文档库 最新最全的文档下载
当前位置:文档库 › 多目标优化实例和matlab程序

多目标优化实例和matlab程序

多目标优化实例和matlab程序
多目标优化实例和matlab程序

NSGA-II 算法实例

目前的多目标优化算法有很多, Kalyanmoy Deb 的带精英策略的快速非支配排序遗传算法(NSGA-II) 无疑是其中应用最为广泛也是最为成功的一种。本文用的算法是MATLAB 自带的函数gamultiobj ,该函数是基于NSGA-II 改进的一种多目标优化算法。

一、 数值例子

多目标优化问题

424221*********

4224212212112

12min (,)10min (,)55..55

f x x x x x x x x x f x x x x x x x x x s t x =-++-=-++-≤≤??-≤≤?

二、 Matlab 文件

1. 适应值函数m 文件: function y=f(x) y(1)=x(1)^4-10*x(1)^2+x(1)*x(2)+x(2)^4-x(1)^2*x(2)^2;

y(2)=x(2)^4-x(1)^2*x(2)^2+x(1)^4+x(1)*x(2);

2. 调用gamultiobj 函数,及参数设置:

clear

clc

fitnessfcn=@f; %适应度函数句柄

nvars=2; %变量个数

lb=[-5,-5]; %下限

ub=[5,5]; %上限

A=[];b=[]; %线性不等式约束

Aeq=[];beq=[]; %线性等式约束

options=gaoptimset('paretoFraction',0.3,'populationsize',100,'generations',200,'stallGenLimit',200,'TolFun',1e-100,'PlotFcns',@gaplotpareto);

% 最优个体系数paretoFraction 为0.3;种群大小populationsize 为100,最大进化代数generations 为200,

% 停止代数stallGenLimit 为200, 适应度函数偏差TolFun 设为1e-100,函数gaplotpareto :绘制Pareto 前端

[x,fval]=gamultiobj(fitnessfcn,nvars,A,b,Aeq,beq,lb,ub,options)

3. 计算结果

图1. 实例1对应的Pareto 前沿图

从图1可以看出Pareto 前分布较均匀,多样性较好。 -40-35-30-25-20

-15-10-5

-50

5

10

15

202530

35

Objective 1O b j e c t i v e 2

Pareto front

2019年matlab优化工具箱的使用

优化工具箱的使用 MATLAB的优化工具箱提供了各种优化函数,这些优化函数可以通过在命令行输入相应的函数名加以调用;此外为了使用方便,MA TLAB还提供了图形界面的优化工具(GUI Optimization tool)。 1 GUI优化工具 GUI优化工具的启动 有两种启动方法: (1)在命令行输入optimtool; (2)在MA TLAB主界面单击左下角的“Start”按钮,然后依次选择“Toolboxes→Optimization→Optimization tool” GUI优化工具的界面 界面分为三大块: 左边(Problem Setup and Results)为优化问题的描述及计算结果显示; 中间(Options)为优化选项的设置; 右边(Quick Reference)为帮助。为了界面的简洁,可以单击右上角“<<”、“>>”的按钮将帮助隐藏或显示。 1、优化问题的描述及计算结果显示 此板块主要包括选择求解器、目标函数描述、约束条件描述等部分。 选择合适的求解器以及恰当的优化算法,是进行优化问题求解的首要工作。 ?Solver:选择优化问题的种类,每类优化问题对应不同的求解函数。 ?Algorithm:选择算法,对于不同的求解函数,可用的算法也不同。 Problem框组用于描述优化问题,包括以下内容: ?Objective function: 输入目标函数。 ?Derivatives: 选择目标函数微分(或梯度)的计算方式。 ?Start point: 初始点。 Constraints框组用于描述约束条件,包括以下内容: ?Linear inequalities: 线性不等式约束,其中A为约束系数矩阵,b代表约束向量。 ?Linear equalities: 线性等式约束,其中Aeq为约束系数矩阵,beq代表约束向量。 ?Bounds: 自变量上下界约束。 ?Nonlinear Constraints function; 非线性约束函数。 ?Derivatives: 非线性约束函数的微分(或梯度)的计算方式。 Run solver and view results框组用于显示求解过程和结果。 (对于不同的优化问题类型,此板块可能会不同,这是因为各个求解函数需要的参数个数不一样,如Fminunc 函数就没有Constraints框组。) 2、优化选项(Options) ?Stopping criteria: 停止准则。

