文档库 最新最全的文档下载
当前位置:文档库 › ZH4485-401-11 螺旋桨无键连接计算书

ZH4485-401-11 螺旋桨无键连接计算书

ZH4485-401-11 螺旋桨无键连接计算书
ZH4485-401-11 螺旋桨无键连接计算书

57300DWT 散货船

螺旋桨无键连接

计算书

中海工业(江苏)有限公司

施 工 设 计 ZH4485-401-11

标 记

质量(Kg)

比 例

共 7 页

第 1 页

标记

数量

修改单号

签 字 日 期

审 核

校 对

编 制

标 检

审 定

会 签 描 图

日 期

旧底图登记号

底图登记号

签字、日期 供图单位: 技 术 部: 质 检 部: 项 目 组: 机电车间: 船 东:

共 份

目录

1. 计算参数 (3)

1.1. 主机参数 (3)

1.2. 螺旋桨轴参数 (3)

1.3. 螺旋桨参数 (3)

1.4. 结构参数 (3)

1.5. 中间计算参数 (4)

2. 轴向推入量计算 (4)

3. 轴向推力计算 (5)

4. 起始点负荷计算 (6)

1. 计算参数

1.1. 主机参数

主机型号 MAN B&W 6S50MC-C

主机额定功率(MCR) N e=9480kw

主机额定转速 n e=127rpm

轴系传递效率η=0.98

1.2. 螺旋桨轴参数

材料锻钢

弹性模数 E1=20.6×104 N/mm2

泊松比μ1=0.30

线膨胀系数α1=11×10-6/℃

1.3. 螺旋桨参数

材料镍铝青铜

弹性模数 E2=11.77×104 N/mm2

泊松比μ2=0.34

线膨胀系数α2=18×10-6/℃

屈服强度σs=245 N/mm2

1.4. 结构参数(结构见图1)

图1 套合部位结构尺寸图

螺旋桨轴尾端锥度 K=1/20

套合接触长度 L=960mm

轴中孔直径 d0=0mm

套合接触处轴平均直径 d1=481mm

桨毂平均外径 d2=975mm

1.5. 中间计算参数

套合接触面积 A=π×d1×L=1.45×106 mm2

系数 K1=d0 / d1=0

系数 K2=d2 / d1=2.027

系数 C1=(1+ K12 )/(1- K12 )-μ1=0.70

系数 C2=(K22+1)/(K12-1)+μ1=1.98

2. 轴向推入量计算(S)

S1 ≤S≤S2

S1 =[47750×104 ×N e ×η/(A×n e )×(C1 /E1 +C2 /E2 )+(α 2 -α 1 )×(35-t)×d1 +0.03]/K S2 =[0.7×σs×d1 ×(K22 -1)/(3K24 +1)1/2×(C1 /E1 +C2 /E2 )- (α 2 -α 1 )×d1 ×t]/K

式中:S1 ┄最小轴向推入量,mm;

S2 ┄最大轴向推入量,mm;

t┄螺旋桨套合时的温度,℃。

计算得:

当t=0℃时,S1,0 =12.6,S2,0 =14.4;

当t=35℃时,S1,35 =10.4,S2,35 =12.0。

根据以上计算确定的实际推入量为:

当t=0℃时,S0 =(S1,0 + S2,0 )/2=13.5;

当t=35℃时,S35 =(S1,35 + S2,35 )/2=11.2。

在其他温度状态下套合的轴向推入量,可用插值法确定,如图2。

值,取C=0.2;d1 同前,为d1 =481mm);

B3 =C1 /E1 + C2 /E2 =2.02×10-5

式中:E1 ┄桨轴材料弹性模数,E1 =20.6×104 N/mm2 ;

E2 ┄桨毂材料弹性模数,E2 =11.77×104 N/mm2 ;

C1 ┄同前,C1 =0.70;

