文档库 最新最全的文档下载
当前位置:文档库 › 无机材料力学性能

无机材料力学性能

无机材料力学性能
无机材料力学性能

读书报告

第一章无机材料的受力形变

一、基础知识(参考《材料物理性能》关振铎、张中太等编著。清华大学出版社)

1、应力σ下标的含义(第五页)

单位面积上所受的内力称为应力σ=F/A

σ下标:第一个字母表示应力作用面的法线方向;第二个字母表示应力作用的方向。

应力分量

2、弹性形变:在外力作用下,物体发生形变,当外力撤消后,物体能恢复原状,则这样的形变叫做弹性形变。例如弹簧。

3、滞弹性:无机固体和金属这种与时间有关的弹性。

4、粘弹性:一些非晶体,有时甚至多晶体在比较小的应力时可以同时表现出弹性和粘性。

5、应变与蠕变:应变是用来描述物体内部各质点之间的相对位移的。一根长度为Lo的杆,在单向拉应力作用下被拉长到L1,则应变的定义为:ε=(L1-Lo)/Lo=ΔL/Lo。

当对粘性体施加一恒定力时,其应变随时间而增加,此现象叫蠕变。

6、应力弛豫:施加一恒定应变,则应力将随时间而减少,此现象叫弛豫。

7、塑性行变:指一种在外力移去后不能恢复的形变。

8、超塑性:指在一应力作用下产生异常大的拉伸形变而不发生破坏的能力。

9、滑移系统:

在切应力作用下,晶体的一部分沿一定的结晶学平面上的一定结晶学方向相对于晶体的另一部分进行移动,使晶面上的原子从一个稳定平衡位置移至另一个平衡位置的过程晶体的滑移过程如图1所示滑移是金属晶体塑性变形的主要方式在滑移过程中,晶体的位向不发生改变,已滑移和未滑移部分仍保持位向的一致;每次滑移量均为晶体在滑移方向上原子间距的整倍数,这个滑移量在应力去除后不能恢复。大量滑移的累积,构成晶体宏观的塑性变形晶体的滑移分单晶体滑移与多晶体滑移。

滑移面和滑动方向组成晶体的滑移系统。

晶体滑移示意图

二、对弹性模量的理解与应用

材料在弹性变形阶段,其应力和应变成正比例关系(即符合胡克定律),其比例系数称为弹性模量。弹性模量的单位是达因每平方厘米。“弹性模量”是描述物质弹性的一个物理量,是一个总称。弹性模量E是原子间结合强度的一个标志,是一常数。弹性模量E与原子结合力线上任一点受力点的曲线斜率有关。弹性模量越大,原子结合力越强;原子间距越小。弹性模量越大。

弹性模量可视为衡量材料产生弹性变形难易程度的指标,其值越大,使材料发生一定弹性变形的应力也越大,即材料刚度越大,亦即在一定应力作用下,发生弹性变形越小。弹性模量E是指材料在外力作用下产生单位弹性变形所需要的应力。

三、为什么常温下陶瓷材料易碎而金属材料摔不碎(参考《材料物理性能》关振铎、张中太等编著。清华大学出版社)

与金属材料相比,陶瓷材料有极高的强度,其弹性模量比金属大很多。但大多数陶瓷材料缺乏塑性变形能力和韧性,极限应变小于0.1%~0.2%,在外力的作用下呈现脆性,并且抗冲击、抗热冲击能力也很差.脆件断裂往往导致了材料被破坏。一般的陶瓷材料在室温下塑性为零,这是因为大多数陶瓷材料晶体结构复杂、滑移系统少,位错生成能高,而且位错的可动性差。

金属材料一般具有五个以上滑移系统,错位容易运动,塑性变形容易,无论单晶还是多晶都是延性的;陶瓷材料在常温下几乎是完全脆性的,只有高温时才表现出一定塑性形变,它的滑移系统少,滑移系统之间相互作用以及存在大量的晶界。错位滑移困难。许多陶瓷材料,晶体结构复杂,对称性低,点阵常数大,不易形成位错,且能满足滑移小距离后复原的条件晶面很少。

四、显微结构对蠕变的影响

1)气孔:随着气孔率增加,蠕变也增大。因为气孔减少了抵抗蠕变的有效截面积。

2)晶粒尺寸:晶粒越小,蠕变率越大。因为晶粒越小,晶界的比例大大增加,晶界扩散及晶界流动对蠕变的贡献也就增大。

3)玻璃相:当温度升高,玻璃相的粘度降低,因而变形速率增大,亦即蠕变率增大,非晶态玻璃的蠕变率比结晶态要大得多。玻璃相对蠕变的影响还取决于玻璃相对晶相的湿润程度。不湿润晶相,在晶界处为晶粒与晶粒结合,抵抗蠕变性能好;完全湿润,形成抗蠕变弱结构。

第二章材料脆性断裂与强度

一、理解记忆σth 、σc 、Kic公式,硬度的表示法

σth:为理论结合强度。σth=2πγ/λ=(Εγ/a) ?

σc:临界应力。σc=(2Εγ/πc) ?

KIc :裂纹有三种扩展方式或类型:KIc:裂纹有三种扩展方式或类型:掰开性(I )、错开性(Ⅱ)、及撕开型(Ⅲ),KⅠc 名为平面应变断裂韧性。

γE K C 2=I 平面应力状态 212μ

γ-=I E K C 平面应变状态 硬度表示法:金属材料常用的硬度测量方法是再静负载下将一个硬的物体压入材料,这样测量的硬度主要仅反映材料抵抗破坏的能力。陶瓷及矿物材料常用的划痕硬度叫做莫氏硬度,它只表示硬度由大到小的顺序。不表示软硬的程度。布氏硬度法主要用来测量金属材料中较软及中等硬度的材料,很少用于陶瓷;维氏硬度法及努普硬度法都适应于较硬的材料也用于测量陶瓷的硬度;洛氏硬度法测量的范围较广,采用不同的压头和负载可以得到15种标准洛氏硬度。

A 、布氏硬度(H

B )

用一定直径的钢球或硬质合金球,以规定的试验力(F )压入式样表面,经规定保持时间后卸除试验力,测量试样表面的压痕直径(L )。布氏硬度值是以试验力除以压痕球形表面积所得的商。以HBS (钢球)表示,单位为N/mm2(MPa)。

B 、洛氏硬度(HR )

洛氏硬度试验同布氏硬度试验一样,都是压痕试验方法。不同的是,它是测量压痕的深度。即,在初邕试验力(Fo )及总试验力(F )的先后作用下,将压头压入试样表面,经规定保持时间后,卸除主试验力,用测量的残余压痕深度增量(e )计算硬度值。

C 、维氏硬度(HV )

维氏硬度试验也是一种压痕试验方法,是将一个相对面夹角为136度的正四棱锥体金刚石压头以选定的试验力(F )压入试验表面,经规定保持时间后卸除试验力,测量压痕两对角线长度。

