文档库 最新最全的文档下载
当前位置:文档库 › 二次函数根与系数关系学习资料

二次函数根与系数关系学习资料

二次函数根与系数关系学习资料
二次函数根与系数关系学习资料

一元二次方程的根与系数的关系也称为韦达定理,其逆定理也成立,它是由16世纪的法国数学家韦达发现的.它揭示了实系数一元二次方程的根与系数的关系,它形式简单但内涵丰富,在数学解题中有着广泛的应用.

【知识要点】

1.如果方程(a≠O)的两根为,,那么,,这就是一元二次方程的根与系数的关系.

2.如果两个数的和为m,积为n,则以这两个数为根的一元二次方程为.

3.若已知一元二次方程的一个根,可不直接解原方程,利用根与系数关系,求出另一根.4.求一元二次方程根的对称式的值,关键在于利用两根和及两根积表示所给对称式.

5.当一元二次方程(a≠O)有两根,时:(1)若,则方

程有一正一负根;(2)若,,则方程有两个正根;(3)若

,,则方程有两个负根.

【趋势预测】

利用根与系数关系,可以解决许多有关方程的问题,有些非方程类的问题我们也可以通过根与系数关系构造一元二次方程,然后用一元二次方程的知识来解.因此预测以后竞赛的重点在以下几个方面:

①求方程中字母系数的值或取值范围;

②求代数式的值;

③结合根的判别式,判断根的符号特征;

④构造一元二次方程解题;

⑤证明代数等式,不等式;

⑥与一元二次方程的整数根有关的问题.

【范例解读】

题1 (1997·陕西) 已知二次方程(ac≠0)有两异号实根m和n,且m

那么,二次方程的根的情况是 ( )

(A)有两个负根 (B)有两个正根

(C)两根异号 (D)无实数根

分析首先考虑方程的判别式的符号.如果由判别式符号确定方程有实根,还要通过根与系数关系来确定两根的正负号.

解∵m,n异号且m

∴ m<0,n>0,从而,.

方程的判别式:

,故方程

必有两实根.

设这两个实根为,,则由根与系数关系得

,,可知,均为负数,故选(A).

题2 (1997·上海) 若a和b是方程的两个实根,c和d是方程

的两个实根,e和f是方程的两个实根,则

的值为_____________.

分析由已知可得ab=3,cd=3,ef=3,a+b=-2p,c+d=-2q,,将

(a-c)(b-c)(a+d)(b+d)展开,把上列数值代入,可得所求值.但若全部展开,结果很繁,因此考虑局部展开,分步代入.

解由方程根与系数关系得

ab=3,cd=3,ef=3,a+b=-2p,c+d=-2q,,则

题3 (1996·祖冲之杯) 已知α,β是方程的两根,α>β,不解方程,求

的值.

分析待求式中α,β是不对称的,但根与系数的关系具有对称性,应设法构造一个与待求式相对应的代数式一起辅助解决问题.

解由根与系数的关系得α+β=7,αβ=8,

∴,

因α>β,故,.

记,令,从而

∴.

题4 (2000·江苏) 已知,,其中m,n为实数,则

__________.

分析根据两个方程系数的特点,可作恰当的变形,使两个方程具有相同的结构.把两个变元看成关于某个字母的一元二次方程,然后用根与系数关系来求值.

解由已知等式可变形成

与,

由于m,的关系没有给定,故应分两种情况:

①当时,;

②当时,可知m,是方程的两个根,则由根与系数关系

得,.

∴.

综合①,②得或.

题5 (1996·江苏) 设的两个实根为α,β,

(1)求以,为根的一元二次方程;

(2)若以,为根的一元二次方程仍是,求所有这样的一元二次方程.

分析根据方程根与系数关系求和的值,由此即可作出新方程;根据新方程的一次项系数等于-p,常数项等于q,可求得p,q的值.

解 (1)由根与系数关系得α+β=p,αβ=q,

∴,.所求方程是

(2)由题意得

根据七种情况的值依次得以下七个方程:

,,,,,,

其中仅无实数根,舍去.

故所有这样的一元二次方程有六个,分别为:

,,,,,.

题6 (2000·全国) 设关于x的二次方程

的两根都是整数.求满足条件的所有实数k 的值.

分析根据方程系数的特点,可先用十字相乘法求出方程两根,然后利用两根都是整数设法先消去是求得两根后,再求出是的值.

解原方程可化为

∵(k-4)(k-2)≠0,∴解得方程两根为

∴,,

消去k,得,∴.

由于,都是整数,故

对应的k的值分别为6,3,.

【方法指引】

1.构造对偶式法.对一个已知代数式或一个已知命题,我们构造一个与之对应的代数式或对应的命题,然后一起参与运算(通常是加、减、乘、除),从而使问题获得巧解.这种方法称为构造对偶式法.常用的构造方法有利用倒数关系、有理化因式、配对等.

2.解一元二次方程的整数根问题的基本方法有:

(1)直接求解法.若根可用有理式表示,则先求出根,再结合整除性求解.

(2)利用判别式法.在二次方程有根的前提下通过判别式确定字母或根的范围,运用枚举法讨论,不等式分析求解.

(3)运用根与系数的关系.由根与系数的关系得到待定字母表示的两根和、积式,从中消去待定字母,再通过因式分解和整数性质求解.

(4)巧换主元法.若运用相关方法直接求解困难时,可选择换主元的方法,结合整除知识求解.

【综合能力训练】

1.△ABC的一边长为5,另两边长恰好是方程的两根,那么m的取值范围是________________.

2.设,是方程的两实根,且,则k 的值是 ( )

(A)-3或1 (B)-3

(C)1 (D)不小于的一切实数

3.若方程的两根为α,β,它也是方程的两个根,则 p=_____________.

4.若ab≠1,且有,及,则的值是( )

(A) (B) (C) (D)

5.在Rt△ABC中,∠C=90°,若sinA和sinB是方程的两根,求∠A 和∠B的度数及k的值.

6.求满足如下条件的所有k值,使关于x的方程的根都是整数。

参考答案

【综合能力训练】

1.设另外两边长为a、b,则,,因为a,b是实数,所以,即

,∴.

由三角形两边之差小于第三边,有

∴,故m的取值范围为。

2.由根与系数关系得,,而

由题意得,解得,。而当时,,无实数根,舍去;当时,方程的两个实数根为1和3。故选(C)。

3.由是方程的两根得

,,

∴.

由是方程的两根,得

,。

两式相减,得。

4.原式可变形为,

,又即,

∴a,是方程的两根。

∴,即.

