrDNA全长序列分成3部分进行测序。 3.设备和材料 3.1器材 移液器(1000μL、200μL 、100μL、10μL);涡旋振荡器;Eppendorf MixMate;离心机;水浴锅;电泳仪;制冰机;低温冰箱;PCR仪:Veriti 96 Well Thermal Cycler;凝胶成像仪:VersaDoc MP 4000;基因分析仪: AB3500、AB3130 3.2试剂 DNA快速提取试剂:PrepMan Ultra;琼脂糖;PCR试剂:Taq酶,10×Taq Buffer(Mg2+),dNTPs,ddH2O等; ExoSAP-IT;测序试剂:BigDye Terminator,5×Sequencing Buffer;BigDye XTerminator Purification Kit; 3.3耗材 移液器吸头:1000μL、200μL、10μL;离心管:1.5mL、200μL;Micro Amp TM Optical 96-Well Reaction Plate;Micro Amp TM Optical Adhesive Film;

16SrDNA 实验原理

一、 实验原理 随着分子生物学的迅速发展,细菌的分类鉴定从传统的表型、生理生化分类进入到各种基因型分类水平,如(G+C)mol%、DNA 杂交、rDNA 指纹图、质粒图谱和16SrDNA 序列分析等。 细菌中包括有三种核糖体RNA ,分别为5SrRNA 、16SrRNA 、23SrRNA ,rRNA 基因由保守区和可变区组成。16SrRNA 对应于基因组DNA 上的一段基因序列称为16SrDNA 。5SrRNA 虽易分析,但核苷酸太少,仅几十bp ,没有足够的遗传信息用于分类研究;23SrRNA 含有的核苷酸数几乎是16SrRNA 的两倍,分子量太大,分析较困难。而16SrRNA 相对分子量在2kb 左右,较为适合PCR 扩增,又具有保守性和存在的普遍性等特点,序列变化与进化距离相适应,序列分析的重现性极高,因此,现在一般普遍采用16SrRNA 作为序列分析对象对微生物进行测序分析。 16SrRNA 的编码基因是16SrDNA ,但是要直接将16SrRNA 提取出来很困难,因为易被广泛存在的RNase 降解,因而利用16SrDNA 鉴定细菌,其技术路线如下: DNA 为模板,以特定引物为延伸起点,通过变性、退火、延伸等步骤,体外复制出与母链模板DNA 互补的子链DNA 的过程。是一项DNA 体外合成放大技术,能快速特异地在体外扩增任何目的DNA 。 二、主要器具及试剂

PCR、电泳系统、DNA提取体系、TaqPolymerase、DNAMarker,溶菌酶、dNTP和感受态细胞、pMD18-TVector、琼脂糖、SDS裂解缓冲液、50×TAE电泳缓冲液贮存液、1×TE() 三、操作方法 1.细菌基因组总DNA的提取 接种纯化的菌株于LB液体培养基中,180r/min,37 ℃培养过夜,按以下的方法提取细菌基因组总DNA。 (1)菌体收集:取新鲜的菌液于EP管中,12000r/min离心30s,弃净上清,收集菌体。 (2)辅助裂解:加100μg/mL溶菌酶50μL,37 ℃处理30min。 (3)裂解:向每管加入200mL预冷的SDS裂解缓冲液,用吸管头迅速强烈抽吸以悬浮和裂解细菌细胞。 (4)向每管加入66μL5mol/LNaCl,充分混匀后,12000r/min离心10min,除去蛋白质复合物及细胞壁等残渣。 (5)将上清转移到新EP管中,加入等体积的Tris-饱和酚,充分混匀,12000r/min离心3min,进一步沉淀蛋白质。 (6)取离心后的水层,加等体积的氯仿/异戊醇(体积比24:1),充分混匀后,12000r/min离心3min,去除苯酚。 (7)小心取上清,用预冷2倍体积的无水乙醇沉淀DNA,13000r/min离心15min,弃上清。 (8)用400μL75%的乙醇洗涤沉淀2次。 (9)室温干燥后,用40μL1×TE溶解DNA。 (10)%琼脂糖凝胶电泳检测基因组DNA。 (11)提取的基因组总DNA-40 ℃冰箱保存备用。 扩增细菌的16SrDNA (1)16SrDNA的PCR引物:采用细菌的通用引物27F和1492R (2)PCR反应体系为(20μL):灭菌蒸馏水μL, 10×buffer2μL, 10mmol/μL,

