文档库 最新最全的文档下载
当前位置:文档库 › 提高单片机多机通信系统可靠性的方法

提高单片机多机通信系统可靠性的方法

提高单片机多机通信系统可靠性的方法
提高单片机多机通信系统可靠性的方法

第1期

2004年2月

工矿自动化

Industry and M ine A utomation

No.1 Feb.2004

文章编号:1671-251X(2004)01-0047-02

提高单片机多机通信系统可靠性的方法

李 勇, 杨玉军

(鹤壁煤业集团公司,河南鹤壁 458000)

摘要:列举RS-485总线在实际应用中的常见问题,分析了传输数据不可靠的原因,介绍了提高通信可靠性的有效方法。

关键词:通信系统;多机通信;单片机;可靠性;RS-485总线 中图分类号:TP368.1 文献标识码:B 收稿日期:2003-10-09

作者简介:李 勇(1967-),男,2003年毕业于焦作工学院电气自动化专业,现在鹤壁煤业集团公司从事技术管理工作,已发表论文4篇。

0 引言

单片机在当今的仪表及工业测控设备上应用非常广泛。其功能强大、外围接口电路简单,在构成分布式系统时,其优越性更显突出。在分布式系统中,分机常采用多机通信方式,由于RS-485(以下简称485)通信接口的传输距离远、连线少,所以被认为是一种很好的通信模式。但485总线存在自适应、自保护功能脆弱、通信效率低等缺点,在实际应用中,若使用不当,485接口会出现器件经常损坏,有时几次连续的开关机操作之后,通信电路失控,数据传输出现误码等。因此提高485总线的运行可靠性至关重要。

1 单片机多机通信系统常见故障及分析

(1)系统完全瘫痪,大多因为某节点芯片的VA 、VB 被电源击穿,此时测VA 、VB 间的差模电压为零,而对地的共模电压大于3V,共模电压越大说明离故障点越近,反之越远。

(2)集中供电的485系统在上电时,出现部分节点不正常,但每次又不完全一样。这是由于对485的收发控制端T C 设计不合理,造成微系统上电时节点收发状态混乱从而导致总线堵塞、甚至损坏485芯片。

(3)总线连续几个节点不能正常工作。一般是由其中的1个节点故障导致的。1个节点故障会导致邻近的2~3个节点(一般为后续)无法通信。

(4)系统基本正常但偶尔会出现通信失败。一

般是由于网络施工不合理导致系统可靠性处于临界状态,最好改变走线或增加中继模块。应急方法之一是将出现失败的节点更换成性能更优异的芯片。2 提高通信可靠性的方法2.1 硬件设计

(1)通信线路上主、分机不能共用1个电源。对于由单片机结合485微系统组建的测控网络,应优先采用各微系统独立供电方案,最好不要采用1台大电源给微系统并联供电,同时电源线(交直流)不能与485信号线共用同一股多芯电缆。485信号线宜选用截面积为0.75m m 2以上的双绞线而不是平直线。对于每个小容量直流电源选用线性电源LM7805比选用开关电源更合适。

(2)系统上电复位阶段,使所有485芯片都处于接收状态,以免损坏。

在上电复位阶段,通信网络上所有485芯片均应处于接收输入状态,而不能存在发送输出状态。为避免所有485芯片都处于输出状态,应采用单片机引脚通过反相器对收发控制端的485芯片进行控制,不宜采用单片机引脚直接对485芯片进行控制,以防止单片机上电时对总线的干扰。如图1所示,该反相器的作用很重要,不可缺少。

图1 MA X485控制电路

(3)在485总线上加匹配电阻,消除噪声干扰。

由485接口构成的半双工通信网络,其结构如图2所示,其中R =1208,为匹配电阻,作用为消除

反射、吸收噪声。这样,无论系统处于什么状态,线

路上都不会出现噪声干扰。

图2 485半双工通信网络

(4)在建立多单片机通信网络时,根据网络节点数合理选用485芯片。

485网络通常采用特性阻抗为1208的双绞线作为传输介质,传输速率为0.3~115.2kbps 兼容,为异步半双工结构。网络节点数与所选485芯片驱动能力和接收器的输入阻抗有关,如75LBC184标称最大值为64点,M AX1487E 标称最大值为128点。实际使用时,因线缆长度、线径、网络分布、传输速率不同,实际接点数均达不到理论值。例如75LBC184运用在500m 分布的485网络上节点数超过50或速率大于9600bps 时工作可靠性明显下降。根据笔者经验,节点数应按最大值的70%选取,传输速率在1200~9600bps 之间选取,通信距离为1km 以内,从通信效率、节点数、通信距离等方面综合考虑选用4800bps 最佳。通信距离在1km 以上时应通过增加中断模块或降低速率的方法提高传输可靠性。2.2 通信协议

在数据传输过程中,每组数据都包含着特殊的意义,这就是通信协议。主、分机之间必须要有协议,这个协议是以通信数据的正确性为前提的,而数据传输的正确与否又完全决定于传输途径(传输线),传输线状态的稳定与通信协议有直接联系。

在主从式通信系统中,把数据传输过程划分成几个阶段来分析,如图3所示。在图3(a)中,t 0~t 1为主机向分机发送命令时间。在t 1时刻,主机将差动输出状态转换成输入状态。在图3(b)中,t 2之后的时间为分机向主机传送数据阶段,分机由输入状态变成输出状态。由于单片机多机通信大多采用异步串行方式,所以发送数据后的T I 置位时间和接收机RI 的置位时间有一段时间差,而且接收机在转移到输出状态前要有一段数据处理时间,这段时间不可忽视。在图3(c)中,t 1~t 2即为这段时间,这时串行通信总线处于悬浮状态,极易拾取空间干扰信号,这时主机与另外的分机可能会同时得到一

个无规则的数据,对分机而言可能是错误指令,造成

错误反应。为此,在通信协议中加入延时阶段,来解决此问题,如图4所示。在图4(a)中,t 1~t 3为延时阶段;在图4(b)中t 2~t 4为分机的延时阶段;

图4(c)中,t 1~t 2为分机的反应时间。延时时间T 的大小可按分机接到主机命令后的最长反应时间的2倍来计算。

延时阶段的作用可用图4(c )来分析。在图4(c)中,主机控制数据总线的时间由t 1延长到t 3,分机的反应时刻为t 2,但分机有效数据从延时后的t 4时刻开始,这样在通信总线上有主机和某台分机同时控制的一段时间即t 2~t 3的时间段。由于主机和分机对总线控制的方向相同,所以不会对这2台机器的硬件造成影响,而且在t 1~t 2阶段,总线一直处于低阻状态,不会产生噪声,所以总线的抗干扰能力也加强了,提高了通信的可靠性。