故选(A)。

5.由根与系数关系,得

∵∠A+∠B=90°,∴。

于是有

由①式两边平方,得。③

由②、③式知.

又由①、③式可得,是方程的两根,则有,即,故∠A=∠B=45°。

6.(1)若k=0,则方程为,解得符合题意;

(2)若,设方程的两个整数根为,(),则有

①-②得,。

∴或,

∴,,

或,k=1。

又当或k=1时,判别式均可得到,∴或k=1。综上所述,满足条件的所有k的值有三个,分别为k=0,或1。

二次函数与根与系数关系综合运用(可编辑修改word版)

中考压轴题之——二次函数与根与系数关系 (黄冈市 2011)24.(14 分)如图所示,过点 F (0,1)的直线 y =kx +b 与抛物线 y = 1 x 2 4 交于 M (x 1,y 1)和 N (x 2,y 2)两点(其中 x 1<0,x 2<0). ⑴求 b 的值. ⑵求 x 1?x 2 的值 ⑶分别过 M 、N 作直线 l :y =-1 的垂线,垂足分别是 M 1、N 1,判断△M 1FN 1 的形状,并证明你的结论. ⑷对于过点 F 的任意直线 MN ,是否存在一条定直线 m ,使 m 与以MN 为直径的圆相切.如果有,请法度出这条直线m 的解析式;如果没有,请说明理由. 第 22 题图 (株洲市 2011 年)24.(本题满分 10 分)孔明是一个喜欢探究钻研的同学,他在和同学 们一起研究某条抛物线 y = ax 2 (a < 0) 的性质时,将一把直角三角板的直角顶点置于平面直角坐标系的原点O ,两直角边与该抛物线交于 A 、 B 两点,请解答以下问题: (1) 若测得OA = OB = 2 (如图 1) ,求 a 的值; (2) 对同一条抛物线,孔明将三角板绕点O 旋转到如图 2 所示位置时,过 B 作 BF ⊥ x 轴于点 F ,测得OF = 1,写出此时点 B 的坐标,并求点 A 的横坐标; (3) 对该抛物线,孔明将三角板绕点O 旋转任意角度时惊奇地发现,交点 A 、 B 的连 线段总经过一个固定的点,试说明理由并求出该点的坐标. 图 1 2 y F N M x l M 1 F 1 N 1 O 图 2

1、如图,已知抛物线 y=-x2+3x+6 交 y 轴于 A 点,点 C(4,k)在抛物线上,将抛物线向右平移 n 个单位长度后与直线 AC 交于心对称,求 n 的值。 3、如图,已知抛物线 y=x2-4x+3,过点 D(0, 的直线与抛物线交于点 M 、N , - ) 2 与 x 轴交于点 E ,且点 M 、N 与 X 轴交于 E 点,且 M 、N 关于点 E 对称, 求直线 MN 的解析式。 * 例 7 如图,在平面直角坐标系中,抛物线 y =- 2 x 2 + b x + c 经过 A (0,-4)、 3 B ( x 1 ,0)、 C ( x 2 ,0)三点,且 x 2 - x 1 =5. (1) 求b 、c 的值; (2) 在抛物线上求一点 D ,使得四边形 BDCE 是以 BC 为对角线的菱形; (3) 在抛物线上是否存在一点 P ,使得四边形 B P O H 是以 OB 为对角线的菱形?若存在,求

二次函数图像与系数关系

二次函数图象与系数的关系 知识点 一、二次函数错误!未找到引用源。的图象与性质 二次函数错误!未找到引用源。图象可由抛物线错误!未找到引用源。平移个单位,再平移个单位而得到. 平移规律如下: (1)平移时与上、下、左、右平移的先后顺,既可以先左右移再上下移,也可以先上下移再左右移; (2)抛物线的移动主要看的移动,即在平移时只要抓住的位置变化就可以了; (3)平移规律:“上加下减,左加右减”. (4)抛物线错误!未找到引用源。经过反向平移也可以得到错误!未找到引用源。; (5)抛物线错误!未找到引用源。的对称轴是直线,顶点坐标是. 二次函数错误!未找到引用源。的性质列表如下: 函数 错误!未找到引 用源。的符号 错误!未找到引用源。错误! 未找到引用源。 错误!未找到引用源。错误! 未找到引用源。 图象 开口方向 对称轴 顶点坐标 最值

函数的增减性 二、错误!未找到引用源。与错误!未找到引用源。的互相转化 1.通过、可以将错误!未找到引用源。化为错误!未找到引用源。. 2.利用可以将错误!未找到引用源。转化为错误!未找到引用源。.简记为“一提,二配,三计算”.即错误!未找到引用源。错误!未找到引用源。. 因此,二次函数错误!未找到引用源。的图象是一条抛物线,它的对称轴是直线,顶点坐标 是. 三、二次函数错误!未找到引用源。的图象及性质 函数 错误!未找到引用源。的符号错误!未找到引用源。错误!未找 到引用源。 错误!未找到引用源。错误!未找 到引用源。 图象 开口方向 对称轴 顶点坐标 增减性 最值 拓展:对于抛物线错误!未找到引用源。. (1)若已知在直线错误!未找到引用源。的一侧,图象上升或下降,(能/不能)确定直线错误!未找到引用源。是该抛物线的对称轴. (2)若已知在直线错误!未找到引用源。的两侧,图象一侧上升而另一侧下降,则(能/不能)确定该直线

二次函数和根与系数的关系

精心整理 1:已知关于x的二次函数y=x2﹣2mx+m2+m的图象与关于x的函数y=kx+1的图象交于两点A(x )、B(x2,y2);(x1<x2) 1)当k=1,m=0,1时,求AB的长;(2)当k=1,m为任何值时,猜想AB的长是否不变?并证明猜想. 平面内两点间的距离公式 得 AB=AC=|x|==;同理,当 AB=.理由如下: ,得 AB=AC=|x|==; ,得

,得B= AC= |x |= = ,∴,得(k x 1+2kx 1+1)+(k x 2+2kx 2+1)=(1+k +2x =-b a =4+k m y + n y =0=k(4+k) k=1或-5(舍) 直线MN 的解析式为y=x- 2 5

