文档库 最新最全的文档下载
当前位置:文档库 › 物理选修3-5物理知识点

物理选修3-5物理知识点

物理选修3-5物理知识点
物理选修3-5物理知识点

3-5物理相关图片知识整理

第十六章:动量守恒定律

一、动量、动量守恒定律(I)

1、动量

(1)表达式:p=mv,状态量.(2)与动能的联系:p2=2mE k

(3)动量是矢量,动能是标量,因此物体的动量变化时动能未必变化,物体的动能变化时动量必定变化.

(4)系统的总动量为系统内各物体动量的矢量和.

2.动量守恒定律

(1)表达式

①p=p′(相互作用前系统总动量p等于相互作用后总动量p′);

②Δp=0(系统总动量的增量等于零);

③Δp1=-Δp2(两个物体组成的系统中,各自动量的增量大小相等、方向相反).

提醒:①动量守恒定方程是一个矢量方程,应选取统一的正方向,与正方向相同的动量取正号,相反的方向取负号.

②动量守恒定律具有相对性,表达式中的速度应对同一参考系的速度.

(2)动量守恒条件

①系统不受外力或所受外力的矢量和为零.

(大人和小孩水平方向不受外力,系统动量守恒;小

孩、大锤、小车水平方向动量守恒)

②相互作用的时间极短,相互作用的内力远大于外力,

如碰撞或爆炸瞬间,外力可忽略不计,可以看作系统

动量守恒.(如右图火箭爆炸在水平方向动量守恒)

③系统所受合力不为零,总动量不守恒,但某一方向

上合力为零,或内力远大于外力.则在该方向上动量守恒.此种情形要特别

注意两点:一是整个系统动量不守恒,特别是在概念考查上;二是动量守恒

式中要把速度投影到合力为零的方向上.

二、验证动量守恒定律(实验、探究)(I)

1、原理:m1V1+m2V2=m1V1+m2V2

2、【典型例题】

用如图所示的装置进行“验证动量守恒定律”的实验:

(1)先测出可视为质点的两滑块A、B的质量分别为m、M及滑块与桌面间

的动摩擦因数μ.

(2)用细线将滑块A、B连接,使A、B间的轻弹簧处于压缩状态,滑块B

恰好紧靠桌边.

(3)剪断细线,测出滑块B做平拋运动的水平位移x1,滑块A沿水平桌面滑行距离为x2(未滑出桌面).为验证动量守恒定律,写出还需测量的物理量及表示它们的字母:桌面离地高度h;

如果动量守恒,需要满足的关系式为:M x11

2h=m2μx2

三、弹性碰撞和非弹性碰撞(I)(只限于一维碰撞的问题)

(1)完全非弹性碰撞:获得共同速度,动能损失最多动量守恒;

(2)弹性碰撞:动量守恒,碰撞前后动能相等;动量守恒;

特例:对于一维弹性碰撞,若两个物体质量相等,则碰撞后两个物体互换速度(即碰后A 的速度等于碰前B的速度,碰后B的速度等于碰前A的速度)

(3)一般碰撞:有完整的压缩阶段,只有部分恢复阶段,动量守恒,动能减小。

第十七章:波粒二象性

一、普朗克能量子假说、黑体和黑体辐射(I)

1、黑体:如果某种物体能够完全吸收入射的各种波长的电磁波而不发生反射,这种物体就是绝对黑体,简称黑体.

2、黑体辐射的实验规律

(1)随着温度的升高,各种波长的辐射强度都有

增加.

(2)辐射强度的极大值向波长较短的方向移动

(向频率较大的方向移动).

3、普朗克能量子假说

1900年德国物理学家普朗克提出振动着的带电微

粒的能量只能是某个最小能量值ε的整数倍,这

个不可再分的能量值ε叫做能量子ε= hγ。h 为普

朗克常数(6.63×10-34J.S )

二、光电效应(I )

1、用紫外线灯照射锌板,观察到验电器带正电而指针张开,说明锌板

有电子逸出.(右图17.2-1)

2、入射光越强,单位时间内发射击的光电子越多;

3、光电子的能量只与入射光的频率有关,而与入射光的强弱无关;

爱因斯坦光电效应方程:E K =hv - W 0

只有hv > W 0时,

才有光电子逸出,W 0/h 就是光电效应的截止频率;

4、入射光的频率低于截止频率时不发生光电效应.

5、入射光的频率越大,遏止电压越大;与入射光的强度

无关.(图17.2-3)

6、光电效应和康普顿效应反映了光的粒子性;(图17.-5)

【典型例题1】如图是某金属在光的照射下产生的光电子的最大初动能E k 与

入射光频率ν的关系图象. 由图象可知 ( ABC )

A. 该金属的逸出功等于E

B. 该金属的逸出功等于hν0

C. 入射光的频率为2ν0时,产生的光电子的最大初动能为E

D. 入射光的频率为v 02时,产生的光电子的最大初动能为E 2

【典型例题2】

(1)在光电效应实验中,小明同学用同一实验装置(如图 l )

在甲、乙、丙三种光的照射下得到了三条电流表与电压表读数

之间的关系曲线,如图(2)所示.则( B )

(A )乙光的频率小于甲光的频率

(B )甲光的波长大于丙光的波长

(C )丙光的光子能量小于甲光的光子能量

(D )乙光对应的光电子最大初动能小于丙光的光电子最大初动能

( 2 )用光照射某金属,使它发生光电效应现象,若增加该入射光的强度,则单位时间内从铝板表面逸出的光电子数 增加 ,从表面逸出的光电子的最大动量大小 不变 ;

三、光的波粒二象性、物质波(I )

1、光既具波动性,又具有粒子性;光的双缝干涉、衍射、偏振实验

都反映了光的波动性;

光电效应和康普顿效应反映了光的粒子性;

2、实物粒子也具有波动性,这种波又称为德布罗意波,也叫物质波;

3、图17.3-1是电子束穿过铝箔后的衍射实验.实验说明实物粒子具

有波动性;证明物质波理论的正确性;亮条纹是电子到达概率大的地方,暗

条纹是电子到达概率小的地方.

4、德布罗意波(物质波)的频率和波长的公式:

四、概率波

1、图17.4-1是光的双缝干涉实验,屏上形成明暗相间的条纹.这个实验可

以推知,光子落在各点的概率是不一样的,即光子落在明纹处的概率大,落

到暗纹处的概率小.光是一种概率波.

2、下图是电子干涉条纹的图象:甲图:对于少量电子,体现了电子的粒子

性;对于大量电子,体现了电子的波动性.这个实验是对概率波的验证.

第十八章:原子结构

一、原子核式结构模型(I)

1、图18.2-3是原子核式结构模型的a粒子散射图景.实

验发现,绝大多数a粒子穿过金箔后,基本仍沿原来的

方向前进,但有少数a粒子发生了大角度的偏转,偏转

的角度甚至大于900,也就是说它们被“撞了回来”.实

验说明了,占原子质量绝大部分的带正电的那部分物质

集中在很小的空间范围.卢瑟福提出了原子的核式结构模型.

