文档库 最新最全的文档下载
当前位置:文档库 › 操作系统 实验二

操作系统 实验二

操作系统 实验二
操作系统 实验二

实验二、进程通信(一)

——管道及共享内存

学号:姓名:班级:

一、实验目的

(1)加深对管道概念的理解。

(2)掌握利用管道进行进程通信的程序设计。

(3)Linux系统的共享内存机制允许在任意进程间大批量地交换数据。本实验的目的是了解和熟悉Linux支持的共享存储区机制。

二、实验内容

任务一、管道

(1)运行源码

运行上文进程管理中给出的例子,查看自己运行的结果,并进行分析。

(2)编写程序

父进程将一字符串交给子进程处理。子进程读字符串,将里面的字符反向后再交给父进程,父进程最后打印反向的字符串。

任务二、共享内存

(1)阅读例2的程序,运行一次该程序,然后用ipcs命令查看系统中共享存储区的情况,再次执行该程序,再用ipcs命令查看系统中共享内存的情况,对两次的结果进行比较,并分析原因。最后用ipcrm命令删除自己建立的共享存储区。(有关ipcs和ipcrm

介绍见后面一页)

(2)每个同学登陆两个窗口,先在一个窗口中运行例3程序1(或者只登陆一个窗口,先在该窗口中以后台方式运行程序1),然后在另一个窗口中运行例3程序2,观察程序的运行结果并分析。运行结束后可以用ctrl+c结束程序1的运行。

(3)编写程序:使用系统调用shmget(),shmat(),shmdt(),shmctl(),编制程序。要求在父进程中生成一个30字节长的私有共享内存段。接下来,设置一个指向共享内存段的字符指针,将一串大写字母写入到该指针指向的存贮区。调用fork()生成子进程,让子进程显示共享内存段中的内容。接着,将大写字母改成小写,子进程修改共享内存中的内容。之后,子进程将脱接共享内存段并退出。父进程在睡眠5秒后,在此显示共享内存段中的内容(此时已经是小写字母)。

三、源代码

任务一、管道

(1)运行源码

main()

{ int x,fd[2];

char buf[30],s[30];

pipe(fd);

while ((x=fork())==-1);

if (x==0)

{

close(fd[0]);

printf("Child Process!\n");

strcpy(buf,"This is an example\n");

write(fd[1],buf,30);

exit(0);

}

else{

close(fd[1]);

printf("Parent Process!\n");

read(fd[0],s,30);

printf("%s\n",s);

}

}

实验结果:

(2)编写程序

#include

main()

{

int x,count,left,right,temp,fd[2],fe[2];

char c,buf[30],s[30];

pipe(fd);

pipe(fe);

printf("please input a line of char:");

scanf("%s",buf);

while ((x=fork())==-1);

if (x==0)

{

close(fd[0]);

close(fe[1]);

printf("Child Process!\n");

write(fd[1],buf,30);

read(fe[0],buf,30);

printf("%s\n",buf);

exit(0);

}

else{

close(fd[1]);

close(fe[0]);

count=0;

do

{

read(fd[0],&c,1);

s[count++]=c;

}while(c!='\0');

printf("Parent Process!\n");

printf("%s\n",s);

count-=2;

for(left=0,right=count;left<=count/2;left++,right--){ temp=s[left];

s[left]=s[right];

s[right]=temp;

}

write(fe[1],s,30);

wait(0);

}

}

任务二、

(1)运行程序

用ipcs命令查看系统中共享存储区的情况

再次运行程序

再用ipcs命令查看系统中共享内存的情况:

用ipcrm命令删除自己建立的共享存储区

分析

shmget() 是建立一个新的共享区或返回一个已存在的共享存储区描述字;

int shmget(key_t key,int size,int shmflag),其中,key是用户指定的共享区号,size是共

享存储区的长度,而shmflag用来标识共享内存段的创建条件机以及访问权限。

成功,返回共享内存段的标识符,内核中用于唯一的标识一个对象。对存在于内核存贮空间中的每个共享内存段,内核均为其维护着一个数据结构shmid_ds。

失败,返回-1,设置errno。

①第一个参数key(键值),预定义的数据类型key_t,其类型是长整型。用来创建IPC

标识符,shmget()返回的标识符与key值一一对应,不同的key值返回不同的标识符。

②第二个参数size,决定了共享内存段的大小(若访问已存在的内存段,该参数可设为

0)。有最大字节数的限制,0x2000000=32M,极限值,可查看/usr/include/linux/shm.h。

③第三个参数shmflag,用于设置访问权限及标识创建条件。

在/usr/include/linux/ipc.h中可找到一些预定义的常量:

#define IPC_PRIV A TE ((key_t)0)

#define IPC_CREA T 00001000(八进制)

#define IPC_EXCL 00002000(八进制)

key值为IPC_PRIV A TE时,调用shmget将生成一个新的共享内存段。

Shmflag为0666|IPC_CREA T时,如果key值是新的,返回新创建的内存段标识符。

若key值是旧的,返回已存在内核中的具有相同关键字值的内存段标识符。

对两次的结果进行比较:第一次运行完程序时,First shared memory identifier is 2228261

Second shared memory identifier is 2261030

第二次运行完程序时:First shared memory identifier is 2228261

Second shared memory identifier is 2293799

所以两次运行结束后的第二个共享标识符是不一样的。在用ipcs查看时,共享内存段中的关键字,共享内存标识符,访问权限,字节等都是不一样的。

(2)在另一个窗口中运行例三程序2

程序一后台运行

程序输出从0到255 的数

在程序2中,另一个进程附接到与关键字SHMKEY相关联的存储区上。也就是与程序1所述的同一个存储区上.为了表明每个进程可以附接一个共享存储区的不同总量,程序2中只取该存储区的8K字节.该进程等待着直到程序1中进程在共享存储区中的第一个字节写入一个非零值后读出该存储区,此时程序1的进程暂停以使程序2的进程执行读出打印操作.