如图,抛物线y=x 2 ﹣2x ﹣3与坐标轴交于A 、B 、三点,直线y=kx-1与抛物线交于P 、Q 两点,且y 轴平分△ 的面积,求k 的值。(答案:k=-2) 已知:二次函数m x m x y ++-=)1(2的图象交x 轴于)0,(1x A 、)0,(2x B 两点, 轴正半轴于点C ,且102 2 21=+x x 。 (1)求此二次函数的解析式; (2)是否存在过点D (0,2 5)的直线与抛物线交于点M 、N ,与x 轴交于点 明理由。 2向上平 抛物线于M 图,抛物线P ,当S △PE ,求E 、F 图,抛物线C ,抛物线的顶M A1B1≦4,求 的最大距离图,抛物线n 个单位长度后 线AC 交于M :∵点A 、C 抛物线y=-x2+3x+6的顶点G(1.5,8.25) 物线向右平移n 个单位后,G 点对应点G ’坐标为(1.5+n,8.25),设新抛物线解析式 -[x-(1.5+n)]2+8.25 立:2( 1.5)8.256 y x n y x ?=---+?=-+?∴x2-(4+2n)x+n2+3n=0∴M N X X +=4+2n

二次函数图像与系数之间的判断

己知二次3lSSy=ax^+bx+c 的囹金如囹所示?2a+b=0 ?② b^-4ac>0 ? €>4a-2b+c>0 ? @abc>0 ? €>3a+c>0 .贝(以上结论正隔的有( )个? I ? RD2a+b=0i抛物线与xii有两个交点,则厶=b2-4ac>0 i x=-2时的函埶值为正,则4a-2b+c> 0;魅柳线开口向上?a>0.而b=-2a>得到b<0.由于槌物线与y紬的交点在x紬下方,得到cVO,贝Jabc>0;由于x=3时对应的函数图象在x柚 上方?得到9a+3b+c>0.然后把b“2a代入即可得到3a+c>0. 解普二W:???拠物I线的对称紡为宜线x“,???■ g=l,RD2a+b=0 >所以①正确;2a ???牠物线与x柚有两个交点? A A=b2-4ac>0.所以2)佶溪; ???当炉-2时对应的因数囹猱在x釉上方? A4a-2b+c>0.所以◎正确; ???抽物线开口向上? A a>0 ?而b=-2a? Ab<0? ???牠物线与y柚的交点S/toT方? ?--c<0. ?'? ab c > 0 ?所以◎正; 当片3时对应的函数图象左x柚上方?即y>0, ?*? 9a+3b+c >0 > 而b=-2a? A3a4.c>0>所以⑤正X? 故送B? (2011-宝i氐区二模)已知:二;欠函数y=ax2*bx*c的團象如图所示,那么下列结论中:①abc>0;②b"2a; ?5a-2b<0; @a-b+c> 0.正确的个数是(〉 考焦二次函数團象与系数的关系. 专題]推理填空?5? 分析;|①根擔挞物线开口向下判断出a<0,再根擔挞物线的对称轴确定出b的情况,抿抿抛物线与y轴的交点确定出c>0,最后根18有理数的泰 法运算的符号 运算法则解答J ②根1居对称轴为沪?1解答: ③根1居②得出的“ b的关系,用a表示b,然后代入解关于a的不等式,再根抿a的取值范围进行判肝; ④根1 居沪-1时的函数值是正数判断. 解爹二解:①???二次函数图象开口冋下, :.a<0, ???与y轴的正半轴相交, /.c>0, 又???对称轴x=-^=-1, la /.b=2a<0, /.abc>0,故本小题正确; ②由①可iD, b-2a,故本小題错误, ?Vb=2a, /.5a-2b=5a-2X2a=a, A5a-2b<0,故本小题正确; ④由團形可知'当泸寸'y>0, 即a-b*c>0,故本小题正确?综上所述,正确的有①①⑥共3个. 筠点: 二次函数图象与系数的关系. : 压釉题;埶形结合. 根堀抛拥线的对称轴为百线可得至卜寻 A. 4个 B. 3个C?2个

二次函数和根与系数的关系

二次函数和根与系数的 关系 SANY GROUP system office room 【SANYUA16H-

例1:已知关于x的二次函数y=x2﹣2mx+m2+m的图象与关于x的函数y=kx+1的图象交于两点A (x1,y1)、B(x2,y2);(x1<x2)(1)当k=1,m=0,1时,求AB的长;(2)当k=1,m为任何值时,猜想AB的长是否不变?并证明你的猜想. (3)当m=0,无论k为何值时,猜想△AOB的形状.证明你的猜想. (平面内两点间的距离公式). 解:(1)当k=1,m=0时,如图. 由得x2﹣x﹣1=0,∴x1+x2=1,x1?x2=﹣1, 过点A、B分别作x轴、y轴的平行线,两线交于点C.∵直线AB的解析式为y=x+1, ∴∠BAC=45°,△ABC是等腰直角三角形,∴AB=AC=|x2﹣x1|==;同理,当k=1,m=1时,AB=; (2)猜想:当k=1,m为任何值时,AB的长不变,即AB=.理由如下: 由,得x2﹣(2m+1)x+m2+m﹣1=0, ∴x1+x2=2m+1,x1?x2=m2+m﹣1,∴AB=AC=|x2﹣x1|==; (3)当m=0,k为任意常数时,△AOB为直角三角形,理由如下: ①当k=0时,则函数的图象为直线y=1, 由,得A(﹣1,1),B(1,1),显然△AOB为直角三角形;

②当k=1时,则一次函数为直线y=x+1, 由,得x 2 ﹣x ﹣1=0,∴x 1+x 2=1,x 1?x 2=﹣1, ∴AB= AC= |x 2﹣x 1|= =,∴AB 2 =10, ∵OA 2 +OB 2 =x 12 +y 12 +x 22 +y 22 =x 12 +x 22 +y 12 +y 22 =x 12 +x 22 +(x 1+1)2 +(x 2+1)2 =x 12 +x 22 +(x 12 +2x 1+1)+(x 22 +2x 2+1)=2(x 12 +x 22 ) +2(x 1+x 2)+2=2(1+2)+2×1+2=10,∴AB 2=OA 2+OB 2 ,∴△AOB 是直角三角形; ③当k 为任意实数,△AOB 仍为直角三角形. 由 ,得x 2﹣kx ﹣1=0,∴x 1+x 2=k ,x 1?x 2=﹣1,∴AB 2=(x 1﹣x 2)2+(y 1﹣y 2)2=(x 1﹣x 2)2+(kx 1﹣kx 2)2 = (1+k 2 )(x 1﹣x 2)2 =(1+k 2 )[(x 1+x 2)2 ﹣4x 1?x 2]=(1+k 2 )(4+k 2 )=k 4 +5k 2 +4, ∵OA 2 +OB 2 =x 12 +y 12 +x 22 +y 22 =x 12 +x 22 +y 12 +y 22 =x 12 +x 22 +(kx 1+1)2 +(kx 2+1)2 =x 12 +x 22 +(k 2 x 12 +2kx 1+1)+(k 2 x 22 +2kx 2+1)= (1+k 2)(x 12+x 22)+2k (x 1+x 2)+2=(1+k 2)(k 2+2)+2k?k+2=k 4+5k 2 +4, ∴AB 2 =OA 2 +OB 2 , ∴△AOB 为直角三角形. 如图,已知抛物线y=x2-4x+3,过点D(0,- 2 5 )的直线与抛物线交于点M 、N ,与x 轴交于点E ,且点M 、N 与X 轴交于E 点,且M 、N 关于点E 对称,求直线MN 的解析式。 解:∵D (0,- 2 5) ∴设直线MN 的解析式为y=kx-2 5 ∴252 43 y kx y x x ? =-???=-+? ∴kx-2 5 =x2-4x+3 ∴x2-(4+k)x+11 2=0 1x +2x =-b a =4+k 4 2 2 5 E M N D O

