文档库 最新最全的文档下载
当前位置:文档库 › 气相色谱法和气质联用测定混合烷烃样品的实验讲义

气相色谱法和气质联用测定混合烷烃样品的实验讲义

气相色谱法和气质联用测定混合烷烃样品的实验讲义
气相色谱法和气质联用测定混合烷烃样品的实验讲义

实验1 毛细管气相色谱法测定混合烷烃样品

一、目的要求

1. 了解6820气相色谱仪的基本结构及工作原理。

2. 了解色谱定性的基本原理。

3. 熟悉分离度的定义、计算及判据。

二、实验原理

色谱法的实质是分离分析。它根据混合物各组分在互不相溶的两相——固定相与流动相中分配能力、吸附能力等性能的差异作为分离依据。当各组分随流动相渗漉通过固定相时,在流动相与固定相之间进行反复多次的分配,结果使那些分配系数仅有微小差异的组分在色谱柱中的移动距离产生了较大的差别,从而得到分离。

物质在一定得色谱条件下具有一定的保留值,故保留值可以作为一种定性指标。色谱定量的依据是峰高或峰面积。当操作条件一定时,组分的质量(或浓度)与检测器响应讯号成正比。判断色谱柱分离效能的指标是分离度,其定义式为:

Rs=2(t R2-t R1)/(W1+W2)

式中,t R为保留时间,W为基线宽度,二者均可由色谱流出曲线得到。

三、仪器与试剂

仪器:6820气相色谱仪,FID检测器(Agilent),氮、氢、空气体发生器,稳压电源,微量进样器,定性滤纸

试剂:混合烷烃样品

四、实验步骤

1. 色谱条件

色谱柱:DB-1,15 m×0.53 mm;

柱温:80℃,梯度:15 ℃/min;气化室温度:250 ℃;FID温度:300 ℃;

载气:高纯氮,分压表0.4 MPa,流量:410 mL/min。

2. 混合样品的分离测定

(1)注册样品——样品/编辑/注册样品。

(2)进样——混合样品0.2μL/后进样口/手动进样。

五、结果处理

1. 方法/输出/报告规格/面积百分比/打印。

2. 计算分离度。

六、思考题

1. 气相色谱如何定性?

2. 分离度有何意义?

3. 气相色谱中柱温的选择原则是什么?

4. 分流与不分流进样各适用于何种情况?应注意哪些问题?

实验2 气相色谱-质谱联用法测定环境样品中的多环芳烃

一、实验目的

1. 掌握GC-MS工作的基本原理;

2. 了解GC-MS联用仪的基本操作;

3. 初步学会质谱图的解析。

二、实验背景

1. 气相色谱(GC)

GC是一种分离技术。在实际工作中要分析的样品通常很复杂,因此,对含有未知组分的样品,首先必须要将其分离,然后才能对有关组分做进一步的分析。混合物中各个组分的分离性质在一定条件下是不变的,因此,一旦确定了分离条件,就可用来对样品组分进行定量分析。

GC主要是利用物质的沸点、极性及吸附性质的差异来实现混合物的分离。待分析样品在气化室气化后被惰性气体(即载气,也叫流动相)带入色谱柱,柱内含有固定相,由于样品中各个组分的沸点、极性或吸附性能不同,每种组分都倾向于在流动相和固定相之间形成分配或吸附平衡。由于载气在流动,使得样品组分在运动中进行反复多次的分配或吸附/解吸,结果是在载气中分配浓度大的组分先流出色谱柱进入检测器,检测器将样品组分的存在与否转变为电信号,电信号的大小与被测组份的量或者浓度成比例,这些信号放大并记录下来就成了通常我们看到的色谱图。(分析流程见下图)

样品

器谱柱分离检测器号记录

2. 质谱(MS)

质谱法是通过将样品转化为运动的气态离子并按照质荷比(m/z)大小进行分离记录的分析方法,根据质谱图提供的信息可以进行多种有机物及无机物的定性定量及结构分析。其早期主要用于分析同位素,现在已经成为鉴定有机化合物结构的重要工具之一。MS可以提供分子量信息以及丰富的碎片离子信息,从而根据碎裂方式和碎裂理论深入研究质谱碎裂机理,为分析鉴定有机化合物结构提供数据,对于离子结构对应的分子组成、精确质量的测定可以给出有力的证明。对于一个未知物而言可以在一定程度上通过质谱来确定其可能的结构特征。

本实验用的仪器是电子轰击离子源(离子源为灯丝(70 eV),可以发出电子),有机化合物在高真空中受热气化后,受到具有一定能量电子束轰击,可使分子失去电子而形成分子离子。这些离子经离子光学系统聚焦后,进入离子阱质量分析器,通过射频电压扫描,不同质荷比的离子相继排出离子阱而被电子倍增器检测。

3. 气质联用(GC-MS)

色谱法对有机化合物是一种有效的分离分析方法,但有时候定性分析比较困难,而质谱法虽然可以进行有效的定性分析,但对复杂的有机化合物就很困难了,因此色谱法和质谱法的结合为复杂的有机化合物的定量、定性及结构分析提供了一个良好的平台。

气质联用仪是分析仪器中较早实现联用技术的仪器,在所有联用技术中气质联用发展最完善,应用最为广泛。二者的有效结合即充分利用了气相色谱的分离能力,又发挥了质谱定性的专长,优势互补,结合谱库检索,对容易挥发的混合体系,一般情况下可以得到满意的分离及鉴定结果。目前从事有机物分析的实验室几乎都把GC-MS作为主要的定性确认手段之一,另一方面,目前市售的有机质谱仪均能和气相色谱联用。

气相色谱仪分离样品中各个组分,起着样品制备的作用;接口把气相色谱流出的各个组分送入质谱仪进行检测;质谱仪对接口引入的各个组分进行分析,成为气相色谱的检测器;计算机系统控制气相色谱、接口和质谱仪,进行数据采集和处理。

下图是GC-MS联用仪的组成。

气相色谱

分析结果大气

气相色谱-质谱联用法(GC-MS)是一种高效能、高选择性、高灵敏度的分离分析方法。质谱检测模式有全离子扫描(SCAN)模式和选择离子扫描(SIM)模式,气相色谱-质谱联用选择离子检测(GC-MS-SIM)常被用作定量分析,且能提高灵敏度,降低样品浓度检测限。

4. 多环芳烃

多环芳烃( PAH )普遍存在于人为因素及自然因素产生的环境污染物中。PAH主要是在煤、石油等矿物性燃料不完全燃烧时产生的,主要的工业污染源是焦化、石油炼制、炼钢等工业排放的废水和废气。PAH 具有化学结构稳定、较好的疏水性及容易在生物体内积累等特点, 一旦形成就很难降解。这类化合物中已有不少被确定或怀疑具有致癌或致突变作用,所以日益引起人们的关注,PAH一直是分析化学界的研究重点。建立一种精确的、高回收率并且低不确定度的测定环境样品中PAH s的方法, 显得尤为重要。在各种水中的最高允许浓度为:地下水50 μg·L-1;地面水1 μg·L-1;废水100 μg·L-1。

目前国内外分离和测定多环芳烃PAH的主要方法有薄层色谱法、气相色谱法和高效液相色谱法(HPLC)。HPLC 测定PAH,不需高温,对某些PAH的测定具有较高的分辨率和灵敏度,柱后馏分便于收集进行光谱鉴定等优点,所以近年来,HPLC法广泛用于PAH的测定。

三、实验原理

1. GC-MS联用中主要的技术问题

(1)仪器接口

通常色谱柱的出口端为大气压力,这一状态与质谱仪中的高真空系统不相容,因此,接口技术要解决的问题就是如何使气相色谱仪的大气压工作条件和质谱计的真空工作条件的联接和匹配。接口要把气相色谱柱流出物中的载气,尽可能多的除去,保留或浓缩待测物,使近似大气压的气流转变成适合离子化装置的粗真空,并协调色谱仪和质谱计的工作流量。

(2)扫描速度

没与色谱仪联接的质谱计一般对扫描速度要求不高。和气相色谱仪联接的质谱计,由于气相色谱峰很窄,有的仅几秒钟时间。一个完整的色谱峰通常需要至少6个以上数据点。这样就要求质谱仪有较高的扫描速度,才能在很短的时间内完成多次全范围的质量扫描。另一方面,要求质谱计能很快地在不同的质量数之间来回切换,以满足选择离子检测的需要。