16SrDNA鉴定菌株的标准操作规程

16SrDNA鉴定菌株的标准操作规程 1.适用范围 本标准规定了通过特定引物对细菌的16SrDNA片段进行PCR扩增,然后对扩增片段进行序列分析比对,快速获得细菌种属信息的操作规程。 本标准适用于未知细菌的快速种属分析,以及为细菌的生化鉴定提供指导信息。 2.方法和原理 16SrDNA鉴定是指用利用细菌16SrDNA序列测序的方法对细菌进行种属鉴定。包括细菌基因组DNA提取、16SrDNA特异引物PCR扩增、扩增产物纯化、DNA 测序、序列比对等步骤。是一种快速获得细菌种属信息的方法。 细菌rRNA(核糖体RNA)按沉降系数分为3种,分别为5S、16S和23S rRNA。16S rDNA是细菌染色体上编码16S rRNA相对应的DNA序列。16S rDNA由于大小适中,约1.5Kb左右,既能体现不同菌属之间的差异,又能利用测序技术较容易地得到其序列,故被细菌学家和分类学家接受。 在16S rRNA 分子中,可变区序列因细菌不同而异,恒定区序列基本保守,所以可利用恒定区序列设计引物,将16S rDNA片段扩增出来,利用可变区序列的差异来对不同菌属、菌种的细菌进行分类鉴定。 16SrDNA序列的前500bp序列变化较大,包含有丰富的细菌种属的特异性信息,所以对于绝大多数菌株来说,只需要第一对引物测前500bp序列即可鉴别出细菌的菌属。针对科学论文发表或是前500bp无法鉴别的情况,需要进行16SrDNA 的全序列扩增和测序,得到较为全面的16SrDNA的序列信息。 由于测序仪一次反应最多只能测出700bp的有效序列,为了结果的可靠性,通常将16SrDNA全长序列分成3部分进行测序。 16SrDNA 27F519R 357F1115R 926F1492R 3对引物正反向测通后,拼接成1500bp左右的16SrDNA序列。 3.设备和材料 3.1器材 1 / 9 Eppendorf 100μL、10μL);涡旋振荡器;移液器(1000μL、200μL 、96 ;离心机;水浴锅;电泳仪;制冰机;低温冰箱;PCR仪:Veriti MixMateMP VersaDoc 凝胶成像仪:Well Thermal Cycler;AB3130 、;基因分析仪:AB35004000试剂

测序过程常见问题分析与解答

测序过程常见问题分析与解答 1、DNA测序样品用什么溶液溶解比较好? 答:溶解DNA测序样品时,用灭菌蒸馏水溶解最好。DNA的测序反应也是Taq酶的聚合反应,需要一个最佳的酶反应条件。如果DNA用缓冲液溶解后,在进行了测序反应时,DNA溶液中的缓冲液组份会影响测序反应的体系条件,造成Taq酶的聚合性能下降。有很多客户在溶解DNA测序样品时使用TE Buffer。的确,TE Buffer能增加DNA样品保存期间的稳定性,但TE Buffer对DNA测序反应有影响,根据我们的经验,我们还是推荐使用灭菌蒸馏水来溶解DNA测序样品。 2、提供DNA测序样品时,提供何种形态的比较好? 答:我们推荐客户提供菌体,由我们来提取质粒,这样DNA样品比较稳定。如果您要以提供DNA样品,我们也很欢迎,但一定要注意样品纯度和数量。提供的测序样品为PCR产物时,特别需要注意DNA的纯度和数量。PCR产物应该进行切胶回收,否则无法得到良好的测序效果。有关DNA测序样品的详细情况请严格参照“测序模板的要求”部分的说明。 3、提供的测序样品为菌体时,以什么形态提供为好? 答:一般菌体的形态有:平板培养菌、穿刺培养菌,甘油保存菌或新鲜菌液等。我们提倡寄送穿刺培养菌或新鲜菌液。平板培养菌运送特别不方便,我们收到的一些平板培养菌的培养皿在运送过程中常常已经破碎,面目全非,需要用户重新寄样。这样既误时间,又浪费客户的样品。一旦是客户非常重要的样品时,其后果更不可设想。而甘油保存菌则容易污染。制作穿刺菌时,可在1.5ml的Tube管中加入琼脂培养基,把菌体用牙签穿刺于琼脂培养基(固体)中,37℃培养一个晚上后便可使用。穿刺培养菌在4℃下可保存数个月,并且不容易污染,便于运送。 4、与测序引物有关的问题