二次函数图像与系数的关系

二次函数图像与系数的关系 1. 如图,是二次函数图象的一部分,图象过点,对称轴为,给出四个结论:① ;②;③;④。其中正确结论的个数是()。 A. 个 B. 个 C. 个 D. 个 2. 小轩从如图所示的二次函数()的图象中,观察得出了下面五条信息:①;② ;③;④;⑤。你认为其中正确信息的个数有()。 A. 个 B. 个 C. 个 D. 个 3. 设二次函数,当时,,当时,,那么的取值范围是()。 A. B. C. D. 4. 如图,抛物线与轴交于点,顶点坐标为,与轴的交点在,之间 (包含端点),则下列结论:①当时,;②;③;④中,正确的是()。 A. ①② B. ③④ C. ①④ D. ①③ 5. 已知二次函数的图象如图所示。下列结论:①;②;③;④ ,其中正确的个数有()。 A. B. C. D.

6. 已知二次函数()的图象如图所示,有下列结论: ①;②;③;④。其中,正确结论的个数是()。 A. B. C. D. 7. 如图所示,二次函数的图象中,王刚同学观察得出了下面四条信息:(1) ;(2);(3);(4),其中错误的有()。 A. 个 B. 个 C. 个 D. 个 8. 二次函数()的图象如图所示,若,,。则 ,,中,值小于的数有()。 A. 个 B. 个 C. 个 D. 个 9. 如图,已知二次函数()的图象与轴交于点,对称轴为直线,与轴 的交点在和之间(包括这两点),下列结论:①当时,;②; ③;④。其中正确的结论是()。 A. ①③④ B. ①②③ C. ①②④ D. ①②③④ 10. 已知二次函数()的图象如图所示,下列结论错误的是()。 A. B. C. (为任意实数) D.

二次函数图像与系数关系含答案

二次函数图像与系数关系 一.选择题(共9小题) 1.(2013?义乌市)如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标为(1,n),与y 轴的交点在(0,2)、(0,3)之间(包含端点),则下列结论: ①当x>3时,y<0;②3a+b>0;③﹣1≤a≤﹣;④3≤n≤4中, 正确的是() A.①②B.③④C.①④D.①③ 考点:二次函数图象与系数的关系. 专题:计算题;压轴题. 分析:①由抛物线的对称轴为直线x=1,一个交点A(﹣1,0),得到另一个交点坐标,利用图象即可对于选项①作出判断; ②根据抛物线开口方向判定a的符号,由对称轴方程求得b与a的关系是b=﹣2a,将其代入 (3a+b),并判定其符号; ③根据两根之积=﹣3,得到a=﹣,然后根据c的取值范围利用不等式的性质来求a的取值 范围; ④把顶点坐标代入函数解析式得到n=a+b+c=c,利用c的取值范围可以求得n的取值范围.解答:解:①∵抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),对称轴直线是x=1,∴该抛物线与x轴的另一个交点的坐标是(3,0), ∴根据图示知,当x>3时,y<0. 故①正确; ②根据图示知,抛物线开口方向向下,则a<0. ∵对称轴x=﹣=1, ∴b=﹣2a, ∴3a+b=3a﹣2a=a<0,即3a+b<0. 故②错误; ③∵抛物线与x轴的两个交点坐标分别是(﹣1,0),(3,0), ∴﹣1×3=﹣3, ∴=﹣3,则a=﹣. ∵抛物线与y轴的交点在(0,2)、(0,3)之间(包含端点), ∴2≤c≤3, ∴﹣1≤﹣≤﹣,即﹣1≤a≤﹣. 故③正确;

④根据题意知,a=﹣,﹣=1, ∴b=﹣2a=, ∴n=a+b+c=c. ∵2≤c≤3, ∴≤c≤4,即≤n≤4. 故④错误. 综上所述,正确的说法有①③. 故选D. 点评:本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定. 2.(2013?烟台)如图是二次函数y=ax2+bx+c图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0).下列说法:①abc<0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y1),(,y2)是抛物线上两点,则y1>y2.其中说法正确的是() A.①②B.②③C.①②④D.②③④ 考点:二次函数图象与系数的关系. 专题:压轴题. 分析:根据图象得出a>0,b=2a>0,c<0,即可判断①②;把x=2代入抛物线的解析式即可判断 ③,求出点(﹣5,y1)关于对称轴的对称点的坐标是(3,y1),根据当x>﹣1时,y随x的 增大而增大即可判断④. 解答:解:∵二次函数的图象的开口向上, ∴a>0, ∵二次函数的图象y轴的交点在y轴的负半轴上, ∴c<0, ∵二次函数图象的对称轴是直线x=﹣1, ∴﹣=﹣1, ∴b=2a>0,

二次函数的图像与系数的关系

二次函数的图像与系数的关系 1.已知二次函数y=ax 2 +bx+c (a ≠0)的图象如图,有下列5个结论:①abc <0;②3a+c >0;③4a+2b+c >0;④2a+b=0;⑤b 2 >4ac.其中正确的结论的有( ) A. 1个 B. 2个 C. 3个 D. 4个 2.如图,二次函数y =ax 2 +bx +c (a ≠0)的大致图象,关于该二次函数下列说确的是( ) A. a >0,b <0,c >0 B. b 2 ﹣4ac <0 C. 当﹣1<x <2时,y >0 D. 当x >2时,y 随x 的增大而增大 3.如图,二次函数 图象,过点A (3,0),二次函数图象的对称轴是直线 x=1,下列结论正确的是( ) A. 2a+b=0 B. ac>0 C. D. 4.已知函数y=mx 2 -6x+1(m 是常数),若该函数的图象与x 轴只有一个交点,则m 的值为( ) A. 9 B. 0 C. 9或0 D. 9或1 5.如图,二次函数2 y ax bx c =++的图象的对称轴是直线1x =,则下列理论:①0a <, 0b <②20a b ->,③0a b c ++>,④0a b c -+<,⑤当1x >时, y 随x 的增大

