文档库 最新最全的文档下载
当前位置:文档库 › 水力压裂对地下水的影响并不像你想的那样

水力压裂对地下水的影响并不像你想的那样

水力压裂对地下水的影响并不像你想的那样
水力压裂对地下水的影响并不像你想的那样

为了使天然气从地下页岩层中生产出来,我们向井中注入大量的水、沙子和一些化学物质,进行压裂从而释放页岩储层中的气体。

今年早些时候,美国环境保护局(US EPA)公布了一项令人期待已久关于水力压裂的评估,并直接指出“没有足够数据能证明水力压裂对饮用水资源质量产生影响。”

我们通过在广泛的区域收集地球化学数据,并对其进行研究来解决这个问题。水力压裂添加剂被认定包含近1000种有机化学品,但目前还不清楚它们是否进入了饮用水供应系统。

可能有许多潜在威胁地下含水层的通道,其中包括:损坏的天然气井套管、渗漏的废弃液体池、地下燃料储存罐、深层页岩运移(约1英里深的岩层),以及与水力压裂活动相关的表面泄漏。通过研究,我们确定可能的接触途径是天然气井场作业面,而不是从地下深处运移的。

这些研究结果还是很鼓舞人心的,毕竟化学品的表面泄漏可以有针对性地进行快速清理,并且污染地区的居民可以通过接入点水处理技术进行水处理。换句话说,表面比地下处理更容易得到治理和控制。此外,在该研究中检测到的有机化学物质类型通过家庭中含有木炭或活性炭的水过滤系统就能够轻松的处理掉。

由于国内矿物燃料的生产往往需要租用居住区工业作业的场地,所以就像任何工程施工活动一样,它也存在影响内在环境和公众健康的事故风险。

页岩气的勘探增加了美国区域内该类型的风险,但对人为事故和机器故障的防范机制将减少对当地的影响。此外,较好的事故报告和环境监测能帮助当地市政部门与天然气开采专家合作,确保居民的饮用水安全。

流体证据

水力压裂用水模式和废水回收处理

在这项研究中,我们研究了与水力压裂相关的超过50种有机化合物,以此来解决这一课题中的研究差距问题。

地下水样品中的有机化合物水平(与柴油沸点类似的疏水性化学物质)相对较低(小于20份/亿)。然而,从统计角度来看,他们与该区域距离最近的页岩气井密切相关,在距页岩气井一公里的范围内其含量显著偏高。

这些结果与烃类气体(例如甲烷、乙烷和丙烷)在同一区域的研究结果相类似。值得强调的是,文字记载显示违反环境、健康和安全条例的页岩气井都与含较高水平柴油类有机物的地下水息息相关。

此外,作为公认水力压裂液添加剂的双(2-乙基己基)邻苯二甲酸酯在样品的子集中也进行了检测。这种化学物质被用于许多工业材料和实践中,但它并没有在大范围的样品或有代表性的天然水(即研究领域中的天然泉水)中被检测出来。

流体是否会向上运移?

装满废水的废水池

我们对于水力压裂开发天然气对环境和公众健康造成后果的一个常见问题是,是否流体可以从页岩通过地质断层和裂隙到达饮用水含水层?即水力压裂流体是否可以通过裂缝向

上运移从而污染饮用水源?

假设向上迁移可以将压裂过程中使用的近1000种公开的有机工业化学品运移至浅层地下水。但迄今为止,这仍是未经证实和公开的。

我们研究中所采的地下水样中检测出的有机化合物并没有显示出压裂液从页岩至饮用水含水层的运移结果。

我们采用一系列分析过程对其进行了证实。例如,流体从深页岩层中运移应该含有大量独特的稀有气体和盐,但含有较高的柴油类有机物的地下水样中却不含有这些化学标记物。与此相反,地下水的化学性质表明地下水与地球表面接触相对较密切,而与盐含量无关。悬而未决的问题

我们的研究只是着重于在宾夕法尼亚州东北部的马塞勒斯页岩地区开发,需要注意的是,这项研究的结果可能无法适用于美国境内的所有页岩地层。由于当地地质的不同,对水力压裂页岩的空间和时间分离也可能有很大的不同。

同样,含水层和页岩地层之间的垂直距离,以及该区域的石油和天然气开发历史,这些都可以影响深层地下流体运输到浅地下水层的时间。因此,连续的监控将为可能在时间和空间产生的潜在风险提供更好的解释。

最新压裂技术现状及发展趋势资料

压裂技术现状及发展趋势 (长城钻探工程技术公司) 在近年油气探明储量中,低渗透储量所占比例上升速度在逐年加大。低渗透油气藏渗透率、孔隙度低,非均质性强,绝大多数油气井必须实施压裂增产措施后方见产能,压裂增产技术在低渗透油气藏开发中的作用日益明显。 1、压裂技术发展历程 自1947年美国Kansas的Houghton油田成功进行世界第一口井压裂试验以来,经过60多年的发展,压裂技术从工艺、压裂材料到压裂设备都得到快速的发展,已成为提高单井产量及改善油气田开发效果的重要手段。压裂从开始的单井小型压裂发展到目前的区块体积压裂,其发展经历了以下五个阶段[1]:(1)1947年-1970年:单井小型压裂。压裂设备大多为水泥车,压裂施工规模比较小,压裂以解除近井周围污染为主,在玉门等油田取得了较好的效果。 (2)1970年-1990年:中型压裂。通过引进千型压裂车组,压裂施工规模得到提高,形成长缝增大了储层改造体积,提高了低渗透油层的导流能力,这期间压裂技术推动了大港等油田的开发。 (3)1990年-1999年:整体压裂。压裂技术开始以油藏整体为单元,在低渗透油气藏形成了整体压裂技术,支撑剂和压裂液得到规模化应用,大幅度提高储层的导流能力,整体压裂技术在长庆等油田开发中发挥了巨大作用。 (4)1999年-2005年:开发压裂。考虑井距、井排与裂缝长度的关系,形成最优开发井网,从油藏系统出发,应用开发压裂技术进一步提高区块整体改造体积,在大庆、长庆等油田开始推广应用。 (5)2005年-今:广义的体积压裂。从过去的限流法压裂到现在的直井细分层压裂、水平井分段压裂,增大储层改造体积,提高了低渗透油气藏的开发效果。 2、压裂技术发展现状 经过五个阶段的发展,压裂技术日趋完善,形成了三维压裂设计软件和压裂井动态预测模型,研制出环保的清洁压裂液体系和低密度支撑剂体系,配备高性能、大功率的压裂车组,使压裂技术成为低渗透油气藏开发的重要手段之一。 2.1 压裂工艺和技术

