文档库 最新最全的文档下载
当前位置:文档库 › 化学反应工程实验材料学生

化学反应工程实验材料学生

化学反应工程实验材料学生
化学反应工程实验材料学生

每个同学必须打印或复印一份并提前预习返混实验测定部分测定

一,连续流动反应器中得返混测定

A 实验目得

本实验通过单釜与三釜反应器中停留时间分布得测定,将数据计算结果用多釜串联模型来定量返混程度,从而认识限制返混得措施。本实验目得为

(1)掌握停留时间分布得测定方法。

(2)了解停留时间分布与多釜串联模型得关系。

(3)了解模型参数n得物理意义及计算方法。

B 实验原理

在连续流动得反应器内,不同停留时间得物料之间得混与称为返混。返混程度得大小,一般很难直接测定,通常就是利用物料停留时间分布得测定来研究。然而测定不同状态得反应器内停留时间分布时,我们可以发现,相同得停留时间分布可以有不同得返混情况,即返混与停留时间分布不存在一一对应得关系,因此不能用停留时间分布得实验测定数据直接表示返混程度,而要借助于反应器数学模型来间接表达。

物料在反应器内得停留时间完全就是一个随机过程,须用概率分布方法来定量描述。所用得概率分布函数为停留时间分布密度函数f与停留时间分布函数F。停留时间分布密度函数f得物理意义就是:同时进入得N个流体粒子中,停留时间介于t到t+dt间得流体粒子所占得分率为fdt。停留时间分布函数F得物理意义就是:流过系统得物料中停留时间小于t得物料得分率。

停留时间分布得测定方法有脉冲法,阶跃法等,常用得就是脉冲法。当系统达到稳定后,在系统得入口处瞬间注入一定量Q得示踪物料,同时开始在出口流体中检测示踪物料得浓度变化。

由停留时间分布密度函数得物理含义,可知

(1)

(2)

所以(3)

由此可见与示踪剂浓度成正比。因此,本实验中用水作为连续流动得物料,以饱与作示踪

剂,在反应器出口处检测溶液电导值。在一定范围内,浓度与电导值成正比,则可用电导值来表达物料得停留时间变化关系,即,这里,为t时刻得电导值,为无示踪剂时电导值。

停留时间分布密度函数在概率论中有二个特征值,平均停留时间(数学期望)与方差。

得表达式为:

(4)

采用离散形式表达,并取相同时间间隔则:

(5)

得表达式为:

(6)

也用离散形式表达,并取相同,则:

(7)

若用无因次对比时间来表示,即,

无因次方差。

在测定了一个系统得停留时间分布后,如何来评介其返混程度,则需要用反应器模型来描述,这里我们采用得就是多釜串联模型。

所谓多釜串联模型就是将一个实际反应器中得返混情况作为与若干个全混釜串联时得返混程度等效。这里得若干个全混釜个数n就是虚拟值,并不代表反应器个数,n称为模型参数。多釜串联模型假定每个反应器为全混釜,反应器之间无返混,每个全混釜体积相同,则可以推导得到多釜串联反应器得停留时间分布函数关系,并得到无因次方差与模型参数n存在关系为

(8)

当, ,为全混釜特征;

当, , 为平推流特征;

这里n就是模型参数,就是个虚拟釜数,并不限于整数。

C 预习与思考

(1)为什么说返混与停留时间分布不就是一一对应得?为什么我们又可以通过测定停留时间分布来研究返混呢?

(2)测定停留时间分布得方法有哪些?本实验采用哪种方法?

(3)何谓返混?返混得起因就是什么?限制返混得措施有哪些?

(4) 何谓示踪剂?有何要求?本实验用什么作示踪剂?

(5) 模型参数与实验中反应釜得个数有何不同?为什么?

D 实验装置与流程

实验装置如图2–22所示,由单釜与三釜串联二个系统组成。三釜串联反应器中每个釜得体积为1L,单釜反应器体积为3L,用可控硅直流调速装置调速。实验时,水分别从二个转子流量计流入二个系统,稳定后在二个系统得入口处分别快速注入示踪剂,由每个反应釜出口处电导电极检测示踪剂浓度变化,并由记录仪自动录下来。

图2–22 连续流动反应器返混实验装置图

1–全混釜(3L);2、3、4–全混釜(1L); 5–转子流量计;6–电机;

7–电导率仪;8–电导电极;9–记录仪;10–四笔记录仪或微机

E 实验步骤及方法

(1)通水,开启水开关,让水注满反应釜,调节进水流量为20,保持流量稳定。

(2)通电,开启电源开关。

①开记录仪,记下走纸速度;

②开电导仪并调整好,以备测量;

③开动搅拌装置,转速应大于300。

(3)待系统稳定后,用注射器迅速注入示踪剂,在记录纸上作起始标记。

(4)当记录仪上显示得浓度在2min内觉察不到变化时,即认为终点己到。

(5)关闭仪器,电源,水源,排清釜中料液,实验结束。

F 实验数据处理

根据实验结果,我们可以得到单釜与三釜得停留时间分布曲线,这里得物理量- 电导值L对应了示踪剂浓度得变化;走纸得长度方向对应了测定得时间,可以由记录仪走纸速度换算出来。然后用离散化方法,在曲线上相同时间间隔取点,一般可取20个数据点左右,再由公式(5),(7)分别计算出各自得,及无因次方差。通过多釜串联模型,利用公式(8)求出相应得模型参数n,随后根据n得数值大小,就可确定单釜与三釜系统得两种返混程度大小。

若采用微机数据采集与分析处理系统,则可直接由电导率仪输出信号至计算机,由计算机负责数据采集与分析,在显示器上画出停留时间分布动态曲线图,并在实验结束后自动计算平均停留时间、方差与模型参数。停留时间分布曲线图与相应数据均可方便地保存或打印输出,减少了手工计算得工作量。

G 结果与讨论

(1)计算出单釜与三釜系统得平均停留时间,并与理论值比较,分析偏差原因;

(2)计算模型参数n,讨论二种系统得返混程度大小;

(3)讨论一下如何限制返混或加大返混程度。

H 主要符号说明

- t时刻反应器内示踪剂浓度;

- 停留时间分布密度;

- 停留时间分布函数;

- 液体得电导值;

n - 模型参数;

t - 时间;

v - 液体体积流量;

- 数学期望,或平均停留时间;

- 方差;

- 无因次时间。

参考文献

(1)陈甘棠主编、化学反应工程、北京:化学工业出版社,1981

(2)朱炳辰主编、化学反应工程、北京:化学工业出版社,1998

二,连续均相管式循环反应器中得返混实验

A、实验原理及要点

1.实验原理

在工业生产上,对某些反应为了控制反应物得合适浓度,以便控制温度、转化率与收率,同时需要使物料在反应器内由足够得停留时间,并具有一定得线速度,而将反应物得一部分物料返回到反应器进口,使其与新鲜得物料混合再进入反应器进行反应。在连续流动得反应器内,不同停留时间得物料之间得混与称为返混。对于这种反应器循环与返混之间得关系,需要通过实验来测定。

在连续均相管式循环反应器中,若循环流量等于零,则反应器得返混程度与平推流反应器相近,由于管内流体得速度分布与扩散,会造成较小得返混。若有循环操作,则反应器出口得流体被强制返回反应器入口,也就就是返混。返混程度得大小与循环流量有关,通常定义循环比R为:

循环比R就是连续均相管式循环反应器得重要特征,可自零变至无穷大。

当R=0时,相当于平推流管式反应器。

当R=∞时,相当于全混流反应器。

因此,对于连续均相管式循环反应器,可以通过调节循环比R,得到不同返混程度得反应系统。一般情况下,循环比大于20时,系统得返混特性已经非常接近全混流反应器。

返混程度得大小,一般很难直接测定,通常就是利用物料停留时间分布得测定来研究。然而测定不同状态得反应器内停留时间分布时,我们可以发现,相同得停留时间分布可以有不同得返混情况,即返混与停留时间分布不存在一一对应得关系,因此不能用停留时间分布得实验测定数据直接表示返混程度,而要借助于反应器数学模型来间接表达。

停留时间分布得测定方法有脉冲法,阶跃法等,常用得就是脉冲法。当系统达到稳定后,在系统得入口处瞬间注入一定量Q得示踪物料,同时开始在出口流体中检测示踪物料得浓度变化。

由停留时间分布密度函数得物理含义,可知

所以

由此可见与示踪剂浓度成正比。因此,本实验中用水作为连续流动得物料,以饱与作示踪剂,在反应器出口处检测溶液电导值。在一定范围内,浓度与电导值成正比,则可用电导值来表达物料得停留时间变化关系,即,这里,为t时刻得电导值,为无示踪剂时电导值。

由实验测定得停留时间分布密度函数,有两个重要得特征值,即平均停留时间与方差,可由实验数据计算得到。若用离散形式表达,并取相同时间间隔则:

若用无因次对比时间来表示,即,

无因次方差。

在测定了一个系统得停留时间分布后,如何来评介其返混程度,则需要用反应器模型来描述,这里我们采用得就是多釜串联模型。

所谓多釜串联模型就是将一个实际反应器中得返混情况作为与若干个全混釜串联时得返混程度等效。这里得若干个全混釜个数n就是虚拟值,并不代表反应器个数,n称为模型参数。多釜串联模型假定每个反应器为全混釜,反应器之间无返混,每个全混釜体积相同,则可以推导得到多釜串联反应器得停留时间分布函数关系,并得到无因次方差与模型参数n存在关系为:

B.实验目得

(4)了解连续均相管式循环反应器得返混特性。

(5)分析观察连续均相管式循环反应器得流动特征

(6)研究不同循环比下得返混程度,计算模型参数n。

C.设备及操作要点

(6)

(8)

(7)

(1)进水阀(2)进水流量计(3)注射器(4)填料塔

(5)电极(6)电导仪(7)记录仪(8)微机

(9)循环泵(10)循环流量计(11)放气阀

实验装置由管式反应器与循环系统组成。循环泵开关在仪表屏上控制,流量由循环管阀门控制,流量直接显示在仪表屏上,单位就是:升/小时。实验时,进水从转子流量计调节流入系统,稳定后在系统得入口处(反应管下部进样口)快速注入示踪剂(0、5~1ml),由系统出口处电导电极检测示踪剂浓度变化,并显示在电导仪上,并可由记录仪记录。

电导仪输出得毫伏信号经电缆进入A/D卡,A/D卡将模拟信号转换成数字信号,由计算机集中采集、显示并记录,实验结束后,计算机可将实验数据及计算结果储存或打印出来。

操作要点:

⑴实验循环比做两个,R=0,3或5;注入示踪剂要小于1ml;

⑵调节流量稳定后方可注入示踪剂,整个操作过程中注意控制流量;

⑶为便于观察,示踪剂中加入了颜料。抽取时勿吸入底层晶体,以免堵塞。

⑷示踪剂要求一次迅速注入;若遇针头堵塞,不可强行推入,应拔出后重新操作;

⑸一旦失误,应等示踪剂出峰全部走平后,再重做。

D.实验内容与要求

⑴实验内容

用脉冲示踪法测定循环反应器停留时间分布;

改变循环比,确定不同循环比下得系统返混程度;

观察循环反应器得流动特征。

⑵实验要求

控制系统得进口流量15 升/小时,采用不同循环比,R=0,3,5,通过测定停留时间得方法,借助多釜串联模型度量不同循环比下系统得返混程度。

二、实验预习题与答案

1.脉冲示踪法对示踪剂得要求就是

⑴示踪剂与流体互溶√

⑵能与流体发生反应

⑶无色透明

⑷容易检测√

2.若进口流量15升/小时,循环比要求0,3,5,则

⑴循环流量分别控制为0,18,20升/小时

⑵循环流量分别控制为0,45,75升/小时√

⑶循环流量分别控制为0,3,5升/小时

⑷循环流量分别控制为0,60,90升/小时

3.返混得结果就是

⑴造成不均匀得速度分布

⑵改变了反应物得浓度分布√

⑶造成物料得停留时间分布√

⑷形成空间上得反向流动

4.循环管式反应器中循环比与实验结果得关系就是

⑴R越大,方差越大; √

⑵R越大,平均停留时间越大;

⑶R越小,方差越大;

⑷R越小,模型参数越大; √

5.在管式反应器中,减小返混得措施就是

⑴填充固体填料√

⑵增大管径

⑶增大循环比

⑷提高高径比√

6.本实验采用哪个反应器模型描述返混程度

⑴多釜串联模型√

⑵全混流反应器

⑶轴向扩散模型

⑷平推流反应器

三、实验准备工作

1.药品

饱与氯化钾溶液

2.实验器具

500ml 烧杯两只

5ml 针筒两支,备用两支

7# 针头两个,备用两个

3.实验准备工作

熟悉流量计、循环泵得操作

熟悉进样操作,可抽清水模拟操作

熟悉“管式循环反应器”数据采集系统得操作,开始→结束→保存→打印

熟悉EPSON-1600K打印机操作,开启→装一页A4纸→进纸键→联机键→打印

四、实验操作指导

1.开车步骤

(3)通水,开启水源,让水注满反应管,并从塔顶稳定流出,调节进水流量为15,保持流量稳定。

(4)通电,开启电源开关。

④开电脑、打印机,打开“管式循环反应器数据采集”软件,准备开始;

⑤开电导仪并调整好,以备测量;

⑥循环时,开泵(面板上仪表右第二个键“▲”),用循环阀门调节流量。

⑦不循环时,关泵(面板上中间得向下箭头“▲”),关紧循环阀门。

2.进样操作

⑴待系统稳定后,用注射器迅速注入示踪剂(建议0、5~1ml,实际进样量可调节),同时点击软件上“开始”图标。

⑵当电脑记录显示得曲线在2min内觉察不到变化时,即认为终点己到。

(出峰时间约10-20min)

⑶点击“结束”,以组号作为文件名保存文件,打印实验数据。

⑷改变条件重复⑴~⑶步骤。

3、结束步骤

⑴关闭电脑、打印机;

⑵关闭仪器,电源,水源,实验结束。

五、实验报告要求

1.实验数据处理与报告

①选择一组实验数据,用离散方法计算平均停留时间、方差,从而计算无因次方差与模型

参数,要求写清计算步骤。

②与计算机计算结果比较,分析偏差原因。

③列出数据处理结果表。

④讨论实验结果。

2.实验讨论题

①何谓循环比?循环反应器得特征时什么?