需要指出的是,共享存储区机制只为通信进程提供了访问共享存储区的操作条件,而对通信的同步控制则要依靠信号量机制等才能完成。

(3)编写程序:使用系统调用shmget(),shmat(),shmdt(),shmctl(),编制程序

#include

#include

#include

#define SHMKEY 324 /*在实际实验过程中,为了避免每个同学建立的共享存储区关键字一样而相互干扰,关键字请用学号末3位*/

#define K 1024

int shmid;

main()

{

int i;

char *pint;

char *addr;

extern char * shmat ();

extern cleanup ();

for(i=0;i<20;i++) signal(i,cleanup);

shmid=shmget(SHMKEY,16*K,0777|IPC_CREA T); /*建立16K共享区SHMKEY */

addr=shmat(shmid,0,0);/*挂接,并得到共享区首地址*/

printf ("addr 0x%x\n",addr);

pint=(char *)addr;

for (i='a';i<='e';i++) *pint++=i;

pause();/*等待接收进程读*/

}

cleanup()

{

shmctl(shmid,IPC_RMID,0);

exit ();

}

#include

#include

#include

#define SHMKEY 324 /*在实际实验过程中,为了避免每个同学建立的共享存储区关键字一样而相互干扰,关键字请用学号末3位*/

#define K 1024

int shmid;

main ()

{

int i;

char *pint;

char *addr;

extern char * shmat ();

shmid=shmget(SHMKEY,8*K,0777);/*取共享区SHMKEY的id */

addr=shmat(shmid,0,0);/*连接共享区*/

pint=(char *)addr;

for (i=0;i<5;i++)

printf("%c\n",-32+*pint++);/*打印共享区中的内容*/

}

实验结果

实验心得:

通过本次实验自己收获了很多,了解了管道进程间通信形式,管道是半双工的,数据只能向一个方向流动;需要双方通信时,需要建立起两个管道。数据的读出和写入:一个进程向管道中写的内容被管道另一端的进程读出。另外,对于共享内存也有一定的了解。多个进程可通过对共享存贮区中的数据进行读和写来实现通信。总之,本次实验自己收获了很多。

操作系统实验 磁盘调度算法

操作系统 实验报告 哈尔滨工程大学 计算机科学与技术学院

第六讲磁盘调度算法 一、实验概述 1. 实验名称 磁盘调度算法 2. 实验目的 (1)通过学习EOS 实现磁盘调度算法的机制,掌握磁盘调度算法执行的条件和时机; (2)观察 EOS 实现的FCFS、SSTF和 SCAN磁盘调度算法,了解常用的磁盘调度算法; (3)编写 CSCAN和 N-Step-SCAN磁盘调度算法,加深对各种扫描算法的理解。 3. 实验类型 验证性+设计性实验 4. 实验内容 (1)验证先来先服务(FCFS)磁盘调度算法; (2)验证最短寻道时间优先(SSTF)磁盘调度算法; (3)验证SSTF算法造成的线程“饥饿”现象; (4)验证扫描(SCAN)磁盘调度算法; (5)改写SCAN算法。 二、实验环境 在OS Lab实验环境的基础上,利用EOS操作系统,由汇编语言及C语言编写代码,对需要的项目进行生成、调试、查看和修改,并通过EOS应用程序使内核从源代码变为可以在虚拟机上使用。 三、实验过程 1. 设计思路和流程图 (1)改写SCAN算法 在已有 SCAN 算法源代码的基础上进行改写,要求不再使用双重循环,而是只遍历一次请求队列中的请求,就可以选中下一个要处理的请求。算法流程图如下图所示。 图 3.1.1 SCAN算法IopDiskSchedule函数流程图(2)编写循环扫描(CSCAN)磁盘调度算法 在已经完成的SCAN算法源代码的基础上进行改写,不再使用全局变量ScanInside 确定磁头移动的方向,而是规定磁头只能从外向内移动。当磁头移动到最内的被访问磁道时,磁头立即移动到最外的被访问磁道,即将最大磁道号紧接着最小磁道号构成循环,进行扫描。算法流程图如下图所示。

操作系统实验1

#include "stdio.h" #include #include #define getpch(type) (type*)malloc(sizeof(type)) #define NULL 0 struct pcb { /* 定义进程控制块PCB */ char name[10]; char state; int ntime; int rtime; struct pcb* link; }*ready=NULL,*p; typedef struct pcb PCB; void sort() /* 建立对进程进行优先级排列函数*/ { PCB *first, *second; int insert=0; if((ready==NULL)||((p->ntime)<(ready->ntime))) /*运行时间最短者,插入队首*/ { p->link=ready; ready=p; } else /* 进程比较运行时间优先级,插入适当的位置中*/ { first=ready; second=first->link; while(second!=NULL) { if((p->ntime)<(second->ntime)) /*若插入进程比当前进程所需运行时间短,*/ { /*插入到当前进程前面*/ p->link=second; first->link=p; second=NULL; insert=1; } else /* 插入进程运行时间最长,则插入到队尾*/ { first=first->link; second=second->link; } } if(insert==0) first->link=p; } }