而减小,其中正确的是(). A. ①②③ B. ②③④ C. ③④⑤ D. ①③④ 6.已知y=ax+b的图象如图所示,则y=ax2+bx的图象有可能是() A. B. C. D. 7.二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x=2,下列结论: ①4a+b=0; ②9a+c<3b; ③25a+5b+c=0; ④当x>2时,y随x的增大而减小. 其中正确的结论有() A. 1个 B. 2个 C. 3个 D. 4个 8.如下图,已知经过原点的抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=-1,下列结论中①ab>0,②a+b+c>0,?③当-2<x<0时,y<0.正确的个数是()

二次函数根系数关系

一元二次方程的根与系数的关系也称为韦达定理,其逆定理也成立,它是由16世纪的法国数学家韦达发现的.它揭示了实系数一元二次方程的根与系数的关系,它形式简单但内涵丰富,在数学解题中有着广泛的应用. 【知识要点】 1.如果方程(a≠O)的两根为,,那么,, 这就是一元二次方程的根与系数的关系. 2.如果两个数的和为m,积为n,则以这两个数为根的一元二次方程为.3.若已知一元二次方程的一个根,可不直接解原方程,利用根与系数关系,求出另一根.4.求一元二次方程根的对称式的值,关键在于利用两根和及两根积表示所给对称式. 5.当一元二次方程(a≠O)有两根,时:(1)若,则方 程有一正一负根;(2)若,,则方程有两个正根;(3)若 ,,则方程有两个负根. 【趋势预测】 利用根与系数关系,可以解决许多有关方程的问题,有些非方程类的问题我们也可以通过根与系数关系构造一元二次方程,然后用一元二次方程的知识来解.因此预测以后竞赛的重点在以下几个方面: ①求方程中字母系数的值或取值范围; ②求代数式的值; ③结合根的判别式,判断根的符号特征;

④构造一元二次方程解题; ⑤证明代数等式,不等式; ⑥与一元二次方程的整数根有关的问题. 【范例解读】 题1(1997·陕西)已知二次方程(ac≠0)有两异号实根m和n,且m0,从而,. 方程的判别式: ,故方程 必有两实根. 设这两个实根为,,则由根与系数关系得 ,,可知,均为负数,故选(A). 题2(1997·上海)若a和b是方程的两个实根,c和d是方程 的两个实根,e和f是方程的两个实根,则

二次函数系数a、b、c与图像的关系89058

二次函数系数a、b、c与图象的关系知识归纳: 1.a的作用:决定开口方向和开口大小 2.a与b的作用:左同右异(对称轴的位置) 3.c的作用:与y轴交点的位置。 4.b2-4ac的作用:与x轴交点的个数。 5.几个特殊点:顶点,与x轴交点,与y轴交点,(1,a+b+c), (-1,a-b+c) (2,4a+2b+c), (-2,4a-2b+c)。 针对训练: 1.判断下列各图中的a、b、c及△的符号。 (1)a___0;b___0;c___0;△__0. (2)a___0;b___0;c___0;△__0. (3)a___0;b___0;c___0;△__0. (4)a___0;b___0;c___0;△__0. (5)a___0;b___0;c___0;△__0. 2.二次函数y=ax2+bx+c的图象如图, 用(>,<,=)填空: a___0;b___0;c___0;a+b+c__0;a-b+c__0.

3.二次函数y=ax2+bx+c的图象如图1所示,则下列关于a、b、c间的 关系判断正确的是() A.ab<0 B.bc<0 C.a+b+c>0 D.a-b+c<0 4.二次函数y=ax2+bx+c图象如图,则点A(b2-4ac,-b a )在第象限. 4题图6题图 图6题图 5.已知a<0,b>0,c>0,那么抛物线y=ax2+bx+c的顶点在() A.第一象限 B.第二象限 C.第三象限 D.第四象限 6.已知二次函数y=ax2+bx+c的图像如图所示,判断下列各式的符号: (1)a;(2)b;(3)c;(4)a+b+c;(5)a-b+c;(6)b2-4ac; (7)4ac-b2;(8)2a+b;(9)2a-b 7.练习:填空 (1)函数y=ax2+bx+c(a≠0)的函数值恒为正的条件:,恒 为负的条件:. (2)已知抛物线y=ax2+bx+c的图象在x轴的下方,则方程ax2+bx+c=0 的解得情况为:. (3)二次函数y=ax2+bx+c中,ac<0,则抛物线与x轴有交点。

二次函数图象特征与系数关系专题

二次函数图象特征与系数关系专题 一、知识要点: 二次函数y=ax2+bx+c(a ≠ 0)系数符号的确定 3、C 由抛物线与y 轴的交点确定:交点在 y 轴的丿正半轴, 则 d 负半轴, 则"O 4、 b2-4ac 的符号由抛物线与 X 轴(或坐标轴)的交点个数确定: 。个交点,b 2-4ac?O ; y = O 时,方程有两个不相等 实数根 ① 与X 轴的交点个数1个交点,b 2-4ac=O ; y =O 时,方程有两个相等实 数根 没有交点,b 2-4ac O; y =O 时,方程无实数根 3个交点,b 2 - 4ac a O ; ② 与坐标轴交点个数 2个交点,b 2 - 4ac = O ; 1 个交点,b 2-4ac O; 5、 根据函数图象的具体情况取特殊值,确定代数式符号: 常见①x=1时,a +b +c 的符号;②x=-1时,a -b+ C 的符号;③x=2时,4a+2b+c 的符号;④ x=-2 时,4a-2b+c 的符号; ......... . K 6、 由对称轴公式X=- 一,可确定2a+b 的符号或对称轴有具体数值是确定相关代数式的符 2a 号;如:X=- =-时,可确定4a-3b 的符号;有时与相关成立的等式或不等式结合,确 2a 3 定运算后代数式的符号。 二、专题练习 ①b 2-4ac >O :② abc >O :③ 8a+c >O ;④ 9a+3b+c V O 2 3、 如图3,二次函数y=ax +bx+c 的图象中,根据图中信息,下列结论正确是( ) 1、a 由抛物线开口方向确定 开口向上=a a O 开口向下=a γ O K 2、b 由对称轴X=-和a 的符号确定 2a So, IaY 0, b 2a Y O 」 a ■ 0, a 0, 2 1.如图1 ,是二次函数y=ax +bx+c ( a ≠0的图象,根据图中信息,下列结论正确是( ) ① a b C >O ; ② b< a+ c ;③2a+b=O :④a +b