②计算出不同条件下系统得平均停留时间,分析偏差原因;

③计算模型参数n,讨论不同条件下系统得返混程度大小;

⑤讨论一下如何限制返混或加大返混程度。

固体小球实验

(实验三自然对流,强制对流,

实验四流化床,固定床)

1、实验原理

自然界与工程上,热量传递得机理有传导、对流与辐射。传热时可能有几种机理同时存在,也可能以某种机理为主,不同得机理对应不同得传热方式或规律。

本实验将一直径为20mm温度为T0得小铜球,置于温度为恒定T f得周围环境中,由于T f不等于T0,小球必要受到加热或冷却而温度变为T,在传热过程中,小球得温度显然随时间而变化,这就是一个非定态导热过程。在实验中所用铜球得体积非常小,而导热系数又比较大,可以认为铜球内不存在温度梯度,即整个球体得温度就是均匀一致得,于就是根据热平衡原理,球体热量随时间得变化应等于通过对流换热向周围环境得散热速率。

(1)

(2)

初始条件:

积分(2)式得:

(3)

(4)

定义时间常数,分析(3)式可知,当物体与环境间得热交换经历了四倍于时间常数得时间后,即:,可得:

表明过余温度得变化已达98、2%,以后得变化仅剩1、8%,对工程计算来说,往后可近似作定常数处理。

对小球代入式(6)整理得:

(5)

或(6)

通过实验可测得铜球在不同环境与流动状态下得冷却曲线,由温度记录仪记

下T~t得关系,就可由式(5)与式(6)求出相应得与得值。

对于气体在范围,即高数下,绕球换热得经验式为:

(7)

若在静止流体中换热:。

物体得突然加热与冷却过程属非定导热过程。此时导热物体内得温度,既就是空间位置又就是时间得函数,。物体在导热介质得加热或冷却过程中,导热速率同时取决于物体内部得导热热阻以及与环境间得外部对流热阻。为了简化,不少问题可以忽略两者之一进行处理。然而能否简化,需要确定一个判据。通常定义无因次准数毕奥数(Bi),即物体内部导热热阻与物体外部对流热阻之比进行判断。

(8)

式中: - 为特征尺寸,对于球体为R/3

若Bi数很小,,表明内部导热热阻<<外部对流热阻,此时,可忽略内部导热热阻,可简化为整个物体得温度均匀一致,使温度仅为时间得函数,即。这种将系统简化为具有均一性质进行处理得方法,称为集总参数法。实验表明,只要Bi<0、1,忽略内部热阻进行计算,其误差不大于5%,通常为工程计算所允许。

2、实验目得

(1)测定不同环境与小铜球之间得对流传热系数,并对所得结果进行比较。

(2)了解非定态导热得特点以及毕奥准数(Bi)得物理意义。

(3)熟悉流化床与固定床得操作特点。

3、设备及操作要点

实验特点

实验装置由气泵、砂粒床层、管式加热炉、文丘利流量计、压差计、带嵌装热电偶得铜球、温度记录仪及温控仪表、管路调节阀门等组成。

操作要点

1)开启电源,将管式加热炉进行加温预热,温度控制在400-500度之间。温度太高会引入热辐射,造成测量误差。另外也容易损坏铜球及热电偶;而温度太低,温差较小,易产生系统误差。

2)应快速将加热小球置于不同得环境中进行实验,以免造成记录仪读数误差。

3)进行流化床、强制对流与固定床操作之前,应事先将相应得管路调节阀门调整好。

4)记录下温度记录仪得走纸速度

5)应注意固定床传热实验得正确操作,先将砂粒床层流化,迅速插入加热小铜球于床层中并关闭气泵电源。然后由温度记录仪记录下冷却曲线。

6)关闭加热炉与气泵电源。

4、数据处理得计算方法

1)对流传热系数

2)毕奥准数

主要符号说明

- 面积, ;

- 毕奥准数, [无因次];

- 比热, ;

- 小球直径, ;

- 傅立叶准数, [无因次];

- 努塞尔准数, [无因次];

- 普朗特准数, [无因次];

- y方向上单位时间单位面积得导热量, ;

- y方向上得导热速率, ;

- 半径, ;

- 雷诺准数, [无因次];

- 温度, 或;

- 初始温度, 或;

- 流体温度, 或;

- 壁温, 或;

- 时间, ;

- 体积, ;

- 对流传热系数, ;

- 导热系数, ;

- 特征尺寸, ;

- 密度, ;

- 时间常数, ;

- 粘度, 。

5、实验内容及要求

1) 测量小球直径d s。

2) 打开管式加热炉得加热电源,调节加热温度至400-5000C。

3)由温度记录仪记录下自然对流、强制对流、固定床与流化床状态下得降温曲线。

4)记录下室温、气体流量、床层压降与记录仪走纸速度。

化学反应工程试题集

化学反应工程考试总结 一、填空题: 1.所谓“三传一反”是化学反应工程学的基础,其中“三传”是指质量传递、热量传递 和动量传递,“一反”是指反应动力学。 2.各种操作因素对于复杂反应的影响虽然各不相同,但通常温度升高有利于活化能高 的反应的选择性,反应物浓度升高有利于反应级数大的反应的选择性。 3.测定非理想流动的停留时间分布函数时,两种最常见的示踪物输入方法为脉冲示踪法 和阶跃示踪法。 4.在均相反应动力学中,利用实验数据求取化学反应速度方程式的两种最主要的方法为 积分法和微分法。 5.多级混合模型的唯一模型参数为串联的全混区的个数N ,轴向扩散模型的唯一模 型参数为Pe(或Ez / uL)。 6.工业催化剂性能优劣的三种最主要的性质是活性、选择性和稳定性。 7.平推流反应器的E函数表达式为 , () 0, t t E t t t ?∞= ? =? ≠ ?? ,其无因次方差2θσ= 0 ,而全混流反应器的无因次方差2θσ= 1 。 8.某反应速率常数的单位为m3 / (mol? hr ),该反应为 2 级反应。 9.对于反应22 A B R +→,各物质反应速率之间的关系为(-r A):(-r B):r R=1:2:2 。 10.平推流反应器和全混流反应器中平推流更适合于目的产物是中间产物的串联反 应。 11.某反应的计量方程为A R S →+,则其反应速率表达式不能确定。 12.物质A按一级不可逆反应在一间歇反应器中分解,在67℃时转化50%需要30 min, 而 在80 ℃时达到同样的转化率仅需20秒,该反应的活化能为 3.46×105(J / mol ) 。 13.反应级数不可能(可能/不可能)大于3。 14.对于单一反应,在相同的处理量和最终转化率条件下,选择反应器时主要考虑反应器 的大小;而对于复合反应,选择反应器时主要考虑的则是目的产物的收率;15.完全混合反应器(全混流反应器)内物料的温度和浓度均一,并且等于 (大于/小于/等于)反应器出口物料的温度和浓度。