二、高强度材料的特征,实际强度与理论强有什么差异,强度的尺寸效应,强度的分散性

1.E和γ要大,而裂纹尺寸要小。

2.对于实际结合强度,只有克服原子间结合力,材料才能断裂。如果知道原子间结合力的细节,即知道应力-应变曲线的精确方式,就可算出理论结合强度。

3.由于试件长,含有危险裂纹的机会就多,对于大试件来说,强度偏低。

4.韦伯模数m越大,材料越均匀,材料的强度分散性越小。

强度的尺寸效应

强度的尺寸效应:由于同种材料中大尺寸材料比小尺寸材料包含的裂纹数目更多,似的大尺寸材料的断裂强度较低,这就是强度的尺寸效应。

强度的分散型:由于裂纹的长度在材料内的分布是随机的有大有小,所以临界应力也是有大有小的,具有分散的统计性

三、显微结构对强度的影响

1)晶粒尺寸的影响

对于大多数多晶材料,晶粒越小,强度越高。一方面因为致密多晶材料内部的缺陷尺寸与晶粒尺寸有着直接或间接的关系;另一方面断裂能是显微结构的敏感参数。

2)气孔的影响

随气孔率的增加,材料强度将呈指数规律降低。因为气孔的存在不但使材料的实际受力面积减小,而且还会在周围引起应力集中。

四、断裂韧性在设计选材方面的应用

当裂纹尖端应力强度因子达到某一临界值Kic 时,裂纹及失稳扩散而导致断裂,此时的临界应力强度因子即称为平面应变断裂韧性,简称断裂韧性。

材料的断裂韧性、断裂应力(或临界应力)与特定受拉应力区中最长的一条裂纹的裂纹长度有如下关系

c Y K K c c c σ==I I )(

材料的断裂韧性Ic K 是材料的本征参数,几何形状因子Y 在给定实验方法后也是

常数。由上式可知,材料的临界应力σc 只随材料中最大裂纹长度c 变化。

由于裂纹的长度在材料内的分布是随机的,有大有小,所以临界应力也是有大有小,具有分散的统计性,因此在材料抽样试验时,有的试样σc 大,有的小。

当KⅠ≤KⅠc 时,材料是安全的,当KⅠ>KⅠc 时,材料就要发生断裂。这就是说应力强度因子应小于或等于材料的平面应变断裂韧性,所设计的构件是安全的。

五、提高陶瓷材料强度的案例(SEM,TEM )(《无机非金属材料性能》 贾德昌、宋桂明等编著。 科学出版社)

影响陶瓷材料强度的因素是多方面的,材料强度的本质是内部质点(原子、离子、分子)间的结合力,为了使材料实际强度提高到理论强度的数值,长期以来进行了大量研究。从对材料的形变及断裂的分析可知,在晶体结构既定的情况下,控制强度的主要因素有三个,即弹性模量E ,断裂功和裂纹尺寸 。其中E 是非结构敏感的, 与微观结构有关,但对单相材料,微观结构对强度的影响不大,唯一可以控制的是材料中的微裂纹,可以把微裂纹理解为各种缺陷的总和。

表面残余压应力增韧:陶瓷材料可以通过引入残余压应力达到增强韧化的目的。控制含弥散四方 颗粒的陶瓷在表层发生四方相向单斜相相变,引起表面体积膨胀而获得表面残余压应力。由于陶瓷断裂往往起始于表面裂纹,表面残余压应力有利于阻止表面裂纹的扩展,从而起到了增强增韧的作用。

一种提高陶瓷/金属钎焊界面焊后强度、抗震抗力的方法。在陶瓷与金属的焊接界面之间加入一层金属Mo 网,通过对钎料的网状分割作用,使得钎料在结合界面上的大尺寸凝固收缩,变成了许多小熔区的独立凝固收缩,在相邻小网孔之间产生了反向应力互消的作用,从而使得整个结合面上的残余应力大幅度降低,通过对两种不同的钎料的实验,加金属Mo 网后,其焊后强度均提高了50%以上,经700℃抗震处理(淬水),剩余强度也分别提高180%和130%。

六、提高陶瓷断裂韧性的案例

相变增韧:利用多晶多相陶瓷中某些相成分在不同温度的相变,从而增韧的效果,统称为相变增韧。例如,利用ZrO2的马氏体相变来改善陶瓷材料的力学性

能,是目前引人注目的研究领域。研究了多种?的相变增韧,由四方相转变成单斜相,体积增大3%~5%,如部分稳定ZrO2(psz),四方多晶ZrO2陶瓷(TZP), ZrO2增韧

Al2O3陶瓷(ZTA), ZrO2增韧莫来石陶瓷(ZTM), ZrO2增韧尖晶石陶瓷ZrO2,增韧钛酸铝陶瓷ZrO2,增韧Si3N4陶瓷,增韧SiC以及增韧SiAION等。其中PSZ陶瓷较为成熟,TZP,ZTA,ZTM研究得也较多,PSZ,TZP,ZTA等的新裂韧性Kic已达1/2

,有的高达1/2

11~15MPa m

,但温度升高时,相变增韧失效。当部分稳定

20MPa m

ZrO2陶瓷烧结致密后,四方相ZrO2颗粒弥散分布于其他陶瓷基体中(包括ZrO2本身),冷却时亚稳四方相颗粒受到基体的抑制而处于压应力状态,这时基体沿颗

粒连线方向也处于压应力状态。材料在外力作用下所产生的裂纹尖端附近由于应力集中的作用,存在张应力场,从而减轻了对四方相颗粒的束缚,在应力的诱发作

用下会发生向单斜相的转变并发生体积膨胀,相变和体积膨胀的过程除消耗能量外,还将在主裂纹作用区产生压应力,二者均阻止裂纹的扩展,只有增加外力做功

才能使裂纹继续扩展,于是材料强度和新裂韧性大幅度提高。因此,这种微结构会产生三种不同的增韧机理。在氧化锆中具有亚稳态四方相的盘状沉淀的微粒,如下图所示。首先,随着裂纹发展导致的应力增加。会使四方结构的沉淀相通过马氏体相变转变为单斜结构,这一相变吸收了能量并导致体积膨胀产生张应力。这种微区的形变在裂纹附近尤为明显。其次,相变的粒子周围的应力场会吸收额外的能量,并形成许多微裂纹。这些微结构的变化有效地降低了裂纹尖端附近的有效应力强度。第三,由于沉淀颗粒对裂纹的阻滞作用和局域残余应力场的效应,会引起裂纹的偏转。裂纹偏转又引起裂纹的表面积和有效表面能增加,从而增加材料的韧性。上述的情况同样适甩于粒子和短纤维强化的复合材料中。

(a) (b)

(a)明亮的扁平椭圆形区域是立方结构的氧化铝基底中的四方结构氧化锆;

(b)形变区在临界裂纹的一个薄层内,明亮的部分是变形单余氧化锆

相变增韧氧化锆

利用多晶多相陶瓷中有些相在不同温度的相变实现增韧的效果,统称为相变增韧。例如ZrO2相变增韧。ZrO2相变增韧通过承载时应力诱发四方相至单斜相的导氏相变产生的体积膨胀效应和形状效应吸收大量能量,是断裂韧性得以改

善。

参考资料

1、《无机非金属材料性能》贾德昌、宋桂明等编著。科学出版社

2、《材料物理性能》陈文、吴建青、许启明主编。武汉理工大学出版社

3、《材料物理性能》郑翼、梁辉、马卫兵、许鑫华、刘晓菲编著。天津大学出版社

4、《材料物理性能》田莳主编。北京航空航天大学出版社

5、《材料物理性能》关振铎、张中太、焦金生编著。清华大学出版社

无机材料物理性能习题解答

这有答案,大家尽量出有答案的题材料物理性能 习题与解答 吴其胜 盐城工学院材料工程学院 2007,3

目录 1 材料的力学性能 (2) 2 材料的热学性能 (12) 3 材料的光学性能 (17) 4 材料的电导性能 (20) 5 材料的磁学性能 (29) 6 材料的功能转换性能 (37)

1材料的力学性能 1-1一圆杆的直径为2.5 mm 、长度为25cm 并受到4500N 的轴向拉力,若直径拉细至 2.4mm ,且拉伸变形后圆杆的体积不变,求在此拉力下的真应力、真应变、名义应力和名义应变,并比较讨论这些计算结果。 解:根据题意可得下表 由计算结果可知:真应力大于名义应力,真应变小于名义应变。 1-2一试样长40cm,宽10cm,厚1cm ,受到应力为1000N 拉力,其杨氏模量为3.5×109 N/m 2,能伸长多少厘米? 解: 拉伸前后圆杆相关参数表 ) (0114.010 5.310101401000940000cm E A l F l E l l =?????=??= ?=?=?-σ ε0816.04.25 .2ln ln ln 2 2 001====A A l l T ε真应变) (91710 909.44500 60MPa A F =?==-σ名义应力0851 .0100=-=?=A A l l ε名义应变) (99510 524.44500 6 MPa A F T =?= = -σ真应力

