文档库 最新最全的文档下载
当前位置:文档库 › 工程光学习题参考答案第七章 典型光学系统

工程光学习题参考答案第七章 典型光学系统

工程光学习题参考答案第七章 典型光学系统
工程光学习题参考答案第七章 典型光学系统

第七章 典型光学系统

1.一个人近视程度是D 2-(屈光度),调节范围是D 8,求: (1)远点距离; (2)其近点距离;

(3)配戴100度近视镜,求该镜的焦距; (4)戴上该近视镜后,求看清的远点距离; (5)戴上该近视镜后,求看清的近点距离。 解: ① 21

-==

r

l R )/1(m ∴ m l r 5.0-=

P R A -= D A 8= D R 2-= ∴

D A R P 1082-=--=-=

m P l p 1.010

1

1-=-== ③f

D '=

1

∴m f 1-=' ④D D R R 1-=-='

m l R

1-=' ⑤P R A '-'= D A 8= D R 1-='

D A R P 9-=-'='

m l P

11.09

1

-=-=' 2.一放大镜焦距mm f 25=',通光孔径mm D 18=,眼睛距放大镜为mm 50,像距离眼睛在明视距离mm 250,渐晕系数为%50=k ,试求(1) 视觉放大率;(2)线视场;(3)物体的位置。

eye

已知:放大镜 mm f 25=' mm D 18=放 mm P 50=' mm l P 250='-'

%50=K

求:① Γ ② 2y ③l 解:

f

D

P '-'-

=Γ1 25

501252501250-+=''-+'=

f P f 92110=-+=

②由%50=K 可得: 18.050

*218

2=='=

'P D tg 放ω ωωtg tg '=

Γ ∴02.09

18

.0==ωtg D

y

tg =

ω ∴mm Dtg y 502.0*250===ω ∴mm y 102= 方法二:

18.0='ωtg mm tg y 45*250='='ω mm l 200-=' mm f

e 250='

mm l 2.22-= y

y l l X '==='=

92.22200β mm y 102=

③ l P D '-'= mm D P l 20025050-=-=-'='

f l l '=-'11125

112001=--l mm l 22.22-=

3.一显微镜物镜的垂轴放大率为x

3-=β,数值孔径1.0=NA ,共扼距mm L 180=,物镜框是孔径光阑,目镜焦距mm f e 25='。

(1)求显微镜的视觉放大率。 (2)求出射光瞳直径。

(3)求出射光瞳距离(镜目距)。

(4)斜入射照明时,m μλ55.0=,求显微镜的分辨率。 (5)求物镜的通光孔径。

(6)射物高mm y 62=,渐晕系数%50=k ,求目镜的通光孔径。

已知:显微物镜 X 3-=β 1.0=NA 共轭距mm L 180=物镜框为孔径光阑

mm f e 25='

① X e

e f 1025250

250=='=

Γ X e 30*-=Γ=Γβ ② mm NA D 67.130

1

.0*500500==Γ=

' ③

由物镜成象关系:

????

?

='+--='=180

)(3

l l l l β

???='-=mm l mm l 13545 mm f l l e Z 160)(-='

+'-=

e

Z Z f l l '=-'1

11 1601

2511-='Z

l mm l Z

62.29=' 孔

④道威判断 m m

NA μμλσ75.21

.055.0*5.05.0===

⑤目镜的 185.0160

62

.29-=-='

=Z Z l l 目β

mm D 02.9185

.067

.1==

⑥mm y 62= 322='

=

y

y β mm y 182=' %50=K 时

36.025

9

*218=='=

'e f tg ω ω''=tg l D Z *2目 36.0*62.29*2= mm 33.21=

4.欲分辨mm 000725.0的微小物体,使用波长mm 00055.0=λ,斜入射照明,问: (1) 显微镜的视觉放大率最小应多大? (2) 数值孔径应取多少适合?

视场光阑决定了物面大小,而物面又决定了照明 的大小

5.有一生物显微镜,物镜数值孔径5.0=NA ,物体大小mm y 4.02=,照明灯丝面积 1.2×1.22mm ,灯丝到物面的距离100mm ,采用临界照明,求聚光镜焦距和通光孔径。 已知 5.0=NA 4.02=y 灯丝面积 1.2×1.22mm

灯丝到物面的距离100mm 临界照明

求: 聚

f ' 和通光孔径.

:???

??='+-'=-=-

=100)(312.14.0l l l l β ?

??='-=mm l mm

l 2575

f l l '=

-'1

11 ∴mm f 75.18='聚 u n NA sin =

∴5.0sin =u ?=30u

mm tg tg l D 86.2830*25*230**2=='=??

l

6.为看清4km 处相隔150mm 的两个点(设rad 0003.01='),若用开普勒望远镜观察,则: (1)求开普勒望远镜的工作放大倍率;

(2)若筒长mm L 100=,求物镜和目镜的焦距; (3)物镜框是孔径光阑,求出射光瞳距离;

(4)为满足工作放大率的要求,求物镜的通光孔径; (5)视度调节在D 5±(屈光度),求目镜的移动量; (6)若物方视场角?=82ω求象方视场角; (7)渐晕系数%50=K ,求目镜的通光孔径。 已知:m l 4000-= mm 150=σ 解: ① 510*75.31000*1000*4150-==

mm

mm

?(rad )

有效放大率 810

*75.30003

.0065

==

'

'=

Γ-?

工作放大率 X 24~16=Γ

② ??

???=''

=Γ==-+'8100)(e o e o f f mm L f f

?????='='mm f mm f e o 11.1189.88 ③100-=Z l 11.11='e f 求 'Z l

e Z Z

f l l

'=-'111 1001

11.1111-='Z l mm l Z

5.12=' ④3

.2D

=

Γ mm D 4.188*3.2== ⑤对于 D R 5+= mm l R 200= )11.11(1?+-=l

115.2122005.12?-=?-+='l 代入公式

e f l l '

=-'111 整理得: 04.12339.20112

1=+?-? ∴62.01=?mm

对于 D R 5-= mm l R 200-=

75.18)5.12200(/-=--=l

'=-'e

f l l 1

11

11.11175.181111-

-='-'=e f l l mm l 488.10-=

mm 62.0488.1011.112=-=?