C2 ┄同前,C2 =1.98。

液压螺母活塞环形面积A p=π(6702 -5402 )/4=123481mm2 ;液压螺母活塞所需油压P=W/A p =3.24N/mm2

船用螺旋桨的设计关键分析

船用螺旋桨的设计关键分析 船、机、桨系统中,船体是能量的需求者,主机是能量的发生器,螺旋桨是能量转换装置,三者之间是相互紧密联系的,但同时又要遵从各自的变化特性。 1.螺旋桨 民用船使用的图谱桨,一般以荷兰的B型桨和日本的AU桨为主。AU桨为等螺距桨、叶切面为机翼型;B型桨根部叶切面为机翼型、梢部为弓形,除四叶桨0.6R至叶根处为线性变螺距外,其余均为等螺距,桨叶有15°的后倾。为便于设计方便,由.KT、KQ——J敞水性征曲线图转换为BP一δ图谱。 桨与船体各自在水中运动时,都会形成一个水流场。水流场与桨的敞水工作性能和船的阻力性能密切相关。当桨在船后运动时,2个原本独立的水流场必然会相互作用、相互影响。船体对螺旋桨的影响体现在2个方面:(1)伴流。由于船尾部螺旋桨桨盘处因水的粘性等因素作用,形成一股向前方向的伴流,使得螺旋桨的进速小于船速。(2)伴流的不均匀性。船后桨在整个桨盘面上的进速不等(在实用上可取相对旋转效率为1)。 2.螺旋桨对船体的影响 由于螺旋桨对水流的抽吸作用,造成桨盘处的水流加速,由伯努利定律可知,同一根流线上,水质点速度加快,必然会导致压力下降,从而造成船的粘压阻力增加。也就是桨产生的推一部分用于克服船体产生的附加阻力。 如果用伴流分数ω表征伴流与船速的比值,用推力减额t表征船体附加阻力与船体自身阻力的比值。那么,敞水桨与船后桨的差别就在于一个船身效率(1一t)/(1一ω)从中可以看出,伴流分数ω越大、推力减额t越小,则船身效率越高。 从螺旋桨图谱可以看出,横坐标的参数为√BP或BP。BP称为收到功率系数(或称为载荷系数),其值为:BP=NPD0.5 /VA2.5式中:N为螺旋桨转速;PD为螺旋桨敞水收到功率;VA为螺旋桨进速。 BP值越小,对应的螺旋桨敞水效率越高;反之,则螺旋桨效率越低。从个体因素来讲,N值和PD0.5 /VA2.5值越小,BP 值就越小。PD和VA参数有联动关系,在相对低速的范围内,PD值变大、BP值变小;在相对高速的范围内,PD值变大、BP值也变大。这取决于船的阻力特性。 实际船螺旋桨设计时,还要考虑以下的先决条件:螺旋桨直径有无限制、船舶航速的具体要求。 一般情况下,螺旋桨设计工况都对应船舶满载航行的状态,在该航行状态下,主机发出预定功率、螺旋桨效率达到最佳,船、机、桨匹配理想。但如果设计参数选择不当,就会造成螺旋桨产生“轻载”或“重载”的现象,“轻载”是指螺旋桨达到设计转速后,不能充分吸收主机的转矩,主机发不出预定功率;“重载”是指螺旋桨还未达到设计转速时,主机转矩已达到最大值,主机同样发不出预定功率。 螺旋桨设计产生“轻载”还是“重载”现象,主要取决于2个方面:(1)伴流分数ω、推力减额t取值是否正确。(2)船舶阻力计算的误差。 如选取的伴流分数ω大于船后实际值,则螺旋桨不能吸收预定的功率和发出要求的推力,从而无法达到预定的航速,螺旋桨处于“轻载”状态;反之螺旋桨处于“重载”状态。

柱模板(设置对拉螺栓)计算书

柱模板(设置对拉螺栓)计算书计算依据: 1、《建筑施工模板安全技术规范》JGJ162-2008 2、《混凝土结构设计规范》GB50010-2010 3、《建筑结构荷载规范》GB 50009-2012 4、《钢结构设计标准》GB 50017-2017 5、《建筑结构可靠性设计统一标准》GB50068-2018 一、工程属性 二、荷载组合 新浇混凝土对模板的侧压力标准值G4k=min[0.22γc t0β1β2v1/2,γc H]=min[0.22×24×4×1×1×21/2,24×3.35]=min[29.87,80.4]=29.87kN/m2

S承=γ0×(1.3G4k+γL×1.5Q3k)=1×(1.3 × 29.868+ 0.9×1.5×2.000)=41.53kN/m2 正常使用极限状态设计值S正=G4k=29.868 kN/m2 三、面板验算 面板类型覆面竹胶合板面板厚度(mm) 15 面板抗弯强度设计值[f](N/mm2) 15.444 面板弹性模量E(N/mm2) 9350 柱长边小梁根数 4 柱短边小梁根数 4 柱箍间距l1(mm) 400 模板设计平面图 1、强度验算 最不利受力状态如下图,按三等跨连续梁验算