2. GC-MS分析条件的选择

GC/MS分析条件要根据样品进行选择,在分析样品之前应尽量了解样品的情况,比如样品组分的多少、沸点范围、分子量范围、化合物类型等。这些是选择分析条件的基础。一般情况下样品组成简单,可以使用填充柱;样品组成复杂,则一定要使用毛细管柱。根据样品类型选择不同的色谱柱固定相,如极性、非极性和弱极性等。与气相色谱中的分析一样,气化温度一般要高于样品中最高沸点20~30 ℃。柱温可根据样品的具体情况来设定,如有必要也可采用程序升温技术,选择合适的升温速率,以使各组分都实现基线分离。有关GC/MS分析中的色谱条件与普通的气相色谱条件相同。质谱条件的选择包括扫描范围、扫描速度、灯丝电流、电子能量、光电倍增器电压等。扫描范围就是可以选择分析器的离子的质荷比范围,该值的设定取决于欲分析化合物的分子量,应该使化合物所有的离子都出现在设定的扫描范围之内。扫描速度视色谱峰宽而定。

一个色谱峰出峰时间内最好能有7~8次质谱扫描,这样得到的重建离子流色谱图比较圆滑,一般扫描速度可设在0.5~2 s扫一个完整质谱即可。灯丝电流一般设置在0.20~0.25 mA。灯丝电流小,仪器灵敏地太低;电流太大,则会降低灯丝寿命。电子能量一般为70 eV,标准质谱图都是在70 eV 下得到的。改变电子能量会影响质谱中各种离子间的相对强度。如果质谱中没有分子离子峰或分子离子峰很弱,为了得到分子离子,可以降低电子能量到15 eV左右。此时分子离子峰的强度会增强,

但仪器灵敏度会大大降低,而且得到的不再是标准质谱。光电倍增器电压与灵敏度有直接关系。在仪器灵敏度能够满足要求的情况下,应使用较低的光电倍增器电压,以保护倍增器,延长其使用寿命。

3. GC-MS分析技术

GC/MS分析的关键是设置合适的分析条件。使各组分能够得到满意的分离,得到很好的重建离子色谱图和质谱图,在此基础上才能得到满意的定性和定量分析结果。GC/MS分析得到的主要信息有3个:样品的总离子流图或重建离子色谱图;样品中每一个组分的质谱图;每个质谱图的检索结果。此外,还可以得到质量色谱图、三维色谱质谱图等。对于高分辨率质谱计,还可以得到化合物的精确分子量和分子式。

(1)总离子流色谱图

在一般GC/MS分析中,样品连续进入离子源并被连续电离。分析器每扫描一次(比如: 1s),检测器就得到一个完整的质谱图并送入计算机存储。由于样品浓度随时间变化,得到的质谱图也随时间变化。一个组分从色谱柱开始流出到完全流出大约需要10 s左右。计算机就会得到这个组分不同浓度下的质谱图10个。同时,计算机还可以把每个质谱图的所有离子相加得到总离子流强度。这些随时间变化的总离子流强度所描绘的曲线就是样品总离子流色谱图或由质谱重建而成的重建离子色谱图。总离子流色谱图是是由一个个质谱得到的,所以它包含了样品所有组分的质谱。它的外形和由一般色谱仪得到的色谱图是一样的。只要所用色谱柱相同,样品出峰顺序就相同,其差别在于,重建离子色谱所用的检测器是质谱仪,而一般色谱仪所用检测器是氢焰、热导等。两种色谱图中各成分的校正因子不同。

(2)质谱图由总离子流色谱图可以得到任何一个组分的质谱图。一般情况下,为了提高信噪比,通常由色谱峰峰顶处得到相应质谱图。但如果两个色谱峰有相互干扰,应尽量选择不发生干扰的位置得到质谱图,或通过扣本底消除其他组分的影响。

(3)质量色谱图

总离子色谱图是将每个质谱的所有离子加合得到的色谱图。同样,由质谱中任何一个质量的离子也可以得到色谱图,即质量色谱图。由于质量色谱图是由一个质量的离子得到的,因此,其质谱中不存在这种离子的化合物,也就不会出现色谱峰,一个样品只有几个甚至一个化合物出峰。利用这一特点可以识别具有某种特征的化合物,也可以通过选择不同质量的离子做离子质量色谱图,使正常色谱不能分开的两个峰实现分离,以便进行定量分析。由于质量色谱图是采用一个质量的离子作图,因此进行定量分析时,也要使用同一离子得到的质量色谱图进行标定或测定校正因子。

四、仪器及试剂

1.仪器:

GCQ气相质谱联用仪1台;毛细管气相柱(30 m×0.25 mm×0.25 um)1个;

微量注射器(10 μL)2支。

2.试剂:

标准样品:多环芳烃混合样品:萘、苊烯、苊、芴、菲、蒽、荧蒽、芘、苯并蒽、屈、苯并(B)荧蒽、苯并(K)荧蒽、苯并芘、茚并芘、二苯并蒽、苯并(g,h,i)苝;测试样品:环境中萃取出来的多环芳烃混合物。

五、实验步骤

1. 编制气相色谱实验条件和质谱条件

有关GC/MS分析中的色谱条件与普通的气相色谱条件相同。质谱条件的选择包括扫描范围、扫描速度、灯丝电流、电子能量、光电倍增器电压等。扫描范围就是可以选择分析器的离子的质荷比范围,该值的设定取决于欲分析化合物的分子量,应该使化合物所有的离子都出现在设定的扫描范围之内。扫描速度视色谱峰宽而定,一个色谱峰出峰时间内最好能有7~8次质谱扫描,这样得到的重建离子流色谱图比较圆滑,一般扫描速度可设在0.5~2 s扫一个完整质谱即可。灯丝电流一般设置在0.20~0.25 mA。灯丝电流小,仪器灵敏地太低;电流太大,则会降低灯丝寿命。电子能量一般为70 eV,标准质谱图都是在70 eV下得到的。改变电子能量会影响质谱中各种离子间的相对强度。

如果质谱中没有分子离子峰或分子离子峰很弱,为了得到分子离子,可以降低电子能量到15 eV左右。此时分子离子峰的强度会增强,但仪器灵敏度会大大降低,而且得到的不再是标准质谱。光电倍增器电压与灵敏度有直接关系。在仪器灵敏度能够满足要求的情况下,应使用较低的光电倍增器电压,以保护倍增器,延长其使用寿命。

2. 进样操作

优化一个GC条件来测定环境中萃取出来的多环芳烃。

3. 图谱搜索与解析

从标准样品图谱中寻找并确定目标化合物;实际样品中鉴定不同的多环芳烃。

六、实验指导

1. 数据处理

(1)利用质谱图对色谱流出曲线上的每一个色谱峰对应的化合物进行定性鉴定;

(2)利用标准品对环境中萃取出来的多环芳烃混合物中的每一种多环芳烃进行定量分析。

2. 使用仪器注意

(1)开机时,请确保先开气阀,再开主机电源。每次开机后请先确认一下真空泵工作正常,以确保仪器正常工作,发现有故障,应停机检查。

(2)小心不要碰到GC进样口,以免烫伤!