水力压裂安全技术要求

水力压裂安全技术要求 SY/T6566-2003 国家经济贸易委员会2003-03-18批准 2003-08-01实施 前言 本标准由石油工业安全专业标准化技术委员会提出并归口。 本标准起草单位:吉林石油集团有限责任公司质量安全环保部、井下作业工程公司。 本标准主要起草人:宋泽明、宫长利、朱占华、毛杰民、付新冬、崔伟。 引言 水力压裂施工是油田开发、评价和增产的重要技术措施,也是一项风险较大的作业。由于压裂施工应用高压技术,野外作业,流动性大,涉及其它相关作业,经常接触石油、天然气等易燃易爆和其它有毒有害物质,易发生人员伤亡、环境污染等事故。为加强井下压裂施工安全管理,规范操作,搞好全过程施工作业,最大限度地避免发生事故,促进油田开发,提高经济效益,特制定本标准。 1 范围 本标准规定了水力压裂安全施工方法和技术要求。 本标准适用于水力压裂及相关施工作业。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB 150 钢制压力容器 SY 5727 井下作业井场用电安全要求 SY/T 5836 中深井压裂设计施工方法 SY 5858 石油企业工业动火安全规程 SY/T 6194 套管和油管 SY 6355 石油天然气生产专用安全标志 3 压裂选井和设计及施工队伍要求 3.1 压裂选井和设计应按SY/T 5836执行,并符合下列安全要求: a)套管升高短节组配与油层套管材质、壁厚相符; b)使用无毒或低毒物质; c)下井工具、连接方式应能保证正常压裂施工,并有利于压裂前后的其它作业; d)通往井场的道路能够保证施工车辆安全通行; e)场地满足施工布车要求。 3.2 压裂设计中应包括下列与安全有关的内容: a)存在可能影响压裂施工的问题; b)施工井场、施工车辆行驶路线说明及要求; c)地面流程连接、施工设备检查要求; d)试压、试挤要求; e)施工交接、检查要求;

水力压裂技术

第四章水力压裂技术 水力压裂是利用地面高压泵组,将高粘液体以大大超过地层吸收能力的排量注入井中, 在井底憋起高压,当此压力大于井壁附近的地应力和地层岩石抗张强度时,在井底附近地层 产生裂缝。继续注入带有支撑剂的携砂液,裂缝向前延伸并填以支撑剂,关井后裂缝闭合在 支撑剂上,从而在井底附近地层内形成具有一定几何尺寸和导流能力的填砂裂缝,使井达到 增产增注的目的。 水力压裂增产增注的原理主要是降低了井底附近地层中流体的渗流阻力和 改变了流体的渗流状态,使原来的径向流动改变为油层流向裂缝近似性的单向流动和裂缝与井筒间的单向流 动,消除了径向节流损失,大大降低了能量消耗。因而油气井产量或注水井注入量就会大幅 度提高。 第一节造缝机理 在水力压裂中,了解裂缝形成条件、裂缝的形态和方位等,对有效地发挥压裂在增产、 增注中的作用都是很重要的。在区块整体压裂改造和单井压裂设计中,了解裂缝的方位对确 定合理的井网方向和裂缝几何参数尤为重要,这是因为有利的裂缝方位和几何参数不仅可以 提高开采速度,而且还可以提高最终采收率。 造缝条件及裂缝的形态、方位等与井底附近地层的地应力及其分布、岩石的力学性质、压 裂液的渗滤性质及注入方式有密切关系。图4一l是压裂施工过程中井底压力随时间的变化曲 线。P是地层破裂压力,P是裂缝延伸压力,P是地层压力。SEF

压裂过程井底压力变化曲线图4一l —微缝高渗岩石致密岩石; ba—在致密地层内,当井底压力达到破裂压力P后,地层发生破裂(图4—1中的a点),F然后在较低的延伸压力P下,裂缝向前延伸。对高渗或微裂缝发育地层,压裂过程中无明E显的破裂显示,破裂压力与延伸压力相近(图4—1中的b点)。 一、油井应力状况 一般情况下,地层中的岩石处于压应力状态,作用在地下岩石某单元体上的应力为垂向 主应力σ和水平主应力σ(σ又可分为两个相互垂直的主应力σ,σ)。YHHxZ (一)地应力 作用在单元体上的垂向应力来自上覆地层的岩石质量,其大小可以根据密度测井资料计 算,一般为: ????gdz?1)(4— s?0式中σ——垂向主应力,Pa;Z H——地层垂深,m; 2);.81 m/s g——重力加速度(93。——上覆层岩石密度,ρkg/m s 1 由于油气层中有一定的孔隙压力Ps,故有效垂向应力可表示为: ??(4—2)P??szz如果岩石处于弹性状态,考虑到构造应力等因素的影响,可以得到最大水平主应力为: ???????P?2EE1??S???124—3)P????(?? SH????11?21???式中σ——最大水平主应力,Pa;H ξ,ξ——水平应力构造系数,可由室内测试试验结果推算,无因次;21?——

水力压裂技术

水力压裂水力压裂:: 一项一项经久不衰的技术经久不衰的技术经久不衰的技术 自从Stanolind 石油公司于1949年首次采用水力压裂技术以来,到今天全球范围内的压裂施工作业量将近有250万次。目前大约百分之六十新钻的井都要经过压裂改造。压裂增产改造不但增加油井产量,而且由于这项技术使得以前没有经济开采价值的储量被开采了出来(仅美国自1949年以来就约有90亿桶的石油和超过700万亿立方英尺的天然气因压裂改造而额外被开采出来)。另外,通过促进生产,油气储量的静现值也提高了。 压裂技术可以追溯到十八世纪六十年代,当时在美国的宾夕法尼亚州、纽约、肯塔基州和西弗吉尼亚州,人们使用液态的硝化甘油压浅层的、坚硬地层的油井。目的是使含油的地层破裂,增加初始产量和最终的采收率。虽然使用具有爆炸性的硝化甘油进行压裂是危险并且很多时候是违法的,但操作后效果显著。因此这种操作原理很快就被应用到了注水井和气井。 在十九世纪三十年代,人们开始尝试向地层注入非爆炸性的流体(酸)用以压裂改造。在酸化井的过程中,出现了一种“压力从逢中分离出来”现象。这是由于酸的蚀刻会在地层生成不能完全闭合的裂缝,进而形成一条从地层到井的流动通道,从而大大提高了产量。这种“压力从逢中分离出来”的现象不但在酸化的施工现场,在注水和注水泥固井的作业中也有发生。 但人们就酸化、注水和注水泥固井的作业中形成地层破裂这一问题一直没有很好的理解,直到Farris 石油公司(后来的Amoco 石油)针对观察井产量与改造压力关系进行了深入的研究。通过此次研究,Farris 石油萌生出了通过水力压裂地层从而实现油气井增产的设想。 第一次实验性的水力压裂改造作 业由Stanolind 石油于1947年在 堪萨斯州的Hugoton 气田完成(图 1)。首先注入注入1000加仑的粘 稠的环烷酸和凝稠的汽油,随后是 破胶剂,用以改造地下2400英尺 的石灰岩产气层。虽然当时那口作 业井的产量并没有因此得到较大 的改善,但这仅仅是个开始。在 1948年 Stanolind 石油公司的 J.B.Clark 发表了一篇文章向石油 工业界介绍了水力压裂的施工改造过程。1949年哈里伯顿固井公司(Howco)申请了水力压裂施工的专利权。 哈里伯顿固井公司最初的两次水力压裂施工作业于1949年3月17日,一次在奥克拉荷马州的史蒂芬郡,总花费900美元;另一次在位于得克萨斯州的射手郡,总花费1000美元,使用的是租来的原油或原油与汽油的混合油与100到150磅的砂子(图2)。在第一年中,332口井被压裂改造成功,平均增加了75%的产量。压裂施工被大量应用,也始料未及地加强了美国的石油供应。十九世纪五十年代中期,压裂施工达到了每月3000口井的作业量。第一个过五十万英镑的压裂施工作业是由美国的Pan 石油公司(后来的Amoco 石油,现在的BP 石油)于1968年10月在奥克拉荷马州的史蒂芬郡完成的。在2008年世界范围内单级花费在1万到6百万美元之间的压裂作业超过了5万级。目前,一般的单井压裂级数为8到40