图3 主机数据传输时间图图4 分机数据处理时间图

通信协议实现的流程图如图5所示。

(a)主机通信程序(b)从机通信程序

图5 通信协议实现流程图

3 结语

多机通信系统通信可靠性与各个分机的状态也有关。无论是软件还是硬件,一旦某台分机出现问题,都可能造成整个系统混乱。出现故障时,有两种现象可能发生:一是故障分机的485口被固定为输出状态,通信总线硬件电路被钳位,信号无法传输;二是故障分机的485口被固定为输入状态,在主机呼叫该号分机时,通信线路仍然有悬浮状态,还会出现噪声信号。所以,在系统使用过程中,应注意对整个系统的维护,以保证系统的可靠性。

#48# 工矿自动化2004年2月

硬件系统的可靠性设计

硬件系统的可靠性设计

目录 1 可靠性概念 (4) 1.1 失效率 (4) 1.2 可靠度 (5) 1.3 不可靠度 (6) 1.4 平均无故障时间 (6) 1.5 可靠性指标间的关系 (6) 2 可靠性模型 (7) 2.1 串联系统 (7) 2.2 并联系统 (9) 2.3 混合系统 (11) 2.4 提高可靠性的方法 (12) 3 可靠性设计方法 (12) 3.1 元器件 (12) 3.2 降额设计 (13) 3.3 冗余设计 (14) 3.4 电磁兼容设计 (15) 3.5 故障自动检测与诊断 (15) 3.6 软件可靠性技术 (15) 3.7 失效保险技术 (15) 3.8 热设计 (16) 3.9 EMC设计 (16) 3.10 可靠性指标分配原则 (17) 4 常用器件的可靠性及选择 (19) 4.1 元器件失效特性 (19) 4.2 元器件失效机理 (21) 4.3 元器件选择 (23) 4.4 电阻 (23) 4.5 电容 (26) 4.6 二极管 (30) 4.7 光耦合器 (31) 4.8 集成电路 (32) 5 电路设计 (38) 5.1 电流倒灌 (38) 5.2 热插拔设计 (40) 5.3 过流保护 (41) 5.4 反射波干扰 (42) 5.5 电源干扰 (49) 5.6 静电干扰 (51) 5.7 上电复位 (52) 5.8 时钟信号的驱动 (53) 5.9 时钟信号的匹配方法 (55) 6 PCB设计 (60)

6.1 布线 (60) 6.2 去耦电容 (62) 7 系统可靠性测试 (62) 7.1 环境适应性测试 (62) 7.2 EMC测试 (63) 7.3 其它测试 (63) 8 参考资料 (64) 9 附录 (64)

基于51单片机的多机通信系统设计

单片机多机通信系统 一、引言 随着单片机技术的不断发展,单片机的应用已经从单机向多机互联化方向发展。单片机在实时数据采集和数据处理方面,有着成本低、能满足一般要求、开发周期短等优点,其在智能家居、计算机的网络通信与数据传输、工业控制自动化等方面有着广泛的应用。 本系统是面向智能家居应用而设计的。在初期,采用红外无线通信方式,其传输距离短,适于一般家庭应用,且成本相对较低;待方案成熟、成本允许,可以改用GSM无线通信方式。 二、系统原理及方案设计 1 、系统框架介绍 本系统为基于51单片机的多机红外无线通信系统,由三个51单片机模块组成。其中一个作为主机(即上位机),负责接收来自从机1(即下位机)采集的数据信息,以及向从机2(即下位机)发送控制信息。从机1是数据采集模块,采集温度、光强等室内数据,并将其发送给主机。主机经分析处理,作出相应判断,并给从机2发送控制信息,使由从机2控制的电机作出相应反应,调节室内环境状况。 系统总体框图如下图1所示,图2为红外收发模块简图:

图1 系统总体框图 图2 红外收发模块简图 2 、多机通信原理介绍 在多机通信系统中,要保证主机与从机间可靠的通信,必须要让通信接口具有识别功能,51单片机串行口控制寄存器SCON中的控制位SM2正是为了满足这一要求而设置的。当串行口以方式2或方式3工作时,发送或接收的每一帧信息都是11位的,其中除了包含SBUF寄存器传送的8位数据之外,还包含一个可编程的第9位数据TB8或RB8。主机可以通过对TB8赋予1或0,来区别发送的是数据帧还是地址帧。 根据串行口接收有效条件可知,若从机的SCON控制位SM2为1,则当接收的是地址帧时,接收数据将被装入SBUF并将RI标志置1,

AVR单片机串口多机通讯程序

A VR单片机串口多机通讯程序 [日期:2010-09-01 ] [来源:本站原创作者:admin] [字体:大中小] (投递新闻) 在多机通信过程中,所有设备的RS232接口是并在通信线上的,其中只能有一个设备为主机,其他为从机,通信由主机发起。数据帧一般采用1位起始位、9位数据位,其中第9位(RXB8)被用作为表征该帧是地址帧还是数据帧。当帧类型表征位为“1”时,表示该帧数据为一个地址帧;当帧类型表征位为“0”时,表示这个帧为一个数据帧。 在A VR中,通过设置从机的UCSRA寄存器中标志位MPCM,可以使能USART接收器对接收的数据帧进行过滤的功能。如果使能了过滤功能,从机接收器对接收到的那些不是地址信息帧的数据帧将进行过滤,不将其放入接收缓冲器中,这在多机通信中有效的方便了从机MCU处理数据帧程序的编写(同标准51 结构相比)。而发送器则不受MPCM位设置的影响。 多机通信模式允许多个从机并在通信线路上,接收一个主机发出的数据。通过对接收到的地址帧中的地址进行解码,确定哪个从机被主机寻址。如果某个从机被主机寻址,它将接收接下来主机发出的数据帧,而其它的从机将忽略数据帧,直到再次接收到一个地址帧。(从机地址是由各个从机自己的软件决定的)。 对于在多机通信系统中的主机MCU,可以设置使用9位数据帧结构(UCSZ=7)。当发送地址帧时,置第9位为“1”;发送数据帧时,置第9位为“0”。在这种情况下,从机也必须设置成接收9位数据帧结构。 多机通信方式的数据交换过程如下: 1)设置所有从机工作在多机通信模式(MPCM=1)。 2) 通信开始是由主机先发送一个地址帧,如8位数据为0X01(1号从机地址),第9位=“1”,呼叫1号从机。 3)所有从机都接收和读取该主机发出的地址帧。在所有从机的MCU中,RXC标志位被置位,表示接收到地址帧。 4)每一个从机MCU读UDR寄存器,并判断自己是否被主机寻址。如果被寻址,清UCSAR寄存器中的MPCM位,等待接收数据;否则保持MPCM为“1”,等待下一个地址帧的接收(该步应由用户软件处理实现): A)作为1号从机的MCU处理过程为:收到地址帧后,判定读取UDR数据0X01为自己的地址,将MPCM位置“0”,接收之后所有主机下发的数据帧,直到下一个地址帧为止。 B)其它从机MCU的处理过程:收到地址帧后,判定读取UDR数据0X01不是自己的地址,将MPCM位置“1”,这样他们将忽略主机随后发送的数据帧,直到主机再次发送地址帧。 5)当被寻址的从机MCU接收完最后一个数据帧后,将MPCM位置位,等待下一个地址帧的出现(该步也应由用户软件处理实现),然后从步骤2开始重复。 [转]例子; 通讯规则: 1:时钟7.3728 MHz/波特率9600/9个数据位/奇校验/1个停止位/硬件多机通讯功能/ 2:通讯连接采用硬件MAX485,双向单工