(3)不要随意按动仪器面板上的按纽,以免出现不可预知的故障与危险,否则酌情扣分。

(4)做实验之前请认真预习相关知识,可参考教材中的色谱法引论、气相色谱法和质谱法中的相关内容。

(5)当操作者错误操作或其它干扰引起微机错误时,可重新启动计算机,但无须关电源。

(6)进样时要使针头垂直插入进样口,小心不要把进样针弯折。

(7)多环芳烃多有致癌作用,请同学们实验完毕及时洗手。

(8)仪器运行环境需保护清洁。不使用时请加防尘罩。

(9)为延长气质联用仪使用寿命,实验完毕后要关闭离子室的电源(system off),不关主机电源。

七、实验拓展

本实验进行了GC-MS技术测定多环芳烃,既发挥了色谱法的高分离能力,又发挥了质谱法的高鉴别能力。这种技术适用于作多组分混合物中未知组分的定性鉴定;可以判断化合物的分子结构,可以准确地测定未知组分的相对分子质量;可以修正色谱分析的错误判断;可以鉴定出部分分离甚至未分离开的色谱峰等等。因此日益受到重视,现在几乎全部先进的质谱仪器都具有进行联用的气相色谱仪,并配有计算机(化学工作站)。

GC/MS联用在分析检测和研究的许多领域中起着越来越重要的作用,特别是在许多有机化合物常规检测工作中成为一种必备的工具。如环保领域在检测许多有机污染物,特别是在一些浓度较低的有机化合物,如二噁英等标准方法中就规定用GC/MS;药物研究、生产、质控以及进出口的许多环节中都要用到GC/MS;法庭科学中对燃烧、爆炸现场的调查,对各种案件现场的残留物的检验,如纤维、呕吐物、血迹等的检验与鉴定,无一不用到GC/MS;工业生产的许多领域,如石油、食品、化工等行业都离不开GC/MS;甚至竞技体育运动中也用GC/MS来进行兴奋剂的检测。

八、实验思考

1. GC/MS联用系统一般有哪几个部分组成?

2. GC/MS联用中要解决哪些问题?常用的接口有哪几种?

4. 质谱仪的主要功能是什么?如何达到这个目的?

气相色谱法实验报告记录

气相色谱法实验报告记录

————————————————————————————————作者:————————————————————————————————日期:

实验五—气相色谱法实验 姓名:张瑞芳 学号:2013E8003561147 班级:化院413班 培养单位:上海高等研究院 指导教师:李向军 组别:2013年12月30日第二组

气相色谱法实验 一、实验目的 1.了解气相色谱仪的各部件的功能。 2.加深理解气相色谱的原理和应用。 3.掌握气相色谱分析的一般实验方法。 4.学会使用FID气相色谱对未知物进行分析。 二、实验原理 1.气相色谱法基本原理 气相色谱的流动向为惰性气体,气-固色谱法中以表面积大且具有一定活性的吸附剂作为固定相。当多组分的混合样品进入色谱柱后,由于吸附剂对每个组分的吸附力不同,经过一定时间后,各组分在色谱柱中的运行速度也就不同。吸附力弱的组分容易被解吸下来,最先离开色谱柱进入检测器,而吸附力最强的组分最不容易被解吸下来,因此最后离开色谱柱。如此,各组分得以在色谱柱中彼此分离,顺序进入检测器中被检测、记录下来。气相色谱仪器框图如图1所示: 图1.气相色谱仪器框图 仪器均由以下五个系统组成:气路、进样、分离、温度控制、检测和记录系统。 2.气相色谱法定性和定量分析原理 在这种吸附色谱中常用流出曲线来描述样品中各组分的浓度。也就是说,让

分离后的各组分谱带的浓度变化输入换能装置中,转变成电信号的变化。然后将电信号的变化输入记录器记录下来,便得到如图2的曲线。它表示组分进入检测器后,检测器所给出的信号随时间变化的规律。它是柱内组分分离结果的反映,是研究色谱分离过程机理的依据,也是定性和定量的依据。 图2.典型的色谱流动曲线 3.FID的原理 本次试验所用的为氢火焰离子化检测器(FID),它是以氢气和空气燃烧的火焰作为能源,利用含碳有机物在火焰中燃烧产生离子,在外加的电场作用下,使离子形成离子流,根据离子流产生的电信号强度,检测被色谱柱分离出的组分。 三.实验试剂和仪器 (1)试剂:甲醇、异丙醇、异丁醇 (2)仪器:气相色谱仪带氢火焰离子化检测器(GC-2014气相色谱仪); 氢-空发生器(SPH-300氢气发生器)、氮气钢瓶; 色谱柱; 微量注射器。 四.实验步骤 1.打开稳定电源。 2.打开N2钢瓶(减压阀),以N2为载气,开始通气,检漏;调整柱前压约为 0.12MPa。

实验一气相色谱法测定混合醇

实验一 气相色谱法测定混合醇 一、实验目的 1.掌握气相色谱法的基本原理和定性、定量方法。 2.学习归一化法定量方法。 3.了解气相色谱仪的基本结构、性能和操作方法。 二、实验原理 色谱法具有极强的分离效能。一个混合物样品定量引入合适的色谱系统后,样品在流动相携带下进入色谱柱,样品中各组分由于各自的性质不同,在柱内与固定相的作用力大小不同,导致在柱内的迁移速度不同,使混合物中的各组分先后离开色谱柱得到分离。分离后的组分进入检测器,检测器将物质的浓度或质量信号转换为电信号输给记录仪或显示器,得到色谱图。利用保留值可定性,利用峰高或峰面积可定量。 常用的定量方法有好多种,本实验采用归一法。 归一法就是分别求出样品中所有组分的峰面积和校正因子,然后依次求各组分的百分含量。10000?'?=∑ f A f Ai Wi i 归一法优点:简洁;进样量无需准确;条件变化时对结果影响不大。 缺点:混合物中所有组分必须全出峰;必须测出所有峰面积。 [仪器试剂] 三、实验仪器与试剂 气相色谱仪;微量注射器1μL 乙醇、正丙醇、正丁醇,均为色谱纯 四、实验步骤 1. 色谱条件 色谱柱 OV-101弹性石英毛细管柱 25m×0.32mm

柱温150℃;检测器200℃;汽化室200℃ 载气氮气,流速1.0cm/s。 2. 实验内容 开启气源(高压钢瓶或气体发生器),接通载气、燃气、助燃气。打开气相色谱仪主机电源,打开色谱工作站、计算机电源开关,联机。按上述色谱条件进行条件设置。温度升至一定数值后,进行自动或手动点火。待基线稳定后,用1μL 微量注射器取0.5μL含有混合醇的水样注入色谱仪,同时按下数据采集键。 五、数据处理 1. 面积归一化法定量 组分乙醇正丙醇正丁醇 峰高(mm) 半峰宽 (mm) 峰面积 (mm2) 含量(%) 将计算结果与计算机打印结果比较。 【思考题】 1. 本实验中是否需要准确进样?为什么? 2. FID检测器是否对任何物质都有响应?

气相色谱实验报告word精品

气相色谱实验报告 一、实验目的 1、了解气相色谱仪的基本结构及掌握分离分析的基本原理; 2、了解顶空气相色谱法; 3、了解影响分离效果的因素; 4、掌握定性、定量分析与测定的方法。 二、实验原理气相色谱分离是利用上试样中各组分在色谱柱中的气相和固定相间的分配系数不同,当气 化后的试样被载气带入色谱柱进行时,组分就在其中的两相中进行反复多次的分配,由于固定相各个组分的吸附或溶解能力不同,因此各组分在色谱柱中的运行速度就不同。经过 一定的柱长后,使彼此分离,顺序离开色谱柱进入检测器。检测器将各组分的浓度或质量的变化转换成一定的电信号,经过放大后在记录仪上记录下来,即可得到各组分的色谱峰。根据保留时间和峰高或峰面积,便可进行定性和定量的分析。 (1)顶空色谱法及其原理介绍顶空气相色谱是指对液体或固体中的挥发性成分进行气相色谱分析的一种间接测定法,它是在热力学平衡的蒸气相与被分析样品同时存在于一个密闭系统中进行的。这一方法从气相色谱仪角度讲,是一种进样系统,即“顶空进样系统” 。其原理如下: 一个容积为V、装有体积为V o浓度为0)的液体样品的密封容器,在一定温度下达到平衡时,气相体积为Vg,液相体积为Vs,气相样品浓度为Cg,液相中样品浓度为Cs,贝平衡常数K=Cs/Cg 相比3 =Vg/Vs V=Vs+Vg=V o+Vg 又因为是密封容器,所以 C o V o=CoVs=CsVs+CgVg= KCgVs + CgVg C o=KCg+CgVg/Vs=KCg+ 3 Cg=Cg()K+ 3 Cg=C0/(K+ 3 = K'(C 可见, 在平衡状态下, 气相组成与样品原组成为正比关系, 根据这一关系我们可以进行定性和定量分析。(2)顶空色谱法的优点 顶空色谱进样器可与国内外各种气相色谱仪相连接, 它是将液体或固体样品中的挥发性组分直接导入气相色谱仪进行分离和检测的理想进样装置。 它采用气体进样,可专一性收集样品中的易挥发性成分,与液-液萃取和固相萃取相比 既可避免在除去溶剂时引起挥发物的损失, 又可降低共提物引起的噪音, 具有更高灵敏度和分析速度,对分析人员和环境危害小,操作简便,是一种符合“绿色分析化学”要求的分析手段。固相萃取和液相萃取时不可避免地带入共萃取物干扰分析。顶空分析可看成是气相萃

