文档库 最新最全的文档下载
当前位置:文档库 › 量子遗传算法

量子遗传算法

量子遗传算法
量子遗传算法

量子遗传算法 1.遗传算法 遗传算法是一种模拟达尔文生物进化论和遗传变异的智能算法。这种算法具有鲁棒性(用以表征控制系统对特性或参数扰动的不敏感性)较强,实现的步骤规范、简单通用等优点,在人工智能、多目标决策、社会及经济等领域都有大量运用。但一般遗传算法存在一定得局限性:收敛速度慢、迭代的次数多,易过早收敛,容易陷入局部最优解。

2.量子计算

量子计算为量子力学与信息科学的综合交叉学科。量子计算具有量子力学的并行性,计算速度更快;同时,量子状态多种多样,在进行最优解的搜索时极少陷入局部的极值。

3.量子遗传算法

量子遗传算法将量子的态矢量引入遗传算法,利用量子比特的概率幅应用于染色体的编码。一条染色体是多个量子状态的叠加。并使用量子旋转门实现染色体的变异更新。因此量子遗传算法具有迭代次数少,运行速度快,能以较少种群进行遗传变异,搜索范围广,难以陷入局部的极值等优点。

4.操作步骤

1)运用量子比特初始化父代染色体

2)在量子遗传算法中,染色体采用量子位的概率幅进行编码,编码方案如下:

1212cos()cos()cos()sin()sin()sin()i i ik i i i ik P θθθθθθ??=???

? k j n i rand ij ,...,2,1,,...,2,1,2==?=πθ

3)对初始化种群中的每一个个体进行测量。

4)对每个测量值进行适应度的评估,以适应度来选择最优个体,进行遗传变异。

5)使用量子旋转门进行下一代个体的更新,量子旋转门为逻辑门中一种较为常用的方法,具体表示为:

???? ?

?-=i i i i u θθθθθcos sin sin cos )( 6)进行迭代1+=y y

7)达到终止设定条件,输出最佳个体,得到最优解。

运行结果:

遗传算法综述

遗传算法综述 摘要:遗传算法(genetic algorithms,GA)是一类借鉴生物界自然选择和自然遗传机制的随机搜索算法,适用于处理传统搜索方法难以解决的复杂和非线性优化问题。遗传算法可广泛应用于组合优化、机器学习、自适应控制、设计和人工生命等领域,是21世纪有关智能计算中的重要技术之一。 本文通过对相关论文的查阅和整理,对遗传算法的研究现状和发展趋势进行了综述并谈论了一些自己的看法。 关键词:遗传算法研究现状发展趋势 引言:遗传算法是模拟遗传选择和自然淘汰的生物进化过程的计算模型,由美国Michigan大学的Holland教授于1969年提出,后经DeJong、Goldberg 等人归纳总结,形成一种新的全局优化搜索算法[1]。遗传算法以其简单通用、鲁棒性强、适于并行处理以及高效、实用等显著特点,在各个领域得到了广泛应用,取得了良好效果,并逐渐成为重要的智能算法之一。 1、遗传算法的基本原理 与传统搜索算法不同, 遗传算法从一组随机产生的初始解,称为群体, 开始搜索过程。群体中的每个个体是问题的一个解,称为染色体。这些染色体在后续迭代中不断进化, 称为遗传。遗传算法主要通过交叉、变异、选择运算实现。交叉或变异运算生成下一代染色体, 称为后代。染色体的好坏用适应度来衡量。根据适应度的大小从上一代和后代中选择

一定数量的个体, 作为下一代群体, 再继续进化, 这样经过若干代之后, 算法收敛于最好的染色体, 它很可能就是问题的最优解或次优解。“遗传算法中使用适应度这个概念来度量群体中的各个个体的在优化计算中有可能到达最优解的优良程度。度量个体适应度的函数称为适应度函数。适应度函数的定义一般与具体求解问题有关”[2]。 遗传算法包含两个数据转换操作,一个是从表现型到基因型的转换,将搜索空间的参数或解转换成遗传空间中的染色体或个体,这个过程称为编码(coding)。另一个是从基因型到表现型的转换,即将个体转化成搜索空间中的参数,这个过程称为译码(decode)。 图1展示了遗传算法的运行过程。 图1 遗传算法的运行过程示意图 2、遗传算法的研究现状 2.1 遗传算法研究方向[3] 在遗传算法的研究中,目前主要有三类研究方向: ⑴研究遗传算法本身的理论基础。 ⑵用遗传算法作为工具解决工程问题。主要是进行优化,关心的是能

关于量子遗传算法(QGA)