1-3一材料在室温时的杨氏模量为3.5×108 N/m 2,泊松比为0.35,计算其剪切模量和体积模量。 解:根据 可知: 1-4试证明应力-应变曲线下的面积正比于拉伸试样所做的功。 证: 1-5一陶瓷含体积百分比为95%的Al 2O 3 (E = 380 GPa)和5%的玻璃相(E = 84 GPa),试计算其上限和下限弹性模量。若该陶瓷含有5 %的气孔,再估算其上限和下限弹性模量。 解:令E 1=380GPa,E 2=84GPa,V 1=0.95,V 2=0.05。则有 当该陶瓷含有5%的气孔时,将P=0.05代入经验计算公式E=E 0(1-1.9P+0.9P 2)可得,其上、下限弹性模量分别变为331.3 GPa 和293.1 GPa 。 1-6试分别画出应力松弛和应变蠕变与时间的关系示意图,并算出t = 0,t = ∞ 和t = τ时的纵坐标表达式。 解:Maxwell 模型可以较好地模拟应力松弛过程: V oigt 模型可以较好地模拟应变蠕变过程: )21(3)1(2μμ-=+=B G E ) (130)(103.1)35.01(210 5.3) 1(28 8 MPa Pa E G ≈?=+?= += μ剪切模量) (390)(109.3) 7.01(310 5.3) 21(38 8 MPa Pa E B ≈?=-?= -=μ体积模量. ,. ,112 1 2 1 2 1 2 1 2 1 2 1 S W VS d V ld A Fdl W W S W V Fdl V l dl A F d S l l l l l l ∝=== = ∝= = = =??? ? ? ?亦即做功或者:亦即面积εε εε εε εσεσεσ) (2.36505.08495.03802211GPa V E V E E H =?+?=+=上限弹性模量 ) (1.323)84 05.038095.0()(11 2211GPa E V E V E L =+=+=--下限弹性模量 ). 1()()(0)0() 1)(()1()(1 //0 ----= = ∞=-∞=-= e e e E t t t στεσεεεσετ τ ;;则有:其蠕变曲线方程为:. /)0()(;0)();0()0((0)e (t)-t/e στσσσσσστ ==∞==则有::其应力松弛曲线方程为

材料力学性能复习总结

绪论 弹性:指材料在外力作用下保持与恢复固有形状与尺寸得能力。 塑性:材料在外力作用下发生不可逆得永久变形得能力。 刚度:材料在受力时抵抗弹性变形得能力。 强度:材料对变形与断裂得抗力。 韧性:指材料在断裂前吸收塑性变形与断裂功得能力。 硬度:材料得软硬程度。 耐磨性:材料抵抗磨损得能力。 寿命:指材料在外力得长期或重复作用下抵抗损伤与失效得能。 材料得力学性能得取决因素:内因——化学成分、组织结构、残余应力、表面与内部得缺陷等;外因——载荷得性质、应力状态、工作温度、环境介质等条件得变化。 第一章材料在单向静拉伸载荷下得力学性能 1、1 拉伸力—伸长曲线与应力—应变曲线 应力—应变曲线 退火低碳钢在拉伸力作用下得力学行为可分为弹性变形、不均匀屈服塑性变形、均匀塑性变形与不均匀集中塑性变形与断裂几个阶段。 弹性变形阶段:曲线得起始部分,图中得oa段。 多数情况下呈直线形式,符合虎克定律。 屈服阶段:超出弹性变形范围之后,有得材料在 塑性变形初期产生明显得塑性流动。此时,在外力 不增加或增加很小或略有降低得情况下,变形继续产 生,拉伸图上出现平台或呈锯齿状,如图中得ab段。 均匀塑性变形阶段:屈服后,欲继续变形,必须 不断增加载荷,此阶段得变形就是均匀得,直到曲 退火低碳钢应力—应变曲线 线达到最高点,均匀变形结束,如图中得bc段。 不均匀塑性变形阶段:从试样承受得最大应力点开始直到断裂点为止,如图中得cd段。在此阶段,随变形增大,载荷不断下降,产生大量不均匀变形,且集中在颈缩处,最后载荷达到断裂载荷时,试样断裂。 弹性模量E:应力—应变曲线与横轴夹角得大小表示材料对弹性变形得抗力,用弹性模量E表

材料结构与性能历年真题

材料结构与性能历年真 题 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

2009年试题 1.一外受张应力载荷力500MPa的无机材料薄板(长15cm,宽10cm,厚,其 中心部位有一裂纹(C=20μm)。该材料的弹性模量为300GPa,(1Pa=1N/m2)断裂能为15J/m2(1J=1Nm)。 a)计算该裂纹尖端应力强度因子K I (Y=) b)判断该材料是否安全 ,可知,即材料的裂纹尖端应力强度应子超过了材料的临界断裂应子,则材料不安全。 2.测定陶瓷材料的断裂韧性常用的方法有几种并说明它们的优缺点。 答: 方法优点缺点 单边切口梁法(SENB)简单、快捷①测试精度受切口宽度的影响,且过分要求窄的切口;②切口容易钝化而变宽,比较适合粗晶陶瓷,而对细晶体陶瓷测试值会偏大。 Vickers压痕弯曲梁法 (SEPB)测试精度高,结果较准 确,即比较接近真实值 预制裂纹的成功率低;控制裂纹的深度尺 寸较困难。 直接压痕法(IM)①无需特别制样;②可 利用很小的样品;③测 定H V的同时获得K IC, 简单易行。 ①试样表面要求高,无划痕和缺陷;②由 于压痕周围应力应变场较复杂,没有获得 断裂力学的精确解;③随材料性质不同会 产生较大误差;④四角裂纹长度由于压痕 周围残余应力的作用会发生变化;产生压 痕裂纹后若放置不同时间,裂纹长度也会 发生变化,影响测试精度。

3.写出断裂强度和断裂韧性的定义,二者的区别和联系。 答: 断裂强度δr断裂韧性K IC 定义材料单位截面承受应力而不发生断裂的能力材料抵抗裂纹失稳扩展或断裂能力 联系①都表征材料抵抗外力作用的能力;②都受到E、的影响,提高E、既可提高断裂强度,也可提高断裂韧性;③在一定的裂纹尺寸下,提高K IC也会提高δr,即增韧的同时也会增强。 区别除了与材料本身的性质有关外,还与 裂纹尺寸、形状、分布及缺陷等有关 是材料的固有属性,是材料的结构和显微 结构的函数,与外力、裂纹尺寸等无关 4.写出无机材料的增韧原理。 答:增韧原理:一是在裂纹扩展过程中使之产生有其他能量消耗机构,从而使外加负载的一部分或大部分能量消耗掉,而不致集中于裂纹扩展上;二是在陶瓷体中设置能阻碍裂纹扩展的物质场合,使裂纹不能再进一步扩展。 根据断裂力学,抗弯强度,断裂韧性,可以看出要提高陶瓷材料强度,必须提高断裂表面能和弹性模量以及减小裂纹尺寸;要提高断裂韧性,必须提高断裂表面能和弹性模量。 5.试比较以下材料的热导率,并按大小顺序排列,说明理由。氮化硅(Si3N4)陶 瓷、氧化镁(MgO)陶瓷、镁橄榄石(2MgO·SiO2)、纯银(Ag)、镍铬合金 (NiCr)。 答:热导率大小顺序:纯银>镍铬合金>氮化硅>氧化镁>镁橄榄石 理由:1)一般金属的热导率比非金属的热导率高,这是由于金属中存在大量的自由电子,电子质量轻,平均自由程很大,故可以快速的实现热传导;而非金属主要是通过声子来进行热传导的,声子的平均自由程要比自由电子的小很多,自由电子的热传导速率是声子的20倍,故纯银和镍铬合金的热导率高。2)单质的热导率要比混合物质的热导率高,故纯银大于镍铬合金。3)固溶体的热导率要比纯物质的小,故镁橄榄石的热导率小于氮化硅和氧化镁。4)共价键强的晶体热导率高,故氮化硅的热导率强于氧化镁。 6.对于组成范围为0-50%K2O,100-50%SiO2的玻璃,推断其膨胀系数的变 化,试通过玻璃的结构来解释所得的结果。