⑥ ω

γtg =

=Γ 5594.04*8=='?tg tg ω ?='44.582ω ⑦5.0=K

mm tg l D Z 985.135594.0*5.12*2**2==''

=ω目

7.一开普勒望远镜,五经焦距mm f 2000=',目镜的焦距为mm f e 25=',物方视场角?=82ω,

渐晕系数%50=K ,为了使目镜通光孔径mm D 7.23=,在物镜后焦平面上放一场镜,试:

(1)求场镜焦距;

(2)若该场镜是平面在前的平凸薄透镜,折射率5.1=n ,求其球面的曲率半径。

① )11(*-=tg l h Z tg tg f o 4*2004*=='

=?

? 目

D f l h l e Z *5.0'-'=' mm l 1.164='

f

l l '=-'1

11 20011.16411+='场

f

∴mm f 14.9='场

②011.014

.901

21==

+=??? 孔阑

∞=1r 01=? 011.02=?

r

n

n l n l n -'=

-'' 其中∞=l

='l 5.1=n 1='n

代入求得:

r 5

.115.114.901-=

∞- mm r 45-=

9.一个照明器由灯泡和聚光镜组成,已知聚光镜焦距mm f 400=',通光孔径mm D 200=,要求照明距离为5m 远直径为3m 的圆,试问灯泡应安装在什么位置。 已知: mm f 400=' 5m 处3m 直径光照明 求 l 解:

1500

100l l '

-=

'- mm l 14.357-=' f l l '=-'111 400

1114.3571=--l mm l 679.188-=

11.用电视摄象机监视天空中的目标,设目标的光亮度为2

/2500m cd ,光学系统的透过滤为0.6,摄象管靶面要求照度为lx 20,求摄影物镜应用多大的光圈。 解:

14.开普勒望远镜的筒长255mm ,X 8-=Γ,?

=62ω,mm D 5=',无渐晕, (1)求物镜和目镜的焦距; (2)目镜的通光孔径和出瞳距;

(3)在物镜焦面处放一场镜,其焦距为mm f 75=',求新的出瞳距和目镜的通光孔径; (4)目镜的视度调节在D 4±(屈光度),求目镜的移动量。

①?????

='+'-=''-=Γ225

8

目物

物f f f f 解得 ???='='mm f mm f 25200目物

②mm D D 4058=?='Γ=物 mm D tg D 6.28)2

2252='

+

?=ω(目 mm tg tg f h i 48.103200*=?='=?

ω物

由三角形相似得:??

???=+=

200

20y x y h x i

???==mm y mm x 77.6823.131

有大三角形相似得:

目目f y D x '+=220 2577.68

223.13120+=

D mm D 58.28=目

225-=P mm f 25='目

f P P '=-'1

11 mm P 125.28='

77.68-=-=y l A 场

f l l A A '=-'111

75

1

77.6811=+'A l mm l A 889.827-='∴ 0126587.0889.82748

.10=='=

A

i l h tg ? mm tg f l D A 59.210126587.0)25889.827(22=?+?='+'-?=?)(目

目 物镜经场镜成像

75

1

200111=+'l mm l 1201

=' 经目镜成像 mm l 9525145.542=-=

251

9511=-'Z

l mm l P 79.192

='='

④mm f x e 5.21000

25

410004±=?±='±

= 15.一透镜焦距mm f 30'=,如在其前边放置一个x

6-=Γ的开普勒望远镜,求组合后系统

的像方基点位置和焦距,并画出光路图。)

解:6'

'

'' 321-=-=-=-

=f f h h f f e o Γ , 求得:(mm)f 180'-=

(mm)

f f l H 21018030)'(''3=+=-+=

(mm)l F 30'=

答:组合后的焦距是-180mm 。基点位置如图所示。

其光路图如下所示:

16.已知,mm r 202-=的双凸透镜,置于空气中。物A 位于第一球面前mm 50处,第二面镀反射膜。该物镜所成实像B 位于第一球面前mm 5,如图所示。若按薄透镜处理,求该透镜的折射率n 。()

解:

设:透镜的折射率为n

物点A 经1r 折射成像在A'

处,将已知条件

代入公式 得

----①

A'B'

入反射面公式,

得:----②

B'B点。根据光路的可逆性,将B

视为物,B'

----③

由①②③式解得:

答:透镜的折射率为1.6。

17.已知物镜焦距为,对无穷远物体成像时,由物镜第一面到像

,物镜最后一面到像平面的距离为。

(1)按薄透镜处理,求物镜的结构参数;(

(2)若用该物镜构成开普勒望远镜,出瞳大小为,求望远镜的视觉放大率;()

(3)求目镜的焦距、放大率;(

(4)如果物镜的第一面为孔径光阑,求出瞳距;()

(5)望远镜的分辨率;(

(6)如果视度调节为 5折光度,目镜应能移动的距离。()

(7)画出光路图。

解:根据题意,画出物镜的结构图如下:

(1)

mm d 100=代入公式 ?????

???

???=-===300''

''''211

12

11

121h tgu dtgu h h tgu h f tgu h f ,得:)(250'1mm f = 将''21f f d --=?代入牛顿公式

?

'

''21f f f -

=,得:)(300'2mm f -=

(2)因101'=f D ,则:)

(50101500mm D =?=

x D D 25250

'-=-=-

(3)

x e o f f 25''-=-

=Γ , )(2025500'mm f e ==

x e e f 5.1220250'250===

Γ

(4)望远镜系统的结构如下图所示:

将mm l 1001-=和mm f 200'2-=代入公式'11'1f l l =-,得:mm l 67.66'1-= 将mm l 67.386)32067.66(2-=+-=和mm f e 20'=代入公式

'1

1'1f l l =-, 得出瞳距:)(09.21'mm l z = (5)

"8.250"

140"140===

D φ

(6))

(210002051000'52

2mm f x e ±=?±=±=?

(7)望远系统光路图如下:

18.思考题

1、用一具已正常调节的望远镜,用来观察地面上的建筑物,怎样调节镜筒的长

度?

答:一具已正常调节的望远镜是用来观察极远的问题的。对物镜而言,物距 接近无穷远,其像距就是物镜的焦距;而对于目镜而言,目镜的物距就是它的焦 距,目镜的像距为无穷远。所以此时筒长等于两透镜的焦距之和。当用它观察地 面上的建筑物时,此时物距从无穷远变为有限距离,像距也从焦点移向焦点的外 侧,所以必须拉长镜筒才能使物镜所成的像落在目镜的物方焦平面上。 2.摄影物镜的三个重要参数是什么?它们分别决定系统的什么性质?

