文档库 最新最全的文档下载
当前位置:文档库 › 变压器常用的冷却方式

变压器常用的冷却方式

变压器常用的冷却方式
变压器常用的冷却方式

变压器常用的冷却方式

变压器常用的冷却方式有以下几种:

油浸自冷(ONAN);

油浸风冷(ONAF);

强迫油循环风冷(OFAF);

强迫油循环水冷(OFWF);

强迫导向油循环风冷(ODAF);

强迫导向油循环水冷ODWF)。

按变压器选用导则的要求,冷却方式的选择推荐如下:

1 油浸自冷

31500kV A及以下、35kV及以下的产品;

50000kV A及以下、110kV产品。

2 油浸风冷

12500kV A~63000kV A、35kV~110kV产品;

75000kV A以下、110kV产品;

40000kV A及以下、220kV产品。

3 强迫油循环风冷

50000~90000kV A、220kV产品。

4 强迫油循环水冷

一般水力发电厂的升压变220kV及以上、60MV A及以上产品采用。

5 强迫导向油循环风冷或水冷(ODAF或ODWF)

75000kV A及以上、110kV产品;

120000kV A及以上、220kV产品;

330kV级及500kV级产品。

选用强油风冷冷却方式时,当油泵与风扇失去供电电源时,变压器不能长时间运行。即使空载也不能长时间运行。因此,应选择两个独立电源供冷却器使用。

选用强油水冷方式时,当油泵冷却水失去电源时,不能运行。电源应选择两个独立电源。

第一个字母表示与绕组接触的内部冷却介质:

O矿物油或燃点不大于300。C的合成绝缘液体;

K燃点大于300。C的绝缘液体;

1燃点不可测出的绝缘液体。

注:燃点用“克利夫兰开口杯法”试验。

第二个字母表示内部冷却介质的循环方式:

N流经冷却设备和绕组内部的油流是自然的热对流循环;

F冷却设备中的油流是强迫循环,流经绕组内部的油流是热对流循环;

D冷却设备中的油流是强迫循环,(至少)在主要绕组内的油流是强迫导向循环。

第三个字母表示外部冷却介质:

A空气;

W水。

第四个字母表示外部冷却介质的循环方式:

N自然对流;

F强迫循环(风扇、泵等)。

变压器的连接组标号

Y表示星形连接,中性点不引出;Y0表示星形连接(新国标用YN yn表示),中性点引出;△表示三角形连接;老国标中高低压都用大写字母,新国标高压侧用大写字母,低压侧用小写字母。连接组别号的数字是指线电压相量间的角度,从1到12。分别对应12小时的指针。

在变压器的联接组别中“Y”表示一次侧为星形接线,Y表示星形,如果有n,则n 表示带中性线;“d”表示二次侧为三角形接线。“11”表示变压器二次侧的线电压Uab滞后一次侧线电压UAB330度(或超前30度)。

变压器的联接组别的表示方法是:大写字母表示一次侧(或原边)的接线方式,小写字母表示二次侧(或副边)的接线方式。Y(或y)为星形接线,D(或d)为三角形接线。数字采用时钟表示法,用来表示一、二次侧线电压的相位关系,一次侧线电压相量作为分针,固定指在时钟12点的位置,二次侧的线电压相量作为时针。

楼主提供的“Y,d11”,其中11就是表示:当一次侧线电压相量作为分针指在时钟12点的位置时,二次侧的线电压相量在时钟的11点位置。也就是,二次侧的线电压Uab滞后一次侧线电压UAB330度(或超前30度)。

变压器接线方式有4种基本连接形式:“Y,y”、“D,y”、“Y,d”和“D,d”。我国只采用“Y,y”和“Y,d”。由于Y连接时还有带中性线和不带中性线两种,不带中性线则不增加任何符号表示,带中性线则在字母Y后面加字母n表示。

不都写的很明确么?

接线的话,以你的Y,D11为例,一次绕组星接,二次绕组角接。

向量图的话,二次绕组线电压滞后一次绕组对应线电压30°。然后按照每个绕组的其他线电压依次差120°画出来就行了!

变压器冷却器冷却工作原理1

变压器冷却器冷却工作原理 1、变压器常用的冷却方式有以下几种: ①、油浸自冷(ONAN); ②、油浸风冷(ONAF); ③、强迫油循环风冷(OFAF); ④、强迫油循环水冷(OFWF); ⑤、强迫导向油循环风冷(ODAF); ⑥、强迫导向油循环水冷(ODWF)。 ⑦、自然风冷式(ONAF); 2、按变压器选用导则的要求,冷却方式的选择推荐如下: ①、油浸自冷 31500kVA及以下、35kV及以下的产品; 50000kVA及以下、110kV产品。 ②、油浸风冷 12500kVA~63000kVA、35kV~110kV产品; 75000kVA以下、110kV产品; 40000kVA及以下、220kV产品。 ③、强迫油循环风冷 50000~90000kVA、220kV产品。 ④、强迫油循环水冷 一般水力发电厂的升压变220kV及以上、60MVA及以上产品采用。 ⑤、强迫导向油循环风冷或水冷(ODAF或ODWF) 75000kVA及以上、110kV产品; 120000kVA及以上、220kV产品; 330kV级及500kV级产品。 选用强油风冷冷却方式时,当油泵与风扇失去供电电源时,变压器不能长时间运行。即使空载也不能长时间运行。因此,应选择两个独立电源供冷却器使用。 3、变压器冷却器强迫油循环冷却工作原理 主变压器使用强迫油循环冷却方式,其工作原理是把变压器中的油,利用油泵打入冷却