用16S rDNA方法鉴定细菌种属

用16S rDNA 方法鉴定细菌种属 一、实验目的 1. 掌握16S rDNA 对细菌进行分类的原理及方法; 2. 掌握DNA 提取、PCR 原理及方法、DNA 片段回收等实验操作。 二、实验原理 细菌rRNA (核糖体RNA )按沉降系数分为3种,分别为5S 、16S 和23S rRNA 。16S rDNA 是细菌染色体上编码16S rRNA 相对应的DNA 序列,存在于所有细菌染色体基因中。 16SrDNA 鉴定是指用利用细菌16SrDNA 序列测序的方法对细菌进行种属鉴定。包括细菌基因组DNA 提取、16SrDNA 特异引物PCR 扩增、扩增产物纯化、DNA 测序、序列比对等步骤。是一种快速获得细菌种属信息的方法。 16S rDNA 是细菌的系统分类研究中最有用的和最常用的分子钟,其种类少,含量大(约占细菌RNA 含量的80%),分子大小适中,存在于所有的生物中,其进化具有良好的时钟性质,在结构与功能上具有高度的保守性,素有“细菌化石”之称。在大多数原核生物中rDNA 都具有多个拷贝,5S 、16S 、23S rDNA 的拷贝数相同。16S rDNA 由于大小适中,约1.5Kb 左右,既能体现不同菌属之间的差异,又能利用测序技术较容易地得到其序列,故被细菌学家和分类学家接受。 16SrRNA 的编码基因是16SrDNA ,但是要直接将16SrRNA 提取出来很困难,因为易被广泛存在的RNase 降解,因而利用16S rDNA 鉴定细菌,其技术路线如下: 细菌基因组的提取: PCR 的基本原理 : PCR 技术的基本原理 类似于DNA 的天然复制过程,其特异性依赖于与靶序列两端互补的 寡核苷酸引物。PCR 由变性--退火--延伸三个基本反应步骤构成: ①模板DNA 的变性:模板DNA 经加热至93℃左右一定时间后,使模板DNA 双链或经PCR 扩增形成的双链DNA 解离,使之成为单链,以便它与引物结合,为下轮反应作准备; ②模板DNA 与引物的退火(复性):模板DNA 经加热变性成单链后,温度降至55℃左右,引 物与模板DNA 单链的互补序列配对结合;

DNA测序常见问题解析

DNA测序常见问题解析 一.引物问题 Q:为什么我在测序报告上找不到我的引物序列? A:这里分以下几种情况: 1. PCR引物作为测序引物进行测序时,所测序列是从引物3'末端后第一个碱基开始的,而且刚刚开始的碱基由于在毛细管电泳中不能很好地分离而导致准确性下降,所以找不到您的引物序列。 (1)对于较短的PCR产物(<600 bp),可以用另一端的引物进行测序,从另一端测序可以一直测到序列的末端,就可以在序列的末端得到您的引物的反向互补序列。 (2)对于较长的序列,一个测序反应测不到头,因此就只能将您的PCR产物片段克隆到适当的载体中,用载体上的通用引物进行测序。由于载体上的通用引物与您的插入序列之间还有一段距离,因此就可以得到您的完整的引物序列。(3)由于在测序的起始端总会有一些碱基无法准确读出,因此,您如果想得到您的PCR产物的完整序列,最好克隆后进行测序。 2. 有时质粒做模板进行测序时,由于某些原因,质粒上没有插入外源片段,为空载体,所测的序列完全为载体序列,此时也找不到引物序列。 3. 找不到克隆片段的扩增引物。发生这种情况原因有2个: (1)您在构建质粒时采用的工具酶的酶切位点距离您的测序引物太近,由于荧光染料的干扰在序列开始的部分会不十分准确。比如pBluescript Ⅱ KS这个质粒如果采用Sac I做工具酶,采用T7引物测序: 那么从T7引物末端到Sac I的酶切位点只有6个bp,这样酶切位点后的扩增引物序列在测序报告上很可能不完整。 解决的办法是采用M13 Forward引物来测序,这样可以保证Sac I的位点和之后的引物序列都可以完整的出现在报告中。 (2)您的插入片段的插入方向是反的,这时您不妨找一下您引物的反向互补序列。或者您插入的片段可能不是您的目的片段,而是由于非特异性扩增出来的片段,还有可能您送过来的样品被污染。 Q:测序发现引物有突变或缺失是什么原因? A:测序发现引物区有突变,主要考虑三个方面的原因:测序,PCR/克隆过程,引物本身。 1. 测序引入的错误 对于PCR产物进行的克隆而言,无论是TA克隆或酶切克隆,引物区往往位于载体两端,如果用载体引物进行测序,此时克隆引物区离测序引物区的距离比较近,处于测序起始阶段或正好处于测序染料峰所在的区域内(90-120 bp),这两个区域也是最容易产生测序错误的地方。因此,首先要看原始的测序峰图在引物区内是否清晰,碱基的错误或缺失是否是由于峰图不清楚而导致的计算机误读。 2. PCR/克隆过程