答:摄影物镜的三个重要参数是:焦距'f 、相对孔径'/f D 和视场角ω2。焦距影响成像的大小,相对孔径影响像面的照度和分辨率,视场角影响成像的范围。 3.为了保证测量精度,测量仪器一般采用什么光路?为什么?

答:为了保证测量精度,测量仪器一般采用物方远心光路。由于采用物方远心光路时,孔径光阑与物镜的像方焦平面重合,无论物体处于物方什么位置,它们的主光线是重合的,即轴

外点成像光束的中心是相同的。这样,虽然调焦不准,也不会产生测量误差。

4.显微物镜、望远物镜、照相物镜各应校正什么像差?为什么?

答:显微物镜和望远物镜应校正与孔径有关的像差,如:球差、正弦差等。照相物镜则应校正与孔径和视场有关的所有像差。因为显微和望远系统是大孔径、小视场系统,而照相系统则是一个大孔径、大视场系统。

5、远视眼和近视眼的观众,用伽利略望远镜看戏时,各自对镜筒应怎样调节?

工程光学习题参考答案第十一章 光的干涉和干涉系统

第十一章 光的干涉和干涉系统 1. 双缝间距为1mm,离观察屏1m,用钠光灯做光源,它发出两种波长的单色光 nm 0.5891=λ和nm 6.5892=λ,问两种单色光的第十级亮条纹之间的间距是多 少? 解:由题知两种波长光的条纹间距分别为 9 6 113 158910 5891010 D e m d λ---??= = =? 9 6 223 1589.610 589.61010 D e m d λ---??= = =? ∴第十级亮纹间距()()6 5 211010589.6589100.610e e m -?=-=?-?=? 2. 在杨氏实验中,两小孔距离为1mm,观察屏离小孔的距离为50cm,当用一片折射率为 1.58的透明薄片贴住其中一个小孔时(见图11-17),发现屏上的条纹系统移动了 0.5场面,试决定试件厚度。 解:设厚度为h ,则前后光程差为()1n h ?=- ()1x d n h D ??∴-= 2 3 0.510 10 0.580.5 h --??= 2 1.7210h mm -=? 3. 一个长30mm 的充以空气的气室置于杨氏装置中的一个小孔前,在观察屏上观察到 稳定的干涉条纹系。继后抽去气室中的空气,注入某种气体,发现条纹系移动了25个条纹,已知照明光波波长nm 28.656=λ,空气折射率000276.10=n 。试求注入气室内气体的折射率。 解:设气体折射率为n ,则光程差改变()0n n h ?=- 图11-47 习题2 图

()02525x d d n n h e D D λ??∴-= =? = 9 025656.2810 1.000276 1.0008230.03 m n n h λ-??= += += 4. ** 垂直入射的平面波通过折射率为n 的玻璃板,投射光经投射会聚到焦点上。玻 璃板的厚度沿着C 点且垂直于图面(见图11-18)的直线发生光波波长量级的突变 d ,问d 为多少时,焦点光强是玻璃板无突变时光强的一半。 解:无突变时焦点光强为04I ,有突变时为02I ,设',.d D 2 00'4cos 2xd I I I D πλ== ()' 104xd m m D λ? ?∴?= =+≥ ?? ? 又()1n d ?=- 114d m n λ ? ?∴= + ?-?? 5. 若光波的波长为λ,波长宽度为λ?,相应的频率和频率宽度记为ν和ν?,证明 λ λ νν ?=?,对于nm 8.632=λ的氦氖激光,波长宽度nm 8 102-?=?λ,求频 率宽度和相干长度。 解:c λν= λ ν λ ν ??∴ = 对于632.8c nm λνλ =?= 8 9 8 4 18 21010 310 1.4981063 2.8632.810 c Hz λ λ ννλ λ λ ---??????∴?= ?= ? = =??? C 图11-18

第三版工程光学答案

第一章 3、一物体经针孔相机在屏上成一60mm大小得像,若将屏拉远50mm,则像得大小变为70mm,求屏到针孔得初始距离。 解:在同种均匀介质空间中光线直线传播,如果选定经过节点得光线则方向不变,令屏到针孔得初始距离为x,则可以根据三角形相似得出: 所以x=300mm 即屏到针孔得初始距离为300mm。 4、一厚度为200mm得平行平板玻璃(设n=1、5),下面放一直 径为1mm得金属片。若在玻璃板上盖一圆形得纸片,要求在玻璃板上方任何方向上都瞧不到该金属片,问纸片得最小直径应为多少? 解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有: n0sinI1=n2sinI2 (1) 而当光束由光纤芯入射到包层得时候满足全反射,使得光束可以在光纤内传播,则有: (2) 由(1)式与(2)式联立得到n0、

16、一束平行细光束入射到一半径r=30mm、折射率n=1、5得玻璃球上,求其会聚点得位置。 如果在凸面镀反射膜,其会聚点应在何处?如果在凹面镀反射膜,则反射光束在玻璃中得会聚点又在何处?反射光束经前表面折射后,会聚点又在何处?说明各会聚点得虚实。 解:该题可以应用单个折射面得高斯公式来解决, 设凸面为第一面,凹面为第二面。 (1)首先考虑光束射入玻璃球第一面时得状态,使用高斯公 式: 会聚点位于第二面后15mm处。 (2) 将第一面镀膜,就相当于凸面镜 像位于第一面得右侧,只就 是延长线得交点,因此就是虚像。 还可以用β正负判断: (3)光线经过第一面折射:, 虚像 第二面镀膜,则:

得到: (4) 在经过第一面折射 物像相反为虚像。 18、一直径为400mm,折射率为1、5得玻璃球中有两个小气泡,一个位于球心,另一个位于1 /2半径处。沿两气泡连线方向在球两边观察,问瞧到得气泡在何处?如果在水中观察,瞧到得气泡又在何处? 解: 设一个气泡在中心处,另一个在第二面与中心之间。 (1)从第一面向第二面瞧 (2)从第二面向第一面瞧 (3)在水中

工程光学练习题(英文题加中文题含答案)

English Homework for Chapter 1 ancient times the rectilinear propagation of light was used to measure the height of objects by comparing the length of their shadows with the length of the shadow of an object of known length. A staff 2m long when held erect casts a shadow long, while a building’s shadow is 170m long. How tall is the building Solution. According to the law of rectilinear propagation, we get, 4.32170= x x=100 (m) So the building is 100m tall. from a water medium with n= is incident upon a water-glass interface at an angle of 45o. The glass index is . What angle does the light make with the normal in the glass Solution. According to the law of refraction, We get, ' 'sin sin I n I n = 626968 .05.145 sin 33.1sin =?= ' I 8.38='I So the light make 3. A goldfish swims 10cm from the side of a spherical bowl of water of radius 20cm. Where does the fish appear to be Does it appear larger or smaller Solution. According to the equation. r n n l n l n -'=-'' and n ’=1 , n=, r=-20 we can get 11416.110133 .15836.8)(5836.81165.02033.01033.11>-=??-=''= -='∴-=--+-=-'+='l n l n cm l r n n l n l β A