新型无机非金属材料有哪些

新型无机非金属材料有哪些 新材料全球交易网 新型无机非金属材料有哪些?“新材料全球交易网”收集整理最全新型无机非金属材料知识点。更多增值服务,请关注“新材料全球交易网”。 一、重要概念 1、新型无机非金属材料 (1)是除有机高分子材料和金属材料以外的所有材料的统称。 (2)包括以某些元素的氧化物、碳化物、氮化物、卤素化合物、硼化物以及硅酸盐、铝酸盐、磷酸盐、硼酸盐等物质组成的材料。 2、陶瓷 (1)从制备上开看,陶瓷是由粉状原料成型后在高温作用下硬化而形成的制品。 (2)从组分上来看,陶瓷是多晶、多相(晶相、玻璃相和气相)的聚集体。 3、玻璃 (1)狭义:熔融物在冷却过程中不发生结晶的无机非金属物质。 (2)一般:若某种材料显示出典型的经典玻璃所具有的各种特征性质,则不管其组成如何都可称为玻璃(具有玻璃转变温度 Tg)。 玻璃转变温度:玻璃态物质在玻璃态和高弹态之间相互转化的温度。 具有Tg的非晶态新型无机非金属材料都是玻璃。 4、水泥 凡细磨成粉末状,加入适量水后,可成为塑性浆体,能在空气或水中硬化,并能将砂、石、钢筋等材料牢固地胶结在一起的水硬性胶凝材料,通称为水泥。 5、耐火材料 耐火度不低于1580℃的新型无机非金属材料 6、复合材料 由两种或两种以上不同性质的材料,通过物理或化学的方法,在宏观(微观)上组成具有新性能的材料。 通过复合效应获得原组分所不具备的性能。可以通过材料设计使各组分的性能互相补充并彼此关联,从而获得更优秀的性能。 二、陶瓷知识点 1、陶瓷制备的工艺步骤 原材料的制备→坯料的成型→坯料的干燥→制品的烧成或烧结 2、陶瓷的天然原料 (1)可塑性原料:黏土质陶瓷成瓷的基础(高岭石、伊利石、蒙脱石) (2)弱塑性原料:叶蜡石、滑石 (3)非塑性原料:减塑剂——石英;助熔剂——长石 3、坯料的成型的目的

材料力学性能重点总结

名词解释: 1加工硬化:试样发生均匀塑性变形,欲继续变形则必须不断增加载荷,这种随着随性变形的增大形变抗力不断增大的现象叫加工硬化。 2弹性比功:表示金属材料吸收弹性变形功的能力。 3滞弹性:在弹性范围内快速加载或卸载后,随着时间延长产生附加弹性应变的现象。 4包申格效应:金属材料通过预先加载产生少量塑性变形(残余应变小于1%-4%),而后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。 5塑性:金属材料断裂前发生塑性变形的能力。常见塑性变形方式:滑移和孪生 6弹性极限:以规定某一少量的残留变形为标准,对应此残留变形的应力。 7比例极限:应力与应变保持正比关系的应力最高限。 8屈服强度:以规定发生一定的残留变形为标准,如通常以0.2%的残留变形的应力作为屈 服强度。 9韧性断裂是材料断裂前发生产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的断裂 过程,在裂纹扩展过程中不断的消耗能量。韧性断裂的断裂面一般平行于最大切应力并于主 应力成45度角。 10脆性断裂是突然发生的断裂,断裂前基本上不发生塑形变形,没有明显征兆,危害性很大。断裂面一般与主应力垂直,端口平齐而光亮,常呈放射状或结晶状。 11剪切断裂是金属材料在切应力作用下,沿着滑移面分离而造成的断裂,又分滑断和微孔聚集性断裂。 12解理断裂:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,总是脆性断裂。 13缺口效应:由于缺口的存在,在静载荷作用下,缺口截面上的应力状态发生变化,产生所谓缺口效应“ ①缺口引起应力集中,并改变了缺口应力状态,使得缺口试样或机件中所受的应力由原来的单向应力状态改变为两向或者三向应力状态。 ②缺口使得材料的强度提高,塑性降低,增大材料产生脆断的倾向。 8缺口敏感度:有缺口强度的抗拉强度Z bm与等截面尺寸光滑试样的抗拉强度Zb的比值. NSR=Z bn / Z S NSR越大缺口敏感度越小 9冲击韧性:Ak除以冲击式样缺口底部截面积所得之商 10冲击吸收功:式样变形和断裂所消耗的功,称为冲击吸收功以Ak表示,单位J 11低温脆性:一些具有体心立方晶格或某些秘排立方晶格的金属,当温度降低到、某一温度时,会由韧性状态变为脆性状态,冲击吸收功明显下降,断裂机理由微孔聚集变为穿晶解 理,断口特征由纤维状变为结晶状,这种现象称为低温脆性 12脆性转变温度:当温度降低时,材料屈服强度急剧增加,而塑形和冲击吸收功急剧减小。材料屈服强度急剧升高的温度,或断后延伸率,断后收缩率,冲击吸收功急剧减小的温度就是韧脆转变温度tk,tk是一个温度区间 16应力场强度因子KI :表示应力场的强弱程度,对于某一确定的点的大小直接影响应力场的大小,KI越大,则应力场各应力分量也越大 17应力腐蚀:金属在拉应力和特定的化学介质共同作用下,经过一段时间后产生的低应力脆断现象第一章 3?金属的弹性模量主要取决于什么因素?为什么说它是一个对组织不敏感的力学性能指 标? 答:由于弹性变形时原子间距在外力作用下可逆变化的结果,应力与应变关系实际上是原子

《无机材料物理性能》课后习题答案

《材料物理性能》 第一章材料的力学性能 1-1一圆杆的直径为2.5 mm 、长度为25cm 并受到4500N 的轴向拉力,若直径拉细至2.4mm ,且拉伸变形后圆杆的体积不变,求在此拉力下的真应力、真应变、名义应力和名义应变,并比较讨论这些计算结果。 解: 由计算结果可知:真应力大于名义应力,真应变小于名义应变。 1-5一陶瓷含体积百分比为95%的Al 2O 3 (E = 380 GPa)和5%的玻璃相(E = 84 GPa),试计算其上限和下限弹性模量。若该陶瓷含有5 %的气孔,再估算其上限和下限弹性模量。 解:令E 1=380GPa,E 2=84GPa,V 1=0.95,V 2=0.05。则有 当该陶瓷含有5%的气孔时,将P=0.05代入经验计算公式E=E 0(1-1.9P+0.9P 2) 可得,其上、下限弹性模量分别变为331.3 GPa 和293.1 GPa 。 0816 .04.25.2ln ln ln 22 001====A A l l T ε真应变) (91710909.44500 60MPa A F =?==-σ名义应力0851 .010 0=-=?=A A l l ε名义应变) (99510524.445006MPa A F T =?== -σ真应力) (2.36505.08495.03802211GPa V E V E E H =?+?=+=上限弹性模量) (1.323)84 05.038095.0()(1 12211GPa E V E V E L =+=+=--下限弹性模量

1-11一圆柱形Al 2O 3晶体受轴向拉力F ,若其临界抗剪强度τf 为135 MPa,求沿图中所示之方向的滑移系统产生滑移时需要的最小拉力值,并求滑移面的法向应力。 解: 1-6试分别画出应力松弛和应变蠕变与时间的关系示意图,并算出t = 0,t = ∞ 和 t = τ时的纵坐标表达式。 解:Maxwell 模型可以较好地模拟应力松弛过程: V oigt 模型可以较好地模拟应变蠕变过程: 以上两种模型所描述的是最简单的情况,事实上由于材料力学性能的复杂性,我们会用到用多个弹簧和多个黏壶通过串并联组合而成的复杂模型。如采用四元件模型来表示线性高聚物的蠕变过程等。 ). 1()()(0)0() 1)(()1()(10 //0 ----= = ∞=-∞=-=e E E e e E t t t στεσεεεσεττ;;则有:其蠕变曲线方程为:. /)0()(;0)();0()0((0)e (t)-t/e στσσσσσστ==∞==则有::其应力松弛曲线方程为0 1 2 3 4 5 0.0 0.20.40.60.81.0 σ(t )/σ(0) t/τ 应力松弛曲线 012345 0.0 0.2 0.4 0.6 0.8 1.0 ε (t )/ε(∞) t/τ 应变蠕变曲线 )(112)(1012.160cos /0015.060cos 1017.3)(1017.360cos 53cos 0015.060cos 0015.053cos 82 332min 2MPa Pa N F F f =?=? ? ??=?=? ???=?? ?? = πσπ τπτ:此拉力下的法向应力为为: 系统的剪切强度可表示由题意得图示方向滑移