国家电网公司加强配电网规划建设 全面提高供电可靠性

国家电网公司加强配电网规划建设全面提高供电可靠性 北极星输配电网讯:1 月28 日,记者从国家电网公司2016 年发展工作会议了解到,2016 年国家电网公司将进一步加强配电网规划建设,全面提高供电可靠性。2016 年,国家电网公司经营范围内城网、农网客户平均停电时间将不超过3.1 小时、12.7 小时,同比缩短0.1 小时、0.4 小时。 十三五期间,我国经济年均增长底线是6.5%以上,预计2020 全国社会用电量将达到8.0 万亿度,人均用电量5691 度。此外,国家大力推进分布式能源和电动汽车等多元化负荷发展,2020 年,预计分布式光伏装机达7000 万千瓦,电动汽车保有量达500 万辆,微电网和储能装置快速发展,这对配电网的安全性、经济性、互动性提出了更高要求,需要进一步提高配电网建设改造标准,促进源网荷协调互动,实现传统配电网向智能配电网的转型升级。 2016 年,国家电网公司将按照统一规划、统一标准、安全可靠、坚固耐用的原则,深入贯彻资产全寿命周期管理理念,优化完善电网规划,并认真执行配电网建设改造行动计划,加快实施农网改造升级工程,有效解决农网低电压、卡脖子、动力电不足等问题,上半年完成2015 年国家新增中西部农网项目,年内完成新增东部七省(市)农网和城镇配电网工程。国家电网公司还将全面开展配电网标准化建设,依据规划设计导则,按照典型目标网架要求,优化完善配电网结构,提高线路互倒互带和环网供电能力。 此外,国家电网公司将加快推进国网阳光扶贫行动,结合农网改造升级,年内完成1.3 万个自然村通动力电、2.7 万个自然村动力电改造工程;落实国家光伏扶贫工作要求,建设光伏扶贫项目接网工程,帮扶公司定点扶贫五县(区)建设集中式光伏电站。

单片机多机通信实现

单片机多机通信实现 1、设计要求 三片单片机利用串行口进行串行通信:串行通信的波特率为9600bit/s。串行口工作方式为方式1的单工串行通信。 2、设计方案 一个主机和两个从机,主机通过按键选择要通信的从机,按键确认后通过矩阵键盘输入要传输的信息,从机接收主机发送的信息并发回长度校验码给主机,主机确认校验信息是否正确,若正确,主机液晶显示“send:信息”和从机数,从机液晶显示所接收的信息;若错误则主机从发信息,重复前面的步骤。 3、硬件电路设计 3.1 单片机最小系统的设计 本系统共用三块单片机,每块单片机均选用AT89S52,最小系统也都一样。由于三块单片机的主要任务是通信,为了得到准确的波特率,采用振荡频率为11.0592MHz的晶振,再接两个30pF的瓷片电容即可构成单片机的时钟电路。 单片机最小系统电路如下: 图3-1 单片机最小系统电路 复位电路也可以换成看门狗电路实现,可使单片机可靠的复位。为了简化电路设计,本系统采用简单方法,可使单片机上电复位,此外可以通过按键手动复位。单片机上电即可复位,R1与C3的充电时间大于两倍的机器周期,使RST引脚有足够长的时间保存高电平,使单片机可靠的复位。正常工作时,按下按键SW1就可以使单片机复位。 3.2 矩阵键盘电路设计

图3-2 矩阵键盘电路 P1口接4×4的矩阵键盘,共16个按键,分别为0~C及“开始通信”,“选择从机”和“输入信息”键。P1.0~P1.3接矩阵键盘的行,P1.4~P1.7接矩阵键盘的列。 3.3 液晶显示电路设计 液晶显示电路如下图: 图3-3 液晶LCD1602显示电路 P0口上拉10K×8的排阻,自己画的排阻符号如下: 图3-4 排阻符号 排阻具有九个引脚,一个公共端,另外八个脚分别接到需要接上拉电阻的单片机的P0口。排阻相当于8个大小均为10K的电阻,在电路中主要其电平转化作用,通过的电流很小,每只电阻的功耗也很小。如接5V电源,每只电阻的电流约为0.5mA,很小,但是由于P0口是接液晶,不用接排阻也能实现,本着节约的原则在本设计中没有接排阻。 主机整体原理图如下:

51单片机多机通信课程设计

《单片机应用与仿真训练》设计报告 单片机多机通信 姓名: 学号: 专业班级: 指导老师: 所在学院: 2011年7月5日

摘要 本设计是基于AT89S52单片机温度检测传输的三机通信系统,有三个单片机组成,其中一个作为主机(上位机),控制并负责接收来自从机1号和从机2号采集的数据信息,并显示在数码管上。由主机发送控制信息(通过按键控制),确定是接收来自想要得到各从机数据。从机1号和2号是数据采集模块,用来采集室内或室外温度信息,并通过通信协议传送给主机。为保证三机通信可靠性,通信口要有识别功能,51单片机串行口控制寄存器SCON中SM2位正是满足这一要求而设置的。当串行口以工作方式三工作时,接收和发送的信息都是11位数据,既包含SBUF寄存器传送的8位数据,还包括SCON中可编程第9位数据即TB8或RB8,主机可通过设定TB8是0或1,来区别发送的是地址还是数据。从机都先将SCON中的SM2设置为1,待主机发送地址信息,与本身的地址对照,如果是,则令从机SM2为0,准备接收主机信息并发送温度信息,如果不是,则继续等待。主机通过中断口接收数据,处理后显示在数码管上。此次设计由于只有一个18b20温度传感器,这里用三个任意的数据代替从机2采集温度数据,由于传输距离较短,这里不用MAX232,直接将主机的发送端接从机接收端,主机接收端连接从机发射端,仿真结果正常显示,实验结果正常。