气相色谱法测定环氧乙烷.doc

气相色谱法测定 明胶空心胶囊中环氧乙烷 摘要: 目的:对生产的明胶空心胶囊中环氧乙烷测定气相色谱法进行方法验证;方法:定性除了采用传统的对照品保留时间定性又采用了供试品加标定性和双柱定性,定量采用加标回收率验证方法准确性,方法精密度采用RSD%验证;结论:定性采用保留时间定性、DB-624色谱柱和PLOT/Q色谱柱双柱定性和加标定性,方法定性互相验证正确。定量加标回收率为98.44~99.98%,方法准确。方法精密度RSD%为3.6~4.1,方精密度好可靠。 引言: 依据《中国药典》(2010版)正文第二部分1204页明胶空心胶囊中环氧乙烷的测定气相色谱法,实验人员照残留溶剂测定法(附录ⅧP第二法附录61页)实验。采用了HP-5、DB-W AX、DB-624和PLOT/Q色谱柱实验(都是方法规定的色谱柱)。其中HP-5和DB-W AX均难以有效分离广生生产的供试品中的干扰峰,改用固定液为(6%)氰丙基苯基(94%)二甲基聚硅氧烷DB-624毛细管柱实现了基线分离,试验了供试品加标定性,加标回收率,加标RSD%。之后,依照残留溶剂测定法“附注(3)干扰峰的排除”又在另一根截然不同的气-固色谱柱做了实验。PLOT/Q色谱柱固定相为聚苯乙烯—二乙烯基苯型的高分子多孔小球。两者检验结果一致,排除了测定中有共出峰的干扰。 1 实验部分 1.1仪器与试剂 Agilent 7890A GC/FID ; GC Chemstation (B.04.01) 工作站;Agilent 7694E顶空进样 器。对照品:环氧乙烷(浓度5mg/ml,美国Accustandard);溶剂:水(实验室超纯水);供试品:明胶空心胶囊(广生胶囊提供)。 1.2色谱条件 ①色谱条件 色谱柱:DB-624毛细管柱(30m*0.53mm*3.0um),固定相:(6%)氰丙基苯基(94%)二甲基聚硅氧烷;柱温:40℃保持5min,升温速率25℃/min,上升到150℃终止程序升温,后运行温度230℃,后运行时间3 min;载气流速:5mL/min。 汽化室:汽化室110℃,分流比1:1。 检测器:260℃,氢气40mL/min,空气400mL/min,尾吹33 mL/min。

气相色谱法挥发性有机物测定实验报告

GC-MS测定挥发性有机物实验报告 专业:环境工程学号:1233351 姓名:刘鹏一、实验方法 进样器参数设定如下: 用预溶剂冲洗次数: 3 用溶剂冲洗次数: 3 用样品冲洗次数: 2 柱塞速度: 高粘度补偿时间: 0.2 sec 柱塞进样速度: 高进样器进样速度: 高注射模式: 一般抽吸次数: 5 进样口停留时间: 0.3 sec 尾部空气间隙: 否活塞吹扫速度: 高清洗体积: 8uL 注射器吸入位置: 1.0 mm 注射器注射位置: 0.0 mm 使用3个溶剂瓶: 1个瓶 [GC-2010] 柱箱温度:30.0℃进样温度:250.00℃进样模式:分流 流量控制模式:线速度压力:45.6 kPa 总流量:14.0 mL/min 柱流量:1.00 mL/min 线速度:35.9 cm/sec 吹扫流量:3.0 mL/min 分流比:10.0 高压进样模式:关载气节省器:关分流阻尼固定:关 柱温箱: 是SPL1: 是MS: 是 < 检测器(FTD)检查完毕> < 基线移动检查完毕> < 进样流量检查完毕> SPL1 载气: 是SPL1 吹扫: 是 < APC流量检查完毕> < 检测器APC流量检查完毕> 外部等待:否平衡时间: 2.0 min [GC 程序] [GCMS-QP2010 SE] 微扫描半峰宽:0.00 amu 离子源温度:200.00 ℃接口温度:250.00 ℃ 溶剂延迟时间:2.50 min 检测器增益方式:相对检测器增益:0.83 kv +0.00 kV

二、标准物质色谱图 三、实验结果 ①实验数据

答:常用的定量分析方法有标准曲线法、内标法和归一化法。 ①标准曲线法(外标法):用被测组分纯物质配制系列标准溶液,分别定量进样,记录不同浓度溶液的色谱图,测出峰面积,用峰面积对相应的浓度作图,得到一条直线,即标准曲线。有时也可用峰高代替峰面积,作峰高—浓度标准曲线。在同样条件下测定样品,根据峰面积或峰高及标准曲线计算出样品中被测组分的浓度。 外标法简便,不需要校正因子,但进样量要求十分准确,操作条件也需严格控制。它适用于日常控制分析和大量同类样品的分析。 ②内标法:选择一种样品中不存在,且其色谱峰位于被测组分色谱峰附近的纯物质作为内标物,以固定量(接近被测组分量)加到标准溶液中和样品溶液中,分别定量进样,记录色谱峰,以被测组分峰面积(或峰高)与内标物峰面积(或峰高)的比值对相应浓度作图,得到标准曲线。根据样品中被测物质与内标物峰面积(或峰高)的比值,从标准曲线中查的被测组分浓度。这种方法可抵消因实验条件和进样量变化带来的误差。 内标物的要求:样品中不含有内标物质;峰的位置在各待测组分之间或与之相近;稳定、易得纯品;与样品能互溶但无化学反应;内标物浓度恰当,使其峰面积与待测组分相差不太大。 ③归一化法:标准曲线法(外标法)和内标法适用于样品中各组分不能全部出峰、或多组分中只测量一种或几种组分的情况。如果样品中各组分都能出峰,并要求定量,则归一化法比较简单。设样品中各组分的质量分别为M1、M2、…、Mn,则各组分的质量分数(Wi)按照下式计算:

气相色谱法实验报告

气相色谱定性和定量分析实验报告 班级 姓名 学号: 成绩: 一、实验目的 1.熟悉气相色谱仪的工作原理及操作流程; 2.能够根据保留值对物质进行定性分析; 3.能够对物质进行定量分析 二、实验原理 气相色谱法是一种用以分离、分析多组分混合物极有效的分析方法。它是基于被测组分在两相间的分配系数不同,从而达到相互分离的目的。在混合物分离以后,利用已知物保留值对各色谱峰进行定性是色谱法中最常用的一种定性方法。它的依据是在相同的色谱条件下,同一物质具有相同的保留值,利用已知物的保留时间与未知组分的保留时间进行对照时,若两者的保留时间相同,则认为是相同的化合物。 气相色谱法分离分析醇系物的基本原理是基于醇系物中各组分在气相和固相两相间分配系数的不同。当试样流经色谱柱时被相互分离,被分离组分依次通过检测器时,浓度(或质量)信号被转换为电信号输出到记录仪,获得醇系物的色谱流出曲线(如图1),完全分离时,可依据流出曲线上各组分对应的色谱峰面积进行定量。 色谱分析的定性方法有多种,当色谱条件固定且完全分离时,采用将未知物的保留值与已知纯试剂(标样)的保留值相对照的方法定性较为简单,两者相同或相近即为同一物质。 实际测定可采用相对保留值is r 代替保留值进行定性分析。 M Rs M Ri Rs Ri is t t t t t t r --=='' 式中:t ’Ri ——被测组分的调整保留时间 t ’Rs ——标准物质的调整保留时间 t Ri ——被测组分保留时间 t Rs ——标准物质的保留时间(热导池检测器的标准物质一般指定为:苯) t M ——死时间 常用的色谱定量方法有归一化法、外标法、内标法。 归一化法是将样品中的所有色谱峰的面积之和除某个色谱峰的面积,即得色谱峰相应组分在混合物中的含量。