matlab 有关GA优化的例子

核心函数: (1)function [pop]=initializega(num,bounds,eevalFN,eevalOps,options)--初始种群的生成函数 【输出参数】 pop--生成的初始种群 【输入参数】 num--种群中的个体数目 bounds--代表变量的上下界的矩阵 eevalFN--适应度函数 eevalOps--传递给适应度函数的参数 options--选择编码形式(浮点编码或是二进制编码)[precision F_or_B],如 precision--变量进行二进制编码时指定的精度 F_or_B--为1时选择浮点编码,否则为二进制编码,由precision指定精度) (2)function [x,endPop,bPop,traceInfo] = ga(bounds,evalFN,evalOps,startPop,opts,... termFN,termOps,selectFN,selectOps,xOverFNs,xOverOps,mutFNs,mutOps)--遗传算法函数 【输出参数】 x--求得的最优解 endPop--最终得到的种群 bPop--最优种群的一个搜索轨迹 【输入参数】 bounds--代表变量上下界的矩阵 evalFN--适应度函数 evalOps--传递给适应度函数的参数 startPop-初始种群 opts[epsilon prob_ops display]--opts(1:2)等同于initializega的options参数,第三个参数控制是否输出,一般为0。如[1e-6 1 0] termFN--终止函数的名称,如[maxGenTerm] termOps--传递个终止函数的参数,如[100] selectFN--选择函数的名称,如[normGeomSelect] selectOps--传递个选择函数的参数,如[0.08] xOverFNs--交*函数名称表,以空格分开,如[arithXover heuristicXover simpleXover] xOverOps--传递给交*函数的参数表,如[2 02 32 0] mutFNs--变异函数表,如[boundaryMutation multiNonUnifMutation nonUnifMutation unifMutation] mutOps--传递给交*函数的参数表,如[4 0 06 100 34 100 34 0 0] 注意】matlab工具箱函数必须放在工作目录下 【问题】求f(x)=x+10*sin(5x)+7*cos(4x)的最大值,其中0<=x<=9 【分析】选择二进制编码,种群中的个体数目为10,二进制编码长度为20,交*概率为0.95,变异概率为0.08 【程序清单】 编写目标函数 function[sol,eval]=fitness(sol,options) x=sol(1) eval=x+10*sin(5*x)+7*cos(4*x) 把上述函数存储为fitness.m文件并放在工作目录下

Matlab最优化编程例子

题目:分别用最速下降法、FR 共轭梯度法、DFP 法和BFGS 法求解问题: 22112212minf(x)x 2x x 4x x 3x =-++- 取初始点(1)T x (1,1)=,通过Matlab 编程实现求解过程。 公用函数如下: 1、function f= fun( X ) %所求问题目标函数 f=X(1)^2-2*X(1)*X(2)+4*X(2)^2+X(1)-3*X(2); end 2、function g= gfun( X ) %所求问题目标函数梯度 g=[2*X(1)-2*X(2)+1,-2*X(1)+8*X(2)-3]; end 3、function He = Hess( X ) %所求问题目标函数Hesse 矩阵 n=length(X); He=zeros(n,n); He=[2,-2; -2,4]; End 解法一:最速下降法 function [ x,val,k ] = grad( fun,gfun,x0 ) %功能:用最速下降法求无约束问题最小值 %输入:x0是初始点,fun 和gfun 分别是目标函数和梯度 %输出:x 、val 分别是最优点和最优值,k 是迭代次数 maxk=5000;%最大迭代次数 rho=0.5;sigma=0.4; k=0;eps=10e-6; while (k