目录 1概述 (1) 1.1设计概述 (1) 1.2多机通信基本原理 (1) 1.3 通信协议 (2) 2系统总体方案及硬件设计 (3) 2.1总体设计方案 (3) 2.2硬件电路设计 (3) 3软件设计 (7) 3.1控制流程图 (7) 3.2串行口采集步骤 (7) 3.3软件流程图 (8) PROTEUS仿真 (9) 课程设计体会 (11) 参考文献: (12) 附件1:主机A源程序代码 (13) 附件2:原理图 (24)

单片机软件系统的可靠性设计

单片机软件系统的可靠性设计 可靠性设计是一项系统工程,单片机系统的可靠性必须从软件、硬件以及结构设计等方面全面考虑。硬件系统的可靠性设计是单片机系统可靠性的根本,而软件系统的可靠性设计起到抑制外来干扰的作用。软件系统的可靠性设计的主要方法有:开机自检、软件陷阱(进行程序“跑飞”检测)、设置程序运行状态标记、输出端口刷新、输入多次采样、软件“看门狗”等。通过软件系统的可靠性设计,达到最大限度地降低干扰对系统工作的影响,确保单片机及时发现因干扰导致程序出现的错误,并使系统恢复到正常工作状态或及时报警的目的。 一、开机自检 开机后首先对单片机系统的硬件及软件状态进行检测,一旦发现不正常,就进行相应的处理。开机自检程序通常包括对RAM、ROM、I/O口状态等的检测。 1检测RAM检查RAM读写是否正常,实际操作是向RAM单元写“00H”,读出也应为“00H”,再向其写“FFH”,读出也应为“FFH”。如果RAM单元读写出错,应给出RAM 出错提示(声光或其它形式),等待处理。 2检查ROM单元的内容对ROM单元的检测主要是检查ROM单元的内容的校验和。所谓ROM的校验和是将ROM的内容逐一相加后得到一个数值,该值便称校验和。ROM单元存储的是程序、常数和表格。一旦程序编写完成,ROM中的内容就确定了,其校验和也就是唯一的。若ROM校验和出错,应给出ROM出错提示(声光或其它形式),等待处理。 3检查I/O口状态首先确定系统的I/O口在待机状态应处的状态,然后检测单片机的I/O 口在待机状态下的状态是否正常(如是否有短路或开路现象等)。若不正常,应给出出错提示(声光或其它形式),等待处理。 4其它接口电路检测除了对上述单片机内部资源进行检测外,对系统中的其它接口电路,

基于89C52单片机的多机通信

89C52单片机多机通信 一、设置定时器的工作方式及初值: TMOD=0x20; TH1=0xF4; TL1=0xF4; 二、设置串口寄存器的工作方式 SCON=0x90; PCON|=0x80; 其中SCON各位为 PCON各位为 SM2=1时:RB8=1 产生中断 RB8=0 不产生中断 SM2=0时,产生中断 四、多机通信过称:主机>>>>>>地址码+RB8=1>>>>>从机 从机判断地址码与之对应则SM2=0 主机>>>>>>数据码+RB8=0>>>>>从机 从机接收数据 五、参考程序(经过实验认证) 主机 #include int a;

void init() {EA=0; TMOD=0x20; TH1=0xF4; TL1=0xF4; SCON=0x90; PCON|=0x80; EA=1; ES=1; ET1=1; TR1=1; TI=0; RI=0; SM2=1; } void delay() {int j,k; for(j=0;j<300;j++) for(k=0;k<1000;k++); } main() {init(); TB8=1; SBUF=0x01; delay(); TB8=0; SBUF=0x88; delay();

TB8=0x02; SBUF=0x66; while(1); } 从机1:地址0x01 #include int a; void init() {EA=0; TMOD=0x20; TH1=0xF4; TL1=0xF4; SCON=0x90; PCON|=0x80; EA=1; ES=1; ET1=1; TR1=1; TI=0; RI=0; SM2=1; } void delay() {int j,k; for(j=0;j<1000;j++) for(k=0;k<1000;k++); } main()

供电可靠性管理办法

***电业公司供电可靠性管理办法 第一章总则 1.1电力可靠性管理工作是电力系统全过程管理的重要组成部分,是全面质量管理的科学方法之一。可靠性指标是衡量供电企业安全运行、检修维护、基建工程、技术进步等管理水平的重要标志,是提高企业经济效益、社会信誉、供电能效的有效手段。以可靠性管理为核心,促进生产管理工作的开展是电力生产的主要容之一,也是供电企业达标创一流的必备考核条件。 1.2 根据国家电网公司、省公司、市公司对供电可靠性工作的要求,为使我公司电网可靠性管理工作更加规化、科学化,提高供电可靠率,特制定本办法。 第二章制定本办法的目的 2.1在全公司围建立可靠性管理工作网和管理领导小组。 2.2 明确相关单位可靠性管理的职责围和任务。 2.3 明确考核、奖罚制度。 2.4 加强用户供电可靠性管理工作,提高供电可靠性指标。 第三章管理机构与职责 3.1 建立相关责任人组成的供电可靠性管理领导小组。成员如下: 组长: 副组长: 成员: 3.2供电可靠性管理的归口管理部门为生产技术部,全面负责我公司电网供电可靠性管理工作。相关责任部门为调度通信中

心、输变电运行部、市场营销部、输变电检修部。 3.3公司供电可靠性管理领导组下设供电可靠性管理小组,生产技术部供电可靠性管理专责和各责任单位专(兼)职可靠性管理人员为供电可靠性管理小组成员。 3.4公司归口管理部门及相关责任部门供电可靠性管理职责: 3.4.1供电可靠性归口管理部门:生产技术部 责任人:专责: 具体职责: (1)贯彻执行上级颁发的关于供电可靠性管理的政策、法规、标准、规程、制度。 (2)负责编制公司年度供电可靠性指标计划和分解方案,报主管领导(可靠性管理领导小组)批准后组织实施。 (3)负责修订、完善公司供电可靠性管理标准、制度和考核办法。 (4)参与公司月度生产例会,通报供电可靠性指标完成情况,并就各单位提出的停电检修计划提出建议。 (5)对各责任单位供电可靠性管理工作开展情况及可靠性指标的完成情况进行检查、考核。 (6)负责定期(至少每季一次)组织修订、完善供电可靠性管理基础台帐、图纸等技术资料。 (7)负责每季度召开一次的可靠性管理分析例会的组织工作,负责会议记录和编发可靠性分析报告(会议纪要)。 (8)负责全公司供电可靠性管理技术培训。 (9)定期进行供电可靠性指标的统计、分析和上报。

提高配电网供电可靠性技术措施方案

整体解决方案系列 提高配电网供电可靠性技 术措施 (标准、完整、实用、可修改)