气象色谱实验报告

在GC中使用归一法测定正构烷烃相对含量实验报告 一、实验目的: 1.学习Varian CP-3800的基本操作、气象色谱工作站和数据处理。 2.考察进样平行性。 二、实验原理: 气相色谱GC主要是利用物质的沸点、极性及吸附性质的差异来实现混合物的分离。待分析样品在汽化室汽化后被惰性气体(即载气,也叫流动相)带入色谱柱,柱内含有液体或固体流动相,由于样品中各组分的沸点、极性或吸附性能不同,每种组分都倾向于在流动相和固定相之间形成分配或吸附平衡。但由于载气是流动的,这种平衡实际上很难建立起来。也正是由于载气的流动,使样品组分在运动中进行反复多次的分配或吸附/解吸附,结果是在载气中浓度大的组分先流出色谱柱,而在固定相中分配浓度大的组分后流出。当组分流出色谱柱后,立即进入检测器。检测器能够将样品组分的与否转变为电信号,而电信号的大小与被测组分的量或浓度成正比。 气相色谱仪的组成部分:载气系统,进样系统,色谱柱(包括恒温控制装置),检测系统,记录系统。氢火焰检测器FID是GC最基本的检测器,当有机物经过检测器时,在火焰中会产生离子,在极化电压的作用下,喷嘴和收集极之间的电流会增大,对这个电流信号进行检测和记录即可得到相应的谱图。一般有机化合物在FID上都有响应,一般分子量越大,灵敏度越高。可以根据信号的大小对有机物进行定量分析。 三、仪器与试剂 正构烷烃原液:含0.88mg/ml (正构二十碳烷烃n-Eicosane), 0.261mg/ml (正构二十二碳烷烃n-Docosane),0.373mg/ml (正构二十四碳烷烃n-Tetracosane). 正己烷、样品瓶、CD-3800 GC、FID、针筒 四、实验步骤 1、制备正构烷烃稀释液 2、色谱条件 Injector:250℃ Column flow:1.0l/min FID HEATER:300℃ H2:30ml/min AIR:300ml/min

气相色谱仪的硬件与软件操作实验报告

气相色谱仪的硬件与软件操作 【实验目的】 1.安全教育; 2.气相色谱仪的硬件操作及软件操作; 3.了解气相色谱仪的基本结构及掌握仪器分离分析的基本原理。 【实验原理】 气相色谱仪是实现气相色谱过程的仪器,仪器型号繁多,但总的说来,其基本结构是相似的,主要由载气系统、进样系统、分离系统(色谱柱)、检测系统以及数据处理系统构成。气相色谱仪利用试样中各组分在色谱柱中的气相和固定相的分配系数不同,当气化后的试样被载气带入色谱柱进行时,组分就在其中的两相中进行反复多次的分配,由于固定相各个组分的吸附和溶解能力不同,因此各组分在色谱柱中的运行速度就不同,经过一定的柱长后,是彼此分离,顺序离开色谱柱进入检测器。检测器将各组分的浓度或质量的变化转换成一定的电信号,经过放大后在记录仪上记录下来,即可得到各组分的色谱峰。根据保留时间,便可进行定性分析。 【主要试剂及物理性质】 【实验仪器】 仪器:GC-2010气相色谱仪;SPB-3全自动空气泵;SPN-300氮气发生器;SPH-300氢气发生器;微量进样器(1μL);容量瓶;毛细管色谱柱(SPB-5 30.0m×0.32mm×0.25um); 【实验步骤】 1. 开机:依次打开全自动空气泵,氮气发生器(注意排气,逆时针旋转松开氮气发生器右

侧螺丝,约30分钟后,待载气稳定即压力表指针稳定指向0.4 M pa后顺时针旋转拧紧氮气发生器右侧螺丝)),氢气发生器。然后打开GC GC-2010气相色谱仪开关“POWER”由“0”至“-”,最后打开电脑上的工作站。 2.点击工作站桌面GC Real Time Analysis→,长声蜂鸣表示联机成功。 3. 在GC Real Time Analysis软件上设置相应的色谱分析条件的设置:选择“仪器参数”并设置进样器温度(SPL)150 ℃、检测器温度(FID)200 ℃、柱温为70℃(保留时间5 min)、停止时间5 min、分流比为50 (分流比过大,超出压力范围。则机器显示错误CAR1 primary pressure out of range。因此只能调为50)、尾吹流量30 mL /min、氢气流量30mL/min,空气流量300 mL /min。 4. 设置完毕后,先点击“开启系统”,接着点击“下载参数”。待进样器SPL1、柱箱、FID 的温度达到设定温度,依次打开氢气、打开火焰。等GC状态显示“准备就绪”后,点击“单次分析”,接着点击“样品记录”,依次输入“样品名称”和“数据文件”(注意输入名称的上下对应)。单击“文件夹”按钮图标,在“查找范围”中选中D盘文件夹“2014曾志老师近代有机实验”修改并保存文件名。点“开始”并注射样品液(0.1μL)。 5.数据软件处理 5.1单次数据分析 5.1.1 在桌面双击“GC Post Run Analysis”,点击确定按钮后,在“文件夹目录中”选中该样品记录双击鼠标,打开保存的路径,找到甲醇的色谱峰。使用放大缩小按钮,调试图谱中的色谱峰全部完整显示在方框内。 5.1.2 在谱图上单击鼠标右键的“显示设置”,在“显示设置”中选择“展开色谱”根据实际需要填写的“时间”和“强度”后点击。确定用鼠标点击“编辑”可根据需要选择改变“积分”中的“最小峰面积/高”、“斜率”等参数设置(通常改变一项参数,就能达到去除杂质峰的效果)。通常改变“最小峰面积”值比较快捷方便。然后又点击“定量”在“定量方法”中选择“面积归一法”,然后点击查看。复制谱图到Word文档,在谱图中点击鼠标右键选择“复制”;复制数据,单击鼠标左键全选,然后鼠标右键“复制表格到剪贴板”。在Word 文档中选中“插入”—“表格”—“插入表格”。将处理后的谱图复制到Word文档,打印

气相色谱法测定苯系物..

093858 张亚辉 气相色谱法测定苯系物 一. 实验目的 1、掌握气相色谱保留值定性及归一化法定量的方法和特点; 2、熟悉气相色谱仪的使用,掌握微量注射器进样技术。 二. 实验仪器与试剂 1. GC-2000型气相色谱仪,4台 2. 医用注射器,1支 3. 苯、甲苯、二甲苯混合物 三.实验原理 气相色谱法是以气体(载气)作为流动相的柱色谱分离技术,它主要是利用物质的极性或吸附性质的差异来实现混合物的分离,它分析的对象是气体和可挥发的物质。 顶空气相色谱法是通过测定样品上方气体成分来测定该组分在样品中的含量,常用于分析聚合物中的残留溶剂或单体、废水中的挥发性有机物、食品的气味性物质等等,其理论依据是在一定条件下气相和液相(固相)之间存在着分配平衡。顶空气相色谱分析过程包括三个过程:取样,进样,分析。根据取样方式的不同,可以把顶空气相色谱分为静态顶空气相色谱和动态顶空气相色谱。本实验采用静态顶空气相色谱法。 色谱定量分析,常用的方法有峰面积(峰高)百分比法、归一化法、内标法、外标法和标准加入法。本实验采用归一化法。归一化法要求所有组分均出峰,同时还要有所有组分的标准样品才能定量,公式如下: (1) 式中x i 代表待测样品中组分i 的含量,Ai 代表组分i 的峰面积,fi 代表组分i 的校正因子。 因为所测样品为同系物,我们可以简单地认为各组分校正因子相同,则(1)式可化简为 %100??= ∑i i i i i A f A f x % 100?=∑i i i A A x