压裂液调研报告

压裂液的研究进展调研报告 压裂已经广泛应用于增产当中, 压裂液的性能在作业中起到至关重要的作用。压裂液存在着破胶难,污染环境,污染储层,抗温抗盐性能差的问题。为此,在研究大量文献的基础上,回顾了压裂液技术的发展和现状,总结了适合不同地层条件的国内外压裂液新技术,以及现阶段存在的问题,展望了未来的发展方向。研究结果表明,目前仍是以聚合物增黏剂为主的水基体系,并且研究出了抗高温清洁压裂液,微束聚合物压裂液,无聚合物压裂液以及新型原油基压裂液等等。水基压裂液残液五步处理法,在现场应用效果明显,残渣,破胶性能,相容性,水锁伤害是储层伤害的主要原因。压裂液将主要朝着地层伤害小,抗温抗盐,地层适应性强,环境友好的方向发展。 压裂液的类型:水基压裂液、油基压裂液、酸基压裂液、泡沫压裂液。 压裂液自从1947年首次用于裂缝增产以来经历了巨大的演变。早期的压裂液是向汽油中添加足以压开和延伸裂缝的黏性流体;后来,随着井深的增加和井温的升高,对压裂液的黏度提出了更高的要求,开始采用瓜胶及其衍生物基压裂液。为了在高温储层中达到足够的黏度和提高其高温稳定性,研究出了高温油基压裂液。最初使用的压裂液是炼制油和原油,由于最初担心压裂液和含有非酸性水液的油气储层接触,可能产生不利影响,后来实验已经证明,用适当的添加剂(粘土控制物质,表面活性剂等),使用水基液能处理大部分油气储层,在一个已知储层的压裂液处 理中,最好是通过实验室地层岩心实验(或者一贯的现场结果)来确定水基压裂液的可用性。 水基压裂液体系及技术包括:非交联型黄原胶/魔芋胶水基冻胶压裂液技术、pac阳离子聚合物压裂液体系、有机硼交联水基压裂液技术、哈利伯顿微束聚合物压裂液体系、高黏度水基压裂液、无聚合物压裂液体系、低凝胶硼酸压裂液、无固相压裂液、无破胶剂压裂液技术压裂液。 油基压裂液体系及技术:低渗、低压、水敏性油气藏储量占每年探明储量的1/3 而且有继续上升的趋势,有效合理地开发这部分油气藏对稳定增加油气产量意义重大。国内油基压裂液主要由原油、胶凝剂、交联剂、破胶剂等组成,其中胶凝剂是压裂液中关键组分,因为其结构中的烷基碳链分布与所选原油或柴油之间存在一定的对应关系,并且其性能直接影响到压裂液的质量。 油基压裂液交联机理:柴油为非极性物质,无活泼官能团,化学惰性大难以形成交联结构,所用成胶剂是低分子量的表面活性剂,本身不增加黏度,但可以在油中形成胶束成胶剂扩散进入初交联剂液滴内时其中所含的酸性磷酸酯溶解在滴中并被中和引起铝酸根离子浓度减小,铝离子浓度增大,在适当条件下形成铝离子的八面向心配价体,初成胶剂中所含的磷酸酯通过该配价体与铝离子形成桥架网状结构产物,与初成胶剂中的烷基磷酸酯形成长链大分子,使油的黏度大幅度升高。 酸基压裂液:用植物胶或纤维素稠化酸液得到稠化酸或非离 子型聚丙烯酰胺在浓盐酸溶液中,与甲醛交链而得到酸冻胶。酸基压裂液适用于碳酸盐类油气层的酸压。 针对低渗低压油层存在的压力系数低,渗透率低、污染严重、返排困难等现象,开发研制了hct-酸化压裂液,该酸化压裂液集酸化压裂于一体,且使挤入的液体产生热和气,形成多组分泡沫认为中速残液返排,减少对地层的伤害。以丙烯酰胺(am)、2-丙烯酰胺基-2-甲基丙磺酸(amps)为共聚单体,采用一种复合多段低温引发体系来引发聚合,制得了一种酸液稠化用聚合物,将由此聚合物配制的稠化酸液与交联剂yq-2、破胶剂共同使用得到了一种耐高温的冻胶酸体系。用转子旋转法评价了聚合物种类及浓度、交联剂加量对成胶时间的影响;以体系粘度为指标,使用旋转粘度计评价了聚合物种类及浓度、交联剂加量对冻胶酸体系

煤矿井下水力压裂技术的发展现状与前景

龙源期刊网 https://www.wendangku.net/doc/487051126.html, 煤矿井下水力压裂技术的发展现状与前景 作者:郭晨 来源:《科学与财富》2016年第07期 摘要:我国煤炭安全生产形势依然严峻,增加煤层透气性、进行有效瓦斯抽放迫在眉 睫。水力压裂技术是目前增加煤层透气性最有效的方法之一,文章从水力压裂机理、封孔技术、工艺设备发展三方面,综述了我国井下煤层水力压裂技术的发展和应用前景。 关键词:水力压裂;煤层;增透;发展现状 基金项目:重庆科技学院研究生科技创新计划项目,编号:YKJCX2014047 目前我国煤炭行业的安全形势依然严峻,由于煤层透气性低、瓦斯难以有效抽放导致的瓦斯突出、爆炸等事故屡见不鲜,造成了巨大的人员伤亡和经济损失,因此,加强瓦斯抽放、增加煤层透气性势在必行。水力压裂技术已成为增加煤层透气性最有效方法之一,本文通过介绍水力压裂机理、封孔技术及工艺设备的研究现状,指出水力压裂技术研究的必要性与可行性,以期为工程应用提供参考。 1.水力压裂机理研究 水力压裂技术1947年始于美国,起初主要用于低渗透油、气田的开发中,在地面水力压裂方面的研究仅仅局限在石油、油气藏以及地热资源的地面钻井开采过程中[1]。前苏联科学 家在20世纪60年代开始在卡拉甘达和顿巴斯矿区进行井下水力压裂的试验研究[2]。目前针对井下煤层水力压裂增透技术的研究已取得了明显发展,国内学者郭启文、张文勇等经过试验与现场应用研究了煤层的压裂分解机理,指出水力压裂技术只能够在煤层内产生很少的裂缝,并会在裂缝周围产生应力集中区[3],存在一定局限性。李安启等将理论与实践相结合,研究了 煤层性质对水力裂缝的影响,还在煤层压裂裂缝监测基础上提出了煤层水力裂缝的几何模型。 在水力压裂机理方面的研究,国内外学者对水力压裂在油气系统地面钻井压裂、煤炭行业井下增加煤层透气性方面都进行了较为深入的研究,但其压裂机理方面仍存在一定分歧,不能很好的控制水力压裂的效果。随着我国煤炭安全生产逐步发展和穿煤隧道等工程的逐步建设,水力压裂技术将大范围推广应用,因此加强水力压裂技术理论研究势在必行。 2.压裂钻孔封孔技术研究 煤层水力压裂钻孔封孔是有效实施水力压裂技术的关键,而封孔质量的好坏取决于两个主要因素:①封孔材料,需要选择性能良好、价格适中、易于操作的材料;②封孔的长度,封孔长度太短会导致高压水的渗漏,太长会造成人力、材料、时间的浪费。因此,要使水力压裂技术能够有效开展,必须在选取“物美价廉”的封孔材料的同时,研究材料承载能力与封孔长度之