化学反应工程

1、平推流的F(t)~t和E(t)~t曲线有何特征?并画图说明。 答: 平推流的F(t)~t曲线特征:F(t)= 平推流的E(t)~t曲线特征:E(t)={ 2、理想吸附应符合哪些条件? 答:①均匀表面(理想表面):即催化剂表面各处的吸附能力是均一的,吸附热于表面已被吸附的程度如何无关②单分子层吸附③被吸附的分子间互不影响④吸附的机理均相同,吸附形成的络合物亦均相同⑤吸附与脱附可以建立动态平衡 3、测定停留时间分布需要借助示踪剂,示踪剂应满足哪些条件? 答:采用何种示踪剂,要根据物料的物态、相系及其反应器的类型等情况而定。 A不应与主流体发生反应 B与所研究的流体完全互溶,除了显著区别与主流体的某一可检测性质外,二者应具有尽可能相同的物理性质 C便于检测:本身应具有或者易于转变为电信号或者光信号的特点,并且浓度很低时也能够检测 D加入示踪剂不影响所研究流体的流动状态 E不被反应器表面及其反应器内部的固体填充物吸附,用于多相系统检测的失踪剂不发生相间的转移 4、什么是返混,简述返混对复合反应体系的影响。 答:返混是指不同停留时间的物料粒子间的混合,或者不同时间进入反应器的物料间的混合。 对平行反应:若主反应级数高于副反应级数,返混使主产物选择率下降,若主反应级数低于副反应级数,返混使主产物选择率提高。 对连串反应:返混使反应物浓度降低,产物浓度提高,因而使主产物的选择率下降。5、什么是反应器的热稳定性?全混釜稳定操作的必要条件是什么? 答:反应器的热稳定性是指当操作参数受外界干扰,偏离正常值,出现微小变化时,反应能否正常进行,当外界干扰取消时,操作状态能否自动恢复到规定的正常值。 全混釜稳定操作的必要条件:Q r=Q G dQ r∕dT>dQ G/dT 6、选择操作温度的一般原则是什么? 答:①反应的热效应不大,反应热较小,活化能较低,而且在相当广的温度范围内,反应的选择性变化很小,则可采用既不供热也不出去热量的绝热操作是最方便的,反应放出或吸收的热量由系统中物料本身温度的升高或者降低来平衡,这种操作温度的变化范围不应超过工艺上许可的范围。 ②对中等热效应的反应,一般先考虑采用绝热操作,因此绝热反应器结构简单,经济,但应对收率、操作费用、反应器大小方面全盘衡量,最后才确定采用绝热或变温的方式。若为液相反应,可采用具有夹套或者盘管的釜式反应器,以便控制在等温下操作。 ③对热效应较大的反应,要求在整个反应过程中同时进行有效地热交换。 ④对极为快速的反应,一般考虑采用绝热操作,或者利用溶剂的蒸发来控制温度。 7、平推流与全混流是流体在反应器中流动的两种极端模型,二者各有何特点?并进行比 较。

化学反应工程第一章习题答案

第一章习题 1 化学反应式与化学计量方程有何异同?化学反应式中计量系数与化学计量方程中的计量系数有何关系? 答:化学反应式中计量系数恒为正值,化学计量方程中反应物的计量系数与化学反应式中数值相同,符号相反,对于产物二者相同。 2 何谓基元反应?基元反应的动力学方程中活化能与反应级数的含义是什么? 何谓非基元反应?非基元反应的动力学方程中活化能与反应级数含义是什么? 答:如果反应物严格按照化学反应式一步直接转化生成产物,该反应是基元反应。基元反应符合质量作用定律。基元反应的活化能指1摩尔活化分子的平均能量比普通分子的平均能量的高出值。基元反应的反应级数是该反应的反应分子数。一切不符合质量作用定律的反应都是非基元反应。非基元反应的活化能没有明确的物理意义,仅决定了反应速率对温度的敏感程度。非基元反应的反应级数是经验数值,决定了反应速率对反应物浓度的敏感程度。 3 若将反应速率写成t c r d d A A - =-,有什么条件? 答:化学反应的进行不引起物系体积的变化,即恒容。 4 为什么均相液相反应过程的动力学方程实验测定采用间歇反应器? 答:在间歇反应器中可以直接得到反应时间和反应程度的关系,而这种关系仅是动力学方程的直接积分,与反应器大小和投料量无关。 5 现有如下基元反应过程,请写出各组分生成速率与浓度之间关系。 (1)A+2B ?C A+C ? D (2)A+2B ?C B+C ?D C+D →E (3)2A+2B ?C

A+C ?D 解 (1) D 4C A 3D D 4C A 3C 22 B A 1C C 22B A 1B D 4C A 3C 22 B A 1A 22c k c c k r c k c c k c k c c k r c k c c k r c k c c k c k c c k r -=+--=+-=+-+-= (2) E 6D C 5D 4C B 3D E 6D C 5D 4C B 3C 22 B A 1C D 4C B 3C 22 B A 1B C 22B A 1A 22c k c c k c k c c k r c k c c k c k c c k c k c c k r c k c c k c k c c k r c k c c k r +--=+-+--=+-+-=+-= (3) D 4C A 3D D 4C A 3C 22B 2A 1C C 22B 2A 1B D 4C A 3C 22B 2A 1A 2222c k c c k r c k c c k c k c c k r c k c c k r c k c c k c k c c k r -=+--=+-=+-+-= 6 气相基元反应A+2B →2P 在30℃和常压下的反应速率常数k c =2.65× 104m 6kmol -2s -1。现以气相分压来表示速率方程,即(?r A )=k P p A p B 2 ,求k P =?(假定气体为理想气体) 解 () 3 -1-363 111 2643c P 2 B A p A 2 B A c 2 B A c A 1264c kPa s m kmol 10655.1K 303K kmol kJ 314.8s kmol m 1065.2)(s kmol m 1065.2K 30330273--------??=???= ==-? ? ? ??==-= ?==+=RT k k p p k r RT p RT p k c c k r RT p c k T

《化学反应工程》期末考试试题及答案..

一、单项选择题: (每题2分,共20分) 1.反应器中等温进行着A →P(1)和A →R(2)两个反应,当降低A 的浓度后,发现反应生成P 的量显著降低,而R 的生成量略降低,表明(A ) A .反应(1)对A 的反应级数大于反应(2) B .反应(1) 对A 的反应级数小于反应 (2) C .反应(1)的活化能小于反应(2) D .反应(1)的反应速率常数大于反应(2) 2.四只相同体积的全混釜串联操作,其无因次停留时间分布的方差值2θσ为( B ) A . 1.0 B. 0.25 C .0.50 D .0 3.对一平行—连串反应R A Q P A ?→??→??→?) 3()2()1(,P 为目的产物,若活化能次序为:E 2 -r A2 B .-r A1 = -r A2 C .-r A1 < -r A2 D.不能确定何者为大 5. 已知一闭式反应器的1.0=r a uL D ,该反应器若用多釜串联模型来描述,则模型参数N 为 ( B )。 A . 4.5 B. 5.6 C .3.5 D .4.0 6.固体催化剂之所以能起催化作用,是由于催化剂的活性中心与反应组分的气体分子主要发生( C)。 A .物理吸附 B .化学反应 C .化学吸附 D .质量传递 7.包括粒内微孔体积在内的全颗粒密度称之为( B ) A .堆(积)密度 B .颗粒密度 C .真密度 D .平均密度 8.在气固催化反应动力学研究中,内循环式无梯度反应器是一种( C )。 A .平推流反应器 B. 轴向流反应器 C. 全混流反应器 D. 多釜串联反应器 9.某液相反应,其反应式可写成A+C R+C 这种反应称为(B ) A .均相催化反应 B .自催化反应 C .链锁反应 D.可逆反应 10.高径比不大的气液连续鼓泡搅拌釜,对于其中的气相和液相的流动常可近似看成( B ) A .气、液均为平推流 B .气、液均为全混流 C .气相平推流、液相全混流 D .气相全混流、液相平推流 σ R R σσR σB σA σB σ σB A σ σA S k +?+?→?+?+?+) 此步为速率控制步骤 ( 222 3.间歇釜反应器中进行如下反应: P A → (1) -r A1 =k 1C A a1 S A → (2) -r A2=k 2C A a2 在C A0和反应时间保持不变下,降低反应温度,釜液中C P /C S 增大,表明活化能E1与E2的相对大小为 E1a2 。 A .al>a2 B .alE2 4.从反应器停留时间分布测定中,求得无因次方差 98.02=θσ,反应器可视为 全混流反应