二、氢原子的光谱(I)

1、图18.3-1是几种常见的光谱,光谱有线状谱和连续谱.原子的光谱都是线状谱,又称特征光谱,每种原子的特征光谱不同,所以我们可以用它来鉴别物质和确定物质的组成分.

2、图18.3-4是氢原子的光谱,它是线状谱,分立、

不连续.说明原子能量是不连续的,电子轨道是

不连续的(量子化).

三、原子的能级(I)

1、玻尔理论的基本假设:

(1)电子的轨道是量子化的

(2)原子的能级是量子化的.

2、辐射条件:hv=E

-E n h c/入=E m-E n

3、右图是氢原子能级图

(1)使电子脱离核的束缚成为自由电子,这样的过程叫电离.如基态

氢原子吸收13.6eV的能量就可以成为自由电子.

【典型例题】如图所示为氢原子的能级图.用光子能量为13.06eV的光

照射一群处于基态的氢原子,可能观测到氢原子发射的不同波长的光有

种,辐射的光子照射在某金属上,刚好能发生光电效应,则该金属的逸

出功为eV.辐射的不同波长的光中最短的波长为m.(保留两位有效数字)

第十九章:原子核

一、原子核的组成(I)

1、原子核由质子、中子组成.质子和中子统称核子.

2、a粒子穿透能力最弱,在空气中只能前进几厘米,但其电离能力最强;β粒子的电离作用较弱,穿透能力较强,很容易穿透黑纸,也能穿透几毫米的铝板;射线,α射

线;γ粒子电离作用更小,穿透能力更强,能穿透几厘米的铅板和几十厘米

的混凝土;

二、原子核的衰变、半衰期(I)

1.几种常见核反应

(1)天然衰变①α衰变:A Z X→A-4

Y+42He ②β衰变:A Z X→A Z+1Y+0-1e

Z-2

(2)半衰期:放射性元素的衰变的快慢由核内部自身的因素决定,跟原子所处的化学状态和外部条件没有关系.不管是以单质还是以化合物的形式或改变压力、提高温度都不会影响其衰变.

(3)N 余=N 原(12)t /τ,m 余=m 原(12

)t /τ 三、放射的应用与防护、放射性同位素(I )重核裂变、核聚变(I )

1、放射的应用

2、重核裂变:原子弹和核电

3、轻核聚变(热核反应):

氢弹和太阳内部的反应

四、核力与结合能、质量亏

损(I )

1、核能的计算方法

(1)若Δm 以kg 为单位,则

ΔE =Δmc2,ΔE 的单位为焦

耳.若Δm 以原子的质量单位

u 为单位,则ΔE =Δm×931.5

MeV

结合能:把构成原子核的结

合在一起的核子分开所需要

的能量

2、比结合能:

(1)定义:原子核的结合能

与核子数之比称为比结合能,

也叫平均结合能.

(2)性质:不同原子核的比结合能不同,原子核的比结合能越大,

表示原子核中核子结合得越牢固,原子核越稳定.

(3)质量亏损:原子核的质量小于组成它的核子的质量之和,这

个现象叫做质量亏损.

(4)方程含义:物体具有的能量与它的质量之间存在着简单的正

比关系,物体的质量增大能量也增大,质量减小能量也减小.

核子在结合成原子核时,出现质量亏损Δm ,其能量也相应减小ΔE ,放出的能量为ΔE =Δmc2 原子核分解成核子时,要吸收一定的能量,相应的质量增加为Δm ,吸收的能量为ΔE =Δmc2

【典型例题】

高中物理选修3-3知识点整理

选修3—3考点汇编 1、物质是由大量分子组成的 (1)单分子油膜法测量分子直径 (2)1mol 任何物质含有的微粒数相同2316.0210A N mol -=? (3)对微观量的估算 ①分子的两种模型:球形和立方体(固体液体通常看成球形,空气分子占据的空间看成立方体) ②利用阿伏伽德罗常数联系宏观量与微观量 a.分子质量:mol A M m N = b.分子体积:mol A V v N = c.分子数量:A A A A mol mol mol mol M v M v n N N N N M M V V ρρ= === 2、分子永不停息的做无规则的热运动(布朗运动 扩散现象) (1)扩散现象:不同物质能够彼此进入对方的现象,说明了物质分子在不停地运动,同时还说明分子 间有间隙,温度越高扩散越快 (2)布朗运动:它是悬浮在液体中的固体微粒的无规则运动,是在显微镜下观察到的。 ①布朗运动的三个主要特点: 永不停息地无规则运动;颗粒越小,布朗运动越明显;温度越高,布朗运动越明显。 ②产生布朗运动的原因:它是由于液体分子无规则运动对 固体微小颗粒各个方向撞击的不均匀性造成的。 ③布朗运动间接地反映了液体分子的无规则运动,布朗运 动、扩散现象都有力地说明物体内大量的分子都在永不停息地

做无规则运动。 (3)热运动:分子的无规则运动与温度有关,简称热运动,温度越高,运动越剧烈 3、分子间的相互作用力 分子之间的引力和斥力都随分子间距离增大而减小。但是分子间斥力随分子间距离加大而减小得更快些,如图1中两条虚线所示。分子间同时存在引力和斥力,两种力的合力又叫做分子力。在图1图象中实线曲线表示引力和斥力的合力(即分子力)随距离变化的情况。当两个分子间距在图象横坐标0r 距离时,分子间的引力与斥力平衡,分子间作用力为零,0r 的数量级为1010 -m ,相当于0r 位置叫做平衡位置。当分子距离的数量级大于 m 时,分子间的作用力变得十分微弱,可以忽略不 计了 4、温度 宏观上的温度表示物体的冷热程度,微观上的温度是物体大量分子热运动平均动能的标志。热力学温度与摄氏温度的关系:273.15T t K =+ 5、内能 ①分子势能 分子间存在着相互作用力,因此分子间具有由它们的相对位置决定的势能,这就是分子势能。分子势能的大小与分子间距离有关,分子势能的大小变化可通过宏观量体积来反映。(0r r =时分子势能最小) 当0r r >时,分子力为引力,当r 增大时,分子力做负功,分子势能增加 当0r r <时,分子力为斥力,当r 减少时,分子力做负功,分子是能增加 ②物体的内能 物体中所有分子热运动的动能和分子势能的总和,叫做物体的内能。一切物体都是由不停地做无规则热运动并且相互作用着的分子组成,因此任何物体都是有内能的。(理想气体的内能只取决于温度) ③改变内能的方式