器后再复回油箱。油冷却器做成容易散热的特殊形状,利用风扇吹风作冷却介质,把热量带走。 4、桂平巡维中心管辖下的变压器冷却器冷却方式 220kV社步站2号主变压器使用强迫油循环冷却方式,1号主变压器的冷却方式采用自然风冷式(ONAF);110kV祥和站、110kV西山站、110kV木乐站、110kV金垌站、110 kV蒙圩站、110kV麻垌站、110kV石龙站的主变压器冷却方式都是采用自然风冷式(ONA F); 5、变压器的冷却装置应符合以下要求: a.按制造厂的规定安装全部冷却装置; b.强油循环的冷却系统必须有两个独立的工作电源并能自动切换。当工作电源发生故障时,应自动投入备用电源并发出音响及灯光信号; c.强油循环变压器,当切除故障冷却器时应发出音响及灯光信号,并自动(水冷的可手动)投入备用冷却器; d.风扇、水泵及油泵的附属电动机应有过负荷、短路及断相保护;应有监视油泵电机旋转方向的装置; e.水冷却器的油泵应装在冷却器的进油侧,并保证在任何情况下冷却器中的油压大于水压约0.05MPa(制造厂另有规定者除外)。冷却器出水侧应有放水旋塞; f.强油循环水冷却的变压器,各冷却器的潜油泵出口应装逆止阀; g.强油循环冷却的变压器,应能按温度和(或)负载控制冷却器的投切。 油浸式变压器顶层油温一般不应超过制造厂有规定的按制造厂规定。当冷却介质温度较低时,顶层油温也相应降低。自然循环冷却变压器的顶层油温一般不宜经常超过85℃。 6、220kV社步站主变压器运行的冷却器有关规定 a)主变压器在运行中,,主变绕组温度不得超过105℃,上层油温不得超过85℃; b)1号主变的冷却器是按温度和负荷启动的, 油温60℃以下自然风冷。1号主变有2组冷却器,第1组有1、3、5、7、9、11共6台冷却器,第2组有2、4、6、8、10、12共6台冷却器,第1、2组冷却器均置“自动”。当油温达到60℃或75%额定负荷 时,第一组风冷启动, 当油温降到50℃时,第一组风冷停运;当绕温达到75℃时,第 二组风冷启动,当油温降到65℃时,第二组风冷停运。 c)2号主变的冷却器是强油风冷运行。2号主变应设置工作冷却器3台,辅助冷却器1台。2号主变在55℃以下时,“工作冷却器”投入运行,当2号主变油温达到55℃ 或超过负荷75%额定负荷时,辅助冷却器应自动投入运行。当“运行”或“辅助冷 却器”发生故障时,“备用冷却器”应自动投入运行。2号主变当冷却器故障切除全 部冷却器时,在额定负荷下允许运行时间为20分钟。若油位温度尚未达到75℃, 则允许上升到75℃,但最长运行时间不得超过1小时。 d)如果主变负荷恒定,则2号主变在不同的负荷时应投冷却台数如下: 2号主变压器负荷情况与应设入冷却器台数表

关于变压器的冷却方式有几种

变压器的冷却方式有几种?各种冷却方式的特点是什么? 电力变压器常用的冷却方式一般分为三种:油浸自冷式、油浸风冷式、强迫油循环。 油浸自冷式就是以油的自然对流作用将热量带到油箱壁和散热管,然后依靠空气的对流传导将热量散发,它没有特制的冷却设备。而油浸风冷式是在油浸自冷式的基础上,在油箱壁或散热管上加装风扇,利用吹风机帮助冷却。加装风冷后可使变压器的容量增加30%~35%。强迫油循环冷却方式,又分强油风冷和强油水冷两种。它是把变压器中的油,利用油泵打入油冷却器后再复回油箱。油冷却器做成容易散热的特殊形状,利用风扇吹风或循环水作冷却介质,把热量带走。这种方式若把油的循环速度比自然对流时提高3倍,则变压器可增加容量30%。 什么叫变压器? 变压器是一种用于电能转换的电器设备,它可以把一种电压、电流的交流电能转换成相同频率的另一种电压、电流的交流电能。 变压器的主要部件有: (1)器身:包括铁芯,线圈、绝缘部件及引线。 (2)调压装置:即分接开关,分为无载调压和有载调压装置。 (3)油箱及冷却装置。 (4)保护装置:包括储油柜、油枕、防爆管、吸湿器、气体继电器、净油器和测温装置。 (5)绝缘套管。 变压器铭牌上的额定值表示什么含义? 变压器的额定值是制造厂对变压器正常使用所作的规定,变压器在规定的额定值状态下运行,可以保证长期可靠的工作,并且有良好的性能。其额定值包括以下几方面:

(1)额定容量:是变压器在额定状态下的输出能力的保证值,单位用伏安(VA)、千伏安(kVA)或兆伏安(MVA)表示,由于变压器有很高运行效率,通常原、副绕组的额定容量设计值相等。 (2)额定电压:是指变压器空载时端电压的保证值,单位用伏(V)、千伏(kV)表示。如不作特殊说明,额定电压系指线电压。 (3)额定电流:是指额定容量和额定电压计算出来的线电流,单位用安(A)表示。 (4)空载电流:变压器空载运行时激磁电流占额定电流的百分数。 (5)短路损耗:一侧绕组短路,另一侧绕组施以电压使两侧绕组都达到额定电流时的有功损耗,单位以瓦(W)或千瓦(kW)表示。 (6)空载损耗:是指变压器在空载运行时的有功功率损失,单位以瓦(W)或千瓦(kW)表示。 (7)短路电压:也称阻抗电压,系指一侧绕组短路,另一侧绕组达到额定电流时所施加的电压与额定电压的百分比。 (8)连接组别:表示原、副绕组的连接方式及线电压之间的相位差,以时钟表示。 常用变压器有哪些种类?各有什么特点? 一般常用变压器的分类可归纳如下: (1)按相数分: 1)单相变压器:用于单相负荷和三相变压器组。 2)三相变压器:用于三相系统的升、降电压。 (2)按冷却方式分: 1)干式变压器:依靠空气对流进行冷却,一般用于局部照明、电子线路等小容量变压器。

变压器的冷却方式有几种

变压器的冷却式有几种?各种冷却式的特点是什么? 电力变压器常用的冷却式一般分为三种:油浸自冷式、油浸风冷式、强迫油循环。 油浸自冷式就是以油的自然对流作用将热量带到油箱壁和散热管,然后依靠空气的对流传导将热量散发,它没有特制的冷却设备。而油浸风冷式是在油浸自冷式的基础上,在油箱壁或散热管上加装风扇,利用吹风机帮助冷却。加装风冷后可使变压器的容量增加30%~35%。强迫油循环冷却式,又分强油风冷和强油水冷两种。它是把变压器中的油,利用油泵打入油冷却器后再复回油箱。油冷却器做成容易散热的特殊形状,利用风扇吹风或循环水作冷却介质,把热量带走。这种式若把油的循环速度比自然对流时提高3倍,则变压器可增加容量30%。 什么叫变压器? 变压器是一种用于电能转换的电器设备,它可以把一种电压、电流的交流电能转换成相同频率的另一种电压、电流的交流电能。 变压器的主要部件有: (1)器身:包括铁芯,线圈、绝缘部件及引线。 (2)调压装置:即分接开关,分为无载调压和有载调压装置。 (3)油箱及冷却装置。 (4)保护装置:包括储油柜、油枕、防爆管、吸湿器、气体继电器、净油器和测温装置。 (5)绝缘套管。 变压器铭牌上的额定值表示什么含义? 变压器的额定值是制造厂对变压器正常使用所作的规定,变压器在规定的额定值状态下运行,可以保证长期可靠的工作,并且有良好的性能。其额定值包括以下几面:

(1)额定容量:是变压器在额定状态下的输出能力的保证值,单位用伏安(VA)、千伏安(kVA)或兆伏安(MVA)表示,由于变压器有很高运行效率,通常原、副绕组的额定容量设计值相等。 (2)额定电压:是指变压器空载时端电压的保证值,单位用伏(V)、千伏(kV)表示。如不作特殊说明,额定电压系指线电压。 (3)额定电流:是指额定容量和额定电压计算出来的线电流,单位用安(A)表示。 (4)空载电流:变压器空载运行时激磁电流占额定电流的百分数。 (5)短路损耗:一侧绕组短路,另一侧绕组施以电压使两侧绕组都达到额定电流时的有功损耗,单位以瓦(W)或千瓦(kW)表示。 (6)空载损耗:是指变压器在空载运行时的有功功率损失,单位以瓦(W)或千瓦(kW)表示。 (7)短路电压:也称阻抗电压,系指一侧绕组短路,另一侧绕组达到额定电流时所施加的电压与额定电压的百分比。 (8)连接组别:表示原、副绕组的连接式及线电压之间的相位差,以时钟表示。 常用变压器有哪些种类?各有什么特点? 一般常用变压器的分类可归纳如下: (1)按相数分: 1)单相变压器:用于单相负荷和三相变压器组。 2)三相变压器:用于三相系统的升、降电压。 (2)按冷却式分: 1)干式变压器:依靠空气对流进行冷却,一般用于局部照明、电子线路等小容量变压器。

变压器冷却系统

分析了国内大型电力变压器冷却系统存在的问题,主要表现在冷却风机轴承磨损、振动超标、风量小、噪音大等方面,通过改造实例,介绍了采用DBF系列机翼型低噪声变压器风扇更换原有风机取得了明显的效果,进而介绍了对强油循环风冷却器变压器使用单片机作为主控制器,以固态继电器SSR作为执行原件,对冷却风机和循环油泵实现无触点化控制,既取得节能效果,更是方便了运行管理。 〔关键词〕变压器;冷却系统;风机;自动控制 大型变压器是变电站运行中的核心部分,而冷却系统的可靠性将直接影响到变压器的安全运行。目前,国内大部分供电公司采用的风冷变压器因为使用时间久远,冷却系统已经出现不足之处。下面主要叙述这些变压器冷却方式的不足和可行的改造方案以及典型的成功案例,希望对各供电公司、变电站有所帮助。 1 变压器的冷却系统 大型电力变压器常用的冷却方式一般分为3种:油浸自冷式、油浸风冷式、强迫油循环。油浸自冷式就是以油的自然对流作用将热量带到油箱壁和散热管,然后依靠空气的对流传导将热量散发,它没有特制的冷却设备。而油浸风冷式是在油浸自冷式的基础上,在油箱壁或散热管上加装风扇,利用吹风机帮助冷却。加装风机后可使变压器的容量增加30%~35%。强迫油循环冷却方式,又分强油风冷和强油水冷2种,它是把变压器中的油,利用油泵打入油冷却器后再复回油箱,油冷却器做成容易散热的特殊形状,利用风扇吹风或循环水作冷却介质,把热量带走。这种方式若将油的循环速度比自然对流时提高3倍,则变压器可增加容量30%。风冷变压器又分为2种冷却方式,即冷却器冷却和片式散热器冷却,其原理基本相同。 2 变压器冷却系统改造实例

(1) 图1所示的冷却器冷却系统,长时间运行 后,风机轴承磨损、叶片锈蚀,噪声、振动均超出要求,严重影响附近居民的正常生活。原风机一般采用高转速,T35叶轮或者等厚叶片,叶型设计不合理,风量小、噪音大、效率低,随着经济的飞速发展以及变压器的长期满负荷运行,这些变压器的冷却系统亟待改善。 根据客户要求,2004年对北京供电局前门变的冷却系统进行了改造。现场考察后,提出了在不改变原风机控制系统,保证原风机安装尺寸的前提下,更换DBF系列机翼型低噪声变压器风扇。改造完成后,风量、风压明显提高,噪音大大降低,达到了理想的改造效果。 无锡供电局所辖变电站有相当部分变压器是1988年生产的,风机运行了16年左右,修试工作量十分巨大,2004年采用上述方式对多台35,110和220kV主变进行了改造。原来使用的4Q4风机单台噪声为74dB(A),改进后单台噪音不到65dB(A),降噪效果十分明显,且风量、风压远远高于以前使用的风机。 室内变压器如果通风不良也会导致变压器温度过高的现象,目前大部分室内变压器主要通过墙壁安装轴流风机进行通风换气,T35系列轴流通风机效率低、转速高、噪声高,在住宅区附近会表现出明显的弊端,如果采用高效率、低噪音叶轮,效果将会大大改善。这种改造方式可根据原风机安装尺寸及墙体厚度,以方便安装为前提进行,既提高通风性能,又降低噪音。 (2) 图2所示为片式散热器冷却,下方或侧部不安装风机的为自冷,安装风机的为风冷。自冷变压器由于其得天独厚的优势,近几年得到越来越多的应用,可是从目前使用情况看,自冷变压器也表现出其不足。 天津泰达电力公司于5年前投入运行的3台220kV主变压器均为自冷,起初可以满足使用要求,随着用电量的增大,自冷已经不能满足要求,需要进行改造。现场考察后,根据变压器容量和改造经验,在和变压器设计者充分沟通的前提下,提出了在散热片下加装风机进行强制冷却,风机使用控制柜进行控制的改造方案,设计2路独立电源互为备用,2路380V电源取自不同的