化学反应工程习题答案

第7章化学反应工程习题答案 7-1 试述物理吸收与化学吸收的区别。 解:对于物理吸收过程*=A A A P H C 0 对于化学吸收过程* * +=A A B A P P C C αα10 ,式中A KH =α,其中K 为化学平衡常 数;0B C 为吸收剂中的活性组分浓度;0A C 是与A 组分分压*A P 平衡的气体浓度;A H -A 组分溶解度系数。从以上两式可以看出物理吸收和化学吸收区别如下: 1.物理吸收气体溶解度与气体压力呈正比关系,化学吸收呈渐近线关系,当分压较高时,气体溶解度趋近化学计量的极限,因此为了减低能耗,导致操作方式不同,压力较低宜采用化学吸收,压力较高宜采用物理吸收。 2.热效应不同,物理吸收热效应较小,每摩尔数千焦耳,而化学吸收可达数万焦耳。导致吸收剂的再生方式不同,物理吸收过程吸收剂减压再生为主,化学吸收过程的吸收剂再生除减压外还需加热。 3.物理吸收选择性主要体现各种气体在溶解度系数的差异,而化学吸收取决于A KH =α,由于化学反应特定性,吸收选择性不同。化学吸收选择性高于物理吸收。 7-2解释下列参数的物理意义:无因次准数M 、增大因子β及液相利用率η。分别写出一级不可逆和二级不可逆反应无因次准数M 的计算式。 解:无因次准数M 的物理意义 通过液膜传递速率 液膜内的化学反应速率 增大因子β的物理意义为速率 单纯物理吸收时的传质过气液界面的传质速率 液膜内有化学反应时通 液相利用率η的物理意义为的反应速率液相均处于界面浓度下吸收速率 对于一级不可逆反应211L AL L L k k D k k M ==δ 对于二级不可逆反应2 2L BL AL k C k D M = 7-3 纯二氧化碳与氢氧化钠水溶液进行反应,假定液相上方水蒸气分压可不 计,试按双膜模型绘出气相及液相二氧化碳浓度分布示意图。 解: 气模 液膜 P CO2,g P CO2,i C CO2,i C CO2,L

化学反应工程期末考试试题及答案(整理)

4?从反应器停留时间分布测定中 ,求得无因次方差「二 _ 0.98 ,反应器可视为 XXX 大学 化学反应工程 试题B (开)卷 (答案)2011 — 2012学年第一学 期 一、单项选择题: (每题2分,共20分) 1.反应器中等温进行着 A T P (1)和A T R (2)两个反应,当降低 A 的浓度后,发现反 应生成P 的量显著降低,而 R 的生成量略降低,表明 () A .反应(1)对A 的反应级数大于反应 (2) B .反应(1)对A 的反应级数小于反应 C .反应(1)的活化能小于反应 (2) D .反应(1)的反应速率常数大于反应 2 一为() 2?四只相同体积的全混釜串联操作,其无因次停留时间分布的方差值 A . 1.0 B. 0.25 C . 0.50 A (1) > A ⑶ > D . 0 P —-(2), Q 3. 对一平行一连串反应 为了目的产物的收率最大, A .先高后低 B.先低后高 C .高温操作 4. 两个等体积的全混流反应器进行串联操作, 与第二釜的反应速率-広2之间的关系为( A . -r Ai > -r A2 B . -r Ai 则最佳操作温度序列为( ,P 为目的产物,若活化能次序为:E 2

化学反应工程课后答案

1 绪 论 1.1在银催化剂上进行甲醇氧化为甲醛的反应: 进入反应器的原料气中,甲醇:空气:水蒸气=2:4:1.3(摩尔比),反应 后甲醇的转化率达72%,甲醛的收率为69.2%。试计算 (1) (1) 反应的选择性; (2) (2) 反应器出口气体的组成。 解:(1)由(1.7)式得反应的选择性为: (2)进入反应器的原料气中,甲醇:空气:水蒸气=2:4:1.3(摩尔比), A P 出口甲醇、甲醛和二氧化碳的摩尔数n A 、n P 和n c 分别为: n A =n A0(1-X A )=7.672 mol n P =n A0Y P =18.96 mol n C =n A0(X A -Y P )=0.7672 mol 结合上述反应的化学计量式,水(n W )、氧气(n O )和氮气(n N )的摩尔数分别为: n W =n W0+n P +2n C =38.30 mol n O =n O0-1/2n P -3/2n C =0.8788 mol n N =n N0=43.28 mol 1. 1. 2其主副反应如 下: 由于化学平衡的限制,反应过程中一氧化碳不可能全部转化成甲醇,为了提高原料的利用率,生产上采用循环操作,即将反应后的气体冷却,可凝组份变为液体即为粗甲醇,不凝组份如氢气及一氧化碳等部分放空,大部分经循环压缩 原料气 Bkg/h 粗甲醇 Akmol/h

100kmol 放空气 体 原料气和冷凝分离后的气体组成如下:(mol) 组分原料气冷凝分离后的气体 CO 26.82 15.49 H 2 68.25 69.78 CO 2 1.46 0.82 CH 4 0.55 3.62 N 2 2.92 10.29 粗甲醇的组成为CH 3OH 89.15%,(CH 3 ) 2 O 3.55%,C 3 H 9 OH 1.10%,H 2 O 6.20%,均为 重量百分率。在操作压力及温度下,其余组分均为不凝组分,但在冷凝冷却过程中可部分溶解于粗甲醇中,对1kg粗甲醇而言,其溶解量为CO 2 9.82g,CO 9.38g,H 2 1.76g,CH 4 2.14g,N 2 5.38g。若循环气与原料气之比为7.2(摩尔比), 试计算: (1)(1)一氧化碳的单程转换率和全程转化率; (2)(2)甲醇的单程收率和全程收率。 解:(1)设新鲜原料气进料流量为100kmol/h,则根据已知条件,计算进料原料 i i i i i m i i 。 M’ m =∑y i M i =9.554 又设放空气体流量为Akmol/h,粗甲醇的流量为Bkg/h。对整个系统的N 2 作衡算 得: 5.38B/28×1000+0.1029A=2.92 (A) 对整个系统就所有物料作衡算得: 100×10.42=B+9.554A (B) 联立(A)、(B)两个方程,解之得 A=26.91kmol/h B=785.2kg/h 反应后产物中CO摩尔流量为

化学反应工程复习题 (1)

第一章 绪论 1. 化学反应工程是一门研究______________的科学。(化学反应的工程问题) 2. 化学反应工程是一门研究化学反应的工程问题的科学,既以_______作为研究对象,又以_______为研究对象的学科体系。(化学反应、工程问题) 3. _______是化学反应工程的基础。( 三传一反) 4. 化学反应过程按操作方法分为_______、_______、_______操作。(分批式操作、连续式操作、半分批式) 5. 化学反应工程中的“三传一反”中的三传是指_______、_______、_______。(传质、传热、动量传递) 6. 不论是设计、放大或控制,都需要对研究对象作出定量的描述,也就要用数学式来表达个参数间的关系,简称_______。(数学模型) 7. 在建立数学模型时,根据基础资料建立物料、热量和动量衡算式的一般式为_______。(累积量=输入量-输出量) 第二章 均相反应动力学 1. 均相反应是指_。(参与反应的物质均处于同一相) 2. aA + bB pP + sS 对于反应,则=P r _______)(A r -。(a p ) 3.着眼反应组分K 的转化率的定义式为_______。( 00 K K K K n n n -=χ) 4.当计量方程中计量系数的代数和等于零时,这种反应称为_______,否则称为_______。(等分子反应、非等分子反应) 5. 化学反应速率式为βαB A C A C C K r =-,用浓度表示的速率常数为C K ,假定符合理想气体状态方程,如用压力表示的速率常数P K ,则C K =_______P K 。()()(βα+RT ) 6. 化学反应的总级数为n ,如用浓度表示的速率常数为C K ,用逸度表示的速率常数f K ,则 C K =_______f K 。(n RT )() 7. 化学反应的总级数为n ,如用浓度表示的速率常数为C K ,用气体摩尔分率表示的速率常数y K ,则 C K =_______y K 。(n p RT ???? ??) 10. 活化能的大小直接反映了______________对温度的敏感程度。(反应速率) 12.生成主产物的反应称为_______,其它的均为_______。(主反应、副反应) 13. 平行反应A P(主) S(副)均为一级不可逆反应,若主E >副E ,选择性S p 与_______无关,仅是_______