多目标优化实例和matlab程序

NSGA-II 算法实例 目前的多目标优化算法有很多, Kalyanmoy Deb 的带精英策略的快速非支配排序遗传算法(NSGA-II) 无疑是其中应用最为广泛也是最为成功的一种。本文用的算法是MATLAB 自带的函数gamultiobj ,该函数是基于NSGA-II 改进的一种多目标优化算法。 一、 数值例子 多目标优化问题 424221********* 4224212212112 12min (,)10min (,)55..55 f x x x x x x x x x f x x x x x x x x x s t x =-++-=-++-≤≤??-≤≤? 二、 Matlab 文件 1. 适应值函数m 文件: function y=f(x) y(1)=x(1)^4-10*x(1)^2+x(1)*x(2)+x(2)^4-x(1)^2*x(2)^2; y(2)=x(2)^4-x(1)^2*x(2)^2+x(1)^4+x(1)*x(2); 2. 调用gamultiobj 函数,及参数设置: clear clc fitnessfcn=@f; %适应度函数句柄 nvars=2; %变量个数 lb=[-5,-5]; %下限 ub=[5,5]; %上限 A=[];b=[]; %线性不等式约束 Aeq=[];beq=[]; %线性等式约束 options=gaoptimset('paretoFraction',0.3,'populationsize',100,'generations', 200,'stallGenLimit',200,'TolFun',1e-100,'PlotFcns',@gaplotpareto); % 最优个体系数paretoFraction 为0.3;种群大小populationsize 为100,最大进化代数generations 为200, % 停止代数stallGenLimit 为200, 适应度函数偏差TolFun 设为1e-100,函数gaplotpareto :绘制Pareto 前端 [x,fval]=gamultiobj(fitnessfcn,nvars,A,b,Aeq,beq,lb,ub,options)

MATLAB优化应用

methmodeltjut@https://www.wendangku.net/doc/4e7668368.html, mathematica MATLAB优化应用 §1 线性规划模型 一、线性规划问题: 实例1:生产计划问题 假设某厂计划生产甲、乙两种产品,现库存主要材料有A类3600公斤,B 类2000公斤,C类3000公斤。每件甲产品需用材料A类9公斤,B类4公斤,C类3公斤。每件乙产品,需用材料A类4公斤,B类5公斤,C类10公斤。甲单位产品的利润70元,乙单位产品的利润120元。问如何安排生产,才能使该厂所获的利润最大。 建立数学模型: 设x1、x2分别为生产甲、乙产品的件数。f为该厂所获总润。 max f=70x1+120x2 s.t 9x1+4x2≤3600 4x1+5x2≤2000 3x1+10x2≤3000 x1,x2≥0 实例2:投资问题 某公司有一批资金用于4个工程项目的投资,其投资各项目时所得的净收益(投入资金百分比)如下表:工程项目收益表

由于某种原因,决定用于项目A的投资不大于其他各项投资之和而用于项目B和C的投资要大于项目D的投资。试确定该公司收益最大的投资分配方案。 建立数学模型: 设x1、x2 、x3 、x4分别代表用于项目A、B、C、D的投资百分数。 max f=0.15x1+0.1x2+0.08 x3+0.12 x4 s.t x1-x2- x3- x4≤0 x2+ x3- x4≥0 x1+x2+x3+ x4=1 x j≥0 j=1,2,3,4 实例3:运输问题 有A、B、C三个食品加工厂,负责供给甲、乙、丙、丁四个市场。三个厂每天生产食品箱数上限如下表: 四个市场每天的需求量如下表: 从各厂运到各市场的运输费(元/每箱)由下表给出: 求在基本满足供需平衡的约束条件下使总运输费用最小。 建立数学模型: 设a i j为由工厂i运到市场j的费用,x i j 是由工厂i运到市场j的箱数。b i 是工厂i的产量,d j是市场j的需求量。