国内水力压裂技术现状

280 水力压裂技术又称水力裂解技术,是开采页岩气时普遍采用的方法,先多用于石油开采和天然气开采之中,其原理时利用水压将岩石层压裂,从而形成人工裂缝,然后让裂缝延伸到储油层或者储气层,从而提高油气层中流体流动能力,然后通过配套技术使石油天然气在采油井中流动,从而被开采出来。这项技术具有非常广泛的应用前景,可以有效的促进油气井增产。 1?水力压裂技术的出现和发展 水力压裂技术是1947年在美国堪萨斯州实验成功的一项技术,其大规模利用是出现在1998年,在美国开采页岩气的时候,作为一项新的技术使用,而这项技术的运用,使美国美国页岩气开发的进程和效率大大加快。 水力压裂技术在中国的研究和开发开始于二十世纪五十年代,而大庆油田于1973年开始大规模使用这项技术,迄今已有30年历史。而随着时代的发展,中国的压裂技术已经有了长足进步,已经非常接近国际先进水平。而在技术方面,由于不断引进和开发相关的裂缝模拟软件等,通过多次的实验研究,在很大程度上实现了裂缝的仿真模拟。而相应的技术也使用在了低渗透油气田的改造工作中,并且在中高渗透性油田也有广泛应用。这项技术在低渗透油田的应用技术已经非常接近国际水平,相比较差距非常小。 2?水力压裂技术的发展现状 随着时代的发展,水力压裂技术也随之不断发展,逐渐成为一项成熟的开采技术。而这项技术具有一定的进步性,主要表现在以下方面: (1)从单井到整体的优化。最开始的时候,由于受技术限制,水力压裂技术只能针对一口井来使用,难以考虑到整体的效益。而随着技术的逐渐成熟,这项技术可以广泛的运用到整个油藏之中,可以对整个油藏进行优化设计,实现油藏的有效合理开发。 (2)在低渗透油藏的开发运用。由于受各种因素的影响,低渗透油藏大都难以有效的开发利用,虽然在各项新技术的使用下得到了一定得好转,但是低渗透油藏的开发依旧是举步维艰。而水力压裂技术的日益成熟,很大程度上改善了这一状况。通过综合考虑水利裂缝的位置和导油能力,使用水力压裂技术使油藏的流体流动能力进一步增强,从而实现低渗透油藏的最大程度的开采利用。 (3)水力裂缝的模型逐渐从二维转变为拟三维。水力裂缝的拟三维模型可以适用于各种不同的地层,可以非常真实的模拟水力压裂的过程,可以更好的更为直观的预测和观测水力压裂的使用进度,更好的对水力压裂过程进行控制,不但提高了效率,还可以在很大程度上节约成本。 (4)水力压裂规模扩大。随着技术的成熟和配套设施的完善,水力压裂的作业规模也随之变大,从最初的几立方米到现在几十甚至上百立方米,在很大程度上提高了效率,也提高了低渗透油藏的采油率,实现了油藏的有效利用,因而成为开采作业中非常重要的技术之一。 3?水力压裂技术的发展方向和前景 水力压裂技术具有广阔的发展前景,因为随着石油资源的逐年开采,低渗透油藏广泛出现,水力压裂技术之外的技术虽然可以一定程度上改善低渗透油藏难以开采的现状,但是随着时代的发展,水力压裂技术逐渐广泛使用在低渗透油藏之中,使低渗透油藏的开采效率大大增加。 (1)在低渗透油藏重复压裂促进采油率。主要的发展研究方向主要是加强对油藏状况的研究,建立科学的压裂模型,还要做到实时监测水力裂缝,对裂缝进度进行模拟和控制,其次利用高排量和大输砂量的泵注设备,进行注入作业,从而实现低渗透油藏的有效开发。 (2)做好拟三维化模型向全三维化模型的转换,全三维化模型可以非常有效的、更为直观的模拟和观测地下裂缝的进度,可以非常有效的控制水力压裂技术的科学使用。还要做好油气藏模拟技术的研发,配合三维化模型,更好的观测和了解油藏状态,从而做出合理的高效的开采计划。 (3)针对传统的水力压裂技术会出现污染地下水的问题,可以在无水压裂液体系做出研究,实现高能气体压裂技术和高速通道压裂技术等新技术的开发和利用,实现提高开采效率和环境保护的双赢。 有水压裂到无水压裂,从直井压裂到水平井分段压裂,从常规的压裂技术到现在的体积改造技术,压裂技术不断进步的同时,为人类带来了丰富的油气资源。而随着油藏开发,大量低渗透油藏的出现,给水力压裂技术的使用带来了广阔的空间,因而水力压裂技术拥有非常好的发展前景。 4?结束语 水力压裂技术是油气开发中所需要的非常重要的配套技术,而水力压裂技术和开采开发之间的结合,很大程度上提高了采油效率,降低了成本,在很大程度上提高了开采水平,使低渗透油藏得以稳定生产。而我国在这一技术上进行了大量投入,从研究人员和设施上,为技术的发展提供了很好的支持。而这一技术的逐步发展,在很大程度上提高了我国油气的开发效率,也很大程度改善了我国的石油供应紧张的现状,为我国的可持续发展做出了重大贡献,而作为油气开发的重要技术,水力压裂技术也会进一步发展,实现更高效率的油气开采。 国内水力压裂技术现状 续震?1,2 卢鹏?1,3? 1.西安石油大学 陕西 西安 710000 2. 延长油田股份有限公司杏子川采油厂 陕西 延安 717400 3.延长油田股份有限公司下寺湾采油厂 陕西 延安 716100 摘要:最早的水力压裂技术出现于1947年,而现代使用的水力压裂技术则是1998年首次使用。这项技术的出现,是油气井增产出现了新的希望,帮助石油开采取得了很好的技术成就和经济效益,从而使这项技术在我国石油开采上广泛应用,并取得了很好的成果。本文针对我国水力压裂技术的现状和发展前景做出研究。 关键词:水力压裂?现状?前景