变压器常用的冷却方式有以下几种

变压器常用的冷却方式有以下几种:1、油浸自冷(ONAN);2、油浸风冷(ONAF);3、强迫油循环风冷(OFAF);4、强迫油循环水冷(OFWF);5、强迫导向油循环风冷(ODAF);6、强迫导向油循环水冷ODWF)。按变压器选用导则的要求,冷却方式的选择推荐如下:1、油浸自冷31500kVA及以下、35kV及以下的产品;50000kVA及以下、110kV产品。2 、油浸风冷12500kVA~63000kVA、35kV~110kV产品;75000kVA以下、110kV产品;40000kVA及以下、220kV产品。3、强迫油循环风冷50000~90000kVA、220kV产品。4 、强迫油循环水冷一般水力发电厂的升压变220kV及以上、60MVA及以上产品采用。5 、强迫导向油循环风冷或水冷(ODAF或ODWF) 75000kVA及以上、110kV产品;120000kVA及以上、220kV产品;330kV级及500kV级产品。选用强油风冷冷却方式时,当油泵与风扇失去供电电源时,变压器不能长时间运行。即使空载也不能长时间运行。因此,应选择两个独立电源供冷却器使用。选用强油水冷方式时,当油泵冷却水失去电源时,不能运行。电源应选择两个独立电源。冷却方式的标志 对于干式变压器,冷却方式的标志按GB6450的规定。 对于油浸式变压器,用四个字母顺序代号标志其冷却方式。 第一个字母表示与绕组接触的内部冷却介质: O矿物油或燃点不大于300。C的合成绝缘液体; K燃点大于300。C的绝缘液体; 1燃点不可测出的绝缘液体。 注:燃点用“克利夫兰开口杯法”试验。 第二个字母表示内部冷却介质的循环方式: N流经冷却设备和绕组内部的油流是自然的热对流循环; F冷却设备中的油流是强迫循环,流经绕组内部的油流是热对流循环; D冷却设备中的油流是强迫循环,(至少)在主要绕组内的油流是强迫导向循环。 第三个字母表示外部冷却介质: A空气; W水。 第四个字母表示外部冷却介质的循环方式: N自然对流; F强迫循环(风扇、泵等)。 注:1在强迫导向油循环的变压器中(第二字母代号为D),流经主要绕组的油流量取决于泵,原则上不由负载决定;从冷却设备流出的油流,也可能有一小部分有控制地导向流过铁心和主要绕组以外的其他部分;调压绕组和(或)其他容量较小的绕组也可为非导向油循环。 2在强迫非导向冷却的变压器中(第二个字母的代号为F),通过所有绕组的油流量是随负载变化的,与流经冷却设备的用泵抽出的油流没有直接关系。 一台变压器规定有几种不同的冷却方式时,在说明书中和铭牌上,应给出不同冷却方式下的容量值(见GB1094.1第7.1条m项),以便在某一冷却方式及所规定的容量下运行时,能保证温升不超过规定的限值。在最大冷却能力下的相应容量便是变压器的(或多绕组变压器中某一绕组的)额定容量。不同的冷却方式一般是按冷却能力增大的次序进行排列。 例1:ONAN/ONAF变压器装有一组风扇,在大负载时,风扇可投入运行,在这两种冷却方式下,油流均按热对流方式循环。 例2:ONAN/OFAF变压器带有油泵和风扇的冷却设备。也规定了在自然冷却方式(例如,辅助电源出现故障的情况下),降低负载后的冷却能力。

变压器计算公式

变压器计算公式已知容量,求其各电压等级侧额定电流 口诀a : 容量除以电压值,其商乘六除以十。 说明:适用于任何电压等级。 在日常工作中,有些只涉及一两种电压等级的变压器额定电流的计算。将以上口诀简化,则可推导出计算各电压等级侧额定电流的口诀: 容量系数相乘求。 已知变压器容量,速算其一、二次保护熔断体(俗称保险丝)的电流值。 口诀b : 配变高压熔断体,容量电压相比求。 配变低压熔断体,容量乘9除以5。 说明: 正确选用熔断体对变压器的安全运行关系极大。当仅用熔断器作变压器高、低压侧保护时,熔体的正确选用更为重要。 这是电工经常碰到和要解决的问题。 已知三相电动机容量,求其额定电流 口诀(c):容量除以千伏数,商乘系数点七六。 说明: (1)口诀适用于任何电压等级的三相电动机额定电流计算。由公式及口诀均可说明容量相同的电压等级不同的电动机的额定电流是不相同的,即电压千伏数不一样,去除以相同的容量,所得“商数”显然不相同,不相同的商数去乘相同的系数,所得的电流值也不相同。若把以上口诀叫做通用口诀,则可推导出计算220、380、660、电压等级电动机的额定电流专用计算口诀,用专用计算口诀计算某台三相电动机额定电流时,容量千瓦与电流安培关系直接倍数化, 省去了容量除以千伏数,商数再乘系数。 三相二百二电机,千瓦三点五安培。 常用三百八电机,一个千瓦两安培。 低压六百六电机,千瓦一点二安培。

高压三千伏电机,四个千瓦一安培。 高压六千伏电机,八个千瓦一安培。 (2)口诀c 使用时,容量单位为kW,电压单位为kV,电流单位为A,此点一定要注意。 (3)口诀c 中系数是考虑电动机功率因数和效率等计算而得的综合值。功率因数为,效率不,此两个数值比较适用于几十千瓦以上的电动机,对常用的10kW以下电动机则显得大些。这就得使用口诀c计算出的电动机额定电流与电动机铭牌上标注的数值有误差,此误差对10kW以下电动机按额定电流先开关、接触器、导线等影响很小。 (4)运用口诀计算技巧。用口诀计算常用380V电动机额定电流时,先用电动机配接电压数去除、商数2去乘容量(kW)数。若遇容量较大的6kV电动机,容量kW 数又恰是6kV数的倍数,则容量除以千伏数,商数乘以系数。 (5)误差。由口诀c 中系数是取电动机功率因数为、效率为而算得,这样计算不同功率因数、效率的电动机额定电流就存在误差。由口诀c 推导出的5个专用口诀,容量(kW)与电流(A)的倍数,则是各电压等级(kV)数除去系数的商。专用口诀简便易心算,但应注意其误差会增大。一般千瓦数较大的,算得的电流比铭牌上的略大些;而千瓦数较小的,算得的电流则比铭牌上的略小些。对此,在计算电流时,当电流达十多安或几十安时,则不必算到小数点以后。可以四舍而五不入,只取整数,这样既简单又不影响实用。对于较小的电流也只要算到一位小数即可。 *测知电流求容量 测知无铭牌电动机的空载电流,估算其额定容量 口诀: 无牌电机的容量,测得空载电流值, 乘十除以八求算,近靠等级千瓦数。 说明:口诀是对无铭牌的三相异步电动机,不知其容量千瓦数是多少,可按通过测量电动机空载电流值,估算电动机容量千瓦数的方法。 测知电力变压器二次侧电流,求算其所载负荷容量 口诀: 已知配变二次压,测得电流求千瓦。 电压等级四百伏,一安零点六千瓦。