人教版高中物理选修31知识点归纳总结.doc

物理选修3-1 知识总结 第一章 第1节 电荷及其守恒定律 一、电荷守恒定律 表述1:电荷守恒定律:电荷既不能凭空产生,也不能凭空消失,只能从一个物体转移到另一个 物体,或从物体的一部分转移到另一部分,在转移的过程中,电荷的总量保持不变。 表述2、在一个与外界没有电荷交换的系统内,正、负电荷的代数和保持不变。 二、电荷量 1、电荷量:电荷的多少。 2、元电荷:电子所带电荷的绝对值1.6×10-19 C 3、比荷:粒子的电荷量与粒子质量的比值。 第一章 第2节 库仑定律 一、电荷间的相互作用 1、点电荷:带电体的大小比带电体之间的距离小得多。 2、影响电荷间相互作用的因素 二、库仑定律:在真空中两个静止点电荷间的作用力跟它们的电荷的乘积成正比,跟它们距离的平方 成反比,作用力的方向在它们的连线上。 2 2 1r Q Q k F 注意(1)适用条件为真空中静止点电荷 (2)计算时各量带入绝对值,力的方向利用电性来判断 第一章 第3节 电场 电场强度 一、电场 电荷(带电体)周围存在着的一种物质,其基本性质就是对置于其中的电荷有力的作用。 二、电场强度 1、检验电荷与场源电荷 2、电场强度 检验电荷在电场中某点所受的电场力F 与检验电荷的电荷q 的比值。 q F E = 国际单位:N /C 电场强度是矢量。规定:正电荷在电场中某一点受到的电场力方向就是那一点的电场强度的方向。 三、点电荷的场强公式 2r Q k q F E == 四、电场的叠加 五、电场线 1、电场线:为了形象地描述电场而在电场中画出的一些曲线,曲线的疏密程度表示场强的大小,

曲线上某点的切线方向表示场强的方向。 2、几种典型电场的电场线 3、电场线的特点 (1)假想的 (2)起----正电荷;无穷远处 止----负电荷;无穷远处 (3)不闭合 (4)不相交 (5)疏密----强弱 切线方向---场强方向 第一章 第4节 电势能 电势 一、电势能 1、电势能:电荷处于电场中时所具有的,由其在电场中的位置决定的能量称为电势能. 注意:系统性、相对性 2、电势能的变化与电场力做功的关系 3、电势能大小的确定 电荷在电场中某点的电势能在数值上等于把电荷从这点移到电势能为零处电场力所做的功 二、电势 1.电势:置于电场中某点的检验电荷具有的电势能与其电量的比叫做该点的电势 q E 电= ? 单位:伏特(V ) 标量 2.电势的相对性 3.顺着电场线的方向,电势越来越低。 三、等势面 1、等势面:电场中电势相等的各点构成的面。 2、等势面的特点 a:在同一等势面的两点间移动电荷,电场力不做功。 b:电场线总是由电势高的等势面指向电势低的等势面。 c:电场线总是与等势面垂直。 第一章 第5节 电势差 电场力的功 一、电势差:电势差等于电场中两点电势的差值 B A AB U ??-= 电电电电电电)=--=-(-=E E E E E W A B B A AB ?)(电势能为零的点点电=A A W E

物理选修3-4知识点(全)

选修3—4考点汇编 一、机械振动(*振动图象是历年考查的重点:同一质点在不同时刻的位移) 1、只要回复力满足F kx =-或位移满足sin()x A t ω?=+的运动即为简谐运动。 说明:①做简谐运动的物体,加速度、速度方向可能一致,也可能相反。 ②做简谐运动的物体,在平衡位置速度达到最大值,而加速度为零。 ③做简谐运动的物体,在最大位移处加速度达到最大值,而速度为零。 2、质点做简谐运动时,在T/4内通过的路程可能大于或等于或小于A (振幅),在3T/4内通过的路程可能大于或等于或小于3A 。 3、质点做简谐运动时,在1T 内通过的路程一定是4A ,在T/2内通过的路程一定是2A 。 4、简谐运动方程sin()x A t ω?=+中t ω?+叫简谐运动的相位,用来表示做简谐运动的质点此时正处于一个运动周期中的哪个状态。 5、单摆的回复力是重力沿振动方向(垂直于摆线方向)的分力,而不是摆球所受的合外力(除两个极端位置外)。 6、单摆的回复力sin /F mg mgx L θ=≈-,其中x 指摆球偏离平衡位置的位移,x 前面的是常数mg/L ,故可以认为小角度下摆球的摆动是简谐运动。 7、摆的等时性是意大利科学家伽利略发现的,而单摆的周期公式是由荷兰科学家惠更斯发现的,把调准的摆钟,由北京移至赤道,这个钟变慢了,要使它变准应该增加摆长。(附单摆的周期公式:2L T g π=) 8、阻尼振动是指振幅逐渐减小的振动,无阻尼振动是指振幅不变的振动。 9、物体做受迫振动时,频率由驱动力频率决定与固有频率无关。 10、如果驱动力频率等于振动系统的固有频率,受迫振动的振幅最大,这种现象叫共振,共振现象的应用有转速计和共振筛等,军队过桥要便步走,火车过桥要慢行,厂房建筑物的固有频率要远离机器运转的频率范围之内都是为了减小共振。 11、轮船航行时,如果左右摆动有倾覆危险,可采用改变航向和速度,使波浪冲击力的频率远离轮船摇摆的固有频率。这是共振防止的一种方法。 12、简谐波中,其他质点的振动都将重复振源质点的振动,既是振源带动下的振动,故应为受迫振动。 13、一切复杂的振动虽不是简谐振动,但它们都可以看作是由若干个振幅和频率不同的简谐运动合成的。 二、机械波(*波形图为历年来考查的重点:一列质点在同一时刻的位移) 14、有机械波必有机械振动,有机械振动不一定有机械波。 15、当波动的振源停止振动时,已形成的波动将仍能往前传播,直至能量衰减至零为止。 16、发生地震时,从地震源传出的地震波,既有横波,也有纵波。 17、机械波传播的只是振动形式,质点本身并不随波一起传播,在波的传播过程中,任一质点的起振方向都与波源的起振方向相同。 18、机械波的传播需要介质,当介质中本来静止的质点,随着波的传来而发生振动,表示质点获得能量。波不但传递着能量,而且可以传递信息。 19、在波动中振动相位总是相同两个相邻质点间的距离叫做波长,在波动中振动相位总是相反两个质点间的距离为半个波长的奇数倍。 20、任何振动状态相同的点组成的圆叫波面,与之垂直的线叫波线,表示了波的传播方向。 21、惠更斯原理是指介质中任一波面上的点都可以看作发射子波的波源,其后任意时刻,这些子波在波德

人教版高中物理选修3-5知识点总结

选修3-5知识梳理 一.量子论的建立黑体和黑体辐射Ⅰ (一)量子论 1.创立标志:1900年普朗克在德国的《物理年刊》上发表《论正常光谱能量分布定律》的论文,标志着量子论的诞生。 2.量子论的主要内容: ①普朗克认为物质的辐射能量并不是无限可分的,其最小的、不可分的能量单元即“能量子”或称“量子”,也就是说组成能量的单元是量子。 ②物质的辐射能量不是连续的,而是以量子的整数倍跳跃式变化的。 3.量子论的发展 ①1905年,爱因斯坦奖量子概念推广到光的传播中,提出了光量子论。 ②1913年,英国物理学家玻尔把量子概念推广到原子内部的能量状态,提出了一种量子化的原子结构模型,丰富了量子论。 ③到1925年左右,量子力学最终建立。 4.量子论的意义 ①与量子论等一起,引起物理学的一场重大革命,并促进了现代科学技术的突破性发展。 ②量子论的革命性观念揭开了微观世界的奥秘,深刻改变了人们对整个物质世界的认识。 ③量子论成功的揭示了诸多物质现象,如光量子论揭示了光电效应 ④量子概念是一个重要基石,现代物理学中的许多领域都是从量子概念基础上衍生出来的。 量子论的形成标志着人类对客观规律的认识,开始从宏观世界深入到微观世界;同时,在量子论的基础上发展起来的量子论学,极大地促进了原子物理、固体物理和原子核物理等科学的发展。 (二)黑体和黑体辐射