用遗传算法优化BP神经网络的Matlab编程实例

用遗传算法优化BP神经网络的 Matlab编程实例 由于BP网络的权值优化是一个无约束优化问题,而且权值要采用实数编码,所以直接利用Matlab遗传算法工具箱。以下贴出的代码是为一个19输入变量,1个输出变量情况下的非线性回归而设计的,如果要应用于其它情况,只需改动编解码函数即可。 程序一:GA训练BP权值的主函数 function net=GABPNET(XX,YY) %-------------------------------------------------------------------------- % GABPNET.m % 使用遗传算法对BP网络权值阈值进行优化,再用BP 算法训练网络 %-------------------------------------------------------------------------- %数据归一化预处理 nntwarn off XX=premnmx(XX); YY=premnmx(YY); %创建网络 net=newff(minmax(XX),[19,25,1],{'tansig','tansig','purelin'},' trainlm'); %下面使用遗传算法对网络进行优化 P=XX; T=YY; R=size(P,1); S2=size(T,1); S1=25;%隐含层节点数 S=R*S1+S1*S2+S1+S2;%遗传算法编码长度 aa=ones(S,1)*[-1,1]; popu=50;%种群规模 initPpp=initializega(popu,aa,'gabpEval');%初始化种群 gen=100;%遗传代数 %下面调用gaot工具箱,其中目标函数定义为gabpEval [x,endPop,bPop,trace]=ga(aa,'gabpEval',[],initPpp,[1e-6 1 1],'maxGenTerm',gen,... 'normGeomSelect',[0.09],['arithXover'],[2],'nonUnifMutatio n',[2 gen 3]); %绘收敛曲线图 figure(1) plot(trace(:,1),1./trace(:,3),'r-'); hold on plot(trace(:,1),1./trace(:,2),'b-'); xlabel('Generation'); ylabel('Sum-Squared Error'); figure(2) plot(trace(:,1),trace(:,3),'r-'); hold on plot(trace(:,1),trace(:,2),'b-'); xlabel('Generation'); ylabel('Fittness'); %下面将初步得到的权值矩阵赋给尚未开始训练的BP网络 [W1,B1,W2,B2,P,T,A1,A2,SE,val]=gadecod(x); net.LW{2,1}=W1; net.LW{3,2}=W2; net.b{2,1}=B1; net.b{3,1}=B2; XX=P; YY=T; %设置训练参数 net.trainParam.show=1; net.trainParam.lr=1; net.trainParam.epochs=50; net.trainParam.goal=0.001; %训练网络 net=train(net,XX,YY); 程序二:适应值函数 function [sol, val] = gabpEval(sol,options) % val - the fittness of this individual % sol - the individual, returned to allow for Lamarckian evolution % options - [current_generation] load data2 nntwarn off XX=premnmx(XX); YY=premnmx(YY); P=XX; T=YY; R=size(P,1); S2=size(T,1); S1=25;%隐含层节点数 S=R*S1+S1*S2+S1+S2;%遗传算法编码长度 for i=1:S, x(i)=sol(i); end; [W1, B1, W2, B2, P, T, A1, A2, SE, val]=gadecod(x);

简述基于MATLAB的优化设计

基于MATLAB 的曲柄摇杆机构优化设计 1. 问题的提出 根据机械的用途和性能要求的不同,对连杆机构设计的要求是多种多样的,但这些设计要求可归纳为以下三种问题:(1)满足预定的运动规律要求;(2)满足预定的连杆位置要求;(3)满足预定的轨迹要求。在在第一个问题里按照期望函数设计的思想,要求曲柄摇杆机构的曲柄与摇杆转角之间按照()f φ?=(称为期望函数)的关系实现运动,由于机构的待定参数较少,故一般不能准确实现该期望函数,设实际的函数为()F φ?=(称为再现函数),而再现函数一般是与期望函数不一致的,因此在设计时应使机构再现函数()F φ?=尽可能逼近所要求的期望函数()f φ?=。这时需按机械优化设计方法来设计曲柄连杆,建立优化数学模型,研究并提出其优化求解算法,并应用于优化模型的求解,求解得到更优的设计参数。 2. 曲柄摇杆机构的设计 在图 1 所示的曲柄摇杆机构中,1l 、2l 、3l 、 4l 分别是曲柄AB 、连杆BC 、摇杆CD 和机架AD 的长度。这里规定0?为摇杆在右极限位置0φ时的曲柄起始位置角,它们由1l 、2l 、3l 和4l 确定。 图1 曲柄摇杆机构简图 设计时,可在给定最大和最小传动角的前提下,当曲柄从0?转到090??+时,要求摇杆的输出角最优地实现一个给定的运动规律()f ?。这里假设要求: ()()2 0023E f φ?φ??π ==+ - (1)