载气携带被分析的气态混合物通过色谱柱时,各组分在气液两相间反复分配,由于各组分的K值不同,先后流出色谱柱得到分离。 气相色谱的结构如下所述: (1)气路系统(Carrier gas supply) 气路系统:获得纯净、流速稳定的载气。包括压力计、流量计及气体净化装置。 载气:要求化学惰性,不与有关物质反应。载气的选择除了要求考虑对柱效的影响外,还要与分析对象和所用的检测器相配。 净化器:多为分子筛和活性碳管的串联,可除去水、氧气以及其它杂质。(2)进样系统:进样器+气化室 液体进样器:不同规格的专用注射器,填充柱色谱常用10μL;毛细管色谱常用1μL;新型仪器带有全自动液体进样器,清洗、润冲、取样、进样、换样等过程自动完成,一次可放置数十个试样。 气体进样器:推拉式、旋转式(六通阀)。 气化室:将液体试样瞬间气化的装置。无催化作用。 (3)柱分离系统 填充柱:内径2~4 mm,长1~3m,内填固定相; 毛细管柱:内径0.1~0.5mm,长达几十至100m,涂壁固定液毛细管柱因渗透性好、传质快,因而分离效率高(n可106)、分析速度快、样品用量小。 柱温:是影响分离的最重要的因素。(选择柱温主要是考虑样品待测物沸点和对分离的要求。)柱温通常要等于或略低于样品的平均沸点(分析时间20-30min);对宽沸程的样品,应使用程序升温方法。 (4)检测系统 检测器是气相色谱仪的关键部件。实际应用中,通常采用热导检测器(TCD)、氢火焰离子化检测器(FID)、电子捕获检测器(ECD)等,本实验选用热导检测器的结构,主要根据不同的气体有不同的热导系数,对待侧物进行检测。热导检测器包括:池体(一般用不锈钢制成);热敏元件:电阻率高、电阻温度系数大、且价廉易加工的钨丝制成;参考臂:仅允许纯载气通过,通常连接在进样装置之前;测量臂:需要携带被分离组分的载气流过,则连接在紧靠近分离柱出口处。四、实验条件 色谱柱:长2m,102白色担体60~80目,涂渍角鲨烷或PEG为固定液,液担比为5﹕100 柱温:80,气化室温度:100,检测器温度120,载气:氢气 五、实验内容 (1)配制苯、甲苯、二甲苯标准混合液(各取1,5,5)取1μL,测谱图,归一

醇系物的气相色谱分析——归一化法定量

江南大学实验报告 实验名称 醇系物的气相色谱分析——归一化法定量 一、实验目的 1、 了解气—固色谱法的分离原理。 2、 学习归一化法定量的基本原理及测定方法。 3、 掌握色谱分析的基本技术。 二、实验原理 气—固色谱法中的固定相是固体吸附剂,其分离是基于吸附剂对各组分气体的吸附能力不同。目前广泛使用的气—固色谱固定相是以二乙烯基苯作为单体,经悬浮共聚所得的交联多孔聚合物,国产商品牌号为GDX 。 醇系物系指甲醇、乙醇、正丙醇、正丁醇等以及这些醇试剂常含有的水分。用GDX —103做固定相,并使用热导池检测器,在一定操作条件下,可使醇系物中的各组分完全分离。 在一定条件下,同系物的半峰宽与保留时间成正比,即 Y 1/2∝t R Y 1/2 =b t R A =hY 1/2=hb t R 在做相对计算时,比例系数又b 可约去,这样就可用峰高与保留时间的乘积来表示同系物峰面积的大小。 使用归一化法定量,要求试样中的各组分都能得到完全分离,并且在色谱图上应能绘出其色谱峰,计算式为 ωi = ∑=n i i i i i A f A f 1 ωi = ∑=n i Ri i i Ri i i t h f t h f 1 归一化法的优点是计算简便,测定准确,结果与进样量无关,且操作条件不需严格控制。但若试样中的组分不能全部出峰,则不能应用此法;若只需测量试样中的一两个组分,应用此法也显得麻烦。

三、仪器和试剂 1、仪器:GC—7890Ⅱ气相色谱仪,秒表,微量进样器。 2、试剂:醇系物混合液。 四、实验步骤 1、色谱柱的准备 2、色谱操作条件 (1)色谱柱:内径:4mm,柱长:2m。 (2)固定相:GDX—103,60~80目。 (3)载气:氮气,流速:20 mL/min-1 (4)检测器:热导池检测器,桥电流:150A,温度:150℃(5)柱温:100℃ (6)气化室温度:150℃ (7)纸速:600mm/h-1 1、2步骤均有实验技术人员完成。 3、混合液进样 用微量取样器按规定量进样,同时测定各组分的保留时间。五、实验结果与分析

气相色谱法

气相色谱法测定丁醇中少量甲醇含量 一、实验目的 1. 掌握用外标法进行色谱定量分析的原理和方法。 2. 了解气相色谱仪氢火焰离子检测器FID的性能和操作方法。 3. 了解气相色谱法在产品质量控制中的应用。 4. 学习气相色谱法测定甲醇含量的分析方法。 二、实验原理 在丁醇生产的过程中,不可避免地有甲醇产生。甲醇是无色透明的具有高度挥发性的液体,是一种对人体有害的物质。甲醇在人体内氧化为甲醛、甲酸,具有很强的毒性,对神经系统尤其是视神经损害严重,人食入 5 g 就会出现严重中毒,超过 12. 5 g 就可能导致死亡,在白酒的发酵过程中,难以将甲醇和乙醇完全分离,因此国家对白酒中甲醇含量做出严格规定。根据国家标准(GB10343-89),食用酒精中甲醇含量应低于0.1g?L-1(优级)或0.6 g?L-1(普通级)。 气相色谱法是一种高效、快速而灵敏的分离分析技术,具有极强的分离效能。一个混合物样品定量引入合适的色谱系统后,样品被气化后,在流动相携带下进入色谱柱,样品中各组分由于各自的性质不同,在柱内与固定相的作用力大小不同,导致在柱内的迁移速度不同,使混合物中的各组分先后离开色谱柱得到分离。分离后的组分进入检测器,检测器将物质的浓度或质量信号转换为电信号输给记录仪或显示器,得到色谱图。利用保留值可定性,利用峰高或峰面积可定量。 外标法是在一定的操作条件下,用纯组分或已知浓度的标准溶液配制一系列不同含量的标准溶液,准确进样,根据色谱图中组分的峰面积(或峰高)对组分含量作标准曲线。在相同操作条件下,依据样品的峰面积(或峰高),从标准曲线上查出其相应含量。利用气相色谱可分离、检测丁醇中的甲醇含量,在相同的操作条件下,

实验报告-气相色谱法测定乙烯含量

实验三气相色谱法测定乙烯含量 1 实验目的 1.1了解气相色谱仪的基本操作; 1.2了解气相色谱仪测定乙烯的原理。 2 实验原理 气相色谱仪器是以气体为流动相。当某一种被分析的多组分混合样品被注入一起后,瞬间气化,样品由流动相载气所携带,经过装有固定相的色谱柱时,由于组分分子与色谱柱内部固定相分子间要发生吸附、脱附、溶解等过程,组分分子在两相间反复多次分配,使混合样品中的组分得到分离。被分离的组分顺序进入检测器系统,由检测器转换成电信号形成色谱图。 乙烯是植物生长过程中自然散发的一种激素,广泛存在于植物的各种组织器官中,具有促进果实成熟的作用。乙烯通过气象色谱柱进行分离,氢火焰离子化检测器检测,外标法定量。 3 实验试剂与仪器 3.1 实验样品:苹果。 3.2实验试剂:20ppm的乙烯标样。 3.3 实验仪器:气相色谱仪附氢火焰离子化检测器(FID)。 4 实验步骤 4.1样品处理:将苹果放入密封罐中,静置待乙烯气体释放并收集。 4.2测定:待仪器准备好后,将样品和标准注入气相色谱中进行分析,以标准溶 液峰的保留时间作为定性的依据,以其面积求出样品中被测定的乙烯的含量。 4.3色谱条件 色谱柱:毛细管柱;载气速度:1mL/min;进样量:5μL; 进样口温度:130℃;检测器温度:230℃;柱温:80℃ 5 实验结果与讨论 5.1实验结果 气相色谱仪测定样品苹果中的乙烯含量结果见下表1。本次实验采用的是单点法测定。 表1. 气象色谱仪测定苹果的乙烯含量 进样量保留时间峰面积 乙烯标样10μL 2.497min 181254 苹果20μL 2.682min 5868765.4 乙烯标样的浓度=20ppm 苹果的乙烯的浓度=乙烯标样的总量×苹果的峰面积/乙烯标样的峰面积