变压器常用的冷却方式有以下几种修订稿

变压器常用的冷却方式 有以下几种 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

变压器常用的冷却方式有以下几种: 1、油浸自冷(ONAN); 2、油浸风冷(ONAF); 3、强迫油循环风冷(OFAF); 4、强迫油循环水冷(OFWF); 5、强迫导向油循环风冷(ODAF); 6、强迫导向油循环水冷ODWF)。按变压器选用导则的要求,冷却方式的选择推荐如下: 1、油浸自冷 31500kVA及以下、35kV及以下的产品; 50000kVA及以下、产品。 2 、油浸风冷 12500kVA~63000kVA、35kV~110kV产品; 75000kVA以下、110kV产品; 40000kVA及以下、220kV产品。 3、强迫油循环风冷50000~90000kVA、220kV产品。 4 、强迫油循环水冷一般水力发电厂的升压变220kV及以上、 60MVA及以上产品采用。 5 、强迫导向油循环风冷或水冷(ODAF或ODWF) 75000kVA及以上、110kV产品; 120000kVA及以上、220kV产品; 330kV级及500kV级产品。选用强油风冷冷却方式时,当油泵与风扇失去供电电源时,变压器不能长时间运行。即使空载也不能长时间运行。因此,应选择两个独立电源供使用。选用强油水冷方式时,当油泵冷却水失去电源时,不能运行。电源应选择两个独立电源。 冷却方式的标志 对于,冷却方式的标志按GB6450的规定。 对于,用四个字母顺序代号标志其冷却方式。 第一个字母表示与绕组接触的内部冷却介质: O矿物油或燃点不大于300。C的合成绝缘液体; K燃点大于300。C的绝缘液体; 1燃点不可测出的绝缘液体。 注:燃点用“克利夫兰开口杯法”试验。 第二个字母表示内部冷却介质的循环方式: N流经冷却设备和绕组内部的油流是自然的热对流循环; F冷却设备中的油流是强迫循环,流经绕组内部的油流是热对流循环; D冷却设备中的油流是强迫循环,(至少)在主要绕组内的油流是强迫导向循环。 第三个字母表示外部冷却介质: A空气; W水。 第四个字母表示外部冷却介质的循环方式: N自然对流; F强迫循环(风扇、泵等)。 注:1在强迫导向油循环的变压器中(第二字母代号为D),流经主要绕组的油流量取决于泵,原则上不由负载决定;从冷却设备流出的油流,也可能有一小部分有控制地导向流过铁心和主要绕组以外的其他部分;调压绕组和(或)其他容量较小的绕组也可为非导向油循环。 2在强迫非导向冷却的变压器中(第二个字母的代号为F),通过所有绕组的油流量是随负载变化的,与流经冷却设备的用泵抽出的油流没有直接关系。 一台变压器规定有几种不同的冷却方式时,在说明书中和铭牌上,应给出不同冷却方式下的容量值(见第条m项),以便在某一冷却方式及所规定的容量下运行时,能保证温升不超过规定的限值。在最大冷却能力下的相应容量便是变压器的(或多绕组变压器中某一绕组的)额定容量。不同的冷却方式一般是按冷却能力增大的次序进行排列。 例1:ONAN/ONAF变压器装有一组风扇,在大负载时,风扇可投入运行,在这两种冷却方式下,油流均按热对流方式循环。

变压器冷却系统最全讲解

变压器冷却系统最全讲解 电力变压器的冷却系统包括两部分:内部冷却系统,它保证绕组、铁芯的热量散入到周围的介质中;外部冷却系统,保证介质中的热散到变压器外。根据变压器容量的大小,介质和循环种类的不同,变压器采用不同的冷却方式。 一、冷却方式的表示 表1 冷却种类的表示 变压器的冷却方式一般采用四个代号组合来表示,按照从左到右分别表示如下: 表2 变压器的冷却方式表示方法 例如:ONAN表示油浸自冷式,即内部油自然循环,外部空气自然循环 二、变压器的冷却方式 6天前 电气专家联盟

油浸式电力变压器的冷却方式,按其容量的大小,冷却系统可分为:油浸自冷式、油浸风冷式、强迫油循环风冷式、强迫油循环水冷式等几种。 1、油浸自冷式 油浸自冷式冷却系统没有特殊的冷却设备,油在变压器内自然循环,铁芯和绕组所发出的热量依靠油的对流作用传至油箱壁或散热器。按变压器容量的大小,又可分为三种不同的结构: 1.1、平滑式箱壁。容量很小的变压器采用这种结构,箱壳是用钢板焊接而成,箱壁是完全平滑的; 1.2、散热筋式箱壁。在平滑箱壁上焊接一些散热筋,扩大了与空气接触的面积,适合于容量稍大的变压器; 1.3、散热管或散热器式冷却。容量更大些的变压器,为了增大油箱的冷却表面,则在油箱外加装若干散热器,散热器就是具有上、下联箱的一组散热管,散热器通过法兰与油箱连接,是可拆部件。 图1所示为带有散热管的油浸自冷式变压器的油流路径。变压器运行时,油箱内的油因铁芯和绕组发热而受热,热油会上升至油箱顶部,然后从散热管的上端入口进入散热管内,散热管的外表面与外界冷空气相接触,使油得到冷却。冷油在散热管内下降,由管的下端再流入变压器油箱下部,自动进行油流循环,使变压器铁芯和绕组得到有效冷却。 油浸自冷式冷却系统结构简单、可靠性高,广泛用于容量10,000kVA以下的变压器。 图1 油浸自冷式变压器油流路径 1一油箱;2一铁芯与绕组;3一散热管 2、油浸风冷式