关于水力压裂设备及技术的发展及应用

关于水力压裂设备及技术的发展及应用 【摘要】水力压裂技术经过了半个多世纪的发展,在设备和技术应用上都取得了较大的发展,在全球各地的石油开采中也发挥了关键性的作用,是目前仍在广泛应用的评价认识储层的一种重要方法,水力压裂技术也是油田煤矿等产业生产中确保安全、降低危险的重要技术。近年来,水力压裂的几部发展很快,在压裂设备材料上也有了较大突破,压裂技术在油田勘探开发应用中和其他行业的应用中的前景还是十分广阔的。 【关键词】水力压裂;发展现状;趋势 随着技术进步和应用范围的扩大,施工对压裂技术也提出了更高的要求,对压裂设备性能、压裂液等材料的要求也越来越高,不同地理环境下的压裂技术应用也有不同的需求,所以水力压裂设备和技术的研究也在不断进行,笔者在此对水力压裂技术的发展应用现状和今后的发展前景进行了展望,具体内容如下。 一、水力压裂设备技术的发展应用现状 (一)端部脱砂压裂技术 现代油气田勘探开发技术发展应用速度快,各种新技术工艺也都得到了综合运用,过去压裂设备和技术主要应用于低渗透油田,现在应用范围有了明显的扩大,在国内许多大型油田的中高渗透地层中不但应用了压裂设备和技术,且在技术上有了更大的突破。压裂技术应用于中高渗透地层时,实现短宽型的裂缝能够更好的控制油气层的开发,所以端部脱砂压裂技术应运而生,并在应用中取得了非常好的效果,近年来端部脱砂压裂技术在浅层、中深地层、高渗透以及松软地层都得到了应用,该技术的相关设备也在应用中得到了不断的改进。 (二)重复压裂技术 随着油田开发的不断深入,出现越来越多的失效井和产量下降的压裂井,二重复压裂技术正是针对该类油井改造和提高产量的有效技术措施。全球范围内各个国家对重复压裂设备和技术的研究都很重视,经过实践检验其应用效果也十分显著,重复压裂的成功率能够达到75%左右。在美国还有油田企业在应用重复压裂技术的同时还采用了先进的强制闭合技术和端部脱砂技术,取得了很好的经济效益。重复压裂技术设备能够用于改造低渗透和中渗透的油层,在直井、大斜度井以及水平井中都具有很高的应用效果,对提高产能具有很好的作用。 (三)高渗层防砂压裂技术 高渗层防砂压裂技术不但能够实现高渗透油藏的压裂,还能够同时完成充填防砂作业。传统的砾石充填防砂技术很容易造成对高渗透油层的破坏,导致导流能力下降,而高渗透防砂压裂技术是结合的端部脱砂技术,使裂缝中的支撑剂浓

水力压裂技术

第六章水力压裂技术 一、名词解释 1、水力压裂:常简称为压裂,指利用水力作用使油层形成裂缝的方法,是油气井增产、注水井增注的一项重要技术措施,不仅广泛用于低渗透油气藏,而且在中、高渗油气藏的增产改造中也取得了很好的效果。 2、地应力:指赋存于地壳岩石中的内应力。 3、地应力场:地应力在空间的分布。 4、破裂压力梯度:地层破裂压力与地层深度的比值。 5、闭合压力(应力):使裂缝闭合的压力,理论上等于最小主应力。 6、分层压裂:分压或单独压开预定的层位,多用于射孔完成的井。 7、裂缝的方位:裂缝的延伸(扩展)方向。 8、压裂液:压裂过程中,向井内注入的全部液体。 9、水基压裂液:以水为基础介质,与各种添加剂配制而成的压裂工作液。 10、交联剂:能将溶于水中的高分子链上的活性基团以化学链连接成三维网状型的结构,使聚合物水溶液形成水基交联冻胶压裂液。 11、闭合压力:使裂缝闭合的压力,理论上等于最小主应力。 二、叙述题 1、简述岩石的破坏及破坏准则。 答案要点:脆性与塑性岩石:在外力作用下破坏前总应变小于3%的岩石叫脆性岩石,总应变大于5%的岩石叫塑性岩石,总应变介于3~5%的岩石叫半脆性岩石。 岩石的破坏类型:拉伸破坏;剪切破坏;塑性流动。其中拉伸破坏与剪切破坏主要发生在脆性岩石。塑性流动主要发生在塑性岩石。 2、简述压裂液的作用。 答案要点:按泵注顺序和作用,压裂液可分前置液、携砂液和顶替液。其中,携砂液是 压裂液的主体液。○1前置液的作用:造缝、降温;○2携砂液的作用:携带支撑剂、延伸造缝、冷却地层;○3顶替液的作用:中间顶替液用来将携砂液送到预定位置,并有预防砂卡的作用;注完携砂液后要用顶替液将井筒中全部携砂液替入裂缝中,以提高携砂液效率和防止井筒沉砂。 3、简述压裂液的性能及要求。 答案要点:滤失少;悬砂能力强;摩阻低;稳定性;配伍性;低残渣;易返排;货源广、便于配制、价钱便宜。 4、压裂液有哪几种类型? 答案要点:水基压裂液、油基压裂液、泡沫压裂液、乳化压裂液、醇基压裂液、胶束压裂液。 5、简述常用破胶剂及其作用。 答案要点:主要作用:是使压裂液中的冻胶发生化学降解,由大分子变成小分子,有利于压后返排,减少对储集层的伤害。 常用的破胶剂:包括酶、氧化剂和酸。生物酶和催化氧化剂系列是适用于 21~54 ℃的低温破胶剂;一般氧化破胶体系适用于 54~93 ℃,而有机酸适用于 93 ℃以上的破胶作用。 6、影响支撑剂选择的因素有哪些? 答案要点:(1)支撑剂的强度:一般地,对浅地层(深度小于1500m )且闭合压力不大时使用石英砂;对于深层且闭合压力较大时多使用陶粒;对中等深度( 2000 m 左右)的地层一般用石英砂,尾随部分陶粒。 H p F F =α