二次函数的图象与各项系数之间的关系

二次函数的图象与各项系数之间的关系 姓名________ 组号_____ 一、知识基础 1. 二次项系数a 二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠. ⑴ 当0a >时,抛物线开口向上, ⑵ 当0a <时,抛物线开口向下, a 的值越大,函数图象越靠近y 轴,开口越小,反之a 的值越小,函数图象越远离y 轴,开口越大;一次函数图象有类似特点。 总结:a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. 2. 一次项系数b 在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下, 当0b >时,02b a - <,即抛物线的对称轴在y 轴左侧; 当0b =时,02b a - =,即抛物线的对称轴就是y 轴; 当0b <时,02b a ->,即抛物线对称轴在y 轴的右侧. ⑵ 在0a <的前提下,结论刚好与上述相反,即 当0b >时,02b a - >,即抛物线的对称轴在y 轴右侧; 当0b =时,02b a - =,即抛物线的对称轴就是y 轴; 当0b <时,02b a -<,即抛物线对称轴在y 轴的左侧. 总结:在a 确定的前提下,b 决定了抛物线对称轴的位置. ab 的符号的判定:对称轴a b x 2- =在y 轴左边则0>ab ,在y 轴的右侧则0时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正;

⑵当0 c=时,抛物线与y轴的交点为坐标原点,即抛物线与y轴交点的纵坐标为0; ⑶当0 c<时,抛物线与y轴的交点在x轴下方,即抛物线与y轴交点的纵坐标为负.总结:c决定了抛物线与y轴交点的位置. 总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的. 4.当x=1时,可以求出a+b+c的值;若x=1时,y>0,则a+b+c>0; 若x=1时,y<0,则a+b+c<0; 若x=1时,y=0,则a+b+c=0; 当x=-1时,可以求出a-b+c的值;若x=-1时,y>0,则a-b+c>0; 若x=-1时,y<0,则a-b+c<0; 若x=-1时,y=0,则a-b+c=0; 思考:x=2时,可以通过函数图象得出哪些值? 5.根的别式b2-4ac,可以用来判断抛物线与x轴的交点个数,当b2-4ac>0时,方程 2 =++=0有两个根,也就是说y=0时,函数在x轴上可以找到2个对应的自变量值,y ax bx c 即断抛物线与x轴有2个交点;同理b2-4ac=0,二次函数图象与x轴有一个交点;b2-4ac <0时,抛物线与x轴没有交点。 二、精典练习 1.(烟台市中考题)如图是二次函数y=ax2+bx+c图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0).下列说法:①abc<0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y1),(,y2)是抛物线上两点,则y1>y2.其中说法正确的是() A.①②B.②③C.①②④D.②③④ 2、如图,二次函数y=ax2+bx+c(a≠0)的图象的顶点在第一象限,且过点(0,1)和(﹣1,0).下列结论:①ab<0,②b2>4a,③0<a+b+c<2,④0<b<1,⑤当x>﹣1时,y>0,其中正确结论的个数是() A.5个B.4个C.3个D.2个

一元二次方程的根与系数的关系

一元二次方程的根与系数的关系 教材分析:中学阶段涉及的一元二次内容有函数的二次函数,研究几何图形中的有二次曲线,一元二次方程的求根公式向我们揭示了两根与系数间的的密切关系,而韦达定理介绍的根与系数的关系是在求根公式的基础上,根与系数的进一步发现,这一发现在数学学科中具有较强的实用价值,学生在处理有关一元二次方程的问题时,就会多一些思想和方法,同时,也为今后进一步学习方程理论打下基础. 学情分析:1.学生已学习用求根公式法解一元二次方程,自主探究根与系数的关系是完全可能的。2.学生对事物的认识多是直观、形象的,他们所注意的多是事物外部的、直接的、具体形象的特征,3.向学生渗透认识事物的规律是由特殊到一般,再由一般到特殊,培养学生勇于探索、积极思维的精神. 教学目标 知识目标: 1.经历一元二次方程根与系数关系的探究过程培养学生的观察思考,归纳概括能力 2.掌握一元二次方程的根与系数的关系. 能力目标: 通过韦达定理的教学过程,使学生经历观察、实验、猜想、证明等数学活动过程,发展推理能力,能有条理地、清晰地阐述自己的观点,进一步培养学生的创新意识和创新精神。 情感目标: 1.渗透由特殊到一般,再由一般到特殊的认识事物的规律; 2.经历观察、探索、猜想、证明的过程,得出一元二次方程根与系数的关系,让学生经历合情推理到演绎推理的认识事物的模式,培养学生用辨证思想认识事物. 教学重点和难点 重点:一元二次方程根与系数的关系; 难点:如何通过求根公式发现韦达定理,正确理解根与系数的关系.

教学关键:1.激发学生对根与系数关系的求知欲望; 2.引导启发学生来发现如何推导根与系数的关系 教学过程 一、课前游戏环节:你知道陈老师今年多大吗?猜猜,。。。,对于我来说年龄绝对是个秘密,我不能直接告诉你,我们现在在学习一元二次方程,我的年龄是0180272=+-x x 的两根之和,你们猜一猜,不解方程,能不能求出陈老师的年龄。 由求根公式可知,一元二次方程的根仅仅由系数a 、b 、c 确定,换句话,就是说根与系数有密切的关系,当然这种根与系数的关系不容易立刻被发现。我们用配方法、因式分解法等措施求出根。除此之外,一元二次方程的两个根与系数到底还有没有其他关系? 二、探索发现 活动任务:全班同学在课本中找出已经整理成一般式的一元二次方程,并且最好是已经确定两根的方程。一般来说,学生会优先选取一元二次方程系数a 、b 、c 为整数的并且跟也为整数的方程,教师在此进行引导,要求尽可能的找出各种类型的例子,例子包括系数a 、b 、c 为正数、负数、0;根为正数、负数顿好的。学生若没有提出,老师在表格中补充。小组讨论 前后间四人小组合作,老师思路引导:代数学科中数与式的结构编排,让我们想到了两根运算上的最简单的组合:和差积商。刚才所列举的数中,观察这两数的和差积商,思考根与系数还有什么密切关系?