(完整版)工程光学第三版课后答案1

第一章 2、已知真空中的光速c =3*108m/s ,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的 光速。 解: 则当光在水中,n=1.333 时,v=2.25*108m/s, 当光在冕牌玻璃中,n=1.51 时,v=1.99*108m/s, 当光在火石玻璃中,n =1.65 时,v=1.82*108m/s , 当光在加拿大树胶中,n=1.526 时,v=1.97*108m/s , 当光在金刚石中,n=2.417 时,v=1.24*108m/s 。 3、一物体经针孔相机在屏上成一60mm 大小的像,若将屏拉远50mm ,则像的大小变为70mm,求屏到针孔的初始距离。 解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向 不变,令屏到针孔的初始距离为x ,则可以根据三角形相似得出: 所以x=300mm 即屏到针孔的初始距离为300mm 。 4、一厚度为200mm 的平行平板玻璃(设n=1.5),下面放一直径为1mm 的金属片。若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片最小直径应为多少? 解:令纸片最小半径为x, 则根据全反射原理,光束由玻璃射向空气中时满足入射角度大于或等于全反射临界角时均会发生全反射,而这里正是由于这个原因导致在玻璃板上方看不到金属片。而全反射临界角求取方法为: (1) 其中n2=1, n1=1.5, 同时根据几何关系,利用平板厚度和纸片以及金属片的半径得到全反射临界角的计算方法为: (2) 联立(1)式和(2)式可以求出纸片最小直径x=179.385mm , 所以纸片最小直径为358.77mm 。 8、.光纤芯的折射率为1n ,包层的折射率为2n ,光纤所在介质的折射率为0n ,求光纤的数值孔径(即10sin I n ,其中1I 为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。 解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有: n 0sinI 1=n 2sinI 2 (1) 而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:

工程光学习题解答

第一章习题 1、已知真空中的光速c=3 m/s,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的光速。 解: 则当光在水中,n=1.333时,v=2.25 m/s, 当光在冕牌玻璃中,n=1.51时,v=1.99 m/s, 当光在火石玻璃中,n=1.65时,v=1.82 m/s, 当光在加拿大树胶中,n=1.526时,v=1.97 m/s, 当光在金刚石中,n=2.417时,v=1.24 m/s。 2、一物体经针孔相机在屏上成一60mm大小的像,若将屏拉远50mm,则像的大小变为70mm,求屏到针孔的初始距离。 解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x,则 可以根据三角形相似得出: 所以x=300mm 即屏到针孔的初始距离为300mm。 3、一厚度为200mm的平行平板玻璃(设n=1.5),下面放一直径为1mm的金属片。若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片最小直径应为多少? 解:令纸片最小半径为x, 则根据全反射原理,光束由玻璃射向空气中时满足入射角度大于或等于全反射临界角时均会发生全反射,而这里正是由于这个原因导致在玻璃板上方看不到金属片。而全反射临界角求取方法为: (1) 其中n2=1, n1=1.5, 同时根据几何关系,利用平板厚度和纸片以及金属片的半径得到全反射临界角的计算方法为: (2) 联立(1)式和(2)式可以求出纸片最小直径x=179.385mm,所以纸片最小直径为358.77mm。 4、光纤芯的折射率为n1、包层的折射率为n2,光纤所在介质的折射率为n0,求光纤的数值孔径(即n0sinI1,其中I1为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。 解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有: n0sinI1=n2sinI2 (1) 而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:

工程光学习题解答(第1章)

工程光学习题解答(第1章)

(1)

(2) m/s (3) 光在冕牌玻璃中的速度:v=3×108/1.51=1.99×108 m/s (4) 光在火石玻璃中的速度:v=3×108/1.65=1.82×108 m/s (5) 光在加拿大树胶中的速度:v=3×108/1.526=1.97×108 m/s (6) 光在金刚石中的速度:v=3×108/2.417=1.24×108 m/s *背景资料:最初用于制造镜头的玻璃,就是普通窗户玻璃或酒瓶上的疙瘩,形状类似“冠”,皇冠玻璃或冕牌玻璃的名称由此而来。那时候的玻璃极不均匀,多泡沫。除了冕牌玻璃外还有另一种含铅量较多的燧石玻璃(也称火石玻璃)。 3.一物体经针孔相机在屏上成像的大小为60mm ,若将屏拉远50mm ,则像的大小变为70mm ,求屏到针孔的初始距离。 解: 706050=+l l ? l =300mm 6 57l

4.一厚度为200mm 的平行平板玻璃(设n=1.5),下面放一直径为1mm 的金属片。若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片最小直径应为多少? 解:本题是关于全反射条件的问题。若要在玻璃板上方看不到金属片,则纸片最小尺寸应能够挡住金属片边缘光线达到全反射的位置。 (1) 求α角:nsin α=n ’sin90 ? 1.5sin α=1 α=41.81? (2) 求厚度为h 、α=41.81?所对应的宽度l : l =htg α=200×tg41.81?=179mm (3) 纸片最小直径:d min =d 金属片+2l=1+179×2=359mm 5.试分析当光从光疏介质进入光密介质时,发生全反射的可能性。 6.证明光线通过平行玻璃平板时,出射光线与入射光线平行。 7.如图1-15所示,光线入射到一楔形光学元件上。已知楔角为α,折射率为n ,求光线经过该楔形光学元件后的偏角δ。 α 90h