水力压裂综述

文献综述 前言 水力压裂是油田增产一项重要技术措施。由地面以超过地层吸收能力的排量高压泵组将液体注入井中,此时,在井底附近便会蹩起压力,当蹩气的压力超过井壁附近地层的最小地应力和岩石抗张强度时,在地层中便会形成裂缝。随之带有支撑剂的液体泵入缝中,裂缝不断向前延伸,这样,在地层中形成了具有一定长度、宽度及高度的填砂裂缝。由于压裂形成的裂缝提高了产油层导流能力,使油气能够畅流入井内,从而起到了增产增注的作用。 为了完成水力压裂设计,在地层中造成增产效果的裂缝,需要了解与造缝有关的地应力、井筒压力、破裂压力等分布与大小。这些因素控制着裂缝的几何尺寸,同时对与地面与井下设备的选择有关。同时,用于水力压裂的压裂液的性能、数量,支撑剂的排布情况关系到裂缝的几何尺寸,压裂技术-端部脱砂技术,对提高压裂效果起到很大作用,这些因素关系到能否达到油田增产的目的,需要进行详细研究。在建立适当的裂缝扩展模型的基础上,实现现场实际生产情况的模拟研究,对进一步优化水力压裂参数,提高压裂经济实用性起到很大作用。 这项油田增产措施自发展以来,得到国内外广泛采用,并且经不断的开发试验,已取得很大成效。 水力压裂技术的发展过程 水力压裂技术自 1947 年美国堪萨斯州进行的的第一次试验成功以来,至今近已有60余年历史。它作为油井的主要增产措施,正日益受到世界各国石油单位的重视及采用 ,其发展过程大致可分以下几个阶段: 60 年代中期以前 ,各国石油公司的工作者们的研究工作已适应浅层的水平裂缝为主,此时的我国主要致力于油井解堵工作并开展了小型压裂试验。 60 年代中期以后 ,随着产层加深 ,从事此项事业的工作者以研究垂直裂缝为主。已达成解堵和增产的目的。这一时期 ,我国发展了滑套式分层压裂配套技术。 70 年代 ,工作进入到改造致密气层的大型水力压裂阶段。我国在分层压裂技术的基础上 ,发展了蜡球选择性压裂工艺 ,以及化学堵水与压裂配套的综合

水力压裂评价

水力压裂评价 水力压裂评价包括水力裂缝评估、工艺效果评价、开发效果评价和经济效益分析。工艺效果分析用于评价所实施压裂工艺技术的适应性和有效性;通过不同油田、不同区块的开发效果分析来评价水力压裂在油田改造中的作用;通过经济效益分析来寻求提高压裂技术水平和改善其经营管理的基本途径。 一、水力裂缝评估 为检验压裂设计、评价压裂施工有效性和压后效果,需要评估水力裂缝。目前发展了许多检测和确定压裂裂缝高度的方法,如适于裸眼井的井下电视法、地层微扫描仪和噪声测井等,还有适用于裸眼井和套管井的间接测试方法,如微地震法、井温测井、伽玛测井和声波测井等。根据施工压力曲线可以定性分析压裂裂缝延伸情况,结合压裂后压力降落数据可以成功地解释裂缝几何尺寸、裂缝导流能力、压裂液滤失系数、压裂液效率和裂缝闭合时间、水平最小主应力等参数(Nolte, 1979)。 压裂施工中压力曲线千差万别,归纳起来有四种类型,分别代表了压裂过程中可能出现的情况。 1)正斜率很小的线段I 该段斜率范围为0.125~0.2,说明裂缝正常延伸。 2) 斜率为1的线段III 表明了施工压力增量正比于注入压裂液体积增量,它只能发生于裂缝中严重堵塞的情况。由于缝内砂堵,压裂液难以达到裂缝端部使其缝长延伸,注入压裂液只能增加裂缝宽度。有控制地使支撑剂在裂缝端部脱出,增加裂缝宽度,这正是中高渗透性地层端部脱砂压裂的理论基础。 3) 负斜率线段IV 反映了裂缝高度增加,也不能排除压开多条裂缝或者裂缝在延伸过程中遇到大规模裂缝体系的可能性。 4) 压力不变的线段II 此段物理意义不明确,最可能的情况是注入压裂液被滤失所平衡,裂缝几乎不延伸,才能保持压力为常数。通常结合线段III、IV的压力变化进行分析,若后面压力下降,则可能是缝高增加,后面的压力升高,则可能是二次缝隙使滤失增大所致。 应用压裂压力曲线对水力裂缝诊断评价是目前的重要研究内容,已有许多重要进展。 二、工艺效果分析 单井工艺效果分析主要指标是增产有效期和增产倍比。增产有效期是指某井从压裂施工后增产见效开始至压裂前后产量递减到相同的日产水平所经历的时间。增产倍比是指相同生产条件下压裂后与压裂前的日产水平或采油指数之比,可以采用典型曲线法、近似解析法和数值模拟法得到。 1 McGuire & Sikora曲线法 考虑正方形泄油面积中的一口无伤害油井,假定裂缝高度等于产层有效厚度,地层流体可压缩、封闭外边界、定产内边界拟稳定流动下增产比的预测图版。纵坐标为增产倍比,即井控面积A上一口油井压裂后采油指数J f与压裂前采油指数J0之比;横坐标为相对导流能力,即裂缝导流能力与地层有效渗透率之比。 可见:相同情况下,裂缝导流能力越高,则增产比越大;人工裂缝越长,增产效果越显著。从曲线的变化趋势看,以横坐标上0.4为界,在它左边要提高增产倍数,应以增加裂缝导流能力为主;而在右边,要提高增产效果应以提高人工裂缝长度为主。分析该图版,可以得到下面的认识: (1) 对于低渗透储层(K<1′10-3mm2),很容易得到较高的裂缝导流能力比值(大于0.4),欲提高压裂效果,应以增加裂缝长度为主。这正是低渗、特低渗储层采取大型压裂技术造长缝的依据。 (2) 对于高渗透地层,不容易获得较高的裂缝导流能力比值,提高裂缝导流能力是提高压裂效果的主要途径,不能片面追求压裂规模而增加缝长。 (3) 对一定缝长,存在一个最佳裂缝导流能力,超过该值而增加导流能力的效果甚微。 (4) 无伤害油井最大增产比为13.6倍。 2 典型曲线法 Agarwal(1979)将地层视为均质无限大,垂直对称双翼裂缝具有有限均一导流能力。给出了单相油气流动条件下预测压后生产动态的典型曲线。 3 Raymond & Binder 公式法 园柱形泄油面积中具有有限导流能力的污染井,压裂后在拟稳态下的增产比为: 4数值计算模拟计算方法