材料力学性能-考前复习总结(前三章)

金属材料的力学性能指标是表示其在力或能量载荷作用下(环境)变形和断裂的某些力学参量的临界值或规定值。 材料的安全性指标:韧脆转变温度Tk;延伸率;断面收缩率;冲击功Ak;缺口敏感性NSR 材料常规力学性能的五大指标:屈服强度;抗拉强度;延伸率;断面收缩率;冲击功Ak;硬度;断裂韧性 第一章单向静拉伸力学性能 应力和应变:条件应力条件应变 = 真应力真应变 应力应变状态:可在受力机件任一点选一六面体,有九组应力,其中六个独立分量。其中必有一主平面,切应力为零,只有主应力,且 ,满足胡克定律。 应力软性系数:最大切应力与最大正应力的相对大小。 1 弹变1)弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。ae=1/2σeεe=σe2/2E。取决于E和弹性极限,弹簧用于减震和储能驱动,应有较高的弹性比功和良好弹性。需通过合金强化及组织控制提高弹性极限。 2)弹性不完整性:纯弹性体的弹性变形只与载荷大小有关,而与加载方向及加载时间无关,但对实际金属而言,与这些因素均有关系。 ①滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。与材料成分、组织及试验条件有关,组织约不均匀,温度升高,切应力越大,滞弹性越明显。金属中点缺陷的移动,长时间回火消除。 弹性滞后环:由于实际金属有滞弹性,因此在弹性区内单向快速加载、卸载时,加载线与卸载线不重合,形成一封闭回路。吸收变形功 循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力(塑性区加载,塑性滞后环),也叫内耗(弹性区加载),或消震性。 ②包申格效应: 定义:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。(反向加载时弹性极限或屈服强度降低的现象。特别是弹性极限在反向加载时几乎下降到零,这说明在反向加载时塑性变形立即开始了) 解释:与位错运动所受阻力有关,在某滑移面上运动位错遇位错林而使其弯曲,密度增大,形成位错缠结或胞状组织,相对稳定。卸载后同向拉伸,位错线不能显著运动。但反向载荷使得位错做反向运动,阻碍

材料力学性能总结材料

材料力学性能:材料在各种外力作用下抵抗变形和断裂的能力。 屈服现象:外力不增加,试样仍然继续伸长,或外力增加到一定数值时突然下降,随后在外力不增加或上下波动情况下,试样继续伸长变形。 屈服过程:在上屈服点,吕德斯带形成;在下屈服点,吕德斯带扩展;当吕德斯带扫过整个试样时,屈服伸长结束。 屈服变形机制:位错运动与增殖的结果。 屈服强度:开始产生塑性变形的最小应力。 屈服判据: 屈雷斯加最大切应力理论:在复杂应力状态下,当最大切应力达到或超过相同金属材料的拉伸屈服强度时产生屈服。 米赛斯畸变能判据:在复杂应力状态下,当比畸变能等于或超过相同金属材料在单向拉伸屈服时的比畸变能时,将产生屈服。 消除办法: 加入少量能夺取固溶体合金中溶质原子的物质,使之形成稳定化合物的元素; 通过预变形,使柯氏气团被破坏。 影响因素: 1.因: a)金属本性及晶格类型:金属本性及晶格类型不同,位错运动所受的阻力不同。 b)晶粒大小和亚结构:减小晶粒尺寸将使屈服强度提高。 c)溶质元素:固溶强化。 d)第二相 2.外因:温度(-);应变速率(+);应力状态。 第二相强化(沉淀强化+弥散强化):通过第二相阻碍位错运动实现的强化。

强化效果: 在第二相体积比相同的情况下,第二相质点尺寸越小,强度越高,强化效果越好; 在第二相体积比相同的情况下,长形质点的强化效果比球形质点的强化效果好; 第二相数量越多,强化效果越好。 细晶强化:通过减小晶粒尺寸增加位错运动障碍的数目(阻力大),减小晶粒位错塞积群的长度(应力小),从而使屈服强度提高的方法。 同时提高塑性及韧性的机理: 晶粒越细,变形分散在更多的晶粒进行,变形较均匀,且每个晶粒中塞积的位错少,因应力集中引起的开裂机会较少,有可能在断裂之前承受较大的变形量,即表现出较高的塑性。 细晶粒金属中,裂纹不易萌生(应力集中少),也不易传播(晶界曲折多),因而在断裂过程中吸收了更多能量,表现出较高的韧性。 固溶强化:在纯金属中加入溶质原子形成固溶合金,将显著提高屈服强度。 原因:溶质原子与位错的弹性相互作用,使溶质原子扩散到位错周围,形成柯氏气团;柯氏气团钉扎位错,提高位错运动阻力。 强化效果:间隙固溶体的强化效果大于置换固溶体;溶质和溶剂原子尺寸差越大,强化效果越好;溶质浓度越大,强化效果越好。 应变硬化(形变强化):金属材料塑性变形过程中所需要的外力不断增大,表明金属材料有一种阻止继续塑性变形的能力。 原因:塑性变形过程中,位错不断增殖,运动受阻所致。 断裂韧度:临界或失稳状态下的应力场强度因子的大小。 塑性变形:作用在物体上的外力取消后,物体的变形不完全恢复而产生的永久变形。 1.单晶体:滑移+孪生;

无机材料物理性能重点

一·辨析 1. 铁电体与铁磁体的定义和异同 答:铁电体是指在一定温度范围内具有自发极化,并且自发极化方向可随外加电场作可逆转动的晶体。铁磁体是指具有铁磁性的物质。 2. 本征(固有离子)电导与杂质离子电导 答:本征电导是源于晶体点阵的基本离子的运动。这种离子自身随着热振动离开晶体形成热缺陷。这种热缺陷无论是离子或者空位都是带电的,因而都可作为离子电导载流子。显然固有电导在高温下特别显著;第二类是由固定较弱的离子的运动造成的,主要是杂质离子。杂质离子是弱联系离子,所以在较低温度下杂质电导表现显著。 相同点:二者的离子迁移率 和电导率 表达形式相同 不同点:a.本征离子电导载流子浓度与温度有关,而杂质离子电导载流子浓度与温度无关,仅决定于杂质的含量 B.由于杂质载流子的生成不需要提供额外的活化能,即他的活化能比在正常晶格上的活化能要低得多,因此其系数B 比本征电导低一些 C.低温部分有杂质电导决定,高温部分由本征电导决定,杂质越多,转折点越高 3. 离子电导和电子电导 答:携带电荷进行定向输送形成电流的带点质点称为载流子。载流子为离子或离子空位的为离子电导;载流子是电子或空穴的为电子电导 不同点:a.离子电导是载流子接力式移动,电子电导是载流子直达式移动 B.离子电导是一个电解过程,符合法拉第电解定律,会发生氧化还原反应,时间长了会对介质内部造成大量缺陷及破坏;而电子电导不会对材料造成破坏 C.离子电导产生很困难,但若有热缺陷则会容易很多;一般材料不会产生电子电导,一般通过掺杂形式形成能量上的自由电子 D.电子电导的电导率远大于离子电导(原因:1.当温度升高时,晶体内的离子振动加剧,对电子产生散射,自由电子或电子空穴的数量大大增加,总的效应还是使电子电导非线性地大大增加;2.在弱电场作用下,电子电导和温度成指数式关系,因此电导率的对数也和温度的倒数成直线关系;3.在强电场作用下,晶体的电子电导率与电场强度之间不符合欧姆定律,而是随场强增大,电导率有指数式增加 4.铁电体与反铁电体 答:铁电体是指在一定温度范围内具有自发极化,并且自发极化方向可随外加电场作可逆转动的晶体;反铁电体是指晶体中相邻的离子沿反平行方向发生自发极化,宏观上自发极化为零且无电滞回线的材料 不同点:1.在反铁电体的晶格中,离子有自发极化,以偶极子形式存在,偶极子成对的按反平行方向排列,这两部分偶极子的偶极矩大小相等,方向相反;而在铁电体的晶格中,偶极子的极性是相同的,为平行排列 2.反铁电体具有双电滞回线,铁电体具有电滞回线 3.当外电场降至零时,反铁电体无剩余极化,铁电体存在剩余计 铁电体 铁磁体 自发极化 自发磁化 不含铁 含铁 电畴 磁畴 电滞回线 磁滞回线