对于这样的设计问题,可以取机构的期望输出角()E f φ?=和实际输出角 ()F φ?=的平方误差之和作为目标函数,使得它的值达到最小。 2.1 设计变量的确定 决定机构尺寸的各杆长度1l 、2l 、3l 和4l ,以及当摇杆按已知运动规律开始运行时,曲柄所处的位置角0?应列为设计变量,即: []12340T x l l l l ?= (2) 考虑到机构的杆长按比例变化时,不会改变其运动规律,通常设定曲柄长度 1l =1.0,在这里可给定4l =5.0,其他杆长则按比例取为1l 的倍数。若取曲柄的初始 位置角为极位角,则?及相应的摇杆l 位置角φ均为杆长的函数,其关系式为: ()()()()222221243230124225arccos 210l l l l l l l l l l l l ?????++-+-+==????++???????? (3) ()()22222124323034325arccos 210l l l l l l l l l l ????? +--+--==???????????? (4) 因此,只有2l 、3l 为独立变量,则设计变量为[][]2312T T x l l x x ==。 2.2目标函数的建立 目标函数可根据已知的运动规律与机构实际运动规律之间的偏差最小为指标来建立,即: ()()2 1min m Ei i i f x φφ==-→∑ (5) 式中,Ei φ-期望输出角;m -输出角的等分数;i φ-实际输出角,由图 1 可知: ()()02i i i i i i i παβ?πφπαβπ?π--≤≤??=?-+≤≤?? (6) 式中,222222322132arccos arccos 22i i i i i r l l r x x rl r x α???? +-+-== ? ????? (7) 222241424arccos arccos 210i i i i i r l l r rl r β???? +-+== ? ????? (8) i r == (9) 2.3约束条件

matlab在优化设计中的应用

m a t l a b在优化设计中的 应用 The Standardization Office was revised on the afternoon of December 13, 2020

Matlab 在优化设计中的应用 摘 要 常见的优化问题包括线性规划、无约束优化、约束优化、最下二乘优化、多目标规划等。本文研究了matlab 在这些常见优化问题中的应用及求解。 在进行研究本课题之前,我们先通过网络、电子书刊等各种有效渠道获取我们所需信息,在充分了解与熟练掌握了各种优化问题的具体特点及性质后,我们给出了关于如何用matlab 进行多类优化问题的求解基本方法,在此前提下,为了体现该软件在这些优化领域的实际应用效果,我们结合若干个优化问题的实例进行分析、建模、以及运用matlab 编程求解,在求解过程中,通过得到的精确数据和反应结果的图例,我们了解到matlab 工具箱的功能强大,是处理优化问题的非常方便的编程工具。 关键词:matlab 优化问题 二、基本概念 线性规划 线性规划是优化的一个重要分支。它在理论和算法上都比较成熟,在实际中有广泛的应用。例如数学表达形式: ???? ? ??? ?=≥=+++=+++=++++++n i x b x a x a x a b x a x a x a b x a x a x a t s x c x c x c i m n mn m m n n n n n n ,,2,1,0..min 221 122222121112121112211

在MTLAB 提供的优化工具箱中,解决规划的命令是linprog ,它的调用格式如下, ),,(b A c linprog x = 求解下列形式的线性规划: ?? ?≤b Ax t s x c T ..min ),,,,(beq Aeq b A c linprog x = 求解下面形式的线性规划: ?? ? ? ????=?≤beq x Aeq b Ax t s x c T ..min 若没有不等式约束b Ax ≤,则只需命令 [][],==b A 。 ),,,,,,(ub lb beq Aeq b A c linprog x = 求解下面形式的线性规划: ??? ?????? ? ??≤≤=?≤ub x lb beq x Aeq b Ax t s x c T ..min 若没有不等式约束b Ax ≤,则只需令[][],==b A ;若只有下界约束,则可以不用输入 ub 。 无约束优化算法 对于无约束优化问题,已经有许多有效的算法。这些算法基本都是迭代法,它们都遵循下面的步骤: ① 选取初始点x 0 ,一般来说初始点越靠近最优解越好;