化学反应工程总结

、绪论 1. 研究对象是工业反应过程或工业反应器 研究目的是实现工业反应过程的优化 2. 决策变量:反应器结构、操作方式、工艺条件 3. 优化指标一一技术指标:反应速率、选择性、能耗 掌握转化率、收率与选择性的概念 4. 工程思维方法 1. 反应类型:简单反应、自催化、可逆、平行、串联反应 基本特征、分析判断 2. 化学反应速率的工程表示 3. 工业反应动力学规律可表示为: r i f c (G ) f T (T ) a )浓度效应——n 工程意义是:反应速率对浓度变化的敏感程 度。 b )温度效应——E 工程意义是:反应速率对温度变化的敏感程 度。 E ---- cal/mol , j/mol T ----- K R = 1.987cal/mol.K = 8.314 j/mol.K 化学反应动力学 反应速率= 反应量 (反应时间)(反应 已知两个温度下的反应速率常数 k , 可以按下式计算活化能 工程问题 动力学问题

三、PFR与CSTR基本方程 1.理想间歇:t V R V o c Af dC A CA0( J ) x Af dx A XA0( J ) 2.理想PFR V R V o C Af dc A C A0 ( J) C A0 x Af dx A x A 0(「A) 3. CSTR 4. 图解法 V R C A0 C A C A0X A T /C A0 0 X Af X A 四、简单反应的计算 n=1,0,2级反应特征C A C A0(1 X A)浓度、转化率、反应时间关系式 基本关系式PFR(间歇)CSTR V R C Af dC A V R C A0 C A p V。C A0 (:)m v (「A) PFF H CSTR CSTR>PFR C A0X A k p C A0 X A k p n=0 n=1 n=2 C A0 kC A . 11 k p 丁 C A C A0 k p 1吒C A0

化学反应工程期末考试试题及答案

《化学反应工程》试题 XXX大学化学反应工程试题B(开)卷 (答案)2011—2012学年第一学期 一、单项选择题:(每题2分,共20分) 1.反应器中等温进行着A→P(1)和A→R(2)两个反应,当降低A的浓度后,发现反应生成P的量显著降低,而R的生成量略降低,表明(A ) A.反应(1)对A的反应级数大于反应(2) B.反应(1) 对A的反应级数小于反应(2) C.反应(1)的活化能小于反应(2) D.反应(1)的反应速率常数大于反应(2) 2.四只相同体积的全混釜串联操作,其无因次停留时间分布的方差值为( B ) A. 1.0 B. 0.25 C.0.50 D.0 3.对一平行—连串反应,P为目的产物,若活化能次序为:E2 -r A2 B.-r A1 = -r A2 C.-r A1 < -r A2 D.不能确定何者为大 5. 已知一闭式反应器的,该反应器若用多釜串联模型来描述,则模型参数N为( B )。 A. 4.5 B. 5.6 C.3.5 D.4.0 6.固体催化剂之所以能起催化作用,是由于催化剂的活性中心与反应组分的气体分子主要发生( C)。 A.物理吸附 B.化学反应 C.化学吸附 D.质量传递 7.包括粒内微孔体积在内的全颗粒密度称之为( B ) A.堆(积)密度 B.颗粒密度 C.真密度 D.平均密度 8.在气固催化反应动力学研究中,内循环式无梯度反应器是一种( C )。 A.平推流反应器 B. 轴向流反应器 C. 全混流反应器 D. 多釜串联反应器 9.某液相反应,其反应式可写成A+C R+C这种反应称为(B ) A.均相催化反应 B.自催化反应 C.链锁反应 D.可逆反应 10.高径比不大的气液连续鼓泡搅拌釜,对于其中的气相和液相的流动常可近似看成( B ) A.气、液均为平推流 B.气、液均为全混流 C.气相平推流、液相全混流 D.气相全混流、液相平推流 二、填空题(每题5分,共30分) 1.一不可逆反应,当反应温度从25℃升高到35℃时,反应速率增加一倍,则该反应 的活化能为 52894 J/mol 。

《化学反应工程》试题和答案基础部分

《化学反应工程》试题库 一、填空题 1. 质量传递、热量传递、动量传递和和化学反应称为三传一 反? 2. 物料衡算和能量衡算的一般表达式为输入-输出二累 积_____________ 。 3. 着眼组分A 转化率X A的定义式为 X A=( n A—n A)/ _____________ 。 4. 总反应级数不可能大于£—。 5. 反应速率-r A=kC A C B的单位为kmol/(m3? h).速率常数k的因次为 nV(kmol ? h ) 。 6. 反应速率-r A=kC A的单位为kmol/kg ? h.速率常数k的因次为mVkg ? h 。 7. 反应速率.kc A/2的单位为mol/L ? s.速率常数k的因次为 (mol) 1/2? L-1/2? s 。 8. 反应速率常数k与温度T的关系为lnk 10000 102.其活化能为 T mol 。 9. 某反应在500K时的反应速率常数k是400K时的103倍.则600K

时的反应速率常数k时是400K时的10 5倍。 10. 某反应在450C时的反应速率是400C时的10倍.则该反应的活化 能为(设浓度不变)mol 。 11. 非等分子反应2SO+Q==2SQ的膨胀因子sq等于________ 。 12. 非等分子反应N2+3H2==2NH的膨胀因子H2等于-2/3 。 13. 反应N b+3H2==2NH中(& )= 1/3 (仏)二1/2 扁3 14. 在平推流反应器中进行等温一级不可逆反应.反应物初浓度为G°. 转化率为X A.当反应器体积增大到n倍时.反应物A的出口浓度为 C A0(1-X A)n . 转化率为1-(1- X A”。 15. 在全混流反应器中进行等温一级不可逆反应.反应物初浓度为C A0. 转化率为X A.当反应器体积增大到n倍时.反应物A的出口浓度为 匚些.转化率为nxA—。 1 (n 1)X A 1 (n 1)X A 16. 反应活化能E越大.反应速率对温度越敏感。 17. 对于特定的活化能.温度越低温度对反应速率的影响越大。 18. 某平行反应主副产物分别为P和S选择性S的定义为(n P-g)/ (n s- n s0)