静载线荷载q1=γ0×1.3×bG4k=1×1.3×0.4×29.868=15.531kN/m 活载线荷载q2=γ0×γL×1.5×bQ3k=1×0.9×1.5×0.4×2=1.08kN/m M max=-0.1q1l2-0.117q2l2=-0.1×15.531×0.1672-0.117×1.08×0.1672=-0.047kN·m σ=M max/W=0.047×106/(1/6×400×152)=3.11N/mm2≤[f]=15.444N/mm2 满足要求! 2、挠度验算 作用线荷载q=bS正=0.4×29.868=11.947kN/m ν=0.677ql4/(100EI)=0.677×11.947×166.6674/(100×9350×(1/12×400×153))=0.059mm ≤[ν]=l/400=166.667/400=0.417mm 满足要求! 四、小梁验算

键销连接教案(公开课)

第十一章键、销及其连接课题:§11—1键连接 课时:2 课型:新授课 教学目标:掌握键类型特点,达到能分辨各类型键 教学方法:讲述、举例 教具:键模型、挂图 教学重点:熟知键各种类型 教学难点:分辨键应用场合,合理选择 教学过程导入新课: 传动键导入 授课: §11—1键连接 作用:实现轴与轴上零件(如齿轮、带轮等)之间的周向固定,并传递运动和扭矩。 一、平键连接 特点靠平键的两侧面传递转矩,键的两侧面是工作面,对中性好;键的上表面与轮毂上的键槽底面留有间隙,以便装配。

二、半圆键连接 三、花键连接 四、楔键和切向键连接

键连接的应用 1.松键连接 松键连接所用的键有普通平键,半圆键、导向平键及滑键等,靠键的侧面传递转矩,只对轴上零件作周向固定,不能承受轴向力,如果要轴向固定,则需要附加紧定螺钉或定位环等定位零件。松键连接的装配要点为:1)清理键及键槽上的毛刺,保证键与键槽能精密贴合。 2)对重要的键连接,装配前要检查键的直线度和键槽对轴线的对称度及平行度等。 3)对普通平键,导向平键,用键的头部与轴槽试配,应能使键较紧地与轴槽配合。 4)修配键长时,在键长方向键与轴槽留0.1mm的间隙。 5)在配合面上加湿润油,用铜棒或加软钳口的台虎钳将键压入轴槽中,使之与槽底良好接触。 6)试配并安装回转套件时,键与键槽的非配合面应留有间隙,保证轴与回转套件的同轴度,套件在轴上不得有轴向摆动,一面在机器工作时引起冲击和

教学目标:掌握销类型特点,达到能分辨各类型销 教学方法:讲述、举例 教具:销模型、挂图 教学重点:熟知销各种类型 教学难点:分辨销应用场合,合理选择 教学过程导入新课: 传动键导入授课: §11—2销连接 一、作用:①主要用于零件间位置定位(定位销必须≥2个); ②传递不大的载荷(均有标准); ③安全保护装置中作剪断元件。 机器设备经常用到螺栓、螺钉、螺母、垫圈、键、销等标准件连接其它零件,实现零件的装配安装。标准件指为了使零件有更好的互换性及便于批量生产和使用,国家对它们的结构、尺寸规格、技术要求等实现标准化的零件或零