MATLAB第12章工程优化设计实例

MATLAB第12章工程优化设计实例 第12章工程优化设计实例优化设计的数学模型 优化设计的数学模型是描述实际优化问题的设计内容、变量关系、有关设计条件和意图的数学表达式,它反映了物理现象各主要因素的内在联系,是进行优化设计的基础。优化设计数学模型的三大要素: ? 设计变量 ? 约束条件 ? 目标函数 1.设计变量 一个设计方案可以用一组基本参数的数值来表示,这些基本参数可以是构件尺 寸等几何量,也可以是质量等物理量,还可以是应力、变形等表示工作性能的导出量。设计变量:在设计过程中进行选择并最终必须确定的各项独立的基本参数,又叫做优化参数。 设计变量的全体实际上是一组变量,可用一个列向量表示 2.约束条件 设计空间是所有设计方案的集合,但这些设计方案有些是工程上所不能接受 的。如一个设计满足所有对它提出的要求,就称为可行设计。 一个可行设计必须满足某些设计限制条件,这些限制条件称作约束条件,简称约束。 3.目标函数 为了对设计进行定量评价,必须构造包含设计变量的评价函数,它是优化的目标,称为目标函数,以F(X)表示。

FxFxxx()(),,,,12n 在优化过程中,通过设计变量的不断向F(X)值改善的方向自动调整,最后求得 F(X)值最好或最满意的X值。在构造目标函数时,应注意:目标函数必须包含全部设计变量,所有的设计变量必须包含在约束函数中。 模型输入时需要注意的问题 使用优化工具箱时,由于优化函数要求目标函数和约束条件满足一定的格式,所以需要用户在进行模型输入时注意以下几个问题: 1.目标函数最小化 优化函数fminbnd、fminsearch、fminunc、fmincon、fgoalattain、fminmax 和lsqnonlin都要求目标函数最小化,如果优化问题要求目标函数最大化,可以通过使该目标函数的负值最小化即-f(x)最小化来实现。近似地,对于quadprog函数提供-H和-f,对于linprog函数提供-f。 2.约束非正 优化工具箱要求非线性不等式约束的形式为Ci(x)?0,通过对不等式取负可以达到使大于零的约束形式变为小于零的不等式约束形式的目的,如Ci(x)?0形式的约束等价于- Ci(x)?0;Ci(x)?b形式的约束等价于- Ci(x)+b?0。 3.避免使用全局变量 Fmincon 是matlab 最主要内置的求解约束最优化的函数,该函数的优化问题的标准形式为: 1. 数学模型标准形式: min f ,X, s.t. AX?b ,线性不等式约束, AeqX=beq ,线性等式约束, C(X)?0 ,非线性不等式约束条件,

最优化实例和matlab源程序

最优化平时作业 一、目标规划 1、题目:见书中例题P110例4 2、解题方法:利用Lingo求解 3、具体步骤 (1).对应于第一优先等级,建立线性规划问题: model: min=-d1; 5*x1+10*x2<=60; x1-2*x2+d1_-d1=0; end 运行结果:-d1=0 (2)对应于第二优先等级,将-d1=0作为约束条件,建立线性规划问题: min=d2_; 5*x1+10*x2<=60; x1-2*x2+d1_-d1=0; 4*x1+4*x2+d2_-d2=36; -d1=0; end 运行结果:d2=0; (3).对应于第三优先等级,将-d1=0, -d1=0作为约束条件,建立线性规划问题: min=d3_; 5*x1+10*x2<=60; x1-2*x2+d1_-d1=0; 4*x1+4*x2+d2_-d2=36; 6x1+8*x2+d3_-d3=48; -d1=0; d2=0; end 运行结果:d3=0; X1 4. X2 2. 二、动态规划之0-1背包问题 1、题目:给定n种物品和一背包。物品i的重量是Wi,其价值为Vi,背包的容量是c,问应如何选择装入背包中的物品,使得装入背包中物品的总价值最大。 2、解题方法与思路:利用java求解,.思想方法是回溯思想 3、需求分析 对于给定n种物品和一背包。在容量最大值固定的情况下,要求装入的物品价值最大化4、java源程序及运行结果 BackTrace.java * To change this template, choose Tools | Template Manager * and open the template in the editor. */