化学反应工程期末考试真题

化学反应工程原理 一、选择题 1、气相反应 CO + 3H 2 CH 4 + H 2O 进料时无惰性气体,CO 与2H 以1∶2摩尔比进料, 则膨胀因子CO δ=__A_。 A. -2 B. -1 C. 1 D. 2 2、一级连串反应A S K 1 K 2 P 在间歇式反应器中,则目的产物P 的最大浓度=m ax ,P C ___A____。 A. 1 22 )(210K K K A K K C - B. 2 2/1120 ]1)/[(+K K C A C. 122 )(120K K K A K K C - D. 2 2/1210]1)/[(+K K C A 3、串联反应A → P (目的)→R + S ,目的产物P 与副产物S 的选择性 P S =__C_。 A. A A P P n n n n --00 B. 0 A P P n n n - C. 0 0S S P P n n n n -- D. 0 0R R P P n n n n -- 4、全混流反应器的容积效率η=1.0时,该反应的反应级数n___B__。 A. <0 B. =0 C. ≥0 D. >0 5 、对于单一反应组分的平行反应A P(主) S(副),其瞬间收率P ?随A C 增大而单调下降,则最适合的反应器为 ____B__。 A. 平推流反应器 B. 全混流反应器 C. 多釜串联全混流反应器 D. 全混流串接平推流反应器 6、对于反应级数n >0的不可逆等温反应,为降低反应器容积,应选用____A___。 A. 平推流反应器 B. 全混流反应器 C. 循环操作的平推流反应器 D. 全混流串接平推流反应器 7 、一级不可逆液相反应 A 2R ,3 0/30.2m kmol C A =, 出口转化率 7.0=A x ,每批操作时间 h t t 06.20=+,装置的生产能力为50000 kg 产物R/天,R M =60,则反应器的体积V 为_C_3 m 。 A. 19.6 B. 20.2 C. 22.2 D. 23.4 8、在间歇反应器中进行等温一级反应A → B , s l mol C r A A ?=-/01.0,当l mol C A /10=时,求反应至 l mol C A /01.0=所需时间t=____B___秒。 A. 400 B. 460 C. 500 D. 560 9、一级连串反应A → P → S 在全混流釜式反应器中进行,使目的产物P 浓度最大时的最优空时 = opt τ_____D__。 A. 1 212) /ln(K K K K - B. 1 221)/ln(K K K K - C. 2 112)/ln(K K K K D. 2 11K K 10、分批式操作的完全混合反应器非生产性时间0t 不包括下列哪一项____B___。

化学反应工程作业

49. 现有一有效容积为0.75m 3 的搅拌釜反应器,其内设置有换热面积为5.0m 2 的冷却盘管。欲利用改反应器来进行A →R 的一 级不可逆的液相反应,其速率常数)(9.5525exp 100788.11 9-??????-?=h T k , 反应热molA J H r /20921)(=?-,原料液中A 的浓度l mol C A /2.00=,但 不含反应产物R 。此原料液的密度ρ=1050g/l ;定压比热929 .2=P C (J/g ·℃)。要求原料液的进料流率为h m v /33 =,反应器 出口的反应液中l mol C A /04.0=。总传热系数U=209.2(KJ/m 2 ·h ·℃)。所用的冷却介质的温度为25℃。试求满足上述反应要求所需的反应温度以及料液的起始温度T 0。 解: 50. (CH 3CO)2 (A) + H 2O(B)2CH 3COOH(C) 乙酸酐发生水解,反应温度25℃,k=0.1556 min -1 ,采用三个等体积的串联全混流釜进行 反应,每个釜体积为1800 cm 3 ,求使乙酸酐 的总转化率为60%时,进料速度0v 。 解: 51. 串联全混流反应器进行一级不可逆 反应,假定各釜容积、温度相同, ,9.0,10),(92.0301===-A x h m h k γ试计算N 为1,

2,3的反应有效容积,如不考虑非生产性操作时间的条件下分批式反应器的有效容积。 解: 52.应用两个按最优容积比串联的全混流釜进行不可逆的一级液相反应,假定各釜的容积和操作温度都相同,已知此时的速率常数k=0.92h -1 ,原料液的进料速度0v =10m 3 /h ,要求最终转化率 =A x 0.9,试求 V 1、V 2和总容积V 。 解:对于一级不可逆反应应有 210101 11) 1(1)1(1)1( A A A A A A A x kC x kC x x r -=??????-?? =?-? 代入 ???? ????----= ?-?+-i A i A i A i A i A i A r r x x x r ,1,1 ,,,,111)1 ( 得 ? ?????----=-)1(1 )1(11 )1(110200 12 10A A A A A A A A x kC x kC x x x kC 整理得 02212 1=+-A A A x x x ∵9.02=A x , ∴6838.01=A x ∴ ) (35.2)6838.01(92.06838 .0)1(111h x k x A A =-=-= τ )(5.233101m v V ==τ ) (35.2)9.01(92.06838 .09.0)1(2122h x k x x A A A =--=--= τ )(5.233202m v V ==τ 总容积)(473 21m V V V =+= 53. 用两串联全混流反应器进行一个二级不可逆等温反应,已知

化学工程的发展与展望

化学工程的发展与展望 化学工程的发展与展 化学工程是将化学过程和物理过程的基础理论研究与工业化学相结合的学科,不仅是一门具有百年历史的成熟基础学科,也是充满朝气、与时俱进的学科。 1 化学工程的兴起 几千年来过滤、蒸发、结晶等操作在生产中被广泛的应用,但在相当长的时期里,这些操作都是规模很小的手工作业。化学工程这一学科,是在 19 世纪后期随着大规模制造化学工业产品的生产过程的发展而诞生的。 19 世纪70 年代,各种基础化学品的生产等都有了相当的规模,化学工业有了许多杰出的成就。如索尔维法制碱中所用的纯碱碳化塔,高 20 余米,在其中同时进行化学吸收 、结晶、沉降等过程,但是人们还没有从其中找出共有的规律。1880 年,“化学工程” 第一次被英国学者 George E.Davis 正式提出,1888 年,美国麻省理工学院开设了第一个以“化学工程”命名的课程,标志着化学工程学科的诞生。1915 年,本文由论文联盟https://www.wendangku.net/doc/4616310724.html, 收集整理美国学者 Arthur D. Little 提出了“单元操作”,将各种化学品的工业生产工艺分解为若干独立的物理操作单元,并阐明了即使是不同的工艺,只要是相同操作单元就遵循的相同原理。 1920 年,在美国麻省理工学院,化学工程从化学系分离出来,成为一个独立的系。1923 年华克尔、刘易斯和 W.H.麦克亚共同写的《化工原理》一书出版,奠定了化学工程作为一门独立的工程学科的基础。 2化学工程的发展 2.120 世纪前叶,化学工程二级学科应运而生 在20 世纪前叶,化学工程学科的发展促进了许多化学工艺的问世,如美国用丙烯合成出异丙醇,被誉为是石油化工的开端。这些化学工艺的出现,许多化学工程二级学科应运而生。 化学热力学,化学反应工程,传递过程,化工系统工程,化工控制工程等多个二级学科相继诞生。 2.220 世纪50~60 年代,化学工程完成了从单元操作到

化学反应工程期末试卷试题(附答案)