1.热辐射现象 任何物体在任何温度下都要发射各种波长的电磁波,并且其辐射能量的大小及辐射能量按波长的分布都与温度有关。 这种由于物质中的分子、原子受到热激发而发射电磁波的现象称为热辐射。 ①.物体在任何温度下都会辐射能量。 ②.物体既会辐射能量,也会吸收能量。物体在某个频率范围内发射电磁波能力越大,则它吸收该频率范围内电磁波能力也越大。 辐射和吸收的能量恰相等时称为热平衡。此时温度恒定不变。 实验表明:物体辐射能多少决定于物体的温度(T)、辐射的波长、时间的长短和发射的面积。 2.黑体 物体具有向四周辐射能量的本领,又有吸收外界辐射 来的能量的本领。 黑体是指在任何温度下,全部吸收任何波长的辐射的 物体。 3.实验规律: 1)随着温度的升高,黑体的辐射强度都有增加; 2)随着温度的升高,辐射强度的极大值向波长较短方向移动。 二.光电效应光子说光电效应方程Ⅰ 1、光电效应

【人教版】版高中物理选修35知识点清单

精品“正版”资料系列,由本公司独创。旨在将“人教 版”、”苏教版“、”北师大版“、”华师大版“等涵盖几 乎所有版本的教材教案、课件、 导学案及同步练习和检测题分 享给需要的朋友。 本资源创作于2020年12月, 是当前最新版本的教材资源。 包含本课对应内容,是您备课、 上课、课后练习以及寒暑假预 习的最佳选择。 通过我们的努力,能 够为您解决问题,这是我们的 宗旨,欢迎您下载使用! 一、动量 动量守恒定律 高中物理选修 3-5 知识点 第十六章 动量守恒定律 1、动量:可以从两个侧面对动量进行定义或解释:①物体的质量跟其速度的乘积, 叫做物体的动量。②动量是物体机械运动的一种量度。 动量的表达式 P = mv 。单位是kg m s .动量是矢量, 其方向就是瞬时速度的方向。 因为速度是相对的, 所以动量也是相对的。 2、动量守恒定律:当系统不受外力作用或所受合外力为零, 则系统的总动量守恒。动量守恒定律根据实际情况有多种表达式, 一般常用等号左右分别表示系统作用前后的总动量。 运用动量守恒定律要注意以下几个问题: ①动量守恒定律一般是针对物体系的, 对单个物体谈动量守恒没有意义。 ②对于某些特定的问题, 例如碰撞、爆炸等, 系统在一个非常短的时间内, 系统内部各物体相互作用力, 远比它们所受到外界作用力大, 就可以把这些物体看作一个所受合外力为零的系统处理, 在这一短暂时间内遵循动量守恒定律。

③计算动量时要涉及速度, 这时一个物体系内各物体的速度必须是相对于同一惯性参照系的, 一般取地面为参照物。 ④动量是矢量, 因此“系统总动量”是指系统中所有物体动量的矢量和, 而不是代数和。 ⑤动量守恒定律也可以应用于分动量守恒的情况。有时虽然系统所受合外力不等于零, 但只要在某一方面上的合外力分量为零, 那么在这个方向上系统总动量的分量是守恒的。 ⑥动量守恒定律有广泛的应用范围。只要系统不受外力或所受的合外力为零, 那么系统内部各物体的相互作用, 不论是万有引力、弹力、摩擦力, 还是电力、磁力, 动量守恒定律都适用。系统内部各物体相互作用时, 不论具有相同或相反的运动方向;在相互作用时不论是否直接接触;在相互作用后不论是粘在一起,

高中物理选修3-3知识点归纳

选修3-3知识点归纳 2017-11-15 一、分子动理论 1、物体是由大量分子组成:阿伏伽德罗第一个认识到物体是由 分子组成的。 ①分子大小数量级10-10m ②A N M m 摩分子=(对固体液体气体) A N V V 摩分子=(对固体和液体) 摩摩物物V M V m ==ρ 2、油膜法估测分子的大小: ①S V d 纯油酸=,V 为纯油酸体积,而不能是油酸溶液体积。 ②实验的三个假设(或近似):分子呈球形;一个一个整齐地紧密排列;形成单分子层油膜。 3、分子热运动: ①物体内部大量分子的无规则运动称为热运动,在电子显微镜才能观察得到。 ②扩散现象和布朗运动证实分子永不停息作无规则运动,扩散现象还说明了分子间存在间隙。 ③布朗运动是固体小颗粒在液体或气体中的运动,反映了液体分子或气体分子无规则运动。颗粒越小、 温度越高,现象越明显。从阳光中看到教室中尘埃的运动不是布朗运动。 4、分子力: ①分子间同时存在引力和斥力,都随距离的增大而减小,随距离的减小而增大,斥力总比引力变化得快。 ②当r=r 0=10-10m 时,引力=斥力,分子力为零;当r>r 0,表现为引力;当r