键联接和销联接训练题

键联接和销联接习题 一、判断题 1.键联接主要用来联接轴和轴上的传动零件,实现周向固定并传递转矩。 ( ) 2.键是标准零件。( ) 3.键联接根据装配时的精确程度不同,可分为松键联接和紧键联接两类。 ( ) 4.松键联接装配时不需打紧,键的上表面与轮毂键槽底面之间留有间隙。 ( ) 5.紧键联接中键的两侧面是工作面。( ) 6.紧键联接定心较差。( ) 7.根据普通平键截面形状的不同,可分为A型、B型和C型三种。( ) 8.A型、B型和C型三种型式普通平键的区别,主要是端部形状不同。( ) 9.普通平键联接能够使轴上零件实现周向固定和轴向固定。( ) 10.当采用平头普通平键时,轴上的键槽是用端铣刀加工出的。( ) 11.单圆头普通平键多用于轴的端部。( ) 12.导向平键联接和滑键联接都适用于轴上零件轴向移动量较大的场合。( ) 13.半圆键联接,由于轴上的键槽较深,故对轴的强度削弱较大。( ) 14.由于楔键在装配时被打人轴和轮毂之间的键槽内,所以造成轮毂与轴的偏心与偏斜。( ) 15.花键联接是由带多个纵向凸齿的轴和带有相应齿槽的轮毂孔组成的。( ) 16.圆柱销和圆锥销都是靠过盈配合固定在销孔中的。( ) 17.圆锥销有1:50的锥度,所以易于安装,有可靠的自锁性能,且定位精度高。( ) 18.圆柱销和圆锥销的销孔一般均需铰制。( ) 19.圆柱销是靠微量过盈固定在销孔中的,经常拆装也不会降低定位的精度和联接的可靠性。( ) 二、选择题 1.根据装配时的( ),键联接可分为松键联接和紧键联接两类。

A.难易程度B.精确程度C.松紧程度D.截面形状 2.普通平键根据( )不同,可分为A型、B型和C型三种。 A.尺寸的大小B.端部的形状C.截面的形状D.加工方法3.( )联接由于结构简单、装拆方便、对中性好,因此广泛用于高速精密的传动中。 A.普通平键B.普通楔键 C.钩头楔键D.切向键 4.普通平键有三种型式,其中( )平键多用于轴的端部。 A.圆头B.平头C.单圆头D.半圆键 5.常用的松键联接有( )联接两种。 A.导向平键和钩头楔键B.普通平键和普通楔键 C.楔键和切向键D.平键和半圆键 6.楔键联接对轴上零件能作周向固定,且( )。 A.不能承受轴向力B.能够承受轴向力 C.能够承受单方向轴向力D.能够承受双方向轴向力 7.楔键的( )有1:100的斜度。 A.上表面B.下表面C.两侧面D.上下表面 8.普通平键联接是依靠键的( )传递转矩的。 A.上表面B.下表面C.两侧面D.上下表面 9.( )能自动适应轮毂上键槽的斜度,装拆方便,尤其适用于锥形轴端部的联接。 A.普通平键B.导向平键 C.半圆键D.楔键 10.在GB 1144—2001中规定以( )为矩形花键的定心尺寸,用它来保证同轴度。 A.小径d B.大径D C.键宽B D.小径d或大径D 11.圆锥销有( )的锥度。 A.1:10 B.1:50 C.1:100 D.1:150 12.为了保证被联接件经多次装拆而不影响定位精度,可以选用( )。 A.圆柱销B.圆锥销C.开口销 D.定位销

对拉螺栓力学性能表 强度计算公式.

对拉螺栓力学性能表强度计算公式(穿墙螺丝) 作者:建材租赁来源:穿墙螺丝日期:2011-5-14 14:10:04 人气:1693 导读:对拉螺栓(穿墙螺丝)力学性能表,强度计算公式,力学性能验算。 1.对拉螺栓(穿墙螺丝)力学性能表 螺栓直径(mm螺纹内径(mm净面积(mm2重量(kg/m容许拉力(N M12 M14 M16 9.85 11.55 13.55 76 105 144 0.89 1.21 1.58 12900 17800 24500 M18 M20 M22 14.93 16.93 18.93 174 225 282 2.00 2.46 2.98 29600 38200 47900 2.强度验算 已知2[100×50×3.0 冷弯槽钢 强度满足要求。

(二挠度验算 验算挠度时,所采用的荷载,查表得知仅采用新浇混凝土侧压力的标准荷载(F。 所以: 已知 钢楞容许挠度按表。 挠度满足要求。 二、主钢楞验算 (一强度验算 1.计算简图 2.荷载计算 P为次钢楞支座最大反力(当次钢楞为连续梁端已含反力为、中跨反力为0.5ql,所以,0.6+0.5。 3.强度验算 强度不够,为此应采取下列措施之一: (1 加大钢楞断面,再进行验算; (2 增加穿墙螺栓,在每个主次钢楞交点处均设穿墙螺栓,则主钢楞可不必再验算。 例3:已知混凝土对模板的侧压力为F=30kN/m2,对拉螺栓间距,纵向、横向均为0.9m,选用M16穿墙螺栓,试验算穿墙螺栓强度是否满足要求。