无机非金属材料总结(完整版)

第一章 1. 粘土的定义:是一种颜色多样,细分散的多种含水铝硅酸盐矿物的混合体。 粘土是自然界中硅酸盐岩石(主要是长石)经过长期风化作用而形成的一种疏松的或呈胶状致密的土状或致密块状矿物,是多种微细矿物和杂质的混合体。 2. 粘土的成因:各种富含硅酸盐矿物的岩石经风化,水解,热液蚀变等作用可变为粘土。一次粘土(原生粘土)风化残积型:母岩风化后残留在原地所形成的粘土。(深层的岩浆岩(花岗岩、伟晶岩、长石岩)在原产地风化后即残留在原地,多成为优质高岭土的矿床,一般称为一次粘土)。 二次粘土(次生粘土)沉积型:风化了的粘土矿物借雨水或风力的迁移作用搬离母岩后,在低洼地方沉积而成的矿床,成为二次粘土。 一次粘土与二次粘土的区别: 分类化学组成耐火度成型性 一次粘土较纯较高塑性低 二次粘土杂质含量高较低塑性高 3. 高岭土、蒙脱土的结构特点: 高岭土晶体结构式:Al4[Si4O10](OH)8,1:1型层状结构硅酸盐,Si-O四面体层和Al-(O,OH)八面体层通过共用氧原子联系成双层结构,构成结构单元层。层间以氢键相连,结合力较小,所以晶体解理完全并缺乏膨胀性。 蒙脱土(叶蜡石)是2:1型层状结构,两端[SiO4]四面体,中间夹一个[AlO6]八面体,构成单元层。单元层间靠氧相连,结合力较小,水分子及其它极性分子易进入晶层中间形成层间水,层间水的数量是可变的。 4. 粘土的工艺特性:可塑性、结合性、离子交换性、触变性、收缩、烧结性。 1)可塑性:粘土—水系统形成泥团,在外力作用下泥团发生变形,形变过程中坯泥不开裂, 外力解除后,能维持形变,不因自重和振动再发生形变,这种现象称为可塑性。 表示方法:可塑性指数、可塑性指标 可塑性指数(w):W=W2-W1W降低——泥浆触变厚化度大,渗水性强,便于压滤榨泥。 W1塑限:粘土或(坯料)由粉末状态进入塑性状态时的含水量。 W2液限:粘土或(坯料)由粉末状态进入流动状态时的含水量。 塑限反映粘土被水润湿后,形成水化膜,使粘土颗粒能相对滑动而出现可塑性的含水量。 塑限高,表明粘土颗粒的水化膜厚,工作水分高,但干燥收缩也大。 液限反映粘土颗粒与水分子亲和力的大小。W2上升表明颗粒很细,在水中分散度大,不易干燥,湿坯强度低。 可塑性指标:在工作水分下,粘土(或坯料)受外力作用最初出现裂纹时应力与应变的乘积,也可以以这时的相应含水率表示。 反应粘土的成型性能:应力大,应变小——挤坯成型;应力小,应变大——旋坯成型根据粘土可塑指数或可塑指标分类: i.强塑性粘土:指数>15或指标>3.6 ii.中塑性粘土:指数7~15,指标2.5~3.6 iii.弱塑性粘土:指数l~7,指标<2.5 iv.非塑性粘土:指数<1。 2)结合性:粘土的结合性是指粘土能够结合非塑性原料而形成良好的可塑泥团,并且有一

第三章 材料的磁学性能

一,一,基本概念 1. 1.磁畴:在未加磁场时铁磁金属内部已经磁化到饱和状态的小区域。 2. 2.磁导率:磁导率是磁性材料最重要的物理量之一,表示磁性材料传导和 通过磁力线的能力,用μ表示,其中μ=B/H.单位为亨利/米(H·m-1). 3. 3.自发磁化:在未加磁场时铁磁金属内部的自旋磁矩已经自发地排向了同 一方向的现象. 4. 4.磁滞损失:磁滞回线所包围的面积相当于磁化一周所产生的能量损耗。 5. 5.磁晶各向异性: 6. 6.退磁场:非闭合回路磁体磁化后,磁体内部产生一个与磁化方向相反的磁场。 第三章材料的磁学性能 随着近代科学技术的发展,金属和合金磁性材料,由于它的电阻率低、损耗大,已不能满足应用的需要,尤其是高频范围。 磁性无机材料除了有高电阻、低损耗的优点以外,还具有各种不同的磁学性能,因此它们在无线电电子学、自动控制、电子计算机、信息存储、激光调制等方面,都有广泛的应用。磁性无机材料一般是含铁及其它元素的复合氧化物,通常称为铁氧体(ferrite)。它的电阻率为10~106Ω·m,属于半导体范畴。目前,铁氧体已发展成为一门独立的学科。 本章介绍磁性材料的一般磁性能,着重讨论铁氧体材料的性能与应用。 7.1磁矩和磁化强度 7.1.1磁矩 (1)定义 在磁场的作用下,物质中形成了成对的N、S磁极,称这种现象为磁化。与讨论电场时的电荷相对应,引入磁量的概念,并把磁量叫做磁极强度或磁荷。将一对等量异号的磁极相距很小的距离,把这样的体系叫做磁偶极子。 在外磁场的影响下,磁偶极子沿磁场方向排列。为达到与磁场平行,该磁矩在力矩 T=Lq m Hsin (7.1) 的作用下,发生旋转。式中的系数Lq m定义为磁矩M(Wb·m)。 磁矩这一物理量是磁相互作用的基本条件,是物质中所有磁现象的根源。磁矩的概念可用于说明原子、分子等微观世界产生磁性的原因。 (2)原子磁矩 物质是原子核和电子的集合体,要理解物质的磁性起源,就要考虑原子具有的磁矩。现在我们可以从以下三方面来分析原子中的磁矩。 ①电子轨道运动产生的磁矩 ②电子自旋产生的磁矩 ③原子核的磁矩 7.1.2磁化强度 磁化强度的物理意义是单位体积中的磁矩总和。设体积元△V内磁矩的矢量和为∑M,则磁化强度M为 (7.2) 式中M i的单位为Wb·m,V的单位为m3,因而磁化强度M的单位为Wb·m2,即与磁场强度H的单位一致。