高考物理选修3-5知识点归纳

波粒二象性 知识要点梳理 知识点一——黑体与黑体辐射 要点诠释: 1、热辐射 固体或液体,在任何温度下都在发射各种波长的电磁波,这种由于物体中的分子、原子受到激发而发射电磁波的现象称为热辐射。 对热辐射的初步认识: 任何物体任何温度均存在热辐射。辐射强度按波长的分布情况随物体的温度而有所不同,这是热辐射的一种特性。对于一般材料的物体,温度越高,热辐射的波长越短、强度越强。 物体在室温时热辐射的主要成分是波长较长的电磁波,不能引起人的视觉。当温度升高时,热辐射中较短波长的成分越来越强。例如投在炉中的铁块由于不断加热,铁块依次呈现暗红、赤红、橘红等颜色,直至成为黄白色。 热辐射强度还与材料的种类、表面状况有关。 热辐射的过程中将热能转化为电磁能。 2、黑体与黑体辐射 能够完全吸收入射的各种波长的电磁波而不发生反射的物体称为绝对黑体,简称黑体。 不透明的材料制成带小孔的的空腔,可近似看作黑体。如果在一个空腔壁上开一个很小的 孔,如图所示,那么射入小孔的电磁波在空腔内表面发生多次反射和吸收,最终不能从空腔 射出,这个小孔就成为了一个绝对黑体。 对上图中的空腔加热,空腔内的温度升高,小孔就成了不同温度下的导体,从小孔向外 的辐射就是黑体辐射。 研究黑体辐射的规律是了解一般物体热辐射性质的 基础。实验表明黑体辐射强度按波长的分布只与黑体的 温度有关。 利用分光技术和热电偶等设备就能测出它所辐射的 电磁波强度按波长的分布情况。如下图画出了四种温度 下黑体热辐射的强度与波长的关系: 从中可以看出,随着温度的升高,一方面各种波长 的辐射强度都有增加;另一方面,辐射强度的极大值向 波长较短的方向移动。 对实验规律的解析: 物体中存在着不停运动的带电微粒,每个带电微粒 的振动都产生变化的电磁场,从而产生电磁辐射。人们 很自然地要依据热力学和电磁学的知识寻求黑体辐射的解释。德国物理学家维恩在1896年、英国物理学家瑞利在1900年分别提出了辐射强度按波长分布的理论公式。 维恩公式在短波区与实验非常接近,在长波区则与实验偏离很大;瑞利公式在长波 区与实验基本一致,但在短波区与实验严重不符。而且当波长趋于零时,辐射竟变成无 穷大,这显然是荒谬的。由于波长很小的辐射处于紫外线波段,故而由理论得出的这种 荒谬结果被认为是物理学理论的灾难,当时被称为紫外灾难。 为了得出同实验符合的黑体辐射公式,1900年底,德国物理学家普朗克提出了能 量子的概念。 3、能量子 辐射黑体分子、原子的振动可看作谐振子,这些谐振子可以发射和吸收辐射能。但 是这些谐振子只能处于某些分立的状态,在这些状态中,谐振子的能量并不象经典物理学所允许的可具有任意值。相应的能量是某一最小能量ε(称为能量子)的整数倍,即:ε, 1ε, 2ε, 3ε, ... nε. n为正整数,称为量子数。 对于频率为υ的谐振子最小能量为ε=hυ,其中υ是电磁波的频率,h是一个常量,后被称为普朗克常量,其值为h=6.626×10-34J·s。

江苏省高考物理选修35知识点梳理.pdf

选修3-5 动量 动量守恒定律Ⅱ 1、冲量 冲量可以从两个侧面的定义或解释。①作用在物体上的力和力的作用时间的乘积, 叫做该力对这物体的冲量。②冲量是力对时间的累积效应。力对物体的冲量, 使物体的动量发生变化; 而且冲量等于物体动量的变化。 冲量的表达式 I = F ·t 。单位是牛顿·秒 冲量是矢量, 其大小为力和作用时间的乘积, 其方向沿力的作用方向。如果物体在时间t 内受到几个恒力的作用, 则合力的冲量等于各力冲量的矢量和, 其合成规律遵守平行四边形法则。 2、动量 可以从两个侧面对动量进行定义或解释。①物体的质量跟其速度的乘积, 叫做物体的动量。②动量是物体机械运动的一种量度。动量的表达式P = mv 。单位是千克米 / 秒。动量是矢量, 其方向就是瞬时速度的方向。因为速度是相对的, 所以动量也是相对的, 我们啊 3、动量定理 物体动量的增量, 等于相应时间间隔力, 物体所受合外力的冲量。表达式为I = ?P 或12mv mv Ft ?=。 运用动量定理要注意①动量定理是矢量式。合外力的冲量与动量变化方向一致, 合外力的冲量方向与初末动量方向无直接联系。②合外力可以是恒力, 也可以是变力。在合外力为变力时, F 可以视为在时间间隔t 内的平均作用力。③动量定理不仅适用于单个物体, 而且可以推广到物体系。 4、动量守恒定律 当系统不受外力作用或所受合外力为零, 则系统的总动量守恒。动量守恒定律根据实际情况有多种表达式, 一般常用P P P P A B A B +='+'等号左右分别表示系统作用前后的总动量。 运用动量守恒定律要注意以下几个问题: ①动量守恒定律一般是针对物体系的, 对单个物体谈动量守恒没有意义。 ②对于某些特定的问题, 例如碰撞、爆炸等, 系统在一个非常短的时间内, 系统内部各物体相互作用力, 远比它们所受到外界作用力大, 就可以把这些物体看作一个所受合外力为零的系统处理, 在这一短暂时间内遵循动量守恒定律。 ③计算动量时要涉及速度, 这时一个物体系内各物体的速度必须是相对于同一惯性参照系的, 一般取地面为参照物。 ④动量是矢量, 因此“系统总动量”是指系统中所有物体动量的矢量和, 而不是代数和。 ⑤动量守恒定律也可以应用于分动量守恒的情况。有时虽然系统所受合外力不等于零, 但只要在某一方面上的合外力分量为零, 那么在这个方向上系统总动量的分量是守恒的。 ⑥动量守恒定律有广泛的应用范围。只要系统不受外力或所受的合外力为零, 那么系统内部各物体的相互作用, 不论是万有引力、弹力、摩擦力, 还是电力、磁力, 动量守恒定律都适用。系统内部各物体相互作用时, 不论具有相同或相反的运动方向; 在相互作用时不论是否直接接触; 在相互作用后不论是粘在一起, 还是分裂成碎块, 动量守恒定律也都适用。 5、动量与动能、冲量与功、动量定理与动能定理、动量守恒定律与机械能守恒定律的比较。动量与动能的比较: ①动量是矢量, 动能是标量。 ②动量是用来描述机械运动互相转移的物理量而动能往往用来描述机械运动与其他运动(比如热、光、电等)相互转化的物理量。比如完全非弹性碰撞过程研究机械运动转移——速度的变化可以用动量守恒, 若要研究碰撞过程改变成内能的机械能则要用动能为损失去

高中物理选修3-1知识点归纳(完美版)