[解] 满足要求。 对拉螺栓(穿墙螺丝)力学性能表 螺栓直径(mm螺纹内径(mm净面积(mm2重量(kg/m容许拉力(N M12 M14 M16 9.85 11.55 13.55 76 105 144 0.89 1.21 1.58 12900 17800 24500 M18 M20 M2214.93 16.93 18.93 174 225 282 2.00 2.46 2.98 29600 38200 47900

船用螺旋桨修理通用工艺

船用螺旋桨修理 本工艺可供直径800mm以上的铜质合金螺旋桨勘验、修理、安装及检验使用,其他材质螺旋桨可参照使用。 1、船用螺旋桨修理勘验工艺 1.1桨修理勘验可以就地检测,也可在桨拆卸后进行。通过目示、敲击声音、探伤及测量等方法对不 同缺陷进行勘验。 1.1.1、螺旋桨表面目视检查: a)桨叶表面光洁情况,参照新制螺旋桨表面粗糙度(见表1),适当降低要求; b)桨叶表面磨蚀情况,尤其是吸力面是否有气蚀现象; c)桨叶边缘有无缺口、碰伤、断边; d)桨叶及桨毂表面有无明显裂纹; e)桨叶及桨毂表面因磨蚀而显露出来的铸造缺陷; f)桨叶弯曲、卷边及整个叶面平整情况。 1.1.2、桨叶面在未经清理条件下,可以用小锤轻击叶面,根据声音可判定桨叶有无裂纹存在。 1.1.3、桨叶及桨毂在清理光洁后,可以采用着色渗透法对有怀疑处的裂纹检测,判明裂纹的数量、 形状及长度。对允许焊补区域的裂纹,都应进行挖铲或钻孔,探明裂纹深度。 1.1.4、根据在螺旋桨不同部位产生的缺陷导致不同的危害,程度,通常将螺旋桨表面分为三个区各 区域允许存在的缺陷提出不同的要求。 1.2、桨毂检查 1.2.1、凡是螺旋桨锥孔与尾轴锥体配合出现松动或液压螺旋桨拆卸时出现漏油,无法建立拆卸所需要 的油压时及拆卸后尾轴锥体存在超过30%以上的锈蚀时,应检查桨毂锥孔与桨轴锥体配合部件的情况。一般装配要求接触面积在70%以上,且应均匀,每25mm×25mm面积上有3—4个接触点;液压套合的要求更高一些。凡接触状况很差,且有严重锈蚀,应考虑与桨轴重新研配。

1.2.2、桨毂锥孔表面不允许出现凸出的硬疤、咬痕。重新装配时,表面应清理一净。 1.2.3、桨毂表面及前后端面有无裂纹产生。个别短小裂纹,经挖铲、钻止裂孔方法,允许存在;凡发 现较大裂纹需要焊补时,必须采取经认可的工艺。 1.2.4、调距桨桨毂上,当桨叶固定在转盘时,其叶根部与桨毂间的密封性应进行拆前检查。 1.3、螺旋桨经修理后的检测 1.3.2、螺旋桨凡经断边接补和面积堆焊等修理,均应做静平衡试验。 1.3.1、螺旋桨凡经弯曲校正、断边接补,大面积焊补等修理,均应测量叶面螺距,桨叶厚度及桨径尺 寸。 2、拆卸及安装 2.1无键液压和有键液压螺旋桨拆卸及安装 准备工作 a)拆前熟悉图纸资料,了解上一次安装和设计要求的温度及最大压力(推力)和压入量。 b)准备专用拆装油泵、油顶(环顶)、压力表、百分表、高压软带、并能满足最高压力,确保使 用安全。安装时还应准备好压力--压入量坐标记录纸。 2.1.1拆卸步骤: a)拆除导流帽,做好螺旋桨与尾轴相对位置标记.(径向). b)旋开桨帽后,量取螺旋桨后端面到尾轴后端面的距离H1,并做好记录.(轴向) c)旋开螺帽,在螺帽前端面垫上大于20mm厚木板,并与螺旋桨后端面留出大约40mm的距离间隙, 以减轻冲击载荷(图2)。 d)旋开桨毂上的的两只进油塞,一只油孔接上软带和高压油泵. e)启动径向压力油泵,使压力油冲满桨毂锥体配合面内的油槽,空气从另一个螺塞口排出,直至出油, 停止泵油关闭放气螺塞. f)再次启动径向压力油泵,逐渐增加油压至说明了书中规定的最高径向油压值.此时,螺旋桨与螺旋 桨轴的配合面自行脱开.如果没有胀开,可将压力提高到安装压力的115%,如果仍不能脱开,应通知车间及安监部到现场,并在其监督下,可将压力提升到胀开为止. g)桨与尾轴锥体配合受损造成扩胀漏油,建立不起拆卸的扩胀力时;或已达到设计规定的最高扩胀 力,桨仍不能拆下,在与船东交流许可的情况下,允许采用桨毂加热,轴向加压进行补救性 拆卸,具体做法如下: 1)加热时应对称,烤把应快速往返移动,不能停在某一点长时间烘烤,防止桨毂造成局部过热,桨毂温度不得超过800C。