计算机操作系统实训资料

计算机操作系统实验(训)指导书 学院:电子信息工程学院 班级:13计算机科学与技术本01班 学号: 姓名: 指导教师: 西安思源学院 电子信息工程学院

前言 操作系统是计算机科学与技术专业的一门重要的专业课,是一门实践性很强的技术课程。掌握操作系统原理、熟悉操作系统的使用是各层次计算机软硬件开发人员必不可少的基本技能。操作系统课程讲授理论原理比较容易,而如何指导学生进行实践则相对较难,导致学生不能深刻地理解操作系统的本质,也不能在实际中应用所学的操作系统理论知识及操作系统所提供的功能来解决实际问题。 本实验课程在操作系统原理课程教学中占有重要地位,目的是让学生及时掌握和巩固所学的基本原理和基础理论,加深理解。提高学生自适应能力,为将来使用和设计各类新的操作系统打下基础。 一般来说,学习操作系统分为以下几个层次: 1.学习并掌握操作系统的基本概念及原理,了解操作系统的实现机制。 2.掌握常用操作系统的使用、操作和维护,成为合格的系统管理员。 目前最常用的操作系统主要有UNIX、Linux、Windows等等。 3.通过分析操作系统源代码,掌握修改、编写操作系统的能力。开放源代码的操作系统Linux的出现为我们提供了机遇。 操作系统本身的构造十分复杂,如何在有效的时间内,使学生既能了解其实现原理又能对原理部分进行有效的实践,是操作系统教学一直在探索的内容。本实验课程以Windows和Linux操作系统为主要平台,从基本原理出发,通过几个实验,使学生能对操作系统的基本原理有更深入的了解,为将来从事操作系统方面的研究工作打下一定的基础。

目录 实验一Windows的用户界面 (4) 实验二Windows2003的任务与进程管理器 (6) 实验三Linux使用环境 (10) 实验四Linux进程管理、内存管理、设备管理 (13) 实验五Windows2003内存管理 (16) 实验六目录和文件管理 (19) 实验七用户与组群管理 (21)

操作系统第一次与第二次实验报告

实验报告 实验1 Linux基本环境 1、实验目的 (1)熟悉Linux下的基本操作,学会使用各种Shell命令去操作Linux,对Linux 有一个感性认识。 (2)学会使用vi编辑器编简单的C语言程序,并能对其编译和调试。 2、实验内容 (1)以root用户身份登陆,并使用“ls”,“cat”“cd”等命令来实现基本的文件操作并观察Linux文件系统的特点; (2)使用vi编辑器编写一C程序,并用gcc命令进行编译和链接,并用a.out 来进行输出结果。 3、实验结果 (1) a.输入“ls”后,vi编辑器显示主文件夹下的所有文件及目录名。使用dir 查看当前目录内容。 b.输入“cat”后,会显示文件:cat 文件名建立文件:cat >文件名, ctrl+d结束输入。 c.输入“cd”,改变当前目录,cd ..回到上层目录,cd /回到根目录。(2) a.在命令行键入vi filename.c 然后回车。 b.按一下键盘上的I键(insert),进入编辑模式。(a与i是相同的用法) c.当文件编辑完后,按Esc 键;输入:wq) ,保存退出。 d.对刚才编写的程序进行编译。编译的命令是:gcc filenam e.c e.最后运行程序,命令式:./a.out 4、实验总结 通过做本次实验,我熟悉了Linux环境下的基本操作,学会使用各种命令去操作Linux,也学会使用vi编辑器编辑简单的程序,并能对其编译

和调试。了解并掌握了对vi编辑器的一些基本使用方法等。可能由于初次接触Linux环境,所以刚开始编程时出现了许多错误,但我及时找同学或老师来帮忙,解决我的问题,这些错误能够让我更清楚地了解自己对哪些知识掌握的不够透彻,让自己对知识掌握的更牢固。 实验2 进程管理 1、实验目的 (1)加深对进程概念的理解,明确进程和程序的区别。 (2)进一步认识并发执行的实质。 (3)分析进程竞争资源现象,学习解决进程互斥的方法。 (4)了解Linux系统中进程通信的基本原理。 2、实验内容 (1)进程的创建 编写一段源程序,使系统调用fork()创建两个子进程,当此程序运行时,在系统中有一个父进程和两个子进程活动。让每一个进程在屏幕 上显示一个字符:父进程显示字符“a”;子进程分别显示字符“b”和 字符“c”。试观察纪录屏幕上的显示结果,并分析原因。 (2)进程的控制 修改已编写的程序,将每个进程输出一个字符改为每个进程输出一句话,在观察程序执行时屏幕出现的现象,并分析原因。 如果在程序中使用调用lockf()来给每一个子进程加锁,可以实现进程 之间的互斥,观察并分析出现的现象。 (3)①编写一段程序,使其现实进程的软中断通信。 要求:使用系统调用fork()创建两个子进程,再用系统调用signal() 让父进程捕捉键盘上来的中断信号(即按DEL键);当捕捉到中断信号 后,父进程用系统调用Kill()向两个子进程发出信号,子进程捕捉到信 号后分别输出下列信息后终止: Child Processll is Killed by Parent!

操作系统实验08

实验8 缺页统计 实验目的 学习虚拟内存的基本原理和Linux虚拟内存管理技术;深入理解、掌握Linux的按需调页过程。 复习巩固Linux内核模块和虚拟文件系统的知识和运用能力。 实验原理 由于每发生一次缺页都要进入缺页中断服务函数do_page_fault一次,所以可以认为执行该函数的次数就是系统发生缺页的次数。通过定义一个全局变量pfcount作为计数变量,每次执行do_page_fault时,该变量值加1,从而得到一段时间内的缺页次数。 至于经历的时间则可以利用系统原有的变量jiffies。这是一个系统的计时器,在内核加载完以后开始计时,以10ms(缺省)为计时单位。 借助内核模块技术通过/proc虚拟文件系统来读出上述两个变量的值。在/proc文件系统下建立目录pf以及在该目录下的只读文件pfcount和jiffies。 实验内容 完成《边干边学》第7.3.1节的“系统缺页次数”实验。 1.修改现有的内核代码,在系统中添加一个全局变量pfcount。配置、编译、安装新 的内核,并重新启动,使用新的内核。 2.编辑、编译、安装新的内核模块pf,在/proc虚拟文件系统中创建目录pf以及只 读文件pfcount和jiffies。 3.编写用户程序,引发足够的缺页中断;观察一定时间内的缺页状况。 4.选做:学习《边干边学》第7章,阅读相关的内核源代码,分析Linux系统中缺页 的处理过程。 实验步骤 一、修改现有内核代码,添加缺页计数器pfcount 1.以root帐号登录,解包内核源码,并转入内核源码目录 cd /usr/src tar zxvf linux-2.4.18.tar.gz cd linux 2.修改include/linux/mm.h文件 添加变量pfcount的声明 即添加extern unsigned long volatile pfcount;一行