气相色谱法测定丙酸的浓度 实验报告

气相色谱法测定丙酸的浓度 一、实验目的: 1、了解气相色谱法的基本原理,掌握气相色谱仪的操作方法。 2、学会用气相色谱法测定未知样品的浓度。 二、实验原理: 气相色谱仪在石油、化工、生物化学、医药卫生、食品工业、环保等方面应用很广。它除用于定量和定性分析外,还能测定样品在固定相上的分配系数、活度系数、分子量和比表面积等物理化学常数。一种对混合气体中各组成分进行分析检测的仪器。 气相色谱法主要是利用物质的沸点、极性及吸附性质的差异来实现混合物的 色谱仪利用色谱柱先将混合物分离,然后利用检测器依次检测已分离出来的组分。色谱柱的直径为数毫米,其中填充有固体吸附剂或液体溶剂,所填充的吸附剂或溶剂称为固定相。与固定相相对应的还有一个流动相。流动相是一种与样品和固定相都不发生反应的气体,一般为氮或氢气。待分析的样品在色谱柱顶端注入流动相,流动相带着样品进入色谱柱,故流动相又称为载气。载气在分析过程中是连续地以一定流速流过色谱柱的;而样品则只是一次一次地注入,每注入一次得到一次分析结果。样品在色谱柱中得以分离是基于热力学性质的差异。固定相与样品中的各组分具有不同的亲合力(对气固色谱仪是吸附力不同,对气液分配色谱仪是溶解度不同)。当载气带着样品连续地通过色谱柱时,亲合力大的组分在色谱柱中移动速度慢,因为亲合力大意味着固定相拉住它的力量大。亲合力小的则移动快。4根柱管实际上是一根,只是用来表示样品中各组分在不同瞬间的状态。样品是由A、B、C3个组分组成的混合物。在载气刚将它们带入色谱柱时,三者是完全混合的,如状态(Ⅰ)。经过一定时间,即载气带着它们在柱中走过一段距离后,三者开始分离,如状态(Ⅱ)。再继续前进,三者便分离开,如状态(Ⅲ)和(Ⅳ)。固定相对它们的亲合力是A>B>C,故移动速度是C>B>A。走在最前面的组分C首先进入紧接在色谱柱后的检测器,如状态(Ⅳ),而后A和B 也依次进入检测器。检测器对每个进入的组分都给出一个相应的信号。将从样品注入载气为计时起点,到各组分经分离后依次进入检测器,检测器给出对应于各组分的最大信号(常称峰值)所经历的时间称为各组分的保留时间tr。实践证明,在条件(包括载气流速、固定相的材料和性质、色谱柱的长度和温度等)一定时,不同组分的保留时间tr也是一定的。因此,反过来可以从保留时间推断出该组分是何种物质。故保留时间就可以作为色谱仪器实现定性分析的依据。

第二章 气相色谱分析习题参考答案

第二章 气相色谱分析课后习题参考答案(P 60页) 1、简要说明气相色谱分析的分离原理。 借在两相间分配原理而使混合物中各组分分离。气相色谱就是根据组分与固定相与流动相的亲和力不同而实现分离。组分在固定相与流动相之间不断进行溶解、挥发(气液色谱),或吸附、解吸过程而相互分离,然后进入检测器进行检测。 2、气相色谱仪的基本设备包括哪几部分?各有什么作用? 气路系统、进样系统、分离系统、温控系统以及检测和记录系统。气相色谱仪具有一个让载气连续运行,管路密闭的气路系统;进样系统包括进样装置和气化室。其作用是将液体或固体试样,在进入色谱柱前瞬间气化,然后快速定量地转入到色谱柱中;分离系统完成对混合样品的分离过程;温控系统是精确控制进样口、汽化室和检测器的温度;检测和记录系统是对分离得到的各个组分进行精确测量并记录。 3、当下列参数改变时:(1)柱长缩短,(2)固定相改变,(3)流动相流速增加,(4)相比减少,是否会引起分配系数的改变?为什么? 分配系数只与组分的性质及固定相与流动相的性质有关。所以(1)柱长缩短不会引起分配系数改变;(2)固定相改变会引起分配系数改变;(3)流动相流速增加不会引起分配系数改变;(4)相比减少不会引起分配系数改变。 4、当下列参数改变时:(1)柱长增加,(2)固定相量增加,(3)流动相流速减小,(4)相比增大,是否会引起分配比的变化?为什么? βK m m k M S == ;而S M V V =β,分配比除了与组分、两相的性质、柱温、柱压有关外,还与相比有关,而与流动相流速、柱长无关。故(1)不变化;(2)增加;(3)不改变;(4)减小。 5、试以塔板高度H 做指标,讨论气相色谱操作条件的选择。 提示:主要从速率理论(范弟姆特Van Deemter )来解释,同时考虑流速的影响,选择最佳载气流速(P 13-24)。(1)选择流动相最佳流速。(2)当流速较小时,可以选择相对分子质量较大的载气(如N 2,Ar),而当流速较大时,应该选择相对分子质量较小的载气(如H 2,He )同时还应该考虑载气对不同检测器的适应性。(3)柱温不能高于固定液的最高使用温度,以免引起固定液的挥发流失。在使最难分离组分能尽可能好的分离的前提下,尽可能采用较低的温度,但以保留时间适宜,峰形不拖尾为度。(4)固定液用量:担体表面积越大,固定液用量可以越高,允许的进样量也越多,但为了改善液相传质,应使固定液膜薄一些。(5)对担体的要求:担体表面积要大,表面和孔径均匀。粒度要求均匀、细小(但不宜过小以免使传质阻力过大)。(6)进样速度要快,进样量要少,一般液体试样0.1~5 μL ,气体试样0.1~10 mL 。(7)气化温度:气化温度要高于柱温30~70 ℃。 6、试述速率方程中A ,B ,C 三项的物理意义。H –u 曲线有何用途?曲线的形状受哪些主要因素的影响? 参见教材(P 14-16)。A 称为涡流扩散项,B 为分子扩散系数,C 为传质阻力系数。 下面分别讨论各项的意义: (1)涡流扩散项A 。气体碰到填充物颗粒时,不断地改变流动方向,使试样组分在气相中形成类似“涡流”的流动,因而引起色谱峰的扩张。由于A = 2 λ·d p ,表明A 与填充物的平均颗粒直径d p 的大小和填充的不均匀性λ有关,而与载气性质、线速度和组分无关,因此使用适当细粒度和颗粒均

气相色谱法实验报告

气相色谱法实验报告 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

实验五—气相色谱法实验

气相色谱法实验 一、实验目的 1.了解气相色谱仪的各部件的功能。 2.加深理解气相色谱的原理和应用。 3.掌握气相色谱分析的一般实验方法。 4.学会使用FID气相色谱对未知物进行分析。 二、实验原理 1.气相色谱法基本原理 气相色谱的流动向为惰性气体,气-固色谱法中以表面积大且具有一定活性的吸附剂作为固定相。当多组分的混合样品进入色谱柱后,由于吸附剂对每个组分的吸附力不同,经过一定时间后,各组分在色谱柱中的运行速度也就不同。吸附力弱的组分容易被解吸下来,最先离开色谱柱进入检测器,而吸附力最强的组分最不容易被解吸下来,因此最后离开色谱柱。如此,各组分得以在色谱柱中彼此分离,顺序进入检测器中被检测、记录下来。气相色谱仪器框图如图1所示:

图1.气相色谱仪器框图 仪器均由以下五个系统组成:气路、进样、分离、温度控制、检测和记录系统。 2.气相色谱法定性和定量分析原理 在这种吸附色谱中常用流出曲线来描述样品中各组分的浓度。也就是说,让分离后的各组分谱带的浓度变化输入换能装置中,转变成电信号的变化。然后将电信号的变化输入记录器记录下来,便得到如图2的曲线。它表示组分进入检测器后,检测器所给出的信号随时间变化的规律。它是柱内组分分离结果的反映,是研究色谱分离过程机理的依据,也是定性和定量的依据。

图2.典型的色谱流动曲线 的原理 本次试验所用的为氢火焰离子化检测器(FID),它是以氢气和空气燃烧的火焰作为能源,利用含碳有机物在火焰中燃烧产生离子,在外加的电场作用下,使离子形成离子流,根据离子流产生的电信号强度,检测被色谱柱分离出的组分。 三.实验试剂和仪器 (1)试剂:甲醇、异丙醇、异丁醇 (2)仪器:气相色谱仪带氢火焰离子化检测器(GC-2014气相色谱仪); 氢-空发生器(SPH-300氢气发生器)、氮气钢瓶; 色谱柱; 微量注射器。 四.实验步骤