关于量子遗传算法的杂七杂八 遗传算法确实太有名了,无论是数学建模的培训中还是机器学习的项目中,经常性能看到遗传算法(GA)活跃的身影,其用途十分广泛,而且MATLAB或者是Python的实现遗传算法功能的工具箱也很多,笔者就一度使用北卡罗莱纳大学提供的免费工具箱实现了对于BP神经网络的初始化权值与阈值的优化,效果十分不错,而且实现起来不那么费劲,所以还是挺受好评的,对于写毕业论文的同志而言,如果实在不知道强行套用第三方算法对于原本的算法进行升级该怎么做,有两个万金油组合,一个是AHP,另一个就是几乎无所不能的GA,当然了,如果需要对于矩阵进行降维操作首选一定是PCA。 1 关于GA算法的种种 1.1简介 顾名思义,学过高中生物的都应该可以理解“遗传”是什么,染色体变异、染色体交叉等术语应该也能够大概知道是什么意思。其实遗传算法主要就是模拟这一个过程。 不过,笔者觉得本算法中的核心部分中的变异与交叉的情节,其实达尔文这个姐控的贡献不是很大,最早提出相关的概念完成了相关的建模的是孟德尔 所谓物竞天择适者生存,这个对于现实生活中的生物适用,对于具有特定含义的矩阵肯定也是适用的,当然了,反映他们到底多么“适应”的函数就是所谓的适应度函数,虽然关于适应度函数的取法现在并没有十分固定的一以贯之的通用公式。相对的,一些套路多有相似之处的算法中的概念也大都没有万用公式,诸如ACA中的营养素函数等,这些算法仍然有待提升,这也是经常能在国内的中文核心期刊上依然能够看到不少惊为天人的论文的原因。因为中国特色——灰色模型、AFSA等算法第一个提出者是中国人。 1.2四个基本概念 遗传算法中,一个基本单位为“个体”,一个种群(系统)中拥有好多个体。每个个体携带两个内容:染色体与适应度。 当然了,这个时候上述的这些概念根本没有机器学习的含义,而全然为生物的含义 或者用生物上的话来说,每一个生物都有染色体,染色体决定了他们表现出来的性状是怎样的。所以说,染色体决定了每一个生物的肥瘦程度。 因此我们建立以下对应关系: 整个牧场对应的是一个种群,在机器学习中可以理解为具有实际项目含义的构成所有矩阵的cluster 一头羊相当于生物钟的一个个体,在机器学习的大背景下可以理解成矩阵,就是MATLAB里面的mat文件 某头羊决定肥瘦程度的染色体也就就是该个体的染色体,在机器学习的大背景下可以理解成mat文件中的某一行或者是某一列。题外话,MATLAB中相当一部分函数在编写的时候不知道是出于怎样的考虑,它们的参数有的时候行跟列的位置竟然是反的,于我们的习惯有很大

毕业设计--基于量子遗传算法的函数寻优算法设计

毕业论文(设计) 题目:基于量子遗传算法的函数寻优算法设计学院:数理与信息学院 学生姓名: 专业:计算机科学与技术 班级: 指导教师: 起止日期: 2014年11月16日至2015年6月12日 2015 年5 月13日

基于量子遗传算法的函数寻优算法设计 摘要 量子遗传算法(QGA)是20世纪90年代后期兴起的一种崭新的遗传进化算法。该算法主要是将量子计算的概念引入其中,将量子的态矢量表达引入了遗传编码,使一条染色体可以表达多个信息态的叠加,同时利用量子旋转门实现染色体的演化,实现了目标解的进化。相比传统遗传算法,量子遗传算法能够在较小的种群规模下,快速的收敛到全局最优解。 本文首先介绍了量子遗传算法的基本原理与算法结构,然后对量子遗传算法提出疑问。虽然量子遗传算法的优化性能大大优于传统遗传算法,但是,对于一些多峰函数的优化问题,该类算法依旧容易陷入“局部最优”。在实际的应用中有很多优化问题都是多变量的连续优化问题,现有的量子遗传算法不能有效的解决这些问题。针对量子遗传算法容易陷入局部最优和未成熟收敛的缺陷,我们提出了一种新的优化算法——含有退火操作的量子遗传算法,该优化算法能够以可变的概率选择性地接受恶化的优化函数解,使种群解集的进化方向改变,不在依靠当前解进行遗传演化。从而使算法不易“早熟收敛”。而且在该算法中加入了全干扰的量子交叉操作,使各染色体能进行遗传信息的交换,使种群染色体更具有代表性。最后根据改进后的方案,对改进的量子遗传算法进行了数值仿真。有效地证明了改进算法在函数寻优方面的优越性。 【关键词】量子遗传算法,量子编码,退火思想,量子交叉,函数寻优

量子遗传算法

量子遗传算法 1.遗传算法 遗传算法是一种模拟达尔文生物进化论和遗传变异的智能算法。这种算法具有鲁棒性(用以表征控制系统对特性或参数扰动的不敏感性)较强,实现的步骤规范、简单通用等优点,在人工智能、多目标决策、社会及经济等领域都有大量运用。但一般遗传算法存在一定得局限性:收敛速度慢、迭代的次数多,易过早收敛,容易陷入局部最优解。 2.量子计算 量子计算为量子力学与信息科学的综合交叉学科。量子计算具有量子力学的并行性,计算速度更快;同时,量子状态多种多样,在进行最优解的搜索时极少陷入局部的极值。 3.量子遗传算法 量子遗传算法将量子的态矢量引入遗传算法,利用量子比特的概率幅应用于染色体的编码。一条染色体是多个量子状态的叠加。并使用量子旋转门实现染色体的变异更新。因此量子遗传算法具有迭代次数少,运行速度快,能以较少种群进行遗传变异,搜索范围广,难以陷入局部的极值等优点。 4.操作步骤 1)运用量子比特初始化父代染色体 2)在量子遗传算法中,染色体采用量子位的概率幅进行编码,编码方案如下: 1212cos()cos()cos()sin()sin()sin()i i ik i i i ik P θθθθθθ??=??? ? k j n i rand ij ,...,2,1,,...,2,1,2==?=πθ 3)对初始化种群中的每一个个体进行测量。 4)对每个测量值进行适应度的评估,以适应度来选择最优个体,进行遗传变异。 5)使用量子旋转门进行下一代个体的更新,量子旋转门为逻辑门中一种较为常用的方法,具体表示为: ???? ? ?-=i i i i u θθθθθcos sin sin cos )( 6)进行迭代1+=y y 7)达到终止设定条件,输出最佳个体,得到最优解。

相关文档