钢结构连接计算书(螺栓)

钢结构连接计算书 一、连接件类别: 普通螺栓。 二、普通螺栓连接计算: 1、普通螺栓受剪连接时,每个普通螺栓的承载力设计值,应取抗剪和承压承载力设计值中的较小者。 受剪承载力设计值应按下式计算: 式中 d──螺栓杆直径,取 d = 22.000 mm; n v──受剪面数目,取 n v = 2.000; f v b──螺栓的抗剪强度设计值,取 f v b=125.000 N/mm2; 计算得:N v b = 2.000×3.1415×22.0002×125.000/4=95033.178 N; 承压承载力设计值应按下式计算: 式中 d──螺栓杆直径,取 d = 22.000 mm; ∑t──在同一受力方向的承压构件的较小总厚度,取∑t=12.000 mm; f c b──普通螺栓的抗压强度设计值,取 f c b=250.000 N/mm2; 计算得:N c b = 22.000×12.000×250.000=66000.000 N; 故: 普通螺栓的承载力设计值取 66000.000 N; 2、普通螺栓杆轴方向受拉连接时,每个普通螺栓的承载力设计值应按下式计算:

式中普通螺栓或锚栓在螺纹处的有效直径,取 de= 21.000 mm; f t b──普通螺栓的抗拉强度设计值,取 f t b=215.000 N/mm2; 计算得:N t b = 3.1415×21.0002×215.000 / 4 = 74467.527 N; 3、普通螺栓同时受剪和受拉连接时,每个普通螺栓同时承受剪力和杆轴方向拉力应符合下式要求: 式中 N v──普通螺栓所承受的剪力,取 N v= 23.000 kN =23.000×103 N; N t──普通螺栓所承受的拉力,取 N t= 35.000 kN =35.000×103 N; [(N v/N v b)2+(Nt/Nt b)2]1/2=[(23.000×103/95033.178)2+(35.000×103/74467.527)2]1/2= 0.529 ≤ 1; N v = 23000.000 N ≤ N c b = 66000.000 N; 所以,普通螺栓承载力验算满足要求!

ZH4485-401-11 螺旋桨无键连接计算书

57300DWT 散货船 螺旋桨无键连接 计算书 中海工业(江苏)有限公司 施 工 设 计 ZH4485-401-11 标 记 质量(Kg) 比 例 共 7 页 第 1 页 标记 数量 修改单号 签 字 日 期 审 核 校 对 编 制 标 检 审 定 会 签 描 图 日 期 旧底图登记号 底图登记号 签字、日期 供图单位: 技 术 部: 质 检 部: 项 目 组: 机电车间: 船 东: 共 份

目录 1. 计算参数 (3) 1.1. 主机参数 (3) 1.2. 螺旋桨轴参数 (3) 1.3. 螺旋桨参数 (3) 1.4. 结构参数 (3) 1.5. 中间计算参数 (4) 2. 轴向推入量计算 (4) 3. 轴向推力计算 (5) 4. 起始点负荷计算 (6)

1. 计算参数 1.1. 主机参数 主机型号 MAN B&W 6S50MC-C 主机额定功率(MCR) N e=9480kw 主机额定转速 n e=127rpm 轴系传递效率η=0.98 1.2. 螺旋桨轴参数 材料锻钢 弹性模数 E1=20.6×104 N/mm2 泊松比μ1=0.30 线膨胀系数α1=11×10-6/℃ 1.3. 螺旋桨参数 材料镍铝青铜 弹性模数 E2=11.77×104 N/mm2 泊松比μ2=0.34 线膨胀系数α2=18×10-6/℃ 屈服强度σs=245 N/mm2 1.4. 结构参数(结构见图1) 图1 套合部位结构尺寸图