操作系统实验二

操作系统实验实验二进程管理 学号 1215108019 姓名克帆 学院信息学院 班级 12电子2

实验目的 1、理解进程的概念,明确进程和程序的区别。 2、理解并发执行的实质。 3、掌握进程的创建、睡眠、撤销等进程控制方法。 实验容与要求 基本要求:用C语言编写程序,模拟实现创建新的进程;查看运行进程;换出某个进程;杀死进程等功能。 实验报告容 1、进程、进程控制块等的基本原理。 进程是现代操作系统中的一个最基本也是最重要的概念,掌握这个概念对于理解操作系统实质,分析、设计操作系统都有其非常重要的意义。为了强调进程的并发性和动态性,可以给进程作如下定义:进程是可并发执行的程序在一个数据集合上的运行过程,是系统进行资源分配和调度的一个独立单位。 进程又就绪、执行、阻塞三种基本状态,三者的变迁图如下: 由于多个程序并发执行,各程序需要轮流使用CPU,当某程序不在CPU上运行时,必须保留其被中断的程序的现场,包括:断点地址、程序状态字、通用寄存器的容、堆栈容、程序当前状态、程序的大小、运行时间等信息,以便程序再次获得CPU时,能够正确执行。为了保存这些容,需要建立—个专用数据结构,我们称这个数据结构为进程控制块PCB (Process Control Block)。 进程控制块是进程存在的惟一标志,它跟踪程序执行的情况,表明了进程在当前时刻的状态以及与其它进程和资源的关系。当创建一个进程时,实际上就是为其建立一个进程控制块。 在通常的操作系统中,PCB应包含如下一些信息: ①进程标识信息。为了标识系统中的各个进程,每个进程必须有惟一的标识名或标 识数。 ②位置信息。指出进程的程序和数据部分在存或外存中的物理位置。 ③状态信息。指出进程当前所处的状态,作为进程调度、分配CPU的依据。 ④进程的优先级。一般根据进程的轻重缓急其它信息。 这里给出的只是一般操作系统中PCB所应具有的容,不同操作系统的PCB结构是不同的,我们将在2.8节介绍Linux系统的PCB结构。

操作系统第二次实验first-fit, next-fit

操作系统第二次实验报告 物联网1301 齐亨13516110 一、实验简介 本实验要求建造一个没有虚拟功能的内存管理系统。任务如下: ? 设计一个内存管理器,支持至少两种分配策略, 如first-fit, next-fit, best-fit, worst-fit 等。 ? 对不同分配策略的性能进行评估。 二、实验过程 1、first fit(首次适应) 首次适应策略的思路是,分配时在空闲块列表中搜索,找到第一个能够满足请求的块即停止搜索,然后把搜索到的块分割,一部分返回给请求者,另一部分仍然作为空闲块留在空闲列表的原来位置。首次适应策略的问题在于,链表头部区域的块倾向于被首先分割,经过一段时间后,空闲链表头部可能堆积大量小的空闲块,这会导致搜索时间的增加,因为当请求一个头部区域的小块无法满足的块时,需要顺次检查这些小块。 代码如下: #include #include #include int array[99]; int *array_request(int n) { int count=0; int *p=&array[0]; int *l=&array[99]; while(count

} if(count

操作系统作业二

1 填空题 1.设单CPU环境下,有三道作业,它们的提交时间及运行时间如下表: 若采用短作业优先调度策略,作业单道串行运行时的调度次序为 J1,J3,J2 ,平均周转时间= 8 。 2.进程间通信的类型有:基于内存通信、基于文件通信、基于网络通信 和基于报文传递通信。 3.在响应比最高者优先的作业调度算法中,当各个作业等待时间相同时,运行时间短作业将得 到优先调度;当各个作业要求运行的时间相同时,等待时间长得到优先调度。 4.有三个同时到达的作业J1,J2和J3,它们的执行时间分别是T1,T2和T3,且T1

C、多个进程竞争,资源出现了循环等待 D、多个进程竞争共享型设备 3.( C )不是分时系统的基本特征: A、同时性 B、独立性 C、实时性 D、交互性 4.进程所请求的一次打印输出结束后,将使进程状态从(B D) A、运行态变为就绪态 B、运行态变为等待态 C、就绪态变为运行态 D、等待态变为就绪态 5.一作业进入内存后,则所属该作业的进程初始时处于( B C)状态。 A、运行 B、等待 C、就绪 D、收容 6.运行时间最短的作业被优先调度,这种企业调度算法是(C ) A.优先级调度 B.响应比高者优先C.短作业优先D.先来先服务 7.产生死锁的主要原因是进程运行推进的顺序不合适(C ) A.系统资源不足和系统中的进程太多B.资源的独占性和系统中的进程太多 C.进程调度不当和资源的独占性D.资源分配不当和系统资源不足 8. B 是指从作业进入系统到作业完成所经过的时间间隔; D 是从作业进入后备队列起,到被调度程序选中时的时间间隔。 A:响应时间;B:周转时间;C:运行时间; D:等待时间;F:触发时间。 9.CPU的调度分为高级、中级和低级三种,其中低级调度是指 C 调度。 A:作业B:交换C:进程 10. 批处理系统的主要缺点是( B )。 的利用率不高 B.失去了交互性 C.不具备并行性 D.以上都不是 11. 引入多道程序的目的在于( B A)。 A.充分利用CPU,减少CPU等待时间 B.提高实时响应速度 C 有利于代码共享,减少主、辅存信息交换量充分利用存储器 12. 在分时系统中,时间片一定,(B ),响应时间越长。 A.内存越多 B.用户数越多 C.后备队列 D.用户数越少 13. 我们如果为每一个作业只建立一个进程,则为了照顾短作业用户,应采用 SJF B ;为照顾紧急作