物理选修3-1 一、电场 1. 两种电荷、电荷守恒定律、 元电荷(e = 1.60 x 10-19C );带电体电荷量等于元电荷的 整数倍 2. 库仑定律:F =?2伞(真空中的点电荷){ F:点电荷间的作用力(N ); r k:静电力常量k = 9.0 x 109N?m/C 2; Q 、Q:两点电荷的电量(C ) ; r:两点电荷间的距离(m ); 作用力与反作用力;方向在它们的连线上;同种电荷互相排斥,异种电荷互相吸引 } 3. 电场强度:E 二匸(定义式、计算式){ E:电场强度(N/C ),是矢量(电场的叠加原理);q :检验 q 电荷的电量(C ) } 4. 真空点(源)电荷形成的电场 E =竽 {r :源电荷到该位置的距离(m ), Q :源电荷的电量} r 5. 匀强电场的场强 E =U AB { 3B :AB 两点间的电压(V ) , d:AB 两点在场强方向的距离 (m )} d 6. 电场力:F = qE {F:电场力(N ) , q:受到电场力的电荷的电量 (C ) , E:电场强度(N/C ) } A E P 减 7. 电势与电势差: L A B = $ A - $ B , U A B = W AB /q = △ q 8. 电场力做功:W A B = qL AB = qEd = △ E P 减{ W A B :带电体由A 到B 时电场力所做的功(J ) , q:带电量(C ) , L A B : 电 场中A 、B 两点间的电势差(V )(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m ); △曰减:带电体由A 到B 时势能的减少量} 9. 电势能:0A = q $ A {庄A :带电体在 A 点的电势能(J ) , q:电量(C ) , $ A :A 点的电势(V ) } 10. 电势能的变化 △曰减=E^A -E PB {带电体在电场中从 A 位置到B 位置时电势能的减少量} 11. 电场力做功与电势能变化 W A B = △ E P 减=qUk (电场力所做的功等于电势能的减少量 ) 12. 电容C = Q/U (定义式,计算式){ C:电容(F ) , Q:电量(C ) , U:电压(两极板电势差)(V ) } 13. 平行板电容器的电容 C =上匚(S:两极板正对面积,d:两极板间的垂直距离, 3 :介电常数) 4水d 常见电容器 类平抛运动(在带等量异种电荷的平行极板中: E = U d 垂直电场方向:匀速直线运动 L = V o t 注:(1)两个完全相同的带电金属小球接触时 ,电量分配规律:原带异种电荷的先中和后平分 的总量平分; 14.带电粒子在电场中的加速 (Vo = 0): W = △ E <增或 qU = mVt 2 15.带电粒子沿垂直电场方向以速度 V o 进入匀强电场时的偏转 (不考虑重力作用) 平行电场方向:初速度为零的匀加速直线运动 d at2 , F a=— =qE = qU 2 m m m ,原带同种电荷

物理选修35知识点总结

知识点梳理高中物理选修3-5动量守恒定律一、动量 kg ms mvP.。单位是1、动量:动量是矢量,其方向就是瞬时速度的方向。因为速度是相对的,所以动量也是相对的。= I Ft 冲量:冲量是矢量,在作用时间内力的方向不变时,冲量的方向与力的方向相同;如果力的方向是变化的,则冲量的方向与相应时间内物体动量变化量的方向相同。若力为同一方向均 匀变化的力,该力的冲量可以用平均力计算;若力为一般变力,则不能直接计算冲量。同一方向 上动量的变化量=这一方向上各力的冲量和。 1mv mv P P动量定理:otot 动量与力的关系:物体动量的变化率等于它所受的力。 2、动量守恒定律:当系统不受外力作用或所受合外力为零,则系统的总动量守恒。(适用于目前 物理学研究的一切领域。)_____ _ __ _____ _ _________ _____ __________ 动量守恒定律成立的条件:①系统不受外力作用。②系统虽受到了外力的作用,但所受合外 力为零。③系统所受的外力远远小于系统内各物体间的内力时,系统的总动量近似守恒(碰撞,击打,爆炸,反冲)。④系统所受的合外力不为零,但在某一方向上合外力为零,则系统在该方向上动量守恒。⑤系统受外力,但在某一方向上内力远大于外力,也可认为在这一方向上系统的 动量守恒。 常见类型:①由弹簧组成的系统,在物体间发生相互作用的过程中,当弹簧被压缩到最短或拉伸到最长时,弹簧两端的两个物体的速度必然相等。②在物体滑上斜面(斜面放在光滑水平面 上)的过程中,由于物体间弹力的作用,斜面在水平方向上将做加速运动,物体滑到斜面上最高点的临界条件是物体与斜面沿水平方向具有共同的速度,物体到达斜面顶端时,在竖直方向上的 分速度等于零。③子弹刚好击穿木块的临界条件为子弹穿出时的速度与木块的速度相同,子弹位 移为木块位移与木块厚度之和。 二、验证动量守恒定律(实验、探究)I 【注意事项】 1?“水平”和“正碰”是操作中应尽量予以满足的前提条件. 2.入射球的质量应大于被碰球的质量. 3?入射球每次都必须从斜槽上同一位置由静止开始滚下?方法是在斜槽上的适当高度处固定一档板,小球靠着档板后放手释放小球. 4.若利用气垫导轨进行实验,调整气垫导轨时注意利用水平仪器确保导轨水平。 【误差分析】 误差来源于实验操作中,两个小球没有达到水平正碰,一是斜槽不够水平,二是两球球心不在同 一水平面上,给实验带来误差.每次静止释放入射小球的释放点越高,两球相碰时作用力就越大, 动量守恒的误差就越小?应进行多次碰撞,落点取平均位置来确定,以减小偶然误差. 三、碰撞与爆炸 1.碰撞的特点:①相互作用的时间极短,可忽略不计。②系统的内力远大于外力,外力可忽略③速度发生突变,物体发生的位移极小,可认为碰撞前后物体处于同一位置。 2.爆炸的特点:作用时间短,内力非常大,机械能增加,动能会增加。 3.碰撞中遵循的规律:动量守恒,动能不增加。 4.一维碰撞:两个物体碰撞前后斗艳同一直线运动,这种碰撞叫做一维碰撞。

(完整版)人教版高中物理选修3-5知识点总结

人教版高中物理选修3-5知识点总结 一.量子论的建立黑体和黑体辐射Ⅰ (一)量子论 1.创立标志:1900年普朗克在德国的《物理年刊》上发表《论正常光谱能量分布定律》的论文,标志着量子论的诞生。 2.量子论的主要内容: ①普朗克认为物质的辐射能量并不是无限可分的,其最小的、不可分的能量单元即“能量子”或称“量子”,也就是说组成能量的单元是量子。 ②物质的辐射能量不是连续的,而是以量子的整数倍跳跃式变化的。 3.量子论的发展 ①1905年,爱因斯坦奖量子概念推广到光的传播中,提出了光量子论。 ②1913年,英国物理学家玻尔把量子概念推广到原子内部的能量状态,提出了一种量子化的原子结构模型,丰富了量子论。 ③到1925年左右,量子力学最终建立。 4.量子论的意义 ①与量子论等一起,引起物理学的一场重大革命,并促进了现代科学技术的突破性发展。 ②量子论的革命性观念揭开了微观世界的奥秘,深刻改变了人们对整个物质世界的认识。 ③量子论成功的揭示了诸多物质现象,如光量子论揭示了光电效应 ④量子概念是一个重要基石,现代物理学中的许多领域都是从量子概念基础上衍生出来的。 量子论的形成标志着人类对客观规律的认识,开始从宏观世界深入到微观世界;同时,在量子论的基础上发展起来的量子论学,极大地促进了原子物理、固体物理和原子核物理等科学的发展。(二)黑体和黑体辐射

1.热辐射现象 任何物体在任何温度下都要发射各种波长的电磁波,并且其辐射能量的大小及辐射能量按波长的分布都与温度有关。 这种由于物质中的分子、原子受到热激发而发射电磁波的现象称为热辐射。 ①.物体在任何温度下都会辐射能量。 ②.物体既会辐射能量,也会吸收能量。物体在某个频率范围内发射电磁波能力越大,则它吸收该频率范围内电磁波能力也越大。 辐射和吸收的能量恰相等时称为热平衡。此时温度恒定不变。 实验表明:物体辐射能多少决定于物体的温度(T)、辐射的波长、时间的长短和发射的面积。 2.黑体 物体具有向四周辐射能量的本领,又有吸收外界辐射 来的能量的本领。 黑体是指在任何温度下,全部吸收任何波长的辐射的 物体。 3.实验规律: 1)随着温度的升高,黑体的辐射强度都有增加; 2)随着温度的升高,辐射强度的极大值向波长较短方向移动。 二.光电效应光子说光电效应方程Ⅰ 1、光电效应