论述高压变压器冷却方式OFAF和ODAF的比较

摘要:从冷却系统的结构、工作方式以及稳态、暂态下工作要求方面,对当前应用最为广泛的两种高压变压器冷却方式强迫油循环风冷(OFAF)、迫油循环导向风冷(ODAF)进行详尽的分析比较。 关键词:冷却方式强迫油循环风冷(OFAF) 强迫油循环导向风冷(ODAF) 众所周知:电力变压器常用的冷却方式一般分为三种:油浸自冷式、油浸风冷式、强迫油循环。而高压变压器冷却方式一般为强迫油循环风冷(OFAF)和强迫油循环导向风冷(ODAF)两种冷却方式。 强迫油循环冷却方式(OFAF):如果单纯想法降低油的温度而不增加油流的速度,那是达不到所希望的冷却效果的。因油温降到一定程度时,其粘度增加,粘度大会使散热效果变差。而人为地加快油流速度,就会使散热加快。强迫油循环冷却方式就是在油路中加入了使油的流速加快的动力—油泵。强迫油循环风冷的变压器则是将风冷却器装于变压器油箱壁上或独立的支架上。经冷却器内的油采用风扇冷却。为了防止油泵的漏油和漏气,目前广泛采用潜油泵和潜油电动机。潜油泵安装在冷却器的下面,泵的吸入端直接装在第一个油回路(冷却器为多回路的)上,吐出端通过装有流动继电器的联管接至第二回路。流动继电器的作用是,当潜油泵发生故障,油流停止时,发出信号和投入备用冷却器。 强迫油循环导向冷却方式(ODAF):这种冷却方式基本上还属于上述强迫油循环类型的,其主要区别在于变压器器身部分的油路不同。普通的油冷却变压器油箱内油路较乱,油沿着线圈和铁芯、线圈和线圈间的纵向油道逐渐上升,而线圈段间(或叫饼间)油的流速不大,局部地方还可能没有冷却到,线圈的某些线段和线匝局部温度很高。采用导向冷却后,可以改善这些状况。变压器中线圈的发热比铁芯发热占的比例大,改善线圈的散热情况还是很有必要的。导向冷却的变压器,在结构上采用了一定的措施(如加挡油纸板、纸筒)后使油按一定的路径流动。采用了导向冷却后,泵口的冷油在一定压力下被送入线圈间、线饼间的油道和铁芯的油道中,能冷却线圈的各个部分,这样可以提高冷却效能。 简单扼要的说:OFAF和ODAF是冷却方式的符号。AF是指风冷,OF和OD都指强迫油冷却,所不同的是,OD是把油直接导入线圈。 在线圈内部,油的流动路径,可以有多种方式,主要的两种如下所示: 特别要指出的是,这不是ODAF和OFAF的差别。也就是说,OFAF也可有导油隔板。 从原理上说,ODAF和OFAF的差别是:ODAF线圈中油的流动靠泵的压力,与负载基本无关;而OFAF线圈中油的流动是线圈本身发热引起的,与负载直接相关。 稳态下的比较 ODAF的线圈冷却作用强烈,上下温差小,理论上说,热点温度与线圈平均温度之差也小,因此用线圈平均温度表示的允许温升可以增加。IEC标准规定,ODAF的线圈温升限值70K,OFAF是65K。我国国家标准没有采用这个做法,而把两种方式的温升限值都定为65K。原因是用户担心制造厂没有足够把握保证在ODAF下,线圈各部位都得到均匀冷却,万一出现冷却的“死角”,对绝缘会很不利。因此,为给用户留有更大的余度,不许制造厂用ODAF 来提高温升限值。用户的这种担心是有一定道理的。变压器线圈内部的油流,并不象图上画的那么简单,流速越高越不易控制。现有的计算软件实际上是建立在简化的、理想化的模型上,有较大的不确定性。 变压器的温升限值实际上是由热点温度决定的。不幸的是,热点温度是不能直接测量到的。因此,变压器热性能的优劣,不可能完全靠温升试验结果来判断,更重要的是看设计使用的计算软件。一个好的软件,能对变压器的漏磁场和温度场进行详尽的计算,能准确得出热点的位置及温升值。软件计算结果是否可靠,必须经过模型或实体的测量来验证。 因此,不论OFAF或ODAF,只要能有足够的经验证明热点的温度是控制在许可值内,变压器的热寿命是不会有问题的。

电力变压器的冷却方式总结

变压器的ONAN冷却方式为内部油自然对流冷却方式,即通常所说的油浸自冷式。 变压器的冷却方式是由冷却介质和循环方式决定的;由于油浸变压器还分为油箱内部冷却方式和油箱外部冷却方式,因此油浸变压器的冷却方式是由四个字母代号表示的。 第一个字母:与绕组接触的冷却介质。 O--------矿物油或燃点大于300℃的绝缘液体; K--------燃点大于300℃的绝缘液体; L--------燃点不可测出的绝缘液体; 第二个字母:内部冷却介质的循环方式。 N--------流经冷却设备和绕组内部的油流是自然的热对流循环;F--------冷却设备中的油流是强迫循环,流经绕组内部的油流是热对流循环; D--------冷却设备中的油流是强迫循环,至少在主要绕组内的油流是强迫导向循环; 第三个字母:外部冷却介质。 A--------空气; W--------水; 第四个字母:外部冷却介质的循环方式。 N--------自然对流; F--------强迫循环(风扇、泵等)。 电力变压器常用的冷却方式一般分为三种:油浸自冷式、油浸风冷式、强迫油循环。 油浸自冷式就是以油的自然对流作用将热量带到油箱壁和散热管,然后依靠空气的对流传导将热量散发,它没有特制的冷却设备。 而油浸风冷式是在油浸自冷式的基础上,在油箱壁或散热管上加装风扇,利用吹风机帮助冷却。加装风冷后可使变压器的容量增加30%~35%。 强迫油循环冷却方式,又分强油风冷和强油水冷两种。它是把变压器中的油,利用油泵打入油冷却器后再复回油箱。油冷却器做成容易散热的特殊形状,利用风扇吹风或循环水作冷却介质,把热量带走。这种方式若把油的循环速度比自然对流时提高3倍,则变压器可增加容量30%

变压器冷却方式

变压器冷却方式 一、字母的意义 变压器的冷却方式是由冷却介质和循环方式决定的;由于油浸变压器还分为油箱内部冷却方式和油箱外部冷却方式,因此油浸变压器的冷却方式是由四个字母代号表示的。 第一个字母:与绕组接触的冷却介质 O--------矿物油或燃点大于300℃的绝缘液体 K--------燃点大于300℃的绝缘液体 L--------燃点不可测出的绝缘液体 第二个字母:内部冷却介质的循环方式 N--------流经冷却设备和绕组内部的油流是自然的热对流循环 F--------冷却设备中的油流是强迫循环,流经绕组内部的油流是热对流循环 D--------冷却设备中的油流是强迫循环,至少在主要绕组内的油流是强迫导向循环 第三个字母:外部冷却介质 A--------空气 W--------水 第四个字母:外部冷却介质的循环方式 N--------自然对流 F--------强迫循环(风扇、泵等) 二、冷却方式的种类 1、油浸自冷(ONAN); 油浸自冷式:油浸变压器的散热过程是这样的,铁芯和线圈把热量首先传给在其附近的油,使油的温度升高。温度高的油体积增加,比重减小,就向油箱的上部运动。冷油将自然运动补充到热油原来的位置。而热油沿箱壁或散热器管将热量放出,经箱壁或管壁被周围的空气带走,温度降低后又回到油箱下部参加循