编号:FS-QG-75904提高配电网供电可靠性技术措施 Technical measures to improve the reliability of power distributen n etwork power supply 说明:为明确各负责人职责,充分调用工作积极性,使人员队伍与目标管理科学化、制度化、规范化,特此制定 1. 提高发、供电设备的可靠性:采用高度可靠的发、供电设备,做好发、供电设备的维护运行工作。 2. 提高供电线路的可靠性,对系统中重要线路采用双回线,目前农电配网中,架设双回线的还比较少,双回线路供电,输送能力大,稳定储备高,输电线路的可靠性很稳定。 3. 选择合理的电力系统结构和接线。 4. 选择合理的运行方式。 5. 建立配电网络自动化:选择合理的与本地相适应的综合自动化系统方案,配网自动化在实施一整套监控措施的同 时,加强对电网是实时状态、设备、开关动作次数、负荷情况,潮流动向等数据进行采集,实施网络管理,拟定优化方案,提高供电可靠性。 6. 主干线增设线路开关,架设分支,把分支线路故障停电范围限制

在支线范围内,减少停电范围。 7. 在人口较集中、树线矛盾突出的地方采用架空绝缘线或地下电缆 敷设。 8. 中性点接地和配套技术的应用。 随着电缆广泛采用,对地容性电流越来越高,中性点运行方式的改变和配套技术的应用,是改善系统过电压对设备的危害、减少绝缘设备破坏造成的事故,增强溃线自动化对单项接地故障的判别能力的重要手段。 9. 增大导线截面,提线路输送客量。 10. 增设10千伏开闭所,增加10千伏出线回路数,缩短10千伏线路供电半径。 11. 增设变电站之间的联络线,提高各站负荷的转供能力。 12. 开展带电作业,减少停电时间,在严格执行有关规定和保证安全的前提下,推行带电作业,在10千伏线路上使用安装方便,运行可靠的AMF线夹,与配套的AMP带电作业工具配合进行带电作业,可 减少检修停电时间。 请输入您公司的名字 Foon shi on Desig n Co., Ltd

硬件系统可靠性设计规范

硬件系统可靠性设计规范 一、概论 可靠性的定义:产品或系统在规定条件下和规定时间内完成规定功能的能力 可靠性及抗干扰设计是硬件设计必不可少的一部分,它包括芯片、器件选择、去耦滤波、印刷电路板布线、通道隔离等。有完善的抗干扰措施,是保证系统精度、工作正常和不产生错误的必要条件。设备可靠性设计规范的一个核心思想是监控过程,而不是监控结果。 二、可靠性设计方法 1、元器件:构成系统的基本部件,作为设计与使用者,主要是保证所选用的元器件的质量或可靠性指标满足设计的要求 2、降额设计:使电子元器件的工作应力适当低于其规定的额定值,从而达到降低基本故障率,保证系统可靠性的目的。幅度的大小可分为一、二、三级降额,一级降额((实际承受应力)/(器件额定应力) < 50%的降额),建议使用二级降额设计方法,一级降额<70% 3、冗余设计:也称为容错技术或故障掩盖技术,它是通过增加完成同一功能的并联或备用单元(包括硬件单元或软件单元)数目来提高系统可靠性的一种设计方法,实现方法主要包括:硬件冗余;软件冗余;信息冗余;时间冗余等 4、电磁兼容设计:系统在电磁环境中运行的适应性,即在电磁环境下能保持完成规定功能的能力。电磁兼容性设计的目的是使系统既不受外部电磁干扰的影响,也不对其它电子设备产生电磁干扰。硬件措施主要有滤波技术、去耦电路、屏蔽技术、接地技术等;软件措施主要有数字滤波、软件冗余、程序运行监视及故障自动恢复技术等 5、故障自动检测及诊断 6、软件可靠性设计:为了提高软件的可靠性,应尽量将软件规范化、标准化、模块化 7、失效保险技术 8、热设计 9、EMC设计:电磁兼容(EMC)包括电磁干扰(EMI)和电磁敏感度(EMS)两个方面 三、可靠性设计准则

串口通信-多机通信系统 - 单片机

目录 一、题目要求与功能分析 (1) 1.1题目要求 (1) 1.2功能及整体模块分析 (1) 二方案论证 (2) 2.1设计目的 (2) 2.2设计思路 (2) 2.2.1原理分析和讨论 (2) 2.2.2题设分析 (3) 三、电路设计 (5) 3.1 整体功能框架设计 (5) 3.2 硬件电路设计 (6) 3.2.1 主机硬件电路设计 (7) 3.2.2 从机硬件电路设计 (10) 3.3软件电路设计 (12) 3.3.1 协议设计 (12) 3.3.2 主机程序流程图设计 (13) 3.3.3 从机程序流程图设计 (14) 四系统的调试与实现 (16) 4.1主机模块功能调试 (16) 4.2从机模块调试 (16) 4.3整体设计功能调试 (16) 五总结与体会 (18) 参考文献 (18) 附录 (19)

一、题目要求与功能分析 1.1题目要求 本小组的试验题目如下: 一、任务: 设计实现多台单片机系统之间的串行通信 二、基本要求(难度系数0.8): (1)设计一个主从式多机通信系统,包含1台主机和3台从机,主机和从机全部为单片机; (2)选择合适总线接口芯片,正确连接主机和从机; (3)编程实现分布式数据采集功能,主机可以获取各分机当前AD转换结果,并显示。 三、发挥部分: (1)完善通信功能。(根据完成情况加分,上限+0.2) 1.2功能及整体模块分析 随着工业化要求提高,分布式系统发展以及控制设备与监控设备之间通讯需要,多机通信系统设计的监控系统逐步普及。此多机通信系统具有友好的人机操作界面、强大的IO设备端口驱动能力,可与各种PLC、智能仪表、智能模块、板卡、变频器等实时通讯。在检测大量模拟量的工业现场使用相似的多机通讯系统;单片机接口丰富,与A/D转换模块组合可以完成相同的工作,并且系统可靠、成本低。 本次实验的目的是就是应用单片机的串口通信功能实现一个分布式采集系统。整个系统中包含一片主机和三片从机,主机的任务是实现对三片从机的AD 转换结果的采集并在数码管上显示之。这样从硬件的角度上将整个系统分为两个模块—主机模块和从机模块。主机模块中包含单片机模块、数码管显示子模块和串口电平转换子模块,从机模块则包括单片机子模块、AD转换子模块和串口电平转换子模块。就本次实验而言硬件电路的设计难点在于串口电平转换芯片MAX485的连接,而软件的设计在于串口通信协议的设定及其相互通信的过程。