无机材料物理性能_完美版

无机材料物理性能试卷 一.填空(1×20=20分) 1.CsCl结构中,Cs+与Cl-分别构成____格子。 2.影响黏度的因素有___、____、____. 3.影响蠕变的因素有温度、____、____、____. 4.在____、____的情况下,室温时绝缘体转化为半导体。 5.一般材料的____远大于____。 6.裂纹尖端出高度的____导致了较大的裂纹扩展力。 7.多组分玻璃中的介质损耗主要包括三个部分:____、________、____。 8.介电常数显著变化是在____处。 9.裂纹有三种扩展方式:____、____、____。 10.电子电导的特征是具有____。 二.判断正误。(2×10=20分) 1.正应力正负号规定是拉应力为负,压应力正。() 2.Al2O3结构简单,室温下易产生滑动。() 3.断裂表面能比自由表面能大。() 4.一般折射率小,结构紧密的电介质材料以电子松弛极化性为主。()5.金红石瓷是离子位移极化为主的电介质材料。() 6.自发磁化是铁磁物质的基本特征,是铁磁物质和顺磁物质的区别之处。 () 7.随着频率的升高,击穿电压也升高。() 8.磁滞回线可以说明晶体磁学各向异性。() 9.材料弹性模量越大越不易发生应变松弛。() 10.大多数陶瓷材料的强度和弹性模量都随气孔率的减小而增加。() 三.名词解释(4×4分=16分) 1.电解效应 2.热膨胀 3.塑性形变 4.磁畴 四.问答题(3×8分=24分) 1.简述晶体的结合类型和主要特征: 2.什么叫晶体的热缺陷?有几种类型?写出其浓度表达式?晶体中 离子电导分为哪几类? 3.无机材料的蠕变曲线分为哪几个阶段,分析各阶段的特点。

材料力学性能总结

材料力学性能:材料在各种外力作用下抵抗变形与断裂得能力。 屈服现象:外力不增加,试样仍然继续伸长,或外力增加到一定数值时突然下降,随后在外力不增加或上下波动情况下,试样继续伸长变形。 屈服过程:在上屈服点,吕德斯带形成;在下屈服点,吕德斯带扩展;当吕德斯带扫过整个试样时,屈服伸长结束。 屈服变形机制:位错运动与增殖得结果。 屈服强度:开始产生塑性变形得最小应力。 屈服判据: 屈雷斯加最大切应力理论:在复杂应力状态下,当最大切应力达到或超过相同金属材料得拉伸屈服强度时产生屈服。 米赛斯畸变能判据:在复杂应力状态下,当比畸变能等于或超过相同金属材料在单向拉伸屈服时得比畸变能时,将产生屈服。 消除办法: 加入少量能夺取固溶体合金中溶质原子得物质,使之形成稳定化合物得元素; 通过预变形,使柯氏气团被破坏。 影响因素: 1.内因: a)金属本性及晶格类型:金属本性及晶格类型不同,位错运动所受得阻力不同。 b)晶粒大小与亚结构:减小晶粒尺寸将使屈服强度提高。 c)溶质元素:固溶强化。 d)第二相 2.外因:温度(-);应变速率(+);应力状态。 第二相强化(沉淀强化+弥散强化):通过第二相阻碍位错运动实现得强化。 强化效果: 在第二相体积比相同得情况下,第二相质点尺寸越小,强度越高,强化效果越好; 在第二相体积比相同得情况下,长形质点得强化效果比球形质点得强化效果好; 第二相数量越多,强化效果越好。 细晶强化:通过减小晶粒尺寸增加位错运动障碍得数目(阻力大),减小晶粒内位错塞积群得长度(应力小),从而使屈服强度提高得方法。 同时提高塑性及韧性得机理: 晶粒越细,变形分散在更多得晶粒内进行,变形较均匀,且每个晶粒中塞积得位错少,因应力集中引起得开裂机会较少,有可能在断裂之前承受较大得变形量,即表现出较高得塑性。细晶粒金属中,裂纹不易萌生(应力集中少),也不易传播(晶界曲折多),因而在断裂过程中吸收了更多能量,表现出较高得韧性。 固溶强化:在纯金属中加入溶质原子形成固溶合金,将显著提高屈服强度。 原因:溶质原子与位错得弹性相互作用,使溶质原子扩散到位错周围,形成柯氏气团;柯氏气团钉扎位错,提高位错运动阻力。 强化效果:间隙固溶体得强化效果大于置换固溶体;溶质与溶剂原子尺寸差越大,强化效果越好;溶质浓度越大,强化效果越好。 应变硬化(形变强化):金属材料塑性变形过程中所需要得外力不断增大,表明金属材料有一种阻止继续塑性变形得能力。 原因:塑性变形过程中,位错不断增殖,运动受阻所致。 断裂韧度:临界或失稳状态下得应力场强度因子得大小。 塑性变形:作用在物体上得外力取消后,物体得变形不完全恢复而产生得永久变形。

无机材料物理性能期末复习题汇总

期末复习题参考答案 一、填空 1.一长30cm的圆杆,直径4mm,承受5000N的轴向拉力。如直径拉成3.8 mm,且体积保持不变,在此拉力下名义应力值为,名义应变值为。 2.克劳修斯—莫索蒂方程建立了宏观量介电常数与微观量极化率之间的关系。 3.固体材料的热膨胀本质是点阵结构中质点间平均距离随温度升高而增大。 4.格波间相互作用力愈强,也就是声子间碰撞几率愈大,相应的平均自由程愈小,热导率也就愈低。 5.电介质材料中的压电性、铁电性与热释电性是由于相应压电体、铁电体和热释电体都是不具有对称中心的晶体。 6.复介电常数由实部和虚部这两部分组成,实部与通常应用的介电常数一致,虚部表示了电介质中能量损耗的大小。 7.无机非金属材料中的载流子主要是电子和离子。 8.广义虎克定律适用于各向异性的非均匀材料。 ?(1-m)2x。9.设某一玻璃的光反射损失为m,如果连续透过x块平板玻璃,则透过部分应为 I 10.对于中心穿透裂纹的大而薄的板,其几何形状因子Y= 。 11.设电介质中带电质点的电荷量q,在电场作用下极化后,正电荷与负电荷的位移矢量为l,则此偶极矩为 ql 。 12.裂纹扩展的动力是物体内储存的弹性应变能的降低大于等于由于开裂形成两个新表面所需的表面能。 13.Griffith微裂纹理论认为,断裂并不是两部分晶体同时沿整个界面拉断,而是裂纹扩展的结果。14.考虑散热的影响,材料允许承受的最大温度差可用第二热应力因子表示。 15.当温度不太高时,固体材料中的热导形式主要是声子热导。 16.在应力分量的表示方法中,应力分量σ,τ的下标第一个字母表示方向,第二个字母表示应力作用的方向。 17.电滞回线的存在是判定晶体为铁电体的重要根据。 18.原子磁矩的来源是电子的轨道磁矩、自旋磁矩和原子核的磁矩。而物质的磁性主要由电子的自旋磁矩引起。 19. 按照格里菲斯微裂纹理论,材料的断裂强度不是取决于裂纹的数量,而是决定于裂纹的大小,即是由最危险的裂纹尺寸或临界裂纹尺寸决定材料的断裂强度。 20.复合体中热膨胀滞后现象产生的原因是由于不同相间或晶粒的不同方向上膨胀系数差别很大,产生很大的内应力,使坯体产生微裂纹。 21.晶体发生塑性变形的方式主要有滑移和孪生。 22.铁电体是具有自发极化且在外电场作用下具有电滞回线的晶体。 23.自发磁化的本质是电子间的静电交换相互作用。 二、名词解释 自发极化:极化并非由外电场所引起,而是由极性晶体内部结构特点所引起,使晶体中的每个晶胞内存在固有电偶极矩,这种极化机制为自发极化。 断裂能:是一种织构敏感参数,起着断裂过程的阻力作用,不仅取决于组分、结构,在很大程度上受到微观缺陷、显微结构的影响。包括热力学表面能、塑性形变能、微裂纹形成能、相变弹性 能等。 滞弹性:当应力作用于实际固体时,固体形变的产生与消除需要一定的时间,这种与时间有关的弹性称为滞弹性。 格波:处于格点上的原子的热振动可描述成类似于机械波传播的结果,这种波称为格波,格波的一个