16s rDNA 经典材料

Normally, we used following primers to amplify bacterial 16S rRNA genes (27F and 1492R pair) and sequencing them (using other primers). The primer sequencs are all listed in the reference: - Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, Chichester, pp 115-175 27F 5' AGA GTT TGA TCM TGG CTC AG 3' PCR and sequencing, most eubacteria 357F 5' CTC CTA CGG GAG GCA GCA G 3' Most eubacteria 530F 5' GTG CCA GCM GCC GCG G 3' Most eubacteria and archaebacteria 926F 5' AAA CTY AAA KGA A TT GAC GG 3' Most eubacteria and archaebacteria 1114F 5' GCA ACG AGC GCA ACC C 3' Most eubacteria 342R 5' CTG CTG CSY CCC GTA G 3' Most eubacteria 519R 5' GWA TTA CCG CGG CKG CTG 3' Most eubacteria and archaebacteria 907R 5' CCG TCA A TT CMT TTR AGT TT 3' Most eubacteria and archaebacteria 1100R 5' GGG TTG CGC TCG TTG 3' Most eubacteria 1492R 5' TAC GGY TAC CTT GTT ACG ACT T 3' PCR and sequencing, most eubacteria 1525R 5' AAG GAG GTG WTC CAR CC 3' PCR and sequencing, most eubacteria M=C:A, Y=C:T. K=G:T, R=A:G, S=G:C. W=A:T; all 1:1 Any primer's reverse complement sequence is its revers prime. For example: 519R 5' GWA TTA CCG CGG CKG CTG 3' then 519F 3' CWT AAT GGC GCC GKC GAC 5' Hope this would useful to you and answered your question. And hope this would useful to many other people. Good LUCK, guys! 以16S rRNA基因为靶基因设计或比较通用引物,用blast效果不太好。因为该基因含有很多高度保守区(9-10),且在很多细菌中都是多拷贝的,文献或设计的primers往往都能扩增出几乎所有的真细菌,因此,blast时会得到很多同源序列,尽管如此,还是有更多的序列或细菌被省略了。 我设计或验证该UP时,是有目的地根据实验需要,从genebank中确定一些常见细菌的属,每个属选几个菌种,每个菌种选2-3个菌株,但一定要包括标准株(可参考文献),然后用MEGLINE进行序列,并与UP进行比较。设计完成后在拿UP与随意查的其他细菌进行比较验证。尽管需要分析的序列可能达近百个,可现在的计算机内存和速度,及宽带都很大,应该是很快的。 细菌rRNA按沉降系数分为3种,分别为5S、16S和23S rRNA。16S rDNA是细菌染色体上编码16S rRNA相对应的DNA序列,存在于所有细菌染色体基因中,它的内部结构由保守区及可变区两部分组成。其分子内存在的可变区,显示出细菌不同分类等级水平上的特异性。 16S rRNA(16S rDNA) 寡核苷酸的序列分析 首先,16S rRNA 普遍存在于原核生物(真核生物中其同源分子是18S rRNA )中。rRNA 参与生物蛋白质的合成过程,其功能是任何生物都必不可少的,而且在生物进化的漫长历程中保持不变,可看作为生物演变的时间钟。其次,在16S rRNA 分子中,既含有高度保守的序列区域,又有中度保守和高度变化的序列区域,因而它适用于进化距离不同的各类生物

相关文档