提高电力系统供电可靠性的方法

提高电力系统供电可靠性的方法 摘要:随着人们生活水平的提高,对电力能源需求也有所增涨,这对电力系统 供电可靠性提出更高的要求。介于配网建设对电力系统供电可靠性的直接影响, 文章重要以此为基础,对供电可靠性现状进行分析,并提出具体的管理对策,希 望能够进一步提高我国供电运行水平。 关键词:电力系统;供电可靠性;电力配网;配网运行 引言 配电网络具有范围广、线路长的特点,在一定程度上使配电故障发生率增加,影响到配电运行的可靠性。配电运行的可靠性降低,导致各种配电故障的发生, 影响到用户的生活以及生产,给电力企业带来较大的经济损失。供电企业应当采 取科学合理的措施,解决配电网运行中的故障,保证配电运行的可靠安全,为人 们的生活和生产提供保障,推动城市化进程的发展。 1电力系统供电可靠性的内涵 供电系统可靠性主要包括电源可靠性和系统可靠性。我国《民用电气设计规范》中明确规定了供电电源可靠性。对于一级负荷供电系统,需设置两个电源进 行供电。如果其中一个电源出现问题,另一个电源将承担供电任务;对于二级负 荷供电系统,必须设置两条回路,回路中可设置电缆或者架空线,以有效解决小 范围供电困难的问题;对于负荷较高的系统,还需加设应急电源,避免故障时发 生大面积停电现象。如果建筑物中设置两个电源,需采用同级电压的供电方式, 以提升电压利用效率。不同地区的供电需求和供电条件存在差异,需根据具体情 况设置不同级别的供电电压。《民用电气设计规范》中也明确规范了系统可靠性,先在供电过程中采用两条供电线路,如果其中一条线路出现问题,另一条线路必 须满足所有级别的供电需求;对于10 kV供电系统,配电技术需在两级以上,且 采用环式或者树干式电网构建方式。 2电力系统配网运行现状 2.1电力设备本身的弊端 目前,在供电需求不断增加,我国传统的电力设备已经无法满足社会的发展 和需求。影响电力配网运行的直接因素就是电力设备,所以企业要根据自身需求 和市场变化对电力设备进行更新,从而提高设备的安全性和现先进性,保障电力 配网运行的可靠性,提升电力企业的服务质量。我国很多电力企业虽然也开始对 电力设备进行更新,但在这个过程中还存在以下几个问题:(1)电力企业为实 现经济效益,从而最大程度节约成本,造成电力设备更新不及时;(2)电力设 备检修力度不够,企业一方面没有专业的人才对设备进行定期的检修,另一方面,工作人员在检修中效率无法提高。 2.2调度运行存在问题 首先,电力系统安全运行调试监管的不足。目前,电厂主要通过统筹的方法 实现系统的调试,保证电气设备能够发挥作用。但是,由于系统的调试工作的内 容较多,会导致调试过程中也存在安全隐患,如果无法发现并排除电力系统调试 中存在的安全隐患,就会对系统运行的安全性造成影响。而如果电力系统的调试 工作监管制度不完善,会为系统以及设备的调试埋下不同程度的安全隐患,再加 上因监管规范的缺失,无法及时准确的发现系统运行中的安全隐患,导致系统调 试不够全面,进而影响整个电力系统的调试。其次,电力系统安全运行调试工作 的组织性有待提升。施工单位经常将电力系统中电气设备的安装和调试工作同时

如何通过科学管理提高供电可靠性

如何通过科学管理提高供电可靠性 供电系统用户供电可靠性,是电力可靠性管理的一项重要内容,直接体现供电系统对用户的供电能力,反映了电力工业对国民经济电能需求的满足程度,是供电系统的规划、设计、基建、施工、设备选型、生产运行、供电服务等方面的质量和管理水平的综合体现。 标签:科学管理;供电;可靠性 1 供电可靠性目标描述 采用现代化科学技术和管理方法,加大电网投资力度,强化电网结构,加大可靠性管理与考核力度,减少计划检修、临时检修,提高供电可靠性。供电可靠性管理的范围涉及公司的生产技术部、调度所、输变电工区、供电所、施工单位等部门,对外涉及客户工程的业扩报装、检修和事故处理。影响供电可靠性的主要因素如图1。 图1 影响供电可靠性因素分解图 2 供电可靠性工作介绍 2.1 供电可靠性管理流程图供电可靠性管理流程图如图2。 图2 供电可靠性管理流程图 2.2 供电可靠性的组织保障为了确保流程的严格实施,应成立由公司一把手为组长的领导小组,并在各相关科室设置供电可靠性管理专责。 2.3 供电可靠性的管理保障 2.3.1 加强计划管理,合理安排检修时间。加强对检修计划的管理,坚持年度检修计划、月度作业计划和周计划平衡工作,事前控制户时数,做好预测工作。严格实行供电可靠性定期分析制度,及时查找可靠性降低的原因,为电力规划、基本建设、生产运行、检修维护、营销管理提供切实可行的依据。加大考核力度,每月兑现奖惩,使供电可靠性管理贯穿于生产经营、电网建设全过程。坚持检修审批制度,由各单位每月將下月的检修计划报运维检修部,运维检修部可靠性专责根据每月可靠性分解的指标将检修计划进行统筹安排,制定下月检修计划,所安排的检修一律控制在考核指标范围内。对计划外的检修工作由主管领导审批,城网检修必须由经理批准后方可进行,减少计划外检修工作。合理安排检修时间,