高中物理选修3-1知识点汇总

第一章 电场 1. 电荷 自然界只存在正、负两种电荷;单位是库伦,符号C ;元电荷电量e=1.6?10 19 -C ;电荷产生方 法有摩擦起电、接触起电、感应起电。 2. 电荷守恒定律 电荷既不能创造,也不能消失,它只能从一个物体转移到另一个物体,或从物体的这一部分转移到另一部分,转移过程中总电荷数不变。 3. 点电荷 当带电体的尺寸和形状对所研究的问题影响不大时,可将此带电体看成点电荷;对于电荷分布均匀的球体,可认为是电荷集中在球心的点电荷;检验电荷一般也可看成点电荷;点电荷实际上是一种理想化模型,并不存在。 4. 库伦定律 在真空中两个点电荷的相互作用力跟它们电荷量的乘积成正比,跟它们间距离的平方成反比, 作用力的方向在它们的连线上;F=k 2 21r Q Q , k=9?109N ·m 2/C 2 .。 5. 电场 带电体周围存在的一种特殊物质,对放入其中的电荷有力的作用;客观存在的;具有力的特性和能的特性。 6. 电场强度 放入电场中某一点的电荷受到的电场力跟它的电荷量的比值;E= q F ;方向是正电荷在该点的 受力方向;矢量,遵循矢量运算原理;点电荷场强F=k 2 r Q 。 7. 电势 描述电场能的性质;?= q E p ,E p 为电荷的 电势能;标量,正负表示大小;数值与零电势的选取有关,一般选择无穷远处为电势零点。 8. 电势差 描述电场做功的本领;U AB = q W AB ;标量, 正负表示电势的高低;也被称作电压。 9. 电势能 描述电荷在电场中的能量,电荷做功的本领;E p =?q ;标量。 10.电场线 从正电荷出发,到负电荷终止的曲线,曲线上每一点的切线方向都跟该点的场强方向一致;虚构的;永不相交;疏密表示电场强度的强弱;沿电场方向电势减小。 11.等势面 电场中电势相等的点构成的面;空间中没有电荷的地方等势面不相交;在平面中构成的是等势线;等差等势面的疏密程度反映电场的强弱。 12.匀强电场 电场强度大小处处相等;E=d U 。 13.电场力做功情况 只与始末位置有关,与路径无关;W=Uq ;匀强电场中W=Fs ·cos θ=Eqs ·cos θ;电场力做的正功等于电势能的减少,W=-?E 。 14.电容器 两个互相靠近又彼此绝缘的导体组成电容器;电容器能充电和放电。 15.电容 电容器所带电荷量与两极板间的电压的比值;单位是法,符号F ;C=U Q 。 16.平行板电容器 高中阶段主要接触的电容器;平行板电容器的电容C= kd S πε4;平行板电容器两极板间的电场可 认为是匀强电场。 17.带电粒子在匀强电场中的运动 加速或者偏转;a=m Eq =md Uq 。 第二章 磁场 1. 磁场 存在与磁体、电流或运动电荷周围的一种物质;对放入其中的磁极或电流有磁场力的作用;规

【精品】物理选修35_知识点总结提纲_精华版

高中物理选修3-5知识点梳理 一、动量动量守恒定律 1、动量:可以从两个侧面对动量进行定义或解释:①物体的质量跟其速度的乘积,叫做物体的动量。②动量是物体机械运动的一种量度。 动量的表达式P=mv.单位是s kg 。动量是矢量,其方向就是瞬时速度的方向。因为速度是相对的,所以动 m 量也是相对的。 2、动量守恒定律:当系统不受外力作用或所受合外力为零,则系统的总动量守恒。动量守恒定律根据实际情况有多种表达式,一般常用等号左右分别表示系统作用前后的总动量。 运用动量守恒定律要注意以下几个问题: ①动量守恒定律一般是针对物体系的,对单个物体谈动量守恒没有意义。 ②对于某些特定的问题,例如碰撞、爆炸等,系统在一个非常短的时间内,系统内部各物体相互作用力,远比它们所受到外界作用力大,就可以把这些物体看作一个所受合外力为零的系统处理,在这一短暂时间内遵循动量守恒定律。 ③计算动量时要涉及速度,这时一个物体系内各物体的速度必须是相对于同一惯性参照系的,一般取地面为参照物。 ④动量是矢量,因此“系统总动量”是指系统中所有物体动量的矢量和,而不是代数和。

⑤动量守恒定律也可以应用于分动量守恒的情况。有时虽然系统所受合外力不等于零,但只要在某一方面上的合外力分量为零,那么在这个方向上系统总动量的分量是守恒的. ⑥

动量守恒定律有广泛的应用范围。只要系统不受外力或所受的合外力为零,那么系统内部各物体的相互作用,不论是万有引力、弹力、摩擦力,还是电力、磁力,动量守恒定律都适用。系统内部各物体相互作用时,不论具有相同或相反的运动方向;在相互作用时不论是否直接接触;在相互作用后不论是粘在一起,还是分裂成碎块,动量守恒定律也都适用. 3、动量与动能、动量守恒定律与机械能守恒定律的比较。 动量与动能的比较: ①动量是矢量,动能是标量。 ②动量是用来描述机械运动互相转移的物理量而动能往往用来描述机械运动与其他运动(比如热、光、电等)相互转化的物理量。比如完全非弹性碰撞过程研究机械运动转移--速度的变化可以用动量守恒,若要研究碰撞过程改变成内能的机械能则要用动能为损失去计算了.所以动量和动能是从不同侧面反映和描述机械运动的物理量. 动量守恒定律与机械能守恒定律比较:前者是矢量式,有广泛的适用范围,而后者是标量式其适用范围则要窄得多。这些区别在使用中一定要注意。 4、碰撞:两个物体相互作用时间极短,作用力又很大,其他作用相对很小,运动状态发生显著化的现象叫做碰撞。 以物体间碰撞形式区分,可以分为“对心碰撞”(正碰),而物体碰前速度沿它们质心的连线;“非对心碰撞"——中学阶段不研究。 以物体碰撞前后两物体总动能是否变化区分,可以分为:“弹性碰撞”。碰撞前

高中物理选修3-3知识点与题型复习

热学知识点复习→制作人:湄江高级中学:吕天鸿 一、固、液、气共有性质 1、组成物质的分子永不停息、无规则运动。温度T越高,运动越激烈,分子平均动能。 注意:对于理想气体,温度T还决定其内能的变化。 扩散现象:相互渗透的反应 2、分子运动的表现 布朗运动:看不见的固体小颗粒被分子不平衡碰撞,颗粒越大,运动越 3、分子间同时存在引力与斥力,且都随着分子间距r的增加而。 (1)分子力的合力F表现:是为F引还是F斥?看间距与分界点r0关系,看下图 当r=r0时,F引=F斥,分子力为0; 当r>r0时,F引>F斥,分子力表现为 当r