工程光学习题解答 第十二章 光的衍射

第十二章 光的衍射 1. 波长为500nm 的平行光垂直照射在宽度为0.025mm 的单缝上,以焦距为50cm 的会 聚透镜将衍射光聚焦于焦面上进行观察,求(1)衍射图样中央亮纹的半宽度;(2)第一亮纹和第二亮纹到中央亮纹的距离;(3)第一亮纹和第二亮纹的强度。 解:(1)零强度点有sin (1,2, 3....................)a n n θλ==±±± ∴中央亮纹的角半宽度为0a λ θ?= ∴亮纹半宽度29 0035010500100.010.02510 r f f m a λ θ---???=??===? (2)第一亮纹,有1sin 4.493a π αθλ = ?= 9 13 4.493 4.493500100.02863.140.02510rad a λθπ--??∴= ==?? 2 1150100.02860.014314.3r f m mm θ-∴=?=??== 同理224.6r mm = (3)衍射光强2 0sin I I αα?? = ??? ,其中sin a παθλ= 当sin a n θλ=时为暗纹,tg αα=为亮纹 ∴对应 级数 α 0 I I 0 0 1 1 4.493 0.04718 2 7.725 0.01694 . . . . . . . . . 2. 平行光斜入射到单缝上,证明:(1)单缝夫琅和费衍射强度公式为 2 0sin[(sin sin )](sin sin )a i I I a i πθλπθλ?? -??=????-?? 式中,0I 是中央亮纹中心强度;a 是缝宽;θ是衍射角,i 是入射角(见图12-50) (2)中央亮纹的角半宽度为cos a i λ θ?=

工程光学课后答案-第二版-郁道银(学习答案)

工程光学第一章习题 1、已知真空中的光速c=3 m/s,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的光速。 解: 则当光在水中,n=1.333时,v=2.25 m/s, 当光在冕牌玻璃中,n=1.51时,v=1.99 m/s, 当光在火石玻璃中,n=1.65时,v=1.82 m/s, 当光在加拿大树胶中,n=1.526时,v=1.97 m/s, 当光在金刚石中,n=2.417时,v=1.24 m/s。 2、一物体经针孔相机在屏上成一60mm大小的像,若将屏拉远50mm,则像的大小变为70mm,求屏到针孔的初始距离。 解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到 针孔的初始距离为x,则可以根据三角形相似得出: 所以x=300mm 即屏到针孔的初始距离为300mm。 3、一厚度为200mm的平行平板玻璃(设n=1.5),下面放一直径为1mm的金属片。若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片最小直径应为多少? 解:令纸片最小半径为x, 则根据全反射原理,光束由玻璃射向空气中时满足入射角度大于或等于全反射临界角时均会发生全反射,而这里正是由于这个原因导致在玻璃板上方看不到金属片。而全反射临界角求取方法为: (1) 其中n2=1, n1=1.5, 同时根据几何关系,利用平板厚度和纸片以及金属片的半径得到全反射临界角的计算方法为: (2) 联立(1)式和(2)式可以求出纸片最小直径x=179.385mm,所以纸片最小直径为358.77mm。 4、光纤芯的折射率为n1、包层的折射率为n2,光纤所在介质的折射率为n0,求光纤的数值孔径(即n0sinI1,其中I1为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。 解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有: n0sinI1=n2sinI2 (1)

工程光学习题参考答案第七章 典型光学系统

第七章 典型光学系统 1.一个人近视程度是D 2-(屈光度),调节范围是D 8,求: (1)远点距离; (2)其近点距离; (3)配戴100度近视镜,求该镜的焦距; (4)戴上该近视镜后,求看清的远点距离; (5)戴上该近视镜后,求看清的近点距离。 解: ① 21 -== r l R )/1(m ∴ m l r 5.0-= ② P R A -= D A 8= D R 2-= ∴ D A R P 1082-=--=-= m P l p 1.010 1 1-=-== ③f D '= 1 ∴m f 1-=' ④D D R R 1-=-=' m l R 1-=' ⑤P R A '-'= D A 8= D R 1-=' D A R P 9-=-'=' m l P 11.09 1 -=-=' 2.一放大镜焦距mm f 25=',通光孔径mm D 18=,眼睛距放大镜为mm 50,像距离眼睛在明视距离mm 250,渐晕系数为%50=k ,试求(1) 视觉放大率;(2)线视场;(3)物体的位置。 eye

已知:放大镜 mm f 25=' mm D 18=放 mm P 50=' mm l P 250='-' %50=K 求:① Γ ② 2y ③l 解: ① f D P '-'- =Γ1 25 501252501250-+=''-+'= f P f 92110=-+= ②由%50=K 可得: 18.050 *218 2=='= 'P D tg 放ω ωωtg tg '= Γ ∴02.09 18 .0==ωtg D y tg = ω ∴mm Dtg y 502.0*250===ω ∴mm y 102= 方法二: 18.0='ωtg mm tg y 45*250='='ω mm l 200-=' mm f e 250=' mm l 2.22-= y y l l X '==='= 92.22200β mm y 102= ③ l P D '-'= mm D P l 20025050-=-=-'=' f l l '=-'11125 112001=--l mm l 22.22-= 3.一显微镜物镜的垂轴放大率为x 3-=β,数值孔径1.0=NA ,共扼距mm L 180=,物镜框是孔径光阑,目镜焦距mm f e 25='。

工程光学(郁道银)第十二章习题及答案

1λ第十二章 习题及答案 1。双缝间距为1mm ,离观察屏1m ,用钠灯做光源,它发出两种波长的单色光 =589.0nm 和2λ=589.6nm ,问两种单色光的第10级这条纹之间的间距是多少? 解:由杨氏双缝干涉公式,亮条纹时:d D m λα= (m=0, ±1, ±2···) m=10时,nm x 89.511000105891061=???= -,nm x 896.51 1000 106.5891062=???=- m x x x μ612=-=? 2。在杨氏实验中,两小孔距离为1mm ,观察屏离小孔的距离为50cm ,当用一片折射率 1.58的透明薄片帖住其中一个小孔时发现屏上的条纹系统移动了0.5cm ,试决定试件厚度。 2 1r r l n =+??2 2212? ?? ???-+=x d D r 2 2 2 2 2? ? ? ???++=x d D r x d x d x d r r r r ??=?? ? ???--??? ???+= +-222))((2 2 1212mm r r d x r r 2211210500 5 12-=?≈+??= -∴ ,mm l mm l 2210724.110)158.1(--?=?∴=?- 3.一个长30mm 的充以空气的气室置于杨氏装置中的一个小孔前,在观察屏上观察到稳定的 干涉条纹系。继后抽去气室中的空气,注入某种气体,发现条纹系移动了25个条纹,已知照明光波波长λ=656.28nm,空气折射率为000276.10=n 。试求注入气室内气体的折射率。 0008229 .10005469.0000276.130 1028.6562525)(6 00=+=??= -=-?-n n n n n l λ

工程光学习题答案(附试题样本)

. .. ... 第一章习题 1、已知真空中的光速c=3 m/s,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚(n=2.417)等介质中的光速。 解: 则当光在水中,n=1.333时,v=2.25 m/s, 当光在冕牌玻璃中,n=1.51时,v=1.99 m/s, 当光在火玻璃中,n=1.65时,v=1.82 m/s, 当光在加拿大树胶中,n=1.526时,v=1.97 m/s, 当光在金刚中,n=2.417时,v=1.24 m/s。 2、一物体经针相机在屏上成一60mm大小的像,若将屏拉远50mm,则像的大小变为70mm,求屏到针的初始距离。 解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则向不变,令屏到针的初始距离为x,则可以根据三角形相似得出: 所以x=300mm 即屏到针的初始距离为300mm。 3、一厚度为200mm的平行平板玻璃(设n=1.5),下面放一直径为1mm的金属片。若在玻璃板上盖一圆形纸片,要求在玻璃板上任向上都看不到该金属片,问纸片最小直径应为多少?