提高变电运行供电可靠性的若干管理措施 高校委

提高变电运行供电可靠性的若干管理措施高校委 发表时间:2018-06-12T12:53:32.063Z 来源:《建筑学研究前沿》2017年第36期作者:高校委刘天宇王威海孟祥东于会宁 [导读] 电力系统是由电厂、变电所、输配电网以及用电设备按照一定的规律连接而组成的统一整体。 国网黑龙江省电力有限公司鹤岗供电公司黑龙江鹤岗 154100 摘要:电力企业为社会的各个行业提供了电力,这些行业若没有电力作为支撑,是不能运营下去的,尤其是在当今需要又好又快发展国民经济的背景下,使得电力企业也间接影响了我国经济的发展。作为电力系统中最重要的组成成分之一,变电运行供电的可靠性直接影响到了电力系统能否正常供电。因此提高变电运行供电的可靠性具有十分重要的意义。本论文主要探讨了提高变电运行供电可靠性的若干管理措施。 关键词:变电运行;供电可靠性;管理措施 1 供电可靠性概述 电力系统是由电厂、变电所、输配电网以及用电设备按照一定的规律连接而组成的统一整体。电力系统的各种输配电线路、各种电气设备及这些线路和设备的自动装置和保护装置等,都是有可能会发生故障的。这些故障不仅会影响到电力系统的运行,还会影响到用户的正常供电,之所以会停电就是因为设备发生了故障。若设备发生了故障,就应该利用自动装置和继电保护来控制发生设备故障的区域,并辅以相关工作人员的协助处理,避免造成更大区域面积的停电。 通常将可靠性定义为在规定的条件下和预定的时间内,一个设备、系统或元件完成某项既定功能的能力。而电力系统的可靠性管理则是指从电力系统的整体出发,依照某一特定的可靠性目标,规划、协调、组织和监督电力系统的整个寿命周期内的工程技术活动,并使其技术经济的比较性能最优。所谓“供电可靠性”,是指在系统运行的条件下,电网向用户提供连续电力的能力。在负荷保持不变的情况下,设备产生故障的概率越低,且故障后用于修复的时间越短,则此供电可靠性就越高。供电可靠性是需要设备和元件的运行水平和质量来提供保障的,其中,运行水平包括检修维护水平和自动化水平等等。而所谓“电力系统的供电可靠性”则是指在一定的时间内,电力系统对其用户提供连续供电的能力。在借鉴和学习了世界上其他国家的经验的基础之上,并结合我国电力系统自身的特点,经过长期的实践和探索,我国终于形成了一个初步的电力可靠性的管理体系。 2 提高变电运行供电可靠性的措施 2.1 建立可靠性管理制度 可靠性管理是一项综合性的管理工作,纵向在上需要领导的重视,在下需要员工的关心;横向需要各部门之问的分工、配合。为此,供电企业应成立供电可靠性管理小组,编制供电可靠性管理制度,实行供电可靠性的目标管理,层层分配和细化指标。形成供电可靠性分析制度,每个季度对运行数据进行可靠性分析,并形成报告,作为下季度工作的指导;做好预停电计划,合理安排停电开关,最大限度的采用综合停电模式,可大大减少非故障停电的次数。完善管理体系,严格制度措施的落实和考核可靠性指标为综合性指标,按照上级下达的变电站停电时数指标和考核制度(变电工区全年承包时间为70h),制定了下列措施的考核办法。制定技术指标考核管理措施:严格执行管理制度,开展可靠性管理工作。建立健全可靠性管理的资料、档案;使可靠性管理规范化和标准化。将供电可靠性承包指标层层分解责任到站:根据实际工作情况,分解总承包时间至各站,各变电站值班人员在规定的时间内完成每项工作。各变电站每月及时、准确上报可靠性统计。工区定期检查分析可靠性指标完成情况,奖惩相关人员。按季由专人写出上报可靠性分析总结。 2.2 提高设备健康水平,减少设备停电次数 采用高质量免维护的六氟化硫和真空断路器、微机保护等优良产品来提高设备运行的可靠性。事实证明,采用优质的设备大大减少了停电机会,减少了因设备原因而造成的停电次数,有效地提高了运行可靠性。电力系统的各种电气设备,输配电线路以及保护和自动装置,都有可能因发生故障而影响系统的正常运行和对用户的正常供电。提高设备的健康水平,做好预防工作和事故预想是保证设备安全运行,减少设备故障的有效方法。变电运行人员加强巡视设备的责任心首先是腿勤,每天都要了解设备的状况,遵守巡视时间,随时检查设备,发现设备缺陷及时处理,还要心细,自己做过的工作要心中有数,对运行设备周期和薄弱环节,了如指掌,认真执行设备巡视标准卡,发现缺陷及时处理,处理不了得,及时上报,发现问题一定及时分析,判断保证设备运行良好,不发生因设备缺陷引起事故,运行人员加强巡视维护质量,可以及时发现或消除设备隐患,提高供电可靠性。 2.3 全方位配合开展设备状态检修 变电站运行管理的重点就是安全运行。认认真真落实班组安全生产责任制,坚持贯彻“安全第一,预防为主”的电力生产方针,大力开展反习惯性违章和安全生产的宣传与教育,严格执行“两票三制”这些,都是电力系统长期经过实践检验行之有效的经验,在变电站必须认真贯彻。近些年来,由于变电站设备的不断增加和技术的更新,所以应及时修订变电站的现场运行规程,自查并完善各种记录,利用计算机自动化系统提高工作效率,把好自己的关口,以确保变电站的各项工作的顺利进行。全方位配合开展设备状态检修,展设备状态检修,逐步取消定期检修制的规定,运行人员积极配合状态检修工作,合理调整了对设备的检查重点和范围,利用绝缘在线监测、带电测试和红外线热像仪监测发热点等措施,加强对设备的监测工作。抓好安全检查质量是决定检查成功与否的关健所在,在检查安全生产的过程中,做到对事不对人,认真查找问题,理清症结根源,拿出解决方案,决不放过任何一处安全隐患,实现企业的安全长久运行:只有这样安全检查的质量才能得到保证。 2.4 建立安全生产隐患排查治理常态机制 增强变电应急能力建立应急管理体系,完善事故应急预案,做好应急备品备件和工器具的储备,通过演练使每名职工熟知能详,提高员工快速反应和正确应对能力,做到响应迅速,组织得力,处置有效,最大限度地减少大面积停电事故造成的影响和损失。抓实隐患排查治理要建立安全生产隐患排查治理常态机制,针对人员、电网、设备等方面存在安全隐患的问题,定期开展“五查”活动,发现问题及时整改,并做好提示化管理,使隐患排查治理工作实现常态化;加大变电站外部环境的清理整治力度,解决变电站周边历史遗留问题,确保电力设备安全和电网运行安全;针对个别变电站存在防汛隐患等问题,提前做好预控,群策群力,保护设备及电网安全。运行值班人员通过控制找出存在的危险点,可以增强对工作中存在的危险点的认识,克服麻痹思想和侥幸心理,主动、及时地对工作的重点进行调整,防止

硬件可靠性及提高

硬件可靠性及提高 一般来说,系统总是由多个子系统组成,而子系统又是由更小的子系统组成,直到细分到电阻器、电容器、电感、晶体管、集成电路、机械零件等小元件的复杂组合,其中任何一个元件发生故障都会成为系统出现故障的原因。因此,硬件可靠性设计在保证元器件可靠性的基础上,既要考虑单一控制单元的可靠性设计,更要考虑整个控制系统的可靠性设计。 1.影响硬件可靠性的因素 (1)元件失效。元件失效有三种:一是元件本身的缺陷,如硅裂、漏气等;二是加工过程、环境条件的变化加速了元件、组件的失效;三是工艺问题,如焊接不牢、筛选不严等。 (2)设计不当。在计算机控制系统中,许多元器件发生的故障并不是元件本身的问题,而是系统设计不合理或元器件使用不当所造成。 在设计过程中,如何正确使用各种型号的元器件或集成电路,是提高硬件可靠性不可忽视的重要因素。 (1)电气性能:元器件的电气性能是指元器件所能承受的电压、电流、电容、功率等的能力,在使用时要注意元器件的电气性能,不能超限使用。(2)环境条件:计算机控制系统的工作环境有时相当恶劣,由于环境因素的影响,不少系统的实验室试验情况虽然良好,但安装到现场并长期运行就频出故障。其原因是多方面的,包括温度、干扰、电源、现场空气等对硬件的影响。因此,设计系统时,应考虑环境条件对硬件参数的影响,元件设备须经老化试验处理。 (3)组装工艺:在硬件设计中,组装工艺直接影响硬件系统的可靠性。由于工艺原因引起的故障很难定位排除,一个焊点的虚焊或似接非接很可能导致整个系统在工作过程中不时地出现工作不正常现象。另外,设计印制电路板时应考虑元器件的布局、引线的走向、引线的分类排序等。