水力压裂技术新进展

万方数据

万方数据

万方数据

64江汉石油职工大学学报 8压裂实时监控技术 实时监控和监测技术,是通过在施工现场实时地测定压裂液、支撑剂和施工参数,模拟水力裂缝几何形状的发展,随时修改施工方案,以获得最优的支撑裂缝和最佳的经济效益。 (1)施工参数监控,包括排量、泵压、砂比等由仪表车直接显示和控制。 (2)压裂质量监测:分别监测混砂车出、人口压裂液(携砂液)的流变性、温度、pH值等参数,对压裂液流变性,特别是加人各种添加剂后的性能以及携砂能力进行定量分析,常用的仪器为范氏系列粘度计,并在模拟剪切和地层温度条件下模拟整个施工过程。对于延缓硼交联压裂液和延缓释放破胶剂体系,矿场实时监测更为重要。 (3)实时压力分析:根据测定的施工参数和压裂液参数用三维压裂模拟器预测井口或井底压力,并与实际值进行拟合,预测施工压力变化(泵注和闭合期间)和裂缝几何形状。主要用途如下: ①识别井筒附近的摩阻影响(射孔和井筒附近裂缝的弯曲),并能定性判断其主要影响因素,判断井筒附近脱砂的可能性; ②评价压裂设计可信程度:如果施工压力与矿场实时预测压力相吻合,则设计的裂缝几何形状是可信的; ③预测砂堵的可能性; ④确定产生的水力裂缝几何形状I ⑤提供施工过程的图像和动画信息。 矿场实时分析随着便携式计算机的发展,在矿场上得到了广泛应用,除GRI外,其它石油公司也都相继研制和发展了这套系统。在实际应用中.经常与小型压裂测试分析结合应用。 9FASTFrac压裂管柱 贝克石油工具公司新近开发出一种连续油管压裂系统一FA刚下rac压裂管柱,用于对先前未处理到的层位进行选择性的增产措施,从而获得比常规压裂更高效、更经济的压裂效果。应用该技术能一趟管柱实现多层隔离与措施。从而降低了修井作业成本,节省了完并时间。由于该连续油管传送系统能保证高比重压井液不接触生产层,使完井和增产措施均不造成油井伤害,从而快速实现生产优化。FAsTFrac工具与Auto—J系统组成一个整体,Auto—J系统的作用是保证连续油管将压裂管柱送入或从井筒中起出。措施时,上部封隔元件和下部封隔元件能隔离一个或多个生产层。一旦第一次措施完毕,系统就复位并重新设置,下入另一个生产层。无论是FA跚下rac封隔器和桥塞系统,还是固定跨式双封隔器系统均能对过去遗漏的小型袋状油气藏实施经济高效的增产措施。 10新型CKFRAQ压裂充填系统 贝克石油工具公司新近研制成功新型CKFRAQ系统,该系统由多个高性能井下工具组件组成,尤其适用于极高流速和高砂比条件下。在应用软件的辅助下,CKFRAQ系统可以对压裂充填作业(用陶瓷支撑剂)中的泵的排量和容量进行优化,同时还可以将卡泵和套管腐蚀风险降至最低。经过大量模拟和小规模室内实验,该工具被应用于现场。人们还通过小规模室内试验,对工具转向孔的几何形状进行了评估,目的是找出哪种几何形状的转向孔遭遇的腐蚀最轻。此外,还进行了样机试验,以确保尽可能地延长套管的使用寿命。 贝克石油工具公司称,从毁坏性对比试验中可以看出,CKFRAQ系统的各种性能都胜过其它竞争产品。 今后的发展方向: (1)随着水力压裂施工的要求越来越高,压裂液和支撑剂的性能也需越来越高,因此必须加强高性能压裂液和支撑剂的研究与开发。 (2)开展有效的裂缝检测技术研究。目前压裂后裂缝的检测技术仍然是水力压裂技术的一个薄弱环节,国内外采用的检测方法虽然取得了一定的成效,但还有很大的局限性,还需要进一步的研究。 (3)在中高渗透地层中应用端部脱砂压裂技术,扩大水力压裂技术的应用范围。 (4)发展矿场实时监测和分析技术,提高施工的成功率和有效率。 [参考文献] [1]F.GUEKuru等著.冯敬编译,一种适用于低渗透浅层油藏的压裂方法[J].特种油气藏,2004(6).[2]吴信荣,彭裕生编,压裂液、破胶剂技术及其应用[M].北京:石油工业出版社,2003,9. [3]马新仿,张士诚.水力压裂技术的发展现状[J].河南石油,2002(1). [4]PaulWKte,JohnD.Harkrider,FractureStimulationOpti删功tioninaMatureWaterfloodRedevelopment,《JPlr》,January,2003. [5]shyapoberskyJ,chudnovsky.Areviewofrecentdevel—opmentinfracturemechanics诵thpetroleumengineer—ingapplications,SPE28074。1994.(下转第67页)  万方数据

非常规压裂液发展现状及展望_许春宝

非常规压裂液发展现状及展望 许春宝1,何春明 2 (1.中国石化西南油气田分公司装备管理处,成都610017; 2.西南石油大学研究生院“油气藏地质及开发工程”国家重点实验室,成都610500)[摘 要]系统总结了国内外已经广泛应用的非常规压裂液体系,包括表面活性剂类压裂液 体系、醇类压裂液体系、二氧化碳类压裂液体系以及凝胶液化石油气类压裂液体系等;并对各种非常规压裂液的性能、储层类型以及现场应用进行了介绍。 [关键词]非常规压裂液 储层 发展现状 现场应用 收稿日期:2012-03-29。 作者简介:工程师,从事工程设备材料管理与研究工作。 随着勘探开发的不断深入以及对能源需求的日益增加,非常规油气资源已成为当前勘探开发的新热点。非常规油气资源主要包括致密砂岩气、 煤层气以及页岩气(致密油)等[1] 。 压裂改造是非常规油气资源勘探开发的最重要措施,但非常规油气藏与常规油气藏的储层特征存在巨大差异,非常规油气藏(如页岩气及致密砂岩气)岩心通常表现为水湿, 且储层原始条件下其含水饱和度往往远低于束缚水饱和度,这种情况下外界流体进入储层后会发生自吸现象,造成近井地带或近裂缝壁面区域发生水相圈闭伤害,严重影响储层流体的流动能力。 非常规油气藏压裂改造的思路以及对压裂改造工作液性能的要求与常规储层存在较大差异。由于非常规储层的物性很差,因此对压裂改造工作液性能提出了更高的要求,主要包括低伤害性、与储层良好的配伍性、良好的返排性等。依据储层对压裂液性能的要求, 国内外已开发出多种适合非常规储层压裂改造的非常规压裂液体系,包括表面活性剂类压裂液体系、醇类压裂液体系、二氧化碳类压裂液体系以及凝胶液化石油气类压裂液体系等。1表面活性剂类压裂液 1.1 黏弹性表面活性剂基压裂液早在1980s ,Nehmer [2] 就报道了表面活性剂 流体作为携砂液在砾石充填作业中的应用,表面活性剂流体在砾石充填领域的成功应用为其在压裂液领域的应用提供了依据。1997年,Samuel 等 [3] 成功研制了无聚合物水基压裂液(VES 压裂 液), VES 压裂液以季铵类表面活性剂为主要成分, 加入反离子使表面活性剂分子缔合形成蠕虫状胶束, 赋予流体黏弹性具有较好的携砂性能。VES 压裂液体系不需外加化学破胶就能自动破胶, 破胶液表面张力很低,返排能力强,且压裂液残渣含量几乎为零;同时,体系含有大量阳离子表面活性剂能够有效地稳定黏土,压裂过程中较低的表皮效应和油层污染能有效提高油气井压裂改造后的产能 [4-5] 。 目前,作为VES 压裂液使用较多的表面活性剂包括:阳离子型表面活性剂、阴离子型表面活性剂、 两性离子表面活性剂、双子型表面活性剂(Gemini 表面活性剂)。VES 压裂液体系配制简单, 只需加入表面活性剂以及无机盐(反离子)或带不同电荷的表面活性剂, 就能形成具有黏弹性的流体。体系不需要加入杀菌剂,因为体系中加入的阳离子表面活性剂本身就具有杀菌的能力;体系也不用加助排剂,因为VES 压裂液体系本身就具有很低的表面张力以及界面张力;同时也不用加黏土稳定剂,因为体系含有大量无机盐类物质(如KCl ,NaCl 等)以及阳离子表面活性剂,具有很好的防止黏土膨胀和微粒运移的能力。 压裂液的携砂性能是保证压裂施工成功以及支撑剂在产层良好铺置的关键。2002年,Asadi 等 [6] 提出,零切黏度是压裂液携砂的关键参数, VES 压裂液具有很强的黏弹性,在低剪切速率下压裂液表现出一定的屈服应力,支撑剂沉降速率