环。这样,因油温的差别,产生了油的自然循环流动。热油从变压器油箱的上部,沿散热器(无散热器的沿箱壁)的内表面向下流,在向下流的过程中把热经管壁或箱壁传给空气(风),被冷却的油从散热器下部进入油箱,然后经各油道上升,在上升过程中把线圈和铁芯的热量带走,热油又汇于油箱上部,这样,周而复始不断循环。 油浸自冷式的变压器依靠油箱壁(或散热器管壁)的辐射,和变压器周围空气的自然对流,把热量从油箱表面带走。这种变压器为了增加散热表面,有的箱壁做成波状,有的焊上管子,有的装散热器,以促进油的对流。 2、油浸风冷(ONAF); 油浸风冷式:在散热器上装风扇,用吹风扇的方法使空气加快流动,借此来增大散热能力的就属风冷式。吹风可使对流散热增加8.5倍。同一台变压器,用了吹风以后,容量可提高30%以上。 3、强迫油循环风冷(OFAF); 强迫油循环冷却方式:如果单纯想法降低油的温度而不增加油流的速度,那是达不到所希望的冷却效果的。因油温降到一定程度时,其粘度增加,粘度大会使散热效果变差。而人为地加快油流速度,就会使散热加快。强迫油循环冷却方式就是在油路中加入了使油的流速加快的动力—油泵。 强迫油循环风冷的变压器则是将风冷却器装于变压器油箱壁上或独立的支架上。经冷却器内的油采用风扇冷却。为了防止油泵的漏油和漏气,目前广泛采用潜油泵和潜油电动机。潜油泵安装在冷却器的下面,泵的吸入端直接装在第一个油回路(冷却器为多回路的)上,吐出端通过装有流动继电器的联管接至第二回路。流动继电器的作用是,当潜油泵发生故障,油流停止时,发出信号和投入备用冷却器。 4、强迫油循环水冷(OFWF); 5、强迫导向油循环风冷(ODAF); 强迫油循环导向冷却:这种冷却方式基本上还属于上述强迫油循环类型的,其主要区别在于变压器器身部分的油路不同。普通的油冷却变压器油箱内油路较乱,油沿着线圈和铁芯、线圈和线圈间的纵向油道逐渐上升,而线圈段间(或叫饼间)油的流速不大,局部地方还可能没有冷却到,线圈的某些线段和线匝局部

变压器冷却原理

变压器的冷却装置 1、强油循环的冷却系统必须有两个独立的工作电源并能自动切换。当工作电源发生故障时,应自动投入备用电源并发出音响及灯光信号; 2、强油循环变压器,当切除故障冷却器时应发出音响及灯光信号,并自动(水冷的可手动)投入备用冷却器; 3、风扇、水泵及油泵的附属电动机应有过负荷、短路及断相保护;应有监视油泵电机旋转方向的装置; 4、强油循环冷却的变压器,应能按温度和(或)负载控制冷却器的投切。 5、油浸式变压器顶层油温一般不应超过表1的规定(制造厂有规定的按制造厂规定)。当冷却介质温度较低时,顶层油温也相应降低。自然循环冷却变压器的顶层油温一般不宜经常超过85℃。 6、强油循环冷却变压器运行时,必须投入冷却器。空载和轻载时不应投入过多的冷却器(空载状态下允许短时不投)。各种负载下投入冷却器的相应台数,应按制造厂的规定。按温度和(或)负载投切冷却器的自动装置应保持正常。 7、油浸(自然循环)风冷和干式风冷变压器,风扇停止工作时,允许的负载和运行时间,应按制造厂的规定。油浸风冷变压器当冷却系统故障停风扇后,顶层油温不超过65℃时,允许带额定负载运行。 8、强油循环风冷和强油循环水冷变压器,当冷却系统故障切除全部冷却器时,允许带额定负载运行20min。如20min后顶层油温尚未达到75℃,则允许上升到75℃,但在这种状态下运行的最长时间不得超过1h。

变压器投入电网之前,先将SA开关手柄置于I工作II备用,或者II工作I备用位置。当变压器投入电网时,1KM 常闭触点接通;1KV1、2KV1带电,常开触点接通,起动1KV、2KV使常闭触点断开;假定SA开关手柄在I位,则SA1-2接通起动1KL接触器,1KL主触头闭合由工作电源(I)供电。2KL线圈回路被1KL常闭触点断开(闭锁了)。 当工作电源(I)由于某种原因停电,1KL线圈断电,1KL主触头断开工作电源(I),1KL常闭触点接通,1KV断电常闭触点接通,再经SA5-6触点动作2KL接触器,2KL主触头闭合由工作电源(II)供电。 假如工作电源(I)恢复供电时,1KV1动作起动,1KV动作,1KV常闭触点断开使2KL 断电,2KL的主触头断开工作电源(II),2KL常闭触点起动1KL,1KL的主触头闭合由工作电源(I)供电。 变压器冷却器的作用是什么?变压器的冷却方式有哪几种? 答:当变压器的上层油温与下部油温产生温差时,通过冷却器形成油温对流,经冷却器冷却后流回油箱,起到降低变压器温度的作用。变压器的冷却方式有:(1)油浸式自然空气冷却方式。(2)油浸风冷式。(3)强迫油循环水冷式。(4)强迫油循环风冷式。(5)强迫油循环导向冷却。在500KV变电站中一般大型变压器采用强油强风冷式,而超大型变压器采用强迫油循环导向冷却方式。 强油强风冷变压器冷却器由哪些主要元件组成?各元件的作用是什么? 答:冷却器由热交换器,风扇,电动机,气道,油泵油流指示器等组成。冷却风扇是用于排出热交换器中所发射出来的热空气。油泵装在冷却器的下部,使热交换器的顶部油向下部循环。油流指示装在冷却器的下部较明显的位置,以利于运行人员观察油泵的运行状态