解:令纸片最小半径为x, 则根据全反射原理,光束由玻璃射向空气中时满足入射角度大于或等于全反射临界角时均会发生全反射,而这里正是由于这个原因导致在玻璃板上看不到金属片。而全反射临界角求取法为: (1) 其中n2=1, n1=1.5, 同时根据几关系,利用平板厚度和纸片以及金属片的半径得到全反射临界角的计算法为: (2) 联立(1)式和(2)式可以求出纸片最小直径x=179.385mm,所以纸片最小直径为358.77mm。 4、光纤芯的折射率为n1、包层的折射率为n2,光纤所在介质的折射率为n0,求光纤的数值径(即n0sinI1,其中I1为光在光纤能以全反射式传播时在入射端面的最大入射角)。 解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有: n0sinI1=n2sinI2 (1) 而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤传播,则有: (2) 由(1)式和(2)式联立得到n0 sinI1 . 5、一束平行细光束入射到一半径r=30mm、折射率n=1.5的玻璃球上,求其会聚点的位置。如果在凸面镀反射膜,其会聚点应在处?如果在凹面镀反射膜,则反射光束在玻璃中的会聚点又在处?反射光束经前

第三版工程光学答案[1]

第一章 3、一物体经针孔相机在 屏上成一60mm 大小的像,若将屏拉远50mm ,则像的大小变为70mm,求屏到针孔的初始距离。 解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变, 令屏到针孔的初始距离为x ,则可以根据三角形相似得出: 所以x=300mm 即屏到针孔的初始距离为300mm 。 4、一厚度为200mm 的平行平板玻璃(设n =),下面放一直径为1mm 的金属片。若在玻璃板上盖一圆形的纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片的最小直径应为多少 2211sin sin I n I n = 66666.01 sin 2 2== n I 745356.066666.01cos 22=-=I 88.178745356 .066666 .0* 200*2002===tgI x mm x L 77.35812=+= 1mm I 1=90? n 1 n 2 200mm L I 2 x

8、.光纤芯的折射率为1n ,包层的折射率为2n ,光纤所在介质的折射率为0n ,求光纤的数 值孔径(即10sin I n ,其中1I 为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。 解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有: n 0sinI 1=n 2sinI 2 (1) 而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有: (2) 由(1)式和(2)式联立得到n 0 . 16、一束平行细光束入射到一半径r=30mm 、折射率n=的玻璃球上,求其会聚点的位置。如 果在凸面镀反射膜,其会聚点应在何处如果在凹面镀反射膜,则反射光束在玻璃中的会聚点又在何处反射光束经前表面折射后,会聚点又在何处说明各会聚点的虚实。 解:该题可以应用单个折射面的高斯公式来解决, 设凸面为第一面,凹面为第二面。 (1)首先考虑光束射入玻璃球第一面时的状态,使用高斯公式:

工程光学习题解答第九章_光的电磁理论基础

第九 章 光的电磁理论基础 1. 一个平面电磁波可以表示为14 0,2cos[210()],02 x y z z E E t E c π π==?-+ =,求(1)该 电磁波的频率、波长、振幅和原点的初相位?(2)拨的传播方向和电矢量的振动方向?(3)相应的磁场B的表达式? 解:(1)平面电磁波cos[2()]z E A t c πν?=-+ 对应有14 62,10,,3102 A Hz m π ν?λ-=== =?。 (2)波传播方向沿z 轴,电矢量振动方向为y 轴。 (3)B E → → 与垂直,传播方向相同,∴0By Bz == 814610[210()]2 z Bx CEy t c π π===??-+ 2. 在玻璃中传播的一个线偏振光可以表示215 0,0,10cos 10()0.65y z x z E E E t c π===-,试求(1)光的频率和波长;(2)玻璃的折射率。 解:(1)215 cos[2()]10cos[10( )]0.65z z E A t t c c πν?π=-+=- ∴15 14 210510v Hz πνπν=?=? 72/2/0.65 3.910n k c m λππ-===? (2)8 714310 1.543.910510 n c c n v λν-?====??? 3.在与一平行光束垂直的方向上插入一片透明薄片,薄片的厚度0.01h mm =,折射率n=1.5, 若光波的波长为500nm λ=,试计算透明薄片插入前后所引起的光程和相位的变化。 解:光程变化为 (1)0.005n h mm ?=-= 相位变化为)(202500 10005.026 rad πππλδ=??= ? = 4. 地球表面每平方米接收到来自太阳光的功率为 1.33kw,试计算投射到地球表面的太阳光 的电场强度的大小。假设太阳光发出波长为600nm λ=的单色光。 解:∵2201 2 I cA ε= = ∴1 32 2()10/I A v m c ε= 5. 写出平面波8 100exp{[(234)1610]}E i x y z t =++-?的传播方向上的单位矢量0k 。

工程光学习题一答案

第一章 习题答案 4. 一厚度为200mm 的平行平板玻璃(设n=1.5),下面放一直径为1mm 的金属薄片。若在玻璃板上盖一圆形的纸片,使得在玻璃板上方任何方向上都看不到该金属薄片,问纸片的最小直径应为多少? 解:如图所示,设纸片的最小直径为L ,考虑边缘光线满足全反射条件时 6667.090sin sin 02 12==n n I 74536.06667.01cos 22=-=I L=(2x+1)mm=358.77mm