二次函数图像与系数的关系

教学设计—— 二次函数的系数与图像 长葛六中刘晓金 目标:1、通过观察二次函数的图像的形成过程,导出二次函数的图像与系数的关系。 2、理解和探索相关二次函数的图像之间的关系。 3、会用学习的知识判断相关二次函数的图像之间的关系。 4、运用相关知识解决平移、对称、翻转图像的抛物线解析式。 重点:1、探索和总结二次函数的图像与系数之间的关系。 2、运用相关知识解决问题。 难点:运用相关知识解决问题。 学法:1、通过观察发现相关知识。 2、通过合作探索知识的运用。 教法:运用课件对知识由浅入深地进行展示,不断引导学生观察、探索、总结和应用。 教学过程 一、课堂导入 1、导言:不同的二次函数,图像也不相同,即使有时形状相同,在坐标系中的位置也不尽相同。你知道这是为什么吗?本节我们就一起来探讨一下。 (展示幻灯片1) 2、展示本节教学主要过程。 (展示幻灯片2) 二、师生互动过程 1、a的符号与抛物线开口方向

①、学生在练习本上画出y=x2,y=-x2的草图,观察抛物线的开口方向。 ②、(展示幻灯片3) ③、学生对着幻灯片,检查自己的发现。 ④、总结出:a>0时抛物线开口方向向上,a<0时抛物线开口方向向下。 ⑤、练习在抛物线y=(k-1)x2+x+1中k 时开口向上,k 时开口向下。 2、a的绝对值与图像开口的大小 ①、导言:我们知道二次函数的图像虽然是抛物线,但是形状却不尽相同,这究竟是为什么呢? ②、(展示幻灯片4)引导学生认真观察不同函数图像的形状(开口大小)与什么相关联? ③、引导学生总结出:a的绝对值相等,抛物线开口方向不同,大小相同。 ④、练习k取时,抛物线y=(k+3)x2-x+6可以由抛物线y=2x2变化而来。 3、C与图像和y轴的交点位置 ①、(展示幻灯片5) ②、通过引导学生,使学生总结出:C=0时抛物线与y轴相交于原点;C >0时抛物线与y轴相交于X轴上方;C<0时抛物线与y轴相交于x轴下方。 (C的值决定抛物线与y轴相交的位置) 4、a.b与对称轴的位置 ①、学生写出y=x2, y=x2+2x, y=x2-2x, y=-x2+2x, y=-x2-2x 中各个式子中a、b的值,并计算出ab 的值。 ②、(展示幻灯片6) ③、引导学生探讨幻灯片中各个图像的形成过程,总结出:ab=0时对称轴与y 轴重合;ab>0时对称轴在y轴的左边;ab<0时对称轴在y轴的右边。

二次函数系数符号的确定

二次函数系数符号的确定 活动一:复习引入: 1.复习用“>”“<”填空 ①,反比例函数x k y = k 0 ② ,b kx y +=一次函数k 0, b 0. 2.思:二次函数c bx ax y ++=2呢 a 0, b 0, c 0 活动二 a.c 符号 1.开口方向向上,则a 开口方向向下,则a 2.抛物线与x 轴的交点在x 轴上方,则c 0, 与x 轴交点在下方,则c 0, 练习: 活动三:b 的符号 1.对称轴:a b x 2-= 分析图1 学生练习图2 x y O x y O y O x y

2.思考:a.b 同号,则对称轴在y 轴 侧;a.b 异号,则对称轴在y 轴 侧。 3.练习:快速说出b 的符号。(图略) 活动4: 1.看图填空 (1)a +b +c_______0(2)a -b +c_______0 (3)2a -b _______0(4)4a +2b +c_______0 2.练习: ②(稍难二次函数y =ax 2 +bx +c(a ≠0)的图象开口向上,图象经过点(-1,2) 和(1,0),且与y 轴负半轴交于一点,给出以下结论①abc <0;②2a +b >0;③a +c =1;④a >1.其中正确的结论是( ) A 、1个 B 、2个 C 、3个 D 、4个 ①.(2009黄石)已知二次函数y=ax 2+bx+c (a ≠0)的图象如图3所示,下列结论:①abc >0 ②2a+b <0 ③4a -2b+c <0 ④a+c >0,其中正确结论的个数为( ) A 、4个 B 、3个 C 、2个 D 、1个 活动5:画草图 1. 4-22x x y += 4-2-2x x y += 2. 归纳:①开口方向 ②与y 轴交点,x 轴交点, ③顶点坐标 活动6.达标测评 1.二次函数y=ax 2+bx+c 与一次函数c ax y +=在同一坐标系中的图象大致是( ) 2(岳阳2013).二次函数y =ax 2+bx +c 的图象如图所示,对于下列结论:①a <0;②b <0;③c >0;④ b +2a =0;⑤a +b + c <0.其中正确的个数是( ) A 、1个 B 、2个 C 、3个 D 、4个 O A x y O B x y O C x y O D x y

二次函数系数abc与图像的关系28318

二次函数系数a、b、c与图像的关系 知识要点 二次函数y=ax2+bx+c系数符号的确定: (1)a由抛物线开口方向确定:开口方向向上,则a>0;否则a<0. (2)b由对称轴和a的符号确定:由对称轴公式x=判断符号. (3)c由抛物线与y轴的交点确定:交点在y轴正半轴,则c>0;否则c<0. (4)b2-4ac的符号由抛物线与x轴交点的个数确定:2个交点,b2-4ac>0;1个交点,b2-4ac=0;没有交点,b2-4ac <0. (5)当x=1时,可确定a+b+c的符号,当x=-1时,可确定a-b+c的符号. (6)由对称轴公式x=,可确定2a+b的符号. 一.选择题(共9小题) 1.(2014?威海)已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列说法: ①c=0;②该抛物线的对称轴是直线x=﹣1;③当x=1时,y=2a;④am2+bm+a>0 (m≠﹣1). 其中正确的个数是() A.1B.2C.3D.4 2.(2014?仙游县二模)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下 结论:①a+b+c<0;②a﹣b+c<0;③b+2a<0;④abc>0.其中所有正确结论的序号 是() A.③④B.②③C.①④D.①②③3.(2014?南阳二模)二次函数y=ax2+bx+c的图象如图所示,那么关于此二次函数的下 列四个结论: ①a<0;②c>0;③b2﹣4ac>0;④<0中,正确的结论有() A.1个B.2个C.3个D.4个 4.(2014?襄城区模拟)函数y=x2+bx+c与y=x的图象如图,有以下结论: ①b2﹣4c<0;②c﹣b+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0. 其中正确结论的个数为() A.1B.2C.3D.4 5.(2014?宜城市模拟)如图是二次函数y=ax2+bx+c图象的一部分,其对称轴为x=﹣1, 且过点(﹣3,0)下列说法: ①abc<0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y1),(2,y2)是抛物线上的两点, 则y1>y2. 其中说法正确的是()