变压器冷却方式的符号标志说明

变压器冷却方式的符号标志说明对于油浸式变压器,用四个字母顺序代号标志其冷却方式: (1)第一个字母表示与绕组接触的内部冷却介质: 0 ——矿物油或燃点不大于300℃的合成绝缘液体 K ——燃点大于300℃的绝缘液体 L ——燃点不可测出的绝缘液体 注:然点用“克利夫兰开口杯法”试验。 (2)第二个字母表示内部冷却介质收循环方式: N ——流经冷却设备和绕组内部的油流是自然的热对流循环 F ——冷却设备中的油流是强迫循环,流经绕组内部的油流是热对流循环 D ——冷却设备中的油流是强迫循环,(至少)在主要绕组内的油流是强迫导向循环 (3)第三个字母表示外部冷却介质: A——空气 W ——水 (4)第四个字母表示外部冷却介质的循环方式: N ——自然对流, F——强迫循环(风扇、泵等) 注:①在强迫导向油循环的变压器中(第二字母代号为D),流经主要绕组的油流量取决于泵,原则上不由负载决定;从冷却设备流出的油流,也可能有一小部分有控制地导向流过铁心和主要绕组以外的其他部分。调压绕组和(或)其他容量较小的绕组也可为非导向油循环。②在强迫非导向冷却的变压器中(第二个字母的代号为F),通过所有绕组的油流量是随负载变化的,与流经冷却设备的用泵抽出的油流没有直接关系。一台变压器规定有几种不同的冷却方式时,在说明书中和铭牌上,应给出不同冷却方式下的容量值(见GB1 094.1 第7.1条m项),以便在某一冷却方式及所规定的容量下运行时,能

保证温升不超过规定的限值。在最大冷却能力下的相应容量便是变压器的(或多绕组变压器中某一绕组的)额定容量。不同的冷却方式一般是按冷却能力增大的次序进行排列。 例-1:O N AN/ONAF变压器装有一组风扇,在大负载时,风扇可投入运行,在这两种冷却方式下,油流均按热对流方式循环。 例-2:O N AN/OFAF变压器带有油泵和风扇的冷却设备。也规定了在自然冷却方式(例如,辅助电源出现故障的情况下),降低负载后的冷却能力。

变压器容量选择算步骤

变压器容量选择计算步骤 当我们提到变压器容量的时候,很多人不知道变压器容量计算公式是什么。那么变压器容量怎么计算呢?下面就跟电工学习网一起来看看吧。 一、变压器容量计算公式 1、计算负载的每相最大功率 将A相、B相、C相每相负载功率独立相加,如A相负载总功率10KW,B相负载总功率9KW,C相负载总功率11KW,取最大值11KW。(注:单相每台设备的功率按照铭牌上面的最大值计算,三相设备功率除以3,等于这台设备的每相功率。) 例如:C相负载总功率=(电脑300WX10台)+(空调2KWX4台)=11KW

2、计算三相总功率 11KWX3相=33KW(变压器三相总功率) 三相总功率/0.8,这是最重要的步骤,目前市场上销售的变压器90%以上功率因素只有0.8,所以需要除以0.8的功率因素。 33KW/0.8=41.25KW(变压器总功率) 变压器总功率/0.85,根据《电力工程设计手册》,变压器容量应根据计算负荷选择,对平稳负荷供电的单台变压器,负荷率一般取85%左右。 41.25KW/0.85=48.529KW(需要购买的变压器功率),那么在购买时选择50KVA的变压器就可以了。

二、关于变压器容量计算的一些问题 1、变压器的额定容量,应该是变压器在规定的使用条件下,能够保证变压器正常运行的最大载荷视在功率; 2、这个视在功率就是变压器的输出功率,也是变压器能带最大负载的视在功率; 3、变压器额定运行时,变压器的输出视在功率等于额定容量; 4、变压器额定运行时,变压器的输入视在功率大于额定容量;

5、由于变压器的效率很高,一般认为变压器额定运行时,变压器的输入视在功率等于额定容量,由此进行的运算及结果也是基本准确的; 6、所以在使用变压器时,你只要观察变压器输出的电流、电压、功率因数及其视在功率等于或小于额定容量就是安全的(使用条件满足时); 7、有人认为变压器有损耗,必须在额定容量90%以下运行是错误的! 8、变压器在设计选用容量时,根据计算负荷要乘以安全系数是对的。

如何选择变压器:容量计算方法

电力变压器是供电系统中的关键设备,其主要功能是升压或降压以利于电能的合理输送、分配和使用,对变电所主接线的形式及其可靠与经济有着重要影响。所以,正确合理地选择变压器的类型、台数和容量,是主接线设计中一个主要问题。 如何选择变压器? 选用配电变压器时,如果把容量选择过大,就会形成“大马拉小车”的现象。不仅增加了设备投资,而且还会使变压器长期处于空载状态,使无功损失增加。 如果变压器容量选择过小,将会使变压器长期处与过负荷状态。易烧毁变压器。依据“小容量,密布点”的原则,配电变压器应尽量位于负荷中心,供电半径不超过0.5千米。 配电变压器的负载率在0.5~0.6之间效率最高,此时变压器的容量称为经济容量。如果负载比较稳定,连续生产的情况可按经济容量选择变压器容量。 对于仅向排灌等动力负载供电的专用变压器,一般可按异步电动机铭牌功率的1.2倍选用变压器的容量。 一般电动机的启动电流是额定电流的4~7倍,变压器应能承受住这种冲击,直接启动的电动机中最大的一台的容量,一般不应超过变压器容量的30%左右。 应当指出的是:排灌专用变压器一般不应接入其他负荷,以便在非排灌期及时停运,减少电能损失。 对于供电照明、农副业产品加工等综合用电变压器容量的选择,要考虑用电设备的同时功率,可按实际可能出现的最大负荷的1.25倍选用变压器的容量。 根据农村电网用户分散、负荷密度小、负荷季节性和间隙性强等特点,可采用调容量变压器。调容量变压器是一种可以根据负荷大小进行无负荷调整容量的变压器,它适宜于负荷季节性变化明显的地点使用。 对于变电所或用电负荷较大的工矿企业,一般采用母子变压器供电方式,其中一台(母变压器)按最大负荷配置,另一台(子变压器)按低负荷状态选择,就可以大大提高配电变压器利用率,降低配电变压器的空载损耗。 针对农村中某些配变一年中除了少量高峰用电负荷外,长时间处于低负荷运行状态实际情况,对有条件的用户,也可采用母子变或变压器并列运行的供电方式。在负荷变化较大时,根据电能损耗最低的原则,投入不同容量的变压器。 变压器的容量是个功率单位(视在功率),用A V(伏安)或KV A(千伏安)表示。 它是交流电压和交流电流有效值的乘积,计算公式S=UI。变压器额定容量的大小会在其的铭牌上标明。

相关文档
相关文档 最新文档