西工大计算机操作系统实验报告OS2

评语: 成绩: 指导教师: 实验报告二 日期:2013-5-16 实验名称:构造进程家族树 理解进程的独立空间 一、实验目的: 1. 通过创建若干个子进程,构造进程家族树,分析进程家族树的结构关系;学 习相关系统调用(例如,getpid()和getppid()等)的使用方法。 2. 理解进程是操作系统独立分配资源的单位,进程拥有自己相对独立的程序空 间。 二、实验内容: 1. 进程的创建:编制一段程序,使用系统调用fork()创建三个子进程,在各个子 进程中再使用系统调用fork()进一步创建子进程,如此重复,构造一棵进程家 族树。分别使用系统调用getpid()和getppid()获取当前进程和父进程的 进程标识号并输出。 2. (1)编写一个程序,在其main()函数中定义一个变量shared,对其进行循 环加/减操作,并输出每次操作后的结果; (2)使用系统调用fork()创建子进程,观察该变量的变化; (3)修改程序把shared 变量定义到main()函数之外,重复第(2)步操作,观察该变量的变化。 三、项目要求及分析: 1.学习进程构造的相关知识,学习获取进程相关信息的系统调用函数。利用系统调用getpid()和getppid()所获得的进程标识号信息,验证是否进程间关系是否满足要求的进程家族树。 2.了解进程创建和构造的相关知识,了解C语言程序编写的相关知识。 观察进程执行结果,根据进程间的执行关系思考原因,并和线程进行比较。 四、具体实现:

4.1 流程图 1.进程家族树 Pid_1=fork() Pid_2=fork() Pid_1<0? error Pid_1==0? 输出pid 和ppid Pid_2<0? ERROR Y N Y Y Pid_2==0? Pid_2_1=fork() Pid_2_1<0? ERROR Y Y Pid_2_1==0? 输出pid 和ppid Pid_2_2=fork() N Y pid1>0?Pid_2_1>0? Pid_2_2<0? ERROR Pid_2_2==0? 输出pid 和ppid N Y Pid_2>0? Pid_3=fork() Pid_3<0? ERROR Pid_3==0? 输出pid 和ppid N N Y Y Y Y N N Y N Y 2.

操作系统实验3报告

实验三、进程通讯 ——管道及共享内存姓名:徐洪班级:10电信实验班学号:Q10600109 实验用学号:e06620111 一、实验目的 (1)加深对管道概念的理解。 (2)掌握利用管道进行进程通信的程序设计。 (3)Linux系统的共享内存机制允许在任意进程间大批量地交换数据。本实验的目的是了解和熟悉Linux支持的共享存储区机制。 二、实验预备内容 认真阅读实验材料中管道通信及共享内存部分,加深对管道通信及共享内存机制的理解。 三、实验内容 任务一、 (1)阅读以上父子进程利用管道进行通信的例子(例1),写出程序的运行结果并分析。 (2)编写程序:父进程利用管道将一字符串交给子进程处理。子进程读字符串,将里面的字符反向后再交给父进程,父进程最后读取并打印反向的字符串。 任务二、 (1)阅读例2的程序,运行一次该程序,然后用ipcs命令查看系统中共享存储区的情况,再次执行该程序,再用ipcs命令查看系统中共享内存的情况,对两次的结果进行比较,并分析原因。最后用ipcrm命令删除自己建立的共享存储区。(有关ipcs和ipcrm介绍见后面一页)(2)每个同学登陆两个窗口,先在一个窗口中运行例3程序1(或者只登陆一个窗口,先在该窗口中以后台方式运行程序1),然后在另一个窗口中运行例3程序2,观察程序的运行结果并分析。运行结束后可以用ctrl+c结束程序1的运行。 四、实验结果 运行例1 反向输出

main() { int x,fd[2],n,i,fs[2]; char buf[30],s[30],m[30],b[30]; pipe(fd); pipe(fs); while ((x=fork())==-1); if (x==0) { close(fd[0]); close(fs[1]); printf("Parent Process!\n"); strcpy(buf,"This is an example\n"); write(fd[1],buf,30); read(fs[0],m,30); printf("Parent Process1!\n"); printf("%s\n",m); } else{ close(fd[1]); close(fs[0]); printf("Child Process!\n"); read(fd[0],s,30); n=strlen(s)-1; for( i=0;i

东北大学操作系统第二次实验报告

实验4:进程的管道通信 一、题目:进程的管道通信 二、目的: ●加深对进程概念的理解,明确进程和程序的区别; ●学习进程创建的过程,进一步认识并发执行的实质; ●分析进程争用资源的现象,学习解决进程互斥的方法; ●学习解决进程同步的方法; ●掌握Linux系统进程间通过管道通信的具体实现方法。 三、实验内容 ?使用系统调用pipe()建立一条管道线,两个子进程分别向管道写一句话(写 的内容自己定,但要有该进程的一些信息); ?父进程从管道中读出来自两个子进程的消息,显示在屏幕上; ?要求:父进程首先接收子进程p1发来的消息,然后再接收子进程p2发来的 消息。 四、实验要求 1、这是一个设计型实验,要求自行、独立编制程序; 2、两个子进程要并发执行; 3、实现管道的互斥使用。当一个子进程正在对管道进行写操作时,另一个欲写入管道的子进程必须等待。使用系统调用lockf(fd[1],1,0)实现对管道的加锁操作,用lockf(fd[1],0,0)解除对管道的锁定; 4、实现父子进程的同步,当父进程试图从一空管道中读取数据时,便进入等待状态,直到子进程将数据写入管道返回后,才将其唤醒。 五、程序流程图

图5.1 父进程流程图

图5.2子进程P1流程图图5.3子进程P2流程图 六、源程序 #include #include #include #include #include #include #include #include