气相色谱法测定醇醚混合物实验报告

实验日期2015.4.3 成绩 同组人×××(2)、×××(3)、×××(4)、×××(5)、×××(6)闽南师范大学应用化学专业实验报告 题目:气相色谱法测定醇醚混合物 应化×××B1组 0 前言 实验目的:1.了解气相色谱仪的结构2.熟悉氢火焰离子检测器的调试及使用方法3.掌握色谱内标定量法测定醇醚混合物 实验原理: 气相色谱法(gas chromatography 简称GC)是色谱法的一种。色谱法中有两个相,一个相是流动相,另一个相是固定相。如果用液体作流动相,就叫液相色谱,用气体作流动相,就叫气相色谱。 气相色谱法由于所用的固定相不同,可以分为两种,用固体吸附剂作固定吸附剂作固定相的叫气相色谱,用涂有固定液的担体作固定相的叫气液色谱。 按色谱原理来分,气相色谱法亦可分为吸附色谱和分配色谱两类,在气固色谱中,固定相为吸附剂,气固色谱属于吸附色谱,气液色谱属于分配色谱。 气相色谱仪工作原理:载气自气瓶通过减压器流出,经过净化管干燥脱氧等处理后,从载气入口接头进入仪器,经稳压阀,针型阀(或稳压阀),压力表,以稳定的流速进入汽化室。液体试样用微量注射器注入汽化室后被汽化成气体试样,进色谱柱分离,若是热到检测器,载气把已分离的组分逐一带进热导池检测器,由于导入热导池各组分的导热系数与载气不同,是热导池各组分的导热系数与载气不同,是热导池中钨铼丝热导元件的原来热平衡

状态发生了变化,从而导致由钨铼丝热导元件所组成的电桥电路产生了与组分浓度成正比例的输出讯号,并有记录仪或色谱数据处理机或色谱工作站直接记录。使用氢火焰离子化检测器时,载气把分离了的组分逐一带进离子室做,在石英喷嘴内与燃气(H2)汇合通过喷嘴,在助燃器(Air)的帮助下燃烧。含有C,H有机组分就得以电离,生成正离子和电子。在喷嘴口上下二电极间直流高压的作用下,形成了微弱的离子流,通过与收集相连的高电阻(107欧-1010)取出电讯号,经放大后记录。选择一定的方法就可进行定性,定量分析。 定性分析的任务是确定色谱图上各个峰代表什么物质。各物质在一定色谱条件下有其确定的保留值,因此,保留值是定性分析的基础,可利用标准物质对照法进行定性分析。定量分析的任务是测定混合样品中各组分的含量。定量分析的依据是待测物质的质量m i与检测器产生的信号A i(色谱峰面积)成正比:m i=f’i A i 式中,f’i为比例常数,称为绝对校正因子。由于各组分在同一检测器上具有不同的响应值,即使两组分含量相同,在监测器上得到的信号往往不相等,所以,不能用峰面积来直接计算各组分的含量。因此,在进行定量分析时,引入相对校正因子f i(及通常说的校正因子)。 式中分别为标准物质的绝对校正因子、质量和峰面积。由此公式可知: 利用相对校正因子可将各组分峰面积校正为相当于标准物质的峰面积,利用校正后的峰面积便可准确计算物质的质量。常用的定量分析方法有归一化法、内标法、外标法和内加法等,它们各有一定的优缺点和适用范围。 内标法是一种准确而广泛定量分析方法,操作条件和进样量不必严格控制,限制条件较少。当样品中组分不能全部流出色谱柱,某此组分在检测器上无信号

气相色谱法实验报告

气相色谱法实验报告 色谱和光谱实验 实验5-气相色谱实验 姓氏:张瑞芳薛浩:12月30日,XXXX第二组色谱和光谱实验 色谱和光谱实验 气相色谱实验 1,实验目的299了解气相色谱仪各部件的功能2.加深对气相色谱原理和应用的理解 3.掌握气相色谱分析的一般实验方法 4.学习使用氢火焰离子化气相色谱分析未知物质 2,实验原理 1。气相色谱的基本原理 气相色谱的流动方向是惰性气体。具有大表面积和一定活性的吸附剂在气固色谱中用作固定相。当多组分混合样品进入色谱柱时,由于吸附剂对各组分的吸附力不同,经过一定时间后,色谱柱中各组分的运行速度不同。吸附力弱的组分容易解吸,先离开色谱柱进入检测器,而吸附力强的组分最不容易解吸,最后离开色谱柱这样,组分可以在色谱柱中相互分离,然后依次进入检测器进行检测和记录。气相

色谱仪的框图见图1: 图1。气相色谱仪 仪器的框图由以下五个系统组成:气路、进样、分离、温度控制、检测和记录系统 2。气相色谱定性和定量分析的原理 通常用于描述样品中各成分的浓度换句话说,每个成分的分离光谱带的浓度变化被输入到能量转换装置中,并被转换成电信号的变化然后,电信号的变化被输入到记录器以进行记录,并且获得如图2所示的曲线。表示成分进入 检测器进行 色谱检测和光谱实验后,检测器给出的信号随时间的变化规律。它是柱内组分分离结果的反映,是研究色谱分离过程机理的基础,也是定性和定量的基础。 图2。典型色谱流动曲线 3。FID 原理本试验使用氢火焰离子化检测器(FID),该检测器使用氢火焰和空气燃烧作为能源,使用含碳有机物在火焰中燃烧产生离子,在外加电场的作用下,离子形成离子流,并根据离子流产生的电信号强度检测色谱柱分离的成分 iii。实验试剂和仪器

气相色谱法测定标准操作规程

气相色谱法测定标准操作规程 1、目的:本标准规定了气相色谱法的测定方法和操作要求。 2、范围:本公司检品气相色谱法的测定。 3、简述:以气体为流动相的色谱法称为气相色谱法,具有分离效能高、灵敏度高、样品用量少、分 析速度快等优点,但受样品蒸气压限制,不适用于难挥发和热稳定性差的物质的分析。样品中各组分在固定相与载气(流动相)间分配,由于各组分的分配系数不等,它们将按分配系数大小的顺序依次被载气带出色谱柱。分配系数小的先流出,大的后流出。各组分先后进入检测器,用数据处理系统记录色谱信号。 4、对仪器的要求: (1)气相色谱仪由载气源、进样部分、色谱柱、柱温箱、检测器和数据处理系统组成,进样部分、色谱柱和检测器的温度应根据分析要求适当设定。 (2)载气源:气相色谱法的流动相为气体,称为载气,一般氢气、氮气和氦气可用作载气,可由高压钢瓶或高纯度气体发生器提供,经过适当的减压装置,以一定的流速经过进样器和色谱柱;根据供试品的性质和检测器种类选择载气,除另有规定外,常用载气为氮气、氢气。 (3)进样部分:进样方式一般可采用溶液直接进样、自动进样,溶液直接进样采用微量注射器,采用溶液直接进样时,进样口温度应高于柱温20~50℃;进样量一般不超过数微升,柱径越细,进样量应越少。气体进行采用六通阀进样或十通阀自动进样。 (4)色谱柱色谱柱为填充柱,填充柱的材料为不锈钢,内径为2~4mm,柱长为2~4m,内装吸附剂,高分子多孔小球或涂渍固定液的载体。 (5)柱温箱由于柱温箱温度的波动会影响色谱分析结果的重现性,因此柱温箱控温精度应在±1℃,且温度波动小于每小时0.1℃。温度控制系统分为恒温和程序升温两种。 (6)检测器适合气相色谱法的检测器有火焰离子化检测器、热导检测器等,除另有规定外,一般用火焰离子化检测器,对碳氢化合物响应良好,适合检测大多数药物,用氢气作为燃气,空气作为助燃气。在使用火焰离子化检测器时,检测器温度一般应高于柱温,并不得低于140℃,以免水汽凝结。 (7)数据处理系统可分为记录仪和工作站。 5、操作步骤: (1)开机前的准备:打开氮气、氧气瓶,并调分压表压力为0.4MPa。 (2)打开氢气发生气电源开关。打开空气源开关。

相关文档
相关文档 最新文档