济南大学无机非金属材料工艺性能与测试期末复习重点.doc

材料工艺性能与实验期末复习重点 1.火山灰反应:材料木身不只备水硬性,但是在碱性条件下,其水硬性能够被激发,发生 水化反应产生强度。 2.当硅酸盐水泥混凝土建筑工程遇到硫酸盐侵蚀的条件,应如何调整? 答:⑴减少熟料中的GA的含量; ⑵增加活性混合才掺量,减少水化产物中03(014)2的含量; ⑶增加水泥细度,提高水泥混凝土的致密度; ⑷使用抗硫酸盐水泥或硫铝酸盐水泥。 3.水泥的三个率值:石灰石饱和系数、硅率、铝率。 IM铝率乂称铁率,其数学表达式为:IM = Al2O3/Fe2O3铝率表示熟料中氧化铝与氧化铁含量的质量比,也表示熟料熔剂矿物中铝酸三钙与铁铝酸四钙的比例。 硅率表示熟料中氧化硅含量氧化铝、氧化铁之和的质量比。(表示熟料中硅酸盐矿物 与熔剂矿物的比例。)SM=———— ^2°3 + Fe2°3 K H =CaO-' 65Al:O r035Fe A石灰饱和系数KH是熟料中全部氧化硅生成硅酸钙 2.8S Z O2 (C3S + C25 )所需的氧化钙量与全部二氧化硅理论上全部生成硅酸三钙所需的氧化钙含量的比值。(即KH表熟料中二氧化硅被氧化钙饱和形成硅酸三钙的程度. 4.碳酸钙滴定值的测定意义及测定原理: (1)测定原理:水泥生料中所有的碳酸盐(包括碳酸钙、碳酸镁)均能与标准盐酸溶液作用,生成相应的盐与碳酸(又分解为(:02与1420),然后用NaOH标准溶液滴定过剩的盐酸, 根据消耗XaOH标准溶液的体积毫升数与浓度、计算生料中的碳酸钙的滴定值。 ⑵测定意义:①水泥生料的主耍成分是石灰石,提供所需的CaO量,以确保熟料中形成足够 的C3S;②控制生料中CaO含量,亦即控制KH;③控制生料成分的均匀性;④是对生料质量控 制的主要项目之一,可以很好地控制水泥的连续化生产。。 5.游离氧化钙:游离氧化钙是指熟料中没有以化合状态存在而是以游离状态存在的氧化钙,又称游离石灰(f-CaO)o 6.为什么过量的游离氧化钙会引起水泥安定性不良? 答:游离氧化钙水化很慢,在水泥浆体硬化后体积继续膨胀,造成硬化水泥局部膨胀应力。因而若游离氧化钙过量,会使水泥的强度下降,造成水泥的安定性不良。 7.为什么过量的游离三氧化硫会引起水泥的安定性不良? 答:水泥熟料在粉磨过程中,必须加入适量的石膏起到缓凝作用,石膏和C3A反应生成钙矶石,包裹在C3A表面,阻止了快速水化和闪凝,AFt (钙矾石)形成需要大量结晶水, 如果水泥中含有过量的S03,水化后会有该反应,在硬化后的水泥中产生针棒状的Aft 晶体, 造成水泥体积膨胀,从而造成水泥安定性不良。

工程材料力学性能总结

第一章、金属在单向静拉伸载荷下的力学性能 一、名词解释 ★弹性比功又称弹性比能、应变比能,表示金属材料吸收弹性变形功的功能。一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。 ★循环韧性:金属材料在交变载荷(震动)下吸收不可逆变形功的能力,称为金属的循环韧性,也叫金属的内耗。 ★包申格效应:金属材料经过预先加载产生多少塑性变形(残余应力为 1%~4%),卸载后再同向加载,规定残余伸长应力(弹性极限或屈服强度)增加;反向加载,规定残余伸长应力降低(特别是弹性极限在反向加载时几乎降低到零)的现象,称为包申格效应。 ★塑性:指金属材料断裂前发生塑性变形(不可逆永久变形)的能力。金属材料断裂前所产生的塑性变形由均匀塑性变形和集中塑性变形两部分构成。 ★韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力,或指材料抵抗裂纹扩展的能力。 ★脆性:脆性相对于塑性而言,一般指材料未发生塑性变形而断裂的趋势。 ★解理面:因解理断裂与大理石断裂类似,故称此种晶体学平面为解理面。 ★解理刻面:实际的解理断裂断口是由许多大致相当于晶粒大小的解理面集合而成的,这种大致以晶粒大小为单位的解理面称为解理刻面。 ★解理台阶:解理裂纹与螺型位错相交而形成的具有一定高度的台阶称为解理台阶。 ★河流花样解理台阶沿裂纹前段滑动而相互汇合,同号台阶相互汇合长大。当汇合台阶高度足够大时,便成为了河流花样。 ★穿晶断裂与沿晶断裂:多晶体金属断裂时,裂纹扩展的路径可能是不同的。裂纹穿过晶内的断裂为穿晶断裂;裂纹沿晶界扩展的断裂为沿晶断裂。穿晶断裂和沿晶断裂有时候可以同时发生。 二、下列力学性能指标的的意义 ①E(G):弹性模量,表示的是材料在弹性范围内应力和应变之比; ②σr:规定残余伸长应力,表示试样卸除拉伸力后,其标距部分的残余伸长达到规定的原始标距百分比时的应力;常用σ0.2表示材料的规定残余延伸率为0.2%时的应力,称为屈服强度;σs:屈服点,表示呈屈服现象的金属材料拉伸时,试样在外力不断增加(保持恒定)仍能继续伸长时的应力称为屈服点。 ⑤σb:抗拉强度,表示韧性金属材料的实际承载能力; ⑥n:应变硬化指数,反映了金属材料抵抗均匀塑性变形的能力,是表征金属材料应变硬化行为的性能指标; ⑦δ:断后伸长率,表示试样拉断后标距的伸长与原始标距的百分比; ⑧δgt:金属材料拉伸时最大力下的总伸长率(最大均匀塑性变形); ⑨ψ:断面收缩率,表示试样拉断后缩颈处横截面积的最大缩减量与原始横截面积的百分比。

无机材料的性能特点分类

无机非金属材料性能 一、绪论(2学时) 1、无机非金属材料的特点 (1)化学组成上为无机化合物或非金属元素单质,包括传统的氧化物、硅酸盐、碳酸盐、硫酸盐等含氧酸盐、氮化物、碳化物、硅化物、硼化物、氟化物、硫系化合物、硅、锗及碳材料等。 (2)形态与形状上包括多晶、单晶、非晶、薄膜、纤维、复合材料等。 (3)晶体结构复杂。单个晶格可能包含多种元素的原子,晶格缺陷种类多。 (4)原子间结合力丰要为离子键、共价键或者离了—共价混合键,具有高的键能、大的极性。 (5)制备上通常要求高纯度、高细度原料,并在化学组成、添加物的数量和分布、晶体结构和材料微观结构上能精确控制。 (6)性能多样。具有高熔点高强度、耐磨损、高硬度、耐腐蚀及抗氧化,宽广的导电性能、导热性、透光件以及良好的铁电性、铁磁性和压电性等待殊性能;但大多数无机材料拉伸强度低,韧性差,脆性大。 (7)应用极其广泛。几乎在所有的领域都有无机材料的应用,尤其新型无机材料更是现代技术的发展基础、在电子信息技术、激光技术、光纤技术、光电子技术、传感技术、超导技术以及空间技术的发展中占有十分重要的地位。 2、传统无机非金属材料与新型无机非金属材料 传统无机材料一般是指以天然的硅酸盐矿物(粘土、石英、长石等)为主要原料,经高温窑烧制而成的一大类材料。故又称窑业材料,主要有陶瓷、玻璃、水泥和耐火材料四种,其化学组成均为硅酸盐,因此也称为硅酸盐材料。新型无机材料则是指应用于高科技领域的用氧化物、氮化物、碳化物、硼化物、硫化物、硅化物以及各种无机非属化合物经持殊的先进工艺制成的具有优异性能的无机新材料,包括特种陶瓷、特种玻璃、特性水泥、新型耐火材料、人工晶体、增导体材料等。 3、无机非金属材料的分类 无机材料种类繁多、性能各异。从传统硅酸盐材料到新型无机材料,众多门类的无机材料已经渗透到人类生活、生产的各个领域,需从多个角度对无机材料进行分类。无机材料按成分特点、可分为单质和化合物两大类;按结构特征,可

相关文档