操作系统实验报告.实验一_WINDOWS进程初识

操作系统教程 实验指导书

实验一WINDOWS进程初识 1、实验目的 (1)学会使用VC编写基本的Win32 Consol Application(控制台应用程序)。 (2)掌握WINDOWS API的使用方法。 (3)编写测试程序,理解用户态运行和核心态运行。 2、实验内容和步骤 (1)编写基本的Win32 Consol Application 步骤1:登录进入Windows,启动VC++ 6.0。 步骤2:在“FILE”菜单中单击“NEW”子菜单,在“projects”选项卡中选择“Win32 Consol Application”,然后在“Project name”处输入工程名,在“Location”处输入工程目录。创建一个新的控制台应用程序工程。 步骤3:在“FILE”菜单中单击“NEW”子菜单,在“Files”选项卡中选择“C++ Source File”, 然后在“File”处输入C/C++源程序的文件名。 步骤4:将清单1-1所示的程序清单复制到新创建的C/C++源程序中。编译成可执行文件。 步骤5:在“开始”菜单中单击“程序”-“附件”-“命令提示符”命令,进入Windows “命令提示符”窗口,然后进入工程目录中的debug子目录,执行编译好的可执行程序:E:\课程\os课\os实验\程序\os11\debug>hello.exe 运行结果 (如果运行不成功,则可能的原因是什么?) : 答:运行成功,结果: (2)计算进程在核心态运行和用户态运行的时间 步骤1:按照(1)中的步骤创建一个新的“Win32 Consol Application”工程,然后将清单1-2中的程序拷贝过来,编译成可执行文件。 步骤2:在创建一个新的“Win32 Consol Application”工程,程序的参考程序如清单1-3所示,编译成可执行文件并执行。 步骤3:在“命令提示符”窗口中运行步骤1中生成的可执行文件,测试步骤2中可执行文件在核心态运行和用户态运行的时间。 E:\课程\os课\os实验\程序\os12\debug>time TEST.exe 步骤4:运行结果 (如果运行不成功,则可能的原因是什么?) 因为此程序是个死循环,所以运行时间为无穷大。_______________________________________________________________________________ _______________________________________________________________________________ _______________________________________________________________________________ _______________________________________________________________________________ __________________________________________________________________________

操作系统实验二

GDOU-B-11-112广东海洋大学学生实验报告书(学生用表) 实验名称实验二课程名称操作系统课程号 学院(系) 信息学院专业物联网工程班级1131 学生姓名杨光学号201311672119 实验地点实验日期 实验1:线程的创建与撤销 1.实验目的 (1)熟悉Windows系统提供的线程创建与撤销系统调用。 (2)掌握Windows系统环境下线程的创建与撤销方法。 2.实验要求 能正确使用CreateThread()、ExitThread()及Sleep()等系统调用,进 一步理解进程与线程理论。 代码一: // ThreadCreate.cpp : Defines the entry point for the console application. // #include "stdafx.h" #include "ThreadCreate.h" #ifdef _DEBUG #define new DEBUG_NEW #undef THIS_FILE static char THIS_FILE[] = __FILE__; #endif ///////////////////////////////////////////////////////////////////////////// // The one and only application object CWinApp theApp; using namespace std; void ThreadName1(); static HANDLE hHandle1=NULL; //用于存储线程返回句柄的变量。 DWORD dwThreadID1; //用于存储线程标识符的变量。 int _tmain(int argc, TCHAR* argv[], TCHAR* envp[])

计算机操作系统实验资料

操作系统实验报告 1.实验目的及要求 ①了解什么是信号。 ②熟悉LINUX系统中进程之间软中断通信的基本原理。 2.实验环境 VMware Workstation 12 Player 3.实验内容 ①编写一段程序,使用系统调用fork( )创建两个子进程,再用系统调用signal( )让父进程捕捉键盘上来的中断信号(即按ctrl+c 键),当捕捉到中断信号后,父进程用系统调用kill( )向两个子进程发出信号,子进程捕捉到信号后,分别输出下列信息后终止:Child process 1 is killed by parent! Child process 2 is killed by parent! 父进程等待两个子进程终止后,输出以下信息后终止: Parent process is killed! ②程序实例 #include #include #include

int wait_mark; void waiting(); void stop(); void main() { int p1,p2; signal(SIGINT,stop); //signal()初始位置while((p1=fork())==-1); if(p1>0) { signal(SIGINT,stop); while((p2=fork())==-1); if(p2>0) { signal(SIGINT,stop); wait_mark=1; waiting(); kill(p1,10); kill(p2,12); wait(); wait(); printf("parent process is killed!\n"); exit(0);

操作系统实验报告18038

福州大学数学与计算机科学(软件)学院 实验报告 课程名称:计算机操作系统 学号:221100218 姓名: 专业:软件工程 年级:2011级 学期:2012学年第2学期 2013年10 月24 日

实验一 Linux操作系统的使用和分析 一、实验目的 本实验主要学习和掌握Linux操作系统的基本应用。通过本实验,学生能够熟练掌握Linux环境下各种基本操作命令接口的应用。从系统安全角度出发,学习掌握系统的基本安全优化和配置,在操作系统层次进行有效安全加固,提高Linux系统的安全性能。通过本次实验,有助于学生进一步理解操作系统原理中的相关内容,加深认识。 二、实验要求 1、熟练掌握Linux系统的基本操作命令。 2、熟悉Linux 系统的基本配置。 3、实现Linux系统的安全加固。 4、掌握一种以上的网络应用软件的安装、配置与应用。 三、实验内容 系统的启动,如图: 关闭使用shutdowm 还有列出文件夹内的信息ls,cp复制拷贝,touch创建文件命令等等 ①下载文件压缩包pro.gz,解压如图:

②然后修改安装路径: ③之后用make编译文件 ④在安装路径/home/liaoenrui/11里的etc中修改文件的组名和用户名: 将groud 命名也命名为ftp,然后用groudadd和useradd命令将这两个添加在该目录的sbin目录下:

⑤最后运行文件,./profile即可 四、实验总结 通过本次的操作系统的上机实验,我熟练了Linux系统的基本操作命令,并且对安装文件有更深入的了解,比如在上述安装过程中对于通过froftpd来架构linux的ftp,由于之前都是用window系统,所以对于这些非常的生疏,因此在请教了多人和上网查询之后,终于有所了解,并且成功的将此实验顺利完成。在本次实验中,我发现自己的动手能力又有很大的提高,相信以后继续努力的话会有更大的进步,当然这也要归功于老师的教导。 参考文献 [1] Neil Maththew Richard Stones Linux 程序设计第四版人民邮电出版社 [2] 周茜,赵明生.中文文本分类中的特征选择研究[J].中文信息学报,2003,Vol.18 No.3

操作系统实验_实验1分析

广州大学学生实验报告 1、实验目的 1.1、掌握进程的概念,明确进程的含义 1.2、认识并了解并发执行的实质 2.1、掌握进程另外的创建方法 2.2、熟悉进程的睡眠、同步、撤消等进程控制方法 3.1、进一步认识并发执行的实质 3.2、分析进程竞争资源的现象,学习解决进程互斥的方法 4.1、了解守护进程 5.1、了解什么是信号 5.2、INUX系统中进程之间软中断通信的基本原理 6.1、了解什么是管道 6.2、熟悉UNIX/LINUX支持的管道通信方式 7.1、了解什么是消息 7.2、熟悉消息传送的机理 8.1、了解和熟悉共享存储机制 二、实验内容 1.1、编写一段程序,使用系统调用fork( )创建两个子进程。当此程序运行时,在系统 中有一个父进程和两个子进程活动。让每一个进程在屏幕上显示一个字符:父进程显示'a',子进程分别显示字符'b'和字符'c'。试观察记录屏幕上的显示结果,并分析原因。 1.2、修改上述程序,每一个进程循环显示一句话。子进程显示'daughter …'及 'son ……',父进程显示'parent ……',观察结果,分析原因。 2.1、用fork( )创建一个进程,再调用exec( )用新的程序替换该子进程的内容 2.2、利用wait( )来控制进程执行顺序 3.1、修改实验(一)中的程序2,用lockf( )来给每一个进程加锁,以实现进程之间的互斥 3.2、观察并分析出现的现象 4.1、写一个使用守护进程(daemon)的程序,来实现: 创建一个日志文件/var/log/Mydaemon.log ; 每分钟都向其中写入一个时间戳(使用time_t的格式) ; 5.1、用fork( )创建两个子进程,再用系统调用signal( )让父进程捕捉键盘上来的中断信号(即按^c键);捕捉到中断信号后,父进程用系统调用kill( )向两个子进程发出信号,子进程捕捉到信号后分别输出下列信息后终止: Child process1 is killed by parent! Child process2 is killed by parent! 父进程等待两个子进程终止后,输出如下的信息后终止: Parent process is killed! 5.2、用软中断通信实现进程同步的机理

操作系统实验二

操作系统实验 实验二进程管理 学号 1215108019 姓名李克帆 学院信息学院 班级 12电子 2

实验目的 1、理解进程的概念,明确进程和程序的区别。 2、理解并发执行的实质。 3、掌握进程的创建、睡眠、撤销等进程控制方法。 实验内容与要求 基本要求:用C语言编写程序,模拟实现创建新的进程;查看运行进程;换出某个进程;杀死进程等功能。 实验报告内容 1、进程、进程控制块等的基本原理。 进程是现代操作系统中的一个最基本也是最重要的概念,掌握这个概念对于理解操作系统实质,分析、设计操作系统都有其非常重要的意义。为了强调进程的并发性和动态性,可以给进程作如下定义:进程是可并发执行的程序在一个数据集合上的运行过程,是系统进行资源分配和调度的一个独立单位。 进程又就绪、执行、阻塞三种基本状态,三者的变迁图如下: I/完时间片 进程调 I/请

由于多个程序并发执行,各程序需要轮流使用CPU,当某程序不在CPU上运行时,必须保留其被中断的程序的现场,包括:断点地址、程序状态字、通用寄存器的内容、堆栈内容、程序当前状态、程序的大小、运行时间等信息,以便程序再次获得CPU时,能够正确执行。为了保存这些内容,需要建立—个专用数据结构,我们称这个数据结构为进程控制块PCB (Process Control Block)。 进程控制块是进程存在的惟一标志,它跟踪程序执行的情况,表明了进程在当前时刻的状态以及与其它进程和资源的关系。当创建一个进程时,实际上就是为其建立一个进程控制块。 在通常的操作系统中,PCB应包含如下一些信息: ①进程标识信息。为了标识系统中的各个进程,每个进程必须有惟一的标识名或标识数。 ②位置信息。指出进程的程序和数据部分在内存或外存中的物理位置。 ③状态信息。指出进程当前所处的状态,作为进程调度、分配CPU的依据。 ④进程的优先级。一般根据进程的轻重缓急其它信息。 这里给出的只是一般操作系统中PCB所应具有的内容,不同操作系统的PCB结构是不同的,我们将在2.8节介绍Linux系统的PCB结构。就 执行阻塞 程度为进程指定一个优先级,优先级用优先数表示。 ⑤进程现场保护区。当进程状态变化时(例如一个进程放弃使用CPU),它需要将当时的CPU现场保护到内存中,以便再次占用CPU时恢复正常运行,有的系统把要保护的CPU 现场放在进程的工作区中,而PCB中仅给出CPU现场保护区起始地址。 ⑥资源清单。每个进程在运行时,除了需要内存外,还需要其它资源,如I/O设备、外存、数据区等。这一部分指出资源需求、分配和控制信息。 ⑦队列指针或链接字。它用于将处于同一状态的进程链接成一个队列,在该单元中存放下一进程PCB首址。 ⑧其它信息。 这里给出的只是一般操作系统中PCB所应具有的内容,不同操作系统的PCB结构是不同的,我们将在2.8节介绍Linux系统的PCB结构。 2、程序流程图。