螺旋桨轴尾端锥度 K=1/20 套合接触长度 L=960mm 轴中孔直径 d0=0mm 套合接触处轴平均直径 d1=481mm 桨毂平均外径 d2=975mm 1.5. 中间计算参数 套合接触面积 A=π×d1×L=1.45×106 mm2 系数 K1=d0 / d1=0 系数 K2=d2 / d1=2.027 系数 C1=(1+ K12 )/(1- K12 )-μ1=0.70 系数 C2=(K22+1)/(K12-1)+μ1=1.98 2. 轴向推入量计算(S) S1 ≤S≤S2 S1 =[47750×104 ×N e ×η/(A×n e )×(C1 /E1 +C2 /E2 )+(α 2 -α 1 )×(35-t)×d1 +0.03]/K S2 =[0.7×σs×d1 ×(K22 -1)/(3K24 +1)1/2×(C1 /E1 +C2 /E2 )- (α 2 -α 1 )×d1 ×t]/K 式中:S1 ┄最小轴向推入量,mm; S2 ┄最大轴向推入量,mm; t┄螺旋桨套合时的温度,℃。 计算得: 当t=0℃时,S1,0 =12.6,S2,0 =14.4; 当t=35℃时,S1,35 =10.4,S2,35 =12.0。 根据以上计算确定的实际推入量为: 当t=0℃时,S0 =(S1,0 + S2,0 )/2=13.5; 当t=35℃时,S35 =(S1,35 + S2,35 )/2=11.2。 在其他温度状态下套合的轴向推入量,可用插值法确定,如图2。

机械设计表:键联接和销联接

11键联接和销联接 11.1键联接 11.1.1 普通平键(摘自GB/T 1095-2003,GB/T 1096-2003) 表11.1 普通平键(摘自GB/T 1095-2003,GB/T 1096-2003) 普通平键的型式与尺寸键和键槽的剖面尺寸 (GB/T 1096-2003)(GB/T 1095-2003) 标记示例:圆头普通平键(A键),b=10mm,h=8mm,L=25mm 键10×25 GB/T 1096-2003 对于同一尺寸的平头普通平键(B型)或单圆头普通平键(C型),标注为键B10×25 GB/T 1096-2003 键C10×25 GB/T 1096-2003 轴径d 键的公称尺寸 每 100mm 重量 /kg 键槽尺寸 轴槽深t毂槽深t1 b 圆角半径r b(h9) h(h11) c或r L(h14) 公 差 偏 差 公 差 偏差min max 自6~8 >8~10 >10~12 2 3 4 2 3 4 0.16~0.25 6~20 6~36 8~45 0.003 0.007 0.013 1.2 1.8 2.5 +0.1 1 1.4 1.8 +0.10 公 称 尺 寸 同 键 0.08 0.16 >12~17 >17~22 >22~30 5 6 8 5 6 7 0.25-0.4 14~56 14~70 18~90 0.02 0.028 0.044 3.0 3.5 4.0 2.3 2.8 3.3 +0.1 0 0.16 0.25 +0.2 +0.2 >30~38 >38~44 >44~50 >50~58 >58~65 10 12 14 16 18 8 8 9 10 11 0.4-0.6 22~100 28~140 36~160 45~180 50~200 0.063 0.075 0.099 0.126 0.155 5.0 5.0 5.5 6.0 7.0 3.3 3.3 3.8 4.3 4.4 0.25 0.4