matlab粒子群优化算法举例分析

例 函数∑==10 12 )(i i x x f 对于适应度函数fitness 对其参数w ,1c ,3c 做出不同方式的比较以测试其对函数结果影响。 当22111==c c ,5.12212==c c ,2.1=w 。 (适应函数∑==10 12)(i i x x f ) 程序1 当22111==c c ,5.12212==c c ,2.1=w 。 a)%主函数源程序(main.m ) %------基本粒子群算法 (particle swarm optimization ) %------名称: 基本粒子群算法 %------初始格式化 clear all; %清除所有变量 clc; %清屏 format long; %将数据显示为长整形科学计数 %------给定初始条条件------------------ N=40; %3初始化群体个数 D=10; %初始化群体维数 T=100; %初始化群体最迭代次数 c11=2; %学习因子1 c21=2; %学习因子2 c12=1.5; c22=1.5; w=1.2; %惯性权重 eps=10^(-6); %设置精度(在已知最小值的时候用) %------初始化种群个体(限定位置和速度)------------ x=zeros(N,D); %x 是位置,初始化位置空间(矩阵) v=zeros(N,D); %v 是速度,初始化速度空间(矩阵) for i=1:N for j=1:D x(i,j)=randn; %随机初始化位置,randn 返回一个随机变化的符合正态分布的数 v(i,j)=randn; %随机初始化速度 end end

用遗传算法优化BP神经网络的Matlab编程实例

用遗传算法优化BP神经网络的M a t l a b编程实例 由于BP网络的权值优化是一个无约束优化问题,而且权值要采用实数编码,所以直接利用Matlab遗传算法工具箱。以下贴出的代码是为一个19输入变量,1个输出变量情况下的非线性回归而设计的,如果要应用于其它情况,只需改动编解码函数即可。 程序一:GA训练BP权值的主函数 function net=GABPNET(XX,YY) %-------------------------------------------------------------------------- %??GABPNET.m %??使用遗传算法对BP网络权值阈值进行优化,再用BP算法训练网络 %-------------------------------------------------------------------------- %数据归一化预处理 nntwarn off XX=premnmx(XX); YY=premnmx(YY); %创建网络 net=newff(minmax(XX),[19,25,1],{'tansig','tansig','purelin' },'trainlm'); %下面使用遗传算法对网络进行优化 P=XX; T=YY; R=size(P,1); S2=size(T,1); S1=25;%隐含层节点数 S=R*S1+S1*S2+S1+S2;%遗传算法编码长度 aa=ones(S,1)*[-1,1]; popu=50;%种群规模 initPpp=initializega(popu,aa,'gabpEval');%初始化种群 gen=100;%遗传代数 %下面调用gaot工具箱,其中目标函数定义为gabpEval [x,endPop,bPop,trace]=ga(aa,'gabpEval',[],initPpp,[1e-6 1 1],'maxGenTerm',gen,... ??'normGeomSelect',[0.09],['arithXover'],[2],'nonUnifMuta tion',[2 gen 3]); %绘收敛曲线图 figure(1) plot(trace(:,1),1./trace(:,3),'r-'); hold on plot(trace(:,1),1./trace(:,2),'b-'); xlabel('Generation'); ylabel('Sum-Squared Error'); figure(2) plot(trace(:,1),trace(:,3),'r-'); hold on plot(trace(:,1),trace(:,2),'b-'); xlabel('Generation'); ylabel('Fittness'); %下面将初步得到的权值矩阵赋给尚未开始训练的BP 网络 [W1,B1,W2,B2,P,T,A1,A2,SE,val]=gadecod(x); net.LW{2,1}=W1; net.LW{3,2}=W2; net.b{2,1}=B1; net.b{3,1}=B2; XX=P; YY=T; %设置训练参数 %训练网络 net=train(net,XX,YY); 程序二:适应值函数 function [sol, val] = gabpEval(sol,options) % val - the fittness of this individual % sol - the individual, returned to allow for Lamarckian evolution % options - [current_generation] load data2 nntwarn off XX=premnmx(XX); YY=premnmx(YY); P=XX; T=YY; R=size(P,1); S2=size(T,1); S1=25;%隐含层节点数 S=R*S1+S1*S2+S1+S2;%遗传算法编码长度 for i=1:S, ? ?x(i)=sol(i); end; [W1, B1, W2, B2, P, T, A1, A2, SE, val]=gadecod(x); 程序三:编解码函数 function [W1, B1, W2, B2, P, T, A1, A2, SE, val]=gadecod(x) load data2

相关文档
相关文档 最新文档