16. 一束平行细光束入射到一半径mm r 30=、折射率n=1.5的玻璃球上,求经玻璃球折射后会聚点的位置。如果在凸面(第一面)镀反射膜,其会聚点应爱何处?如果在凹面(第二面)镀反射膜,则反射光束在玻璃中的会聚点又在何处?反射光束经前表面折射后,会聚点又在何处?说明各个会聚点的虚实。 解:(1)此时的成像过程如图(4)所示,平行细光束入射到玻璃球上,经左侧球面折射后形成中间像'1A ,它又是右侧球面的物2A ,经右侧球面再次成像于'2A 。 将-∞=1l ,11=n ,5.1' 1=n ,mm r 301=代入单个折射球面 成像公式 r n n l n l n -=-'' '得 mm mm n n r n l 905.0305.11 '1' 1'1=?=-= 由于1l 和'1l 异号,01 '1' 111<=l n l n β,故无限远物与像'1A 虚实相同,即'1A 为实像。但由于右侧球面的存在,实际光线不可能到达此处,故对于右侧球面2A 为虚物。 将 mm r n n mm mm r l l 30,1,5.1,30)6090(22' 22'12-====-=-= 再次代入单个折射球面成像公式得

工程光学课后答案.

第一章 16. 一束平行细光束入射到一半径r=30mm、折射率n=1.5的玻璃球上,求其会聚点的位置。如果在凸面镀反射膜,其会聚点应在何处?如果在凹面镀反射膜,则反射光束在玻璃中的会聚点又在何处?反射光束经前表面折射后,会聚点又在何处?说明各会聚点的虚实。 解:该题可以应用单个折射面的高斯公式来解决, 设凸面为第一面,凹面为第二面。 (1)首先考虑光束射入玻璃球第一面时的 状态,使用高斯公 式: 会聚点位于第二面后15mm 处。 (2)将第一面镀膜,就相当于凸 面镜 像位于第一面的右侧,只是延长线的交点,因此是虚像。 还可以用β正负判断: (3)光线经过第一面折射:, 虚像 第二面镀膜,则:

得到: (4)在经过第一面折射 物像相反为虚像。 18.一直径为400mm,折射率为1.5的玻璃球中有两个小气泡,一个位于球心,另一个位于 1/2半径处。沿两气泡连线方向在球两边观察,问看到的气泡在何处?如果在水中观察,看到的气泡又在何处? 解: 设一个气泡在中心处,另一个在第二面和中心之间。 (1)从第一面向第二面看 (2)从第二面向第一面看 (3)在水中

19.有一平凸透镜r 1=100mm,r =∝2,d=300mm,n=1.5,当物体在时,求高斯像的位置' l 。在第二面上刻一十字丝,问其通过球面的共轭像在何处?当入射高度h=10mm ,实际光线的像方截距为多少?与高斯像面的距离为多少? 解: 19.有平凸透镜r 1=100mm ,r 2=∞,d=300mm ,n=1.5,当物体在-∞时,求高斯像的 位置l’。在第二面上刻一十字丝,问其通过球面的共轭像处?当入 射高度h=10mm 时,实际光线的像方截距为多少?与高斯像面的距离为多少? d=300mm r 1=100mm I I ' B ' r 2=∞ -I 2 I 2’ B’ B” A’ n=1.5

工程光学下习题库整理

1.在单缝衍射中,设缝宽为a ,光源波长为λ,透镜焦距为f ′,则其衍射暗条纹间距e 暗=f a λ ' ,条纹间距同时可称为线宽度。 3.光线通过平行平板折射后出射光线方向__不变_ ___ ,但会产生轴向位移量,当平面板厚度为d ,折射率为n ,则在近轴入射时,轴向位移量为1 (1)d n - 。 4.在光的衍射装置中,一般有光源、衍射屏、观察屏,则衍射按照它们距离不同可分为两类,一类为 菲涅耳衍射,另一类为 夫琅禾费衍射 。 5.光轴是晶体中存在的特殊方向,当光在晶体中沿此方向传播时不产生双折射。n e

工程光学习题解答第十章光的干涉

第十一章光的干涉 1. 双缝间距为1mm,离观察屏1m,用钠光灯做光源,它发出两种波长的单色光 nm 0.5891=λ和nm 6.5892=λ,问两种单色光的第十级亮条纹之间的间距是多少? 解:由题知两种波长光的条纹间距分别为 ∴第十级亮纹间距()()65211010589.6589100.610e e m -?=-=?-?=? 2. 在杨氏实验中,两小孔距离为1mm,观察屏离小孔的距离为50cm,当用一片折射率为 1.58的透明薄片贴住其中一个小孔时(见图11-17),发现屏上的条纹系统移动了0.5场面,试决定试件厚度。 解:设厚度为h 3. 一个长30mm 定的干涉条纹系。继后抽去气室中的空气,注入某种气体,发现条纹系移动了25解:设气体折射率为n ,则光程差改变0n n h ?=- 4. ** 垂直入射的平面波通过折射率为n 的玻璃板,投射光经投射会聚到焦点上。玻 璃板的厚度沿着C 点且垂直于图面(见图11-18)的直线发生光波波长量级的突变d ,问d 为多少时,焦点光强是玻璃板无突变时光强的一半。 解:无突变时焦点光强为04I ,有突变时为02I ,设',.d D 又 ()1n d ?=- 5. 若光波的波长为λ,波长宽度为λ?,相应的频率和频率宽度记为ν和ν?,证明λλνν ?=?,对于nm 8.632=λ的氦氖激光,波长宽度nm 8 102-?=?λ,求频率宽度和相干长度。 解:c λν=λ ν λν??∴= 对于632.8c nm λνλ=?= 6. 直径为0.1mm 的一段钨丝用作杨氏实验的光源,为使横向相干宽度大于1mm ,双孔 必须与灯相距离多少? 解:设钨灯波长为λ,则干涉孔径角bc λβ= 又∵横向相干宽度为1d mm = 图11-47 习题2 图 C 图11-18