国外减阻水压裂液技术发展历程及研究进展

国外减阻水压裂液技术发展历程及研究进展国外减阻水压裂液技术发展历程及研究进展 发布时间:2019-07-30 11:11 来源:特种油气藏 摘要:致密页岩气储层具有低孔、低渗的特点,勘探开发难度较大,大多数页岩气井 需要储层改造才能获得比较理想的产量。目前,国外页岩气开发最主要的增产措施是减阻 压裂,即利用减阻... 致密页岩气储层具有低孔、低渗的特点,勘探开发难度较大,大多数页岩气井需要储 层改造才能获得比较理想的产量。目前,国外页岩气开发最主要的增产措施是减阻压裂, 即利用减阻水压裂液进行体积改造。减阻水压裂液体系是针对页岩气储层改造而发展起来 的一种新的压裂液体系。在美国、加拿大等国,减阻水压裂液的使用获得了显著的经济效 益并且已经取代了传统的凝胶压裂液而成为最受欢迎的压裂液。近年来,页岩气能源的 开采在中国受到越来越高的重视。作为页岩气体积改造的关键技术,减阻水压裂液在中国 具有广阔的应用前景。 一、减阻水压裂液发展历程 减阻水压裂液是指在清水中加入一定量支撑剂以及极少量的减阻剂、表面活性剂、黏 土稳定剂等添加剂的一种压裂液,又叫做滑溜水压裂液。减阻水最早在1950 年被引进用 于油气藏压裂中,但随着交联聚合物凝胶压裂液的出现很快淡出了人们的视线。在最近的 一二十年间,由于非常规油气藏的开采得到快速发展,减阻水再次被应用到压裂中并得到 发展。1997 年,Mitchell 能源公司首次将减阻水应用在Barnett 页岩气的压裂作业中并取得了很好的效果,此后,减阻水压裂在美国的压裂增产措施中逐渐得到了广泛应用,到2019 年减阻水压裂液的使用量已占美国压裂液使用总量的30%以上(表1) 。 表1 2019年美国油气田各类压裂液用量所占百分比 早期的减阻水中不含支撑剂,产生的裂缝导流能力较差,后来的现场应用及实验表明,添加了支撑剂的减阻水压裂效果明显好于不加支撑剂时的效果,支撑剂能够让裂缝在压裂 液返排后仍保持开启状态。目前在国外页岩气压裂施工中广泛使用的减阻水的成分以水 和支撑剂为主,总含量可达99%以上,其他添加剂(主要包括减阻剂、表面活性剂、黏土稳定剂、阻垢剂和杀菌剂) 的总含量在1%以下,尽管含量较低,这些添加剂却发挥着重要作用(表2) 。 表2 减阻水压裂液中的主要添加剂 二、减阻水压裂液技术研究进展 1、新型减阻水压裂液体系

浅谈压裂液技术的现状和发展前景 解海邦

浅谈压裂液技术的现状和发展前景解海邦 摘要:本文分析了我国现阶段压裂液技术的现状,同时提出关键压裂液技术的 发展前景,从压裂液可控的成本造价使其发展的目标,而大规模生产作业提升其 压裂液对于高矿化度水适应能力。 关键词:压裂液技术;发展现状;技术前景 前言 随着我们油田开发进程的不断加快,为了增加油井的产量,在很多油井都需 要进行压裂作业。压裂液从首次油气井增产压裂应用到如今,压裂液组成成分发 生了很大的变化,前期的压裂液是只是单纯的在汽油中添加具有流动性的可以延 伸到裂缝中的液体,后期随着开采难度的增加和工艺设备的进步,单一的油基压 裂液已经不能满足高效增产的目的,为了满足高温储层的施工要求和热稳定性相 继研究出水基压裂液和泡沫压裂液,近几年开始朝着低伤害、低成本和低残渣的 可持续发展的方向努力,压裂液添加剂种类开始增多,研究发现新型压裂液近几 年所占的比例已经开始慢慢取代着原有的油基压裂液市场使用比例。压裂液是在 压裂施工中经常使用的工作液,它是由多种添加剂按着一定的配合比调制成的不 均质不稳定的化学体系。压裂液的承托支撑剂,将其传递到裂缝指定位置,压裂 液必须具有很好的悬浮能力和携带压裂砂的能力,另外压裂液应具有很好的反排 和破胶能力,在增产的同时可以很好的减少残渣存留。在压裂作业中压裂液是必 不可少的一项关键技术。 一、压裂液技术的现状 对于现行应用中的压裂液名称与分类尚未进行标准的统一,而按照相应的稠 化剂方式进行命名可以视为,胍尔胶压裂液、香豆胶压裂液、聚合物合成压裂液,本文结合目前我国在其特色压裂液技术上的发展现状进行分析。 1、胍尔胶压裂液 胍尔胶原粉在与锆硼等元素进行交联时产生的冻胶是胍尔胶压裂液,而胍尔 胶原粉中对于不同水物质的含溶量较高,目前技术已经可以达到17.65%到 27.68%,而经过技术改进的不溶物在胍尔胶中的含量,也能够提升至12.65%以上。但原粉在其2.67%的浓度中,其增黏力度仅为127-169mPa?s,那么必然产生其破 胶过程的冻胶残渣含量的提升,从而导致质量分数下降到6.59%左右。在进行原 粉应用的过程中体现出高渗浅层的特征,其中胍尔胶衍生物得到充分发挥,包含 了CMHPG羟丙基羧甲基胍尔胶、CMG羧甲基胍尔胶、SHPG超级胍尔胶、以及HPG羟丙基胍尔胶等。 2、香豆胶压裂液 国产稠化剂中以香豆胶为代表,在机芯天然植物胶的提取过程中从香豆种子 中萃取相应的物质,构成应用为半乳甘露聚糖的结构。当其浓度降低到2%以下时,对于增黏能力而言表现出较大的差异化,从167.28mPa?s到327.55mPa?s中 均有体现,但是对香豆胶进行水不溶物的原粉测定时,也发现其含量并不高于16.75%,那么必然产生较高的摩阻低与水溶性特点,从而生成耐温高的特征,其 产生稳定温度的压裂液能够保持169℃而不产生过度浮动。在多个油田对其进行 实验时,发现其最大加砂能力可有效提升至69.55m3而且在平均砂比含量的提升 中达到了36.76的比重,那么对于返排率的观察也能够控制在75.69%的有效范围内。其技术能力较高的香豆胶与胍尔胶旗鼓相当,但是由于出自种子提取技术的 配合,同时受到加工水平和种子质量的双重制约,那么在诸多因素的考量下,对

相关文档