计算机操作系统实验-文件管理

哈尔滨工业大学计算机科学与技术学院 实验报告 课程名称:操作系统 课程类型:必修 实验项目名称:文件管理 实验题目:设计一个多用户的文件系统 班级:实验学院一班 学号:6040310110 姓名:张元竞 设计成绩报告成绩指导老师

一、实验目的 随着社会信息量的极大增长,要求计算机处理的信息与日俱增,涉及到社会生活的各个方面。因此,文件管理是操作系统的一个非常重要的组成部分。学生应独立用高级语言编写和调试一个简单的文件系统,模拟文件管理的工作过程。从而对各种文件操作命令的实质内容和执行过程有比较深入的了解,掌握它们的实施方法,加深理解课堂上讲授过的知识。 二、实验要求及实验环境 用高级语言编写和调试一个简单的文件系统,模拟文件管理的工作过程。要求设计一个10个用户的文件系统,每次用户可保存10个文件,一次运行用户可以打开5个文件。系统能够检查打入命令的正确性,出错时能显示出错原因。对文件必须设置保护措施,例如只能执行,允许读等。在每次打开文件时,根据本次打开的要求,在此设置保护级别,即有二级保护。文件的操作至少有Create、delete、open、close、read、write等命令。 所编写的程序应采用二级文件目录,即设置主文件目录和用户文件目录。前者应包含文件主及它们的目录区指针;后者应给出每个文件占有的文件目录,即文件名,保护码,文件长度以及它们存放的位置等。另外为打开文件设置运行文件目录(AFD),在文件打开时应填入打开文件号,本次打开保护码和读写指针等。 三、设计思想(本程序中的用到的所有数据类型的定义,主程序的流程图及各程序模块之间的调用关系)

操作系统课程设计实验报告

操作系统 课程设计报告 学院: 班级: 学生姓名: 学号: 指导老师: 提交日期: 一、实验目的

本设计的目的是实现操作系统和相关系统软件的设计,其中涉及进程编程、I/O操作、存储管理、文件系统等操作系统概念。 二、实验要求 在任一OS下,建立一个大文件,把它假象成一张盘,在其中实现一个简单的模拟Linux 文件系统。具体见附表 三、实验环境 Windows 、VC 三、实验思想 1、整体思路 实验可分为三个大模块:文件组织结构、目录结构、磁盘空间管理。编写时,先定义重要的数据结构,整理好各个模块的思路,列出程序清单。接着编写一些对系统进行基本操作的函数,然后利用这些函数实现各种功能。 2、盘块大概分布(分了128块,每块64字节) 盘块0 1 2 3 4 5 6 (127) 用途FAT表FAT表根目录目录数据数据数据...... 数据 盘块与盘块之间的链接,是利用FAT表项,(使用数组结构),并用它记录了所有盘块的使用信息。 优点:可以利用FAT信息,迅速查找、打开各个目录,进行创建、修改文件。 3、目录组成 为了简单,构思目录时,每个目录只有8字节,每盘存放最多8个目录。其中,目录名、文件名最多只能为3字节,如果是文件的话,类型名也最多为2字节。区分目录名和文件名的方法是:设计一个属性项(1个字节),为8时表示纯目录,为4时表示文件目录。具体分布如下图: 用途目录名或文件名文件类型属性文件起始盘 文件长度 块 大小3(字节) 2 1 1 1 优点:属性可以区分纯目录、文件目录;文件起始盘块可以记录文件的存放位置;文件长度,,在读文件时控制指针,是否到了文件末尾。 缺点:为了简单,对文件名、目录名、类型名都作了限制。最大分别为:3,3,2字节。

山东大学操作系统实验二

软件学院操作系统实验报告 实验题目: 实验二、线程和进程/线程管道通信实验 学号:201100300124 日期:2013年04月19日 班级:5班姓名:韩俊晓 Email:hanjunxiao188@https://www.wendangku.net/doc/46657073.html, 实验目的: 通过Linux 系统中线程和管道通信机制的实验,加深对于线程控制和管道通信概念的理解,观察和体验并发进/线程间的通信和协作的效果,练习利用无名管道进行进/线程间通信的编程和调试技术。 实验要求: 设有二元函数f(x,y) = f(x) + f(y) 其中:f(x) = f(x-1) * x(x >1) f(x)=1(x=1) f(y) = f(y-1) + f(y-2)(y> 2) f(y)=1(y=1,2) 请编程建立3个并发协作进程(或线程),它们分别完成f(x,y)、f(x)、f(y) 其中由父进程(或主线程)完成:f(x,y) = f(x) + f(y) 由子进程1(或线程1)完成:f(x) = f(x-1) * x(x >1) f(x)=1(x=1)

由子进程2(或线程2)完成:f(y) = f(y-1) + f(y-2)(y> 2) f(y)=1(y=1,2) 硬件环境: 实验室计算机 软件环境: Ubuntu08.4-Linux操作系统 BASH_VERSION='3.2.33(1)-release gcc version 4.1.2 gedit 2.18.2 OpenOffice 2.3 实验步骤: 1.实验说明: 1)与线程创建、执行有关的系统调用说明 线程是在共享内存中并发执行的多道执行路径,它们共享一个进程的资源,如进程程序段、文件描述符和信号等,但有各自的执行路径和堆栈。线程的创建无需像进程那样重新申请系统资源,线程在上下文切换时也无需像进程那样更换内存映像。多线程的并发执行即避免了多进程并发的上下文切换的开销又可以提高并发处理的效率。 Linux 利用了特有的内核函数__clone 实现了一个叫phread 的线程库,__clone是fork 函数的替代函数,通过更多的控制父子进程共享哪些资源而实现了线程。Pthread 是一个标准化模型,用它可把一个程序分成一组能够并发执行的多个任务。phread 线程库是POSIX 线程标

相关文档