配电运行中提高供电可靠性方法探讨

配电运行中提高供电可靠性方法探讨 发表时间:2020-03-18T02:11:53.397Z 来源:《福光技术》2019年33期作者:刘策葛梦瑶[导读] 为了确保人们生产生活的正常进行,同时也减少企业自身损失,提高配网供电可靠性迫在眉睫,这不仅是用户的需要,更是供电企业自身发展的需要。 国网河北省电力有限公司新乐市供电分公司河北石家庄 050700 摘要:配电系统是电网结构的核心组成,其运行情况会直接影响供电质量和供电安全,要想确保电能供应的可靠性,满足用户的实际用电需求,提升供电服务水平,就需要确保配电系统的正常、稳定运行。但是,在配电系统实际运行过程中,经常因为技术落后、配电网结构不合理、维护管理不到位、外力破坏等因素,造成配电运行故障,严重降低了供电的可靠性。为了解决这些问题,就需要从配电运行环节入手,找出影响供电可靠性的根本原因,采取针对性的有效措施,提高供电可靠性。 关键词:配电运行;供电可靠性;方法 引言 经济的迅速发展,电力成为日常生活中不可或缺的一个重要部分,广大用户对供电可靠性的要求也越来越高,企业必须保证供电可靠性,并逐步提高供电服务的水平,才能确保企业的持续性发展。如果企业在配电运行程中,不能确保供电的可靠性,既会影响广大居民用户的正常生产和生活用电,同时也降低用户对供电企业的信誉程度,更主要的是,配电的不可靠性,会给供电企业造成巨大经济损失。供电企业是以为服务人民为宗旨的,为了确保人们生产生活的正常进行,同时也减少企业自身损失,提高配网供电可靠性迫在眉睫,这不仅是用户的需要,更是供电企业自身发展的需要。 一、提高配电运行中供电可靠性的意义 作为电力系统的一个重要部分,配电网的供电可靠性将对社会经济的发展及人们的生活造成极大的影响。配电网供电可靠性是衡量供电系统对电力用户持续供电的能力,也是体现供电企业电能质量与管理水平的重要指标。随着社会用电需求的不断增加,电力企业配电网供电的可靠性受到人们的关注越来越多。配电系统和电力用户之间的联系非常密切,是向用户供应与分配电能的关键环节。配电网的可靠性供电能够为社会经济的发展及人们生活的提供可靠的电能支持,是保证人们正常生活及经济发展的前提。鉴于配电网供电可靠性的重要意义,因此电力企业必须加强对配电网的改造与建设,以提高配电网供电的可靠性,从而满足社会发展的需求。 二、配电运行中影响供电可靠性的主要因素 (一)配电系统技术落后 智能电网已经成为电网建设的必然发展方向,但是当前配电系统技术落后,自动化程度较低,已经无法满足越来越复杂设备的运行需求,影响了供电可靠性。部分地区在规划配电网时,没有引进先进技术,对构建自动化电网系统重视力度不足,没有将自动化、智能技术和设备加以充分利用,导致配电网运行管理水平较低,容易出现运行故障现象。同时,我国电力自动化技术尚不成熟,很多方面的工作仍处于探索阶段,在实际应用过程中存在较多的问题,不得不对配电系统进行频繁的检查和维修,进而使得配电网停电次数较多,供电可靠性较低。 (二)线路故障的产生 由于配电网大多都处于露天环境且具备点多、面广和线长的特点,它在运行中经常会受到外界干扰而产生跳闸事故。就这种事故的产生原因分析,主要是以下因素造成的。 (1)从长远来看,高空坠落的物体、树木和其他外部原因造成的短路故障,此错误的发生率有直接关系的是配电线路的长度,线越长,此错误的几率就越大。 (2)线路保护装置安装不正确。因素主要由避雷针的接地线,由于长输电线路和线处于开放状态很长一段时间,非常容易受到雷击,避雷针和其他辅助设备必须确保这个时间线。一旦避雷针,接地线等设施安装不合格,这将严重影响的顺利实施。 (3)电线和其他设备,其长期使用老化,这也是线路故障发生的主要原因。 三、配电运行中提高供电可靠性的有效方法 (一)采用先进、科学技术

10kV配电网提高供电可靠性之我见(正式版)

文件编号:TP-AR-L7892 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编订:_______________ 审核:_______________ 单位:_______________ 10kV配电网提高供电可 靠性之我见(正式版)

10kV配电网提高供电可靠性之我见 (正式版) 使用注意:该安全管理资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 1 建立供电可靠性领导小组,完善管理网络,提 高可靠性管理水平 1.1把供电可靠性管理工作作为企业工作的重 点,定期召开管理分析会,制定可靠性管理工作计 划,保证供电可靠性年初有计划,季度有分析,年末 有总结。同时明确各科室部门在可靠性管理工作中的 标准和职责,充分发挥各部门管理人员的积极性和创 造性,保证供电可靠性目标的实现。 1.2 认真学习贯彻新规程,培训可靠性管理人 员,为分析可靠性指标、计划检修、故障停电和重复

性停电等问题打好基础。 1.3加强基础资料管理和完善。为编制运行方式、计划检修和制定有关生产管理措施提供详实、准确的依据,同时也为电网可靠性评估提供计算依据。 1.4各部门要互相协作,广泛参与到配电管理、新增用户送电方案审批、停电计划会签和审批、计划外停电的批准、城网改造等工作中去。 1.5 坚持计划,控制临检。各单位在安排生产计划时,坚持计划停电,凡涉及供电可靠性指标的各种停电工作,均由运行单位统一申报月停电计划,组织有关单位召开检修计划会,进行协调、合并,做到“一线停多处干,一家申请多家工作”,最大限度地减少重复性停电,缩短停电时间。 2 提高设备技术装备水平 2.1实现10kV配电线路环网供电,不断加大配

相关文档