1.化学反应工程是一门研究______________的科学。 2.化学反应速率式为β α B A C A C C K r =-,如用浓度表示的速率常数为C K ,用压力表示的速率常数 P K ,则C K =_______P K 。 3. 平行反应 A P(主) S(副)均为一级不可逆反应,若主E >副E ,选择性S p 与_______无关,仅是_______的函数。 4.对于反应级数n >0的反应,为降低反应器容积,应选用_______反应器为宜。 5.对于恒容的平推流管式反应器_______、_______、_______一致。 6.若流体是分子尺度作为独立运动单元来进行混合,这种流体称为_______。 7.流体的混合程度常用_______、_______来描述。 8.催化剂在使用过程中,可能因晶体结构变化、融合等导致表面积减少造成的_______失活,也可能由于化学物质造成的中毒或物料发生分解而造成的_______失活。 9.对于多孔性的催化剂,分子扩散很复杂,当微孔孔径在约_______时,分子与孔壁的碰撞为扩散阻力的主要因素。 10.绝热床反应器由于没有径向床壁传热,一般可以当作平推流处理,只考虑流体流动方向上有温度和浓度的变化,因此一般可用_______模型来计算。 11.对于可逆的放热反应,存在着使反应速率最大的最优温度opt T 和平衡温度eq T ,二者的关系为______________。 12.描述流化床的气泡两相模型,以0U 的气速进入床层的气体中,一部分在乳相中以起始流化 速度mf U 通过,而其余部分_______则全部以气泡的形式通过。 13.描述流化床的数学模型,对于气、乳两相的流动模式一般认为_______相为平推流,而对_______相则有种种不同的流型。 14.多相反应过程是指同时存在_______相态的反应系统所进行的反应过程。 II.1.一级连串反应A → P → S 在全混流釜式反应器中进行,使目的产物P 浓度最大时的最优 空时 = opt τ_______。 A. 1212)/ln(K K K K - B. 1221) /ln(K K K K - C. 2 112)/ln(K K K K D. 211K K 2.全混流反应器的容积效率η小于1.0时,且随着A χ的增大而减小,此时该反应的反应级数n_______。 A. <0 B. =0 C. ≥0 D. >0 3.当反应级数n_______时,微观流体具有比宏观流体高的出口转化率。 A. =0 B. =1 C. >1 D. <1 4.轴向分散模型的物料衡算方程的初始条件和边界条件与_______无关。 A. 示踪剂的种类 B. 示踪剂的输入方式 C. 管内的流动状态 D. 检测位置 5.对于气-液相反应几乎全部在液相中进行的极慢反应,为提高反应速率,应选用_______装置。A. 填料塔 B. 喷洒塔 C. 鼓泡塔 D. 搅拌釜 6.催化剂在使用过程中会逐渐失活,其失活速率式为d m i d C k dt d ψψ =- ,当平行失活对反应物有强内扩散阻力时,d 为_______。

化学反应工程纸质作业答案

第一章(摩尔衡算)作业答案: P1-11A 在一个连续流动的反应器中反应: A B 等温进行,计算当进料的摩尔流率为5mol/h, 假设反应速率-r A 为: (a ) -r A =k , k=0.05mol/h.L 时 (b ) -r A =kC A , k=0.0001s -1 时 (c ) -r A =kC A 2, k=3 L/mol.h 时 消耗99%的组分A (即C A =0.01C A0)时,对CSTR 和PFR 反应器需要的反应器体积。 进料的体积流量为10L/h 。[注意:F A =C A v 。当体积流量恒定时,v=v 0, 因此,F A =C A v 0。故C A0=F A0/v 0=(5 mol/h )/(10L/h)=0.5mol/L 。] 解: (a )在CSTR 中,组分A 的摩尔平衡方程为:Ao A A F F V r -= - 00.0110/0.5/0.990.99990.05/.--?= ===?=Ao A Ao A Ao C v C v C v C v vC L h mol L V L k k k mol h L 对PFR ,组分A的摩尔平衡方程为:A A dF r dV = 摩尔流率与体积流率之间的关系:A A F C v = 由于体积流率v 恒定,故有: A A A dF dC v dC v dV dV dV == 对零级不可逆反应,反应速率可写为:A r k -= 将r A 代入方程得到:A A dC v r k dV ==- 整理得:A v dC dV k -= 反应器入口的条件:当V=0 时 C A =C A0 对上式子积分:0 A A C V A C v dC dV k -=?? 给出方程:0()A A v V C C k = - 将C A0、C A 、v 和k 的数值代入方程,得:

化学反应工程基本概念

第一章 1. 化学反应工程是一门研究 (化学反应个工程问题)的科学。 2. 所谓数学模型是指 (用数学方法表达各变量间的关系)。 3. 化学反应器的数学模型包括 (动力学方程式、 物料横算式子、 热量衡算式、 动量衡算式 和 参数计算式) 4. 所谓控制体积是指 (能把反应速率视作定值的最大空间范围)。 5. 模型参数随空间而变化的数学模型称为 ( 分布参数模型)。 6. 模型参数随时间而变化的数学模型称为 (非定态模型)。 7. 建立物料、热量和动量衡算方程的一般式为 (累积量=输入量-输出量)。 第二章 1. 均相反应是指 (在均一的液相或气相中进行的反应)。 2. 对于反应aA + bB → pP + sS ,则r P =( p/a )r A 。 3.着眼反应物A 的转化率的定义式为(转化率Xa=转化了的物料A 的量/反应开始的物料A 的量)。 4. 产物P 的收率ΦP 与得率ХP 和转化率x A 间的关系为( Xp/Xa )。 5. 化学反应速率式为r A =k C C A αC B β,用浓度表示的速率常数为k C ,假定符合理想气体状态方 程,如用压力表示的速率常数k P ,则k C =[ (RT)的a+B 次方]k P 。 6.对反应aA + bB → pP + sS 的膨胀因子的定义式为 (P+S )-(A+B))/A 。 7.膨胀率的物理意义为 (反应物A 全部转化后系统的体积变化率)。 8. 活化能的大小直接反映了 (反应速率) 对温度变化的敏感程度。 9. 反应级数的大小直接反映了(反应速率) 对浓度变化的敏感程度。 10.对复合反应,生成主产物的反应称为 (主反应),其它的均为(副反应)。 11. 平行反应A → P 、A → S 均为一级不可逆反应,若E 1>E 2,选择性S p 与 (A 的浓度) 无关,仅是 (A 的浓度) 的函数。 12. 如果平行反应A → P 、A → S 均为一级不可逆反应,若E 1>E 2,提高选择性S P 应(提到 温度)。 13. 一级连串反应A → P → S 在平推流反应器中,为提高目的产物P 的收率,应(降 低)k 2/k 1。 14. 产物P 的收率的定义式为 (生成的全部P 的物质的量/反应掉的全部A 的物质的量) 15. 产物P 的瞬时收率φP 的定义式为(生成的物质的量/反应的A 的物质的量) 16. 产物P 的选择性S P 的定义式为(单位时间内产物P 的物质的量/单位时间内生成产物S 的物质的量) 17. 由A 和B 进行均相二级不可逆反应αA A+αB B = αS S ,速率方程为: r A =-dC A /dt=kC A C b 。 求: (1)当C A0/C B0=αA /αB 时的积分式 (2)当C A0/C B0=λ≠αA /αB 时的积分式 18. 反应A → B 为n 级不可逆反应。已知在300K 时要使A 的转化率达到20%需12.6min ,而在340K 时达到同样的转化率仅需3.20min ,求该反应的活化能E 。 第三章 1. 理想反应器是指(理想混合反应器 平推流反应器)。 2. 全混流反应器的空时τ是 (反应器容积) 与(进料的体积流量)之比。 3. 全混流反应器的放热速率Q G ={ 00()A A Hr Ft y x ? }。 4. 全混流反应器的移热速率Q r ={ 012()pm Ft C T T - } 5. 全混流反应器的定常态操作点的判据为{ G r Q Q = }。 6. 全混流反应器处于热稳定的定常态操作点的判据为{ G r Q Q = G r dQ dQ dT dT > }。

相关文档