二次函数系数判断典型试题

二次函数系数判断典型试题 一.选择题 1.如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下四个结论:①abc=0, ②a+b+c>0,③a>b,④4ac-b2<0;其中正确的结论有() A.1个B.2个C.3个D.4个 2.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①b<0;②c>0;③a+c<b; ④b2-4ac>0,其中正确的个数是()A.1 B.2 C.3 D.4 3.如图,二次函数y=ax2+bx+c(a>0)图象的顶点为D,其图象与x轴的交点A、B的横坐标分别为-1和3,则下列结论正确的是() A.2a-b=0 B.a+b+c>0 C.3a-c=0 D.当a=1/2时,△ABD是等腰直角三角形 4.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(-1,0),其对称轴为直线x=1,下面结论中正确的是()A.abc>0 B.2a-b=0 C.4a+2b+c<0D.9a+3b+c=0 5.二次函数y=ax2+bx+c的图象如图所示,下列结论:①4ac<b2;②a+c>b;③2a+b>0.其中正确的有()A.①②B.①③C.②③D.①②③ 6.已知二次函数y=ax2+bx=c(a≠0)的图象如图所示,与y轴相交一点C,与x轴负半轴相交一点A,且OA=OC,有下列5个结论:①abc>0;②b<a+c;③4a+2b+c>0;④2a+b=0; ⑤c+1/a=-2.其中正确的结论有()A.③④⑤B.③④C.①②③D.②③④ 7.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,在下列五个结论中:①2a-b<0; ②abc<0;③a+b+c<0;④b2-4ac>0;⑤(a+c)2>b2,正确的有()(填序号)A.①②③B.①③⑤C.①③④D.①②③⑤ 8.如图所示的二次函数y=ax2+bx+c(a≠0)的图象中,下面四条信息:①ab>0;②a+b+c <0;③b+2c>0;④点(-3,m),(6,n)都在抛物线上,则有m<n;你认为其中正确的有()A.①②③B.①②④C.①③④D.②③④ 9.已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列说法:①c=0;②该抛物线的对称轴是直线x=-1;③当x=1时,y=2n;④am2+bn+a>0(a≠-1).其中正确的是()A.①②B.①②③C.①②④D.①②③④ 10.已知如图,抛物线y=ax2+bx+c与x轴交于点A(-1,0)和点B,化简√(a+c)2+√(c-b)2的结果为①c,②b,③b-a,④a-b+2c,其中正确的有() A.一个B.两个C.三个D.四个

二次函数表达式的确定方法

3、求二次函数关系式 一.选择题(共8小题) 1.如果二次函数y=ax2+bx+c(a≠0)的图象如图所示,那么() A.a<0,b>0,c>0 B.a>0,b<0,c>0 C.a>0,b<0,c<0 D.a>0,b>0,c<0 2.如果二次函数y=ax2+bx+c的图象如图所示,那么下列判断正确的是() A.a>0,c>0 B.a<0,c>0 C.a>0,c<0 D.a<0,c<0 3.二次函数y=(a﹣1)x2(a为常数)的图象如图所示,则a的取值范围为() A.a>1 B.a<1 C.a>0 D.a<0 4.如果二次函数y=ax2+bx+c的图象如图所示,那么下列判断中,不正确的是() A.a>0 B.b>0 C.c<0 D.b2﹣4ac>0 5.抛物线y=(m﹣1)x2﹣mx﹣m2+1的图象过原点,则m的值为() A.±1 B.0 C.1 D.﹣1 6.(已知点(﹣2,4)在抛物线y=ax2上,则a的值是() A.﹣1 B.1 C.±1 D. 7.将二次函数y=x2的图象向下平移1个单位,再向右平移1个单位后所得图象的函数表达式为()A.y=(x+1)2+1 B.y=(x+1)2﹣1 C.y=(x﹣1)2+1 D.y=(x﹣1)2﹣1 8.将抛物线y=(x﹣1)2向左平移2个单位,所得抛物线的表达式为()

二.填空题(共6小题) 9.已知抛物线经过点(5,﹣3),其对称轴为直线x=4,则抛物线一定经过另一点的坐标是_________.10.如果二次函数y=(m﹣1)x2+5x+m2﹣1的图象经过原点,那么m=_________. 11.若点(﹣2,a),(﹣3,b)都在二次函数y=x2+2x+m的图象上,比较a、b的大小:a_________b.(填“>”“<”或“=”). 12.已知二次函数y=x2+2x﹣7的一个函数值是8,那么对应的自变量x的值是_________. 13.抛物线y=x2+2向左平移2个单位得到的抛物线表达式为_________. 14.如果将抛物线y=3x2平移,使平移后的抛物线顶点坐标为(2,2),那么平移后的抛物线的表达式为_________.三.解答题(共8小题) 15.抛物线y=ax2+bx+c(a≠0)向右平移2个单位得到抛物线y=a(x﹣3)2﹣1,且平移后的抛物线经过点A(2,1).(1)求平移后抛物线的解析式; (2)设原抛物线与y轴的交点为B,顶点为P,平移后抛物线的对称轴与x轴交于点M,求△BPM的面积. 16.在直角坐标平面内,抛物线y=ax2+bx+c经过原点O、A(﹣2,﹣2)与B(1,﹣5)三点. (1)求抛物线的表达式;(2)写出该抛物线的顶点坐标. 17.如图,已知二次函数的图象过A、C、B三点,点A的坐标为(﹣1,0),点B的坐标为(4,0),点C在y轴正半轴上,且AB=OC.(1)求点C的坐标;(2)求二次函数的解析式,并化成一般形式. 18.已知抛物线的顶点坐标是(8,9),且过点(0,1),求该抛物线的解析式. 19.已知在直角坐标平面内,抛物线y=x2+bx+6经过x轴上两点A,B,点B的坐标为(3,0),与y轴相交于点C;(1)求抛物线的表达式;(2)求△ABC的面积. 20.如图,已知二次函数的图象与x轴交于点A(1,0)和点B,与y轴交于点C(0,6),对称轴为直线x=2,求二次函数解析式并写出图象最低点坐标.

相关文档
相关文档 最新文档