工程光学第三版下篇物理光学第十一章课后习题测验答案详解

第十一章 光的电磁理论基础 解:(1)平面电磁波cos[2()]z E A t c πν?=-+ 对应有14 62,10,,3102 A Hz m π ν?λ -=== =?。 (2)波传播方向沿z 轴,电矢量振动方向为y 轴。 (3)B E → → 与垂直,传播方向相同,∴0By Bz == 814610[210()] z Bx CEy t π π===??-+ 解:(1)215 cos[2()]10cos[10 ( )]0.65z z E A t t c c πν?π=-+=- ∴15 14 210510v Hz πνπν=?=? 72/2/0.65 3.910n k c m λππ-===? (2)8 714310 1.543.910510 n c c n v λν-?====??? 3.在与一平行光束垂直的方向上插入一片透明薄片,薄片的厚度0.01h mm =,折射率n=1.5, 若光波的波长为500nm λ=,试计算透明薄片插入前后所引起的光程和相位的变化。 解:光程变化为 (1)0.005n h mm ?=-= 相位变化为)(202500 10005.026 rad πππλδ=??= ? = 4. 地球表面每平方米接收到来自太阳光的功率为 1.33kw,试计算投射到地球表面的太阳 光的电场强度的大小。假设太阳光发出波长为600nm λ=的单色光。 解:∵2201 2 I cA ε= = ∴1 32 2()10/I A v m c ε= 5. 写出平面波8 100exp{[(234)1610]}E i x y z t =++-?的传播方向上的单位矢量0k 。

工程光学,郁道银,第七章 习题及答案

第七章习题及答案 1.一个人近视程度是-2D(屈光度),调节范围是8D,求:(1)其远点距离; (2)其近点距离; (3)配带100 度的近视镜,求该镜的焦距; (4)戴上该近视镜后,求看清的远点距离; (5)戴上该近视镜后,求看清的近点距离。 解:这点距离的倒数表示近视程度 2.一放大镜焦距,通光孔径,眼睛距放大镜为50mm,像距离眼睛在明视距离250mm,渐晕系数K=50%,试求:(1)视觉放大率;(2)线视场;(3)物体的位置。 解:

3.一显微物镜的垂轴放大倍率,数值孔径NA=0.1,共轭距L=180mm,物镜框是孔径光阑,目镜焦距。 (1)求显微镜的视觉放大率; (2)求出射光瞳直径; (3)求出射光瞳距离(镜目距); (4) 斜入射照明时,,求显微镜分辨率; (5)求物镜通光孔径; (6)设物高2y=6mm,渐晕系数K=50%,求目镜的通光孔径。解:

4.欲分辨0.000725mm 的微小物体,使用波长,斜入射照明,问: (1)显微镜的视觉放大率最小应多大?

(2)数值孔径应取多少适合? 解:此题需与人眼配合考虑 5.有一生物显微镜,物镜数值孔径NA=0.5,物体大小 2y=0.4mm,照明灯丝面 积,灯丝到物面的距离 100mm,采用临界照明,求聚光镜焦距和通光孔径。 解: 视场光阑决定了物面大小,而物面又决定了照明的大小

6.为看清 4km 处相隔 150mm 的两个点(设 ),若用开普勒望远 镜观察,则: (1) 求开普勒望远镜的工作放大倍率; (2) 若筒长 L=100mm ,求物镜和目镜的焦距; (3) 物镜框是孔径光阑,求出设光瞳距离; (4) 为满足工作放大率要求,求物镜的通光孔径; (5) 视度调节在 (屈光度),求目镜的移动量; (6) 若物方视场角,求像方视场角; (7) 渐晕系数 K=50%,求目镜的通光孔径; 解: 因为:应与人眼匹配

工程光学习题答案

第一章习题及答案 1、已知真空中的光速c=3*108m/s,求光在水(n=1.333)、冕牌玻璃(n=1.51)、 火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的 光速。 解: 则当光在水中, n=1.333 时,v=2.25*108m/s, 当光在冕牌玻璃中,n=1.51 时,v=1.99*108m/s, 当光在火石玻璃中,n=1.65 时,v=1.82*108m/s, 当光在加拿大树胶中,n=1.526 时,v=1.97*108m/s, 当光在金刚石中,n=2.417 时,v=1.24*108m/s。 2、一物体经针孔相机在屏上成一60mm 大小的像,若将屏拉远50mm,则像的大 小变为70mm,求屏到针孔的初始距离。 解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向 不变,令屏到针孔的初始距离为x,则可以根据三角形相似得出:所以x=300mm 即屏到针孔的初始距离为300mm。 3、一厚度为200mm 的平行平板玻璃(设n=1.5),下面放一直径为1mm 的金属 片。若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属 片,问纸片最小直径应为多少? 解:令纸片最小半径为x, 则根据全反射原理,光束由玻璃射向空气中时满足入射角度大于或等于全反 射临界角时均会发生全反射,而这里正是由于这个原因导致在玻璃板上方看不到 金属片。而全反射临界角求取方法为: (1) 其中n2=1, n1=1.5, 同时根据几何关系,利用平板厚度和纸片以及金属片的半径得到全反射 临界角的计算方法为: (2) 联立(1)式和(2)式可以求出纸片最小直径x=179.385mm,所以纸片 最小直径为358.77mm。 4、光纤芯的折射率为n1、包层的折射率为n2,光纤所在介质的折射率为n0,求 光纤的数值孔径(即n0sinI1,其中I1 为光在光纤内能以全反射方式传播时在入 射端面的最大入射角)。 解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有: n0sinI1=n2 sinI2 (1) 而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内

工程光学习题参考答案第十四章 光的偏振和晶体光学

第十四章 光的偏振和晶体光学 1. 一束自然光以30度角入射到玻璃-空气界面,玻璃的折射率 1.54n =,试计算(1)反射 光的偏振度;(2)玻璃-空气界面的布儒斯特角;(3)以布儒斯特角入射时透射光的偏振度。 解:光由玻璃到空气,354.50sin 1sin ,30,1,54.11212121=??? ? ??-====θθθn n n n o ①()()()() 06305.0tan 1tan ,3528.0sin 1sin 212212-=+-==+-- =θθθθθθθθp s r r 002 22 2 min max min max 8.93=+-=+-=p s p s r r r r I I I I P ②o B n n 3354.11tan tan 1121 =?? ? ??==--θ ③()() 4067.0sin 1sin ,0,57902120 21=+-- ===-==θθθθθθθθs p B B r r 时, 02 98364 .018364.011 ,8364.01=+-===-=P T r T p s s 注:若2 21 122,,cos cos p p s s t T t T n n ηηθθη=== )(cos ,212 2 222 0min 0max θθ-=+-= ==p s s p s p s p T T t t t t P I T I I T I 或故 2. 自然光以布儒斯特角入射到由10片玻璃片叠成的玻片堆上,试计算透射光的偏振度。 解:每片玻璃两次反射,故10片玻璃透射率( ) 20 22010.83640.028s s T r =-== 而1p T =,令m m I I in ax τ=,则m m m m I I 110.02689 0.94761I I 10.02689ax in ax in p ττ---= ===+++

相关文档
相关文档 最新文档