非晶体:无确定的熔点。 → 物理性质:各向同性。原子排列:无规则 2,、同一种物质可能以晶体与非晶体两种不同形态出现。如碳形成的金刚石与石墨 3、有些晶体与非晶体可以相互转化。 4、常考晶体有:金刚石与石墨、石英、云母、食盐。常考非晶体有:玻璃、蜂蜡、松香。 三、热力学定律→研究高考对象为→主要还是理想气体 1、热力学第一定律:ΔU =W+Q 表达式中正、负号法则:如下图 2、气体实验定律与热力学第一定律的结合量是气体的体积和温度,当温度变化时,气体的内能变化,当体积变化时,气体将伴随着做功,解题时要掌握气体变化过程的特点: (1)等温过程:内能不变,即ΔU=0。温度T ↑,则内能增加,ΔU >0 (2)等容过程:W=0。若体积V ↑,则气体对外界做功,W 取“—”负号计算。反之亦然 (3)绝热过程:Q=0。 3、再次强调:温度T 决定分子平均动能的变化。也决定理想气体的内能变化 四、气体实验定律→ 理想气体→P 、V 、T=t 0c+273 三个物理量关系 1、三条特殊线 (等温线:P 1V 1=p 2V 2 ) 2、液体柱模型 (1)明确点:P 液=egh 一般不用。当液体为汞时,大气压以 为单位时,高为h cm 时,P 液=h .计算气

高中物理 选修《3-4》、《3-5》知识点归纳

1.波的特征量及其关系 (1)波长:波动过程中,对平衡位置的位移总相等的两相邻质点的距离叫波长;(2)频率:波的频率由波源的振动频率决定,在任何介质中,频率保持不变;(3)机械振动在介质中的传播的距离和所用时间的比值叫波速,波速由介质本身的性质所决定(若光还和光的频率有关),在不同介质中波速是不同的。(v =λ/T ) 2.介质中质点运动的特征:(1)每个质点都在自己平衡位置附近作振动,并不随波迁移;(2)后振动的质点振动情况总是落后于相邻的先振动的质点的振动 3.波动图象 (1)规定用横坐标x表示在波的传播方向上各个质点的平衡位置,纵坐标y表示某一时刻各个质 ... 点.偏离平衡位置的位移,连结各质点位移量末端得到的曲线叫做该时刻波的图象 (2)用“同侧法”判断波动图像中质点的速度方向,用作切线判断振动图像中质点的速度方向 (3)在一个周期内质点沿y轴振动通过路程4A,1/4个周期不一定是A;波沿x轴匀速传播λ,1/4个周期一定是λ/4 4、波长、波速和频率(周期)的关系:v =△x/△t=λf=λ/ T。 5、波绕过障碍物的现象叫做波的衍射,能够发生明显的衍射现象的条件是:障碍物或孔的尺寸比波 .. 长小 ..,或者跟波长相差不多。d≤λ(超声波(它是机械波非电磁波)定位原理:频率大,波长小不易衍射,直线传播性好) 6、产生干涉的必要条件是:两列波源的频率必须相同,干涉区域内某点是振动最强点还是振动最弱 点的充要条件:(1)最强:该点到两个波源的路程之差是波长的整数倍,即δ=nλ;(2)最弱:该点到两个波源的路程之差是半波长的奇数倍δ= ;,即。根据以上分析,在稳定的 干涉区域内,振动加强点始终加强 ....;振动减弱点始终减弱 ....。(振动加强的点还是做简谐运动,某时刻位移可能为零) 现象叫多普勒效应。当波源与观察者相互靠近 ....。当波源与观 ....时,观察者“感觉”到的频率变大 察者相互远离 ....。(注意:波源实际频率不变)现象:多普....时,观察者“感觉”到的频率变小 勒测速仪、“红移”、“彩超”。 9、麦克斯韦理论(赫兹用实验证明其理论是正确的) (1)变化的磁场能够在周围空间 ..磁场 ..。. .............产生 ............产生 ..电场 ..,变化的电场能够在周围空间 (2)均匀变化的磁场产生稳定的电场,均匀变化的电场产生稳定的磁场. (3)振荡的(即周期性变化的)磁场产生同频率的振荡电场,振荡的电场产生同频率的振荡磁场. 10、电磁场:变化电场在周围空间产生磁场,变化磁场在周围空间产生电场,变化的电场和磁场 成为一个完整的整体,这就是_电磁场__. 11、电磁波麦克斯韦预言、赫兹电火花实验证实 (1)定义:交替产生的振荡电场和振荡磁场向周围空间的传播 ..形成电磁波. (2)特点:①电磁波是横波 ...在电磁波中,每处的电场强度和磁感强度的方向总是_垂直_,且与电磁波的传播方向_垂直_ ;②任何频率的电磁波在真空中的传播速度都等于3×108m/s;③ 电磁波的传播速度等于波长与频率的乘积,即_v=λf_。 (3)电磁波与机械波的关系

人教版高中物理选修3-1知识点归纳总结

物理选修3- 1 知识总结 第一章第1节电荷及其守恒定律 、电荷守恒定律 表述1:电荷守恒定律:电荷既不能凭空产生,也不能凭空消失,只能从一个物体转移到另一个 物体,或从物体的一部分转移到另一部分 ,在转移的过程中,电荷的总量保持不变。 表述2、在一个与外界没有电荷交换的系统内,正、负电荷的代数和保持不变。 、电荷量 1、 电荷量:电荷的多少。 2、 元电荷:电子所带电荷的绝对值 1.6 X 10 19C 3、 比荷:粒子的电荷量与粒子质量的比值。 第一章第2节库仑定律 一、 电荷间的相互作用 1、 点电荷:带电体的大小比带电体之间的距离小得多。 2、 影响电荷间 相互作用的因素 二、 库仑定律: 适用条件为真空中静止点电荷 计算时各量带入绝对值,力的方向利用电性来判断 第一章第3节电场电场强度 、电场 电荷(带电体)周围存在着的一种物质,其基本性质就是对置于其中的电荷有力的作用。 二、 电场强度 1、 检验电荷与场源电荷 2、 电场强度 检验电荷在电场中某点所受的电场力 F 与检验电荷的电荷 q 的比值。 E F 国际单位:NC q 电场强度是矢量。规定:正电荷在电场中某一点受到的电场力方向就是那一点的电场强度的方向。 三、 点电荷的场强公式 F . Q E — k —2 q r 四、 电场的叠加 五、 电场线 1、电场线:为了形象地描述电场而在电场中画出的一些曲线, 曲线的疏密程度表示场强的大小, 曲线上某点的切线方向表示场强的方向。 在真空中两个静止点电荷间的作用力跟它们的电荷的乘积成正比, 成反比,作用力的方向在它们的连线上。 跟它们距离的平方 注意(1) (2)

相关文档
相关文档 最新文档