船用螺旋桨小知识集锦

船用螺旋桨小知识集锦 螺旋桨简介 由桨毂和若干径向地固定于毂上的桨叶所组成的推进器,俗称车叶。螺旋桨安装于船尾水线以下,由主机获得动力而旋转,将水推向船后,利用水的反作用力推船前进。螺旋桨构造简单、重量轻、效率高,在水线以下而受到保护。 普通运输船舶有1~2个螺旋桨。推进功率大的船,可增加螺旋桨数目。大型快速客船有双桨至四桨。螺旋桨一般有3~4片桨叶,直径根据船的马力和吃水而定,以下端不触及水底,上端不超过满载水线为准。螺旋桨转速不宜太高,海洋货船为每分钟100转左右,小型快艇转速高达每分钟400~500转,但效率将受到影响。螺旋桨材料一般用锰青铜或耐腐蚀合金,也可用不锈钢、镍铝青铜或铸铁。 驱动船前进的一种盘形螺旋面的推进装置。由桨叶及与其相连结的桨毂构成。常用的是三叶、四叶和五叶。包括单体螺旋桨、龙叶导管螺旋桨、对转螺旋桨、串列螺旋桨、可调螺距螺旋桨、超空泡螺旋桨、大侧斜螺旋桨等。螺旋桨一般安装在船尾(水下)。船用螺旋桨多由铜合金制成,也有铸钢,铸铁,钛合金或非金属材料制成。对船用螺旋桨的研究分理论和试验两个方面。理论方面现已有动量定理、叶元体理论、升力线理论、升力面理论、边界元方法等理论和分析方法,能较准确地预报螺旋桨的水动力性能并进行理论设计。试验方面的研究主要是通过模型试验研究螺旋桨性能,绘制螺旋桨设计图谱。船用螺旋桨的设计方法分两大类,即理论设计方法和图谱设计方法。 60年代以来,船舶趋于大型化,使用大功率的主机后,螺旋桨激振造成的船尾振动、结构损坏、噪声、剥蚀等问题引起各国的重视。螺旋桨激振的根本原因在于螺旋桨叶负荷加重,在船后不均匀尾流中工作时容易产生局部的不稳定空泡,从而导致螺旋桨作用于船体的压力、振幅和相位都不断变化。 螺旋桨的分类 在普通螺旋桨的基础上,为了改善性能,更好地适应各种航行条件和充分利用主机功率,发展了以下几种特种螺旋桨。 可调螺距螺旋桨 简称调距桨,可按需要调节螺距,充分发挥主机功率;提高推进效率,船倒退时可不改变主机旋转方向。螺距是通过机械或液力操纵桨毂中的机构转动各桨叶来调节的。调距桨对于桨叶负荷变化的适应性较好,在拖船和渔船上应用较多。对于一般运输船舶,可使船-机-桨处于良好的匹配状态。但调距桨的毂径比普通螺旋桨的大得多,叶根的截面厚而窄,在正常操作条件下,其效率要比普通螺旋桨低,而且价格昂贵,维修保养复杂。 导管螺旋桨 在普通螺旋桨外缘加装一机翼形截面的圆形导管而成。此导管又称柯氏导管。导管与船体固接的称固定导管,导管被连接在转动的舵杆上兼起舵叶作用的称可转导管。导管可提高螺旋桨的推进效率,这是因为导管内部流速高、压力低,导管内外的压力差在管壁上形成了附加推力;导管和螺旋桨叶间的间隙很小,限制了桨叶尖的绕流损失;导管可以减少螺旋桨后的尾流收缩,使能量损失减少。但导管螺旋桨的倒车性能较差。固定导管螺旋桨使船舶回转直径增大,可转导管能改善船的回转性能。导管螺旋桨多用于推船。

M10螺栓计算书

M10外六角螺栓计算书项目名称_____________日期_____________ 设计者_____________校对者_____________ 一、构件编号: LB-1 二、示意图 连接类型:普通螺栓计算形式:验算 三、依据规范 《钢结构设计规范》(GB 50017-2003) 《钢结构设计手册》(上册第二版) 《钢结构设计与计算》(包头钢铁设计研究院) 四、计算信息 1. 荷载信息剪力:V y = 1 2.00 kN; 2. 计算参数排列方式:均匀并列 螺栓列数:n c = 1; 螺栓行数:n r = 2; 螺栓行距:e r = 360mm; 螺栓列边距:e1 = 30mm; 螺栓行边距:e2 = 30mm; 螺栓数:n=2; 螺栓直径:d = 10mm; 螺栓孔径:d0 = 11.00mm; 有效直径:d e = 8.59mm; 板厚:t = 4mm; 受剪面数:n v = 1; 承压厚度:∑t = 4mm; 3. 材料信息钢材等级:Q235; 钢材强度:f = 215N/mm2; 螺栓等级:4.6级; C级; 抗拉强度:f t b = 170 N/mm2; 抗剪强度:f v b = 140N/mm2; 抗压强度:f c b = 305 N/mm2; 四、应力计算 根据《钢结构设计规范》(GB 50017-2003) ((N v/N v b)2+(N t/N t b)2)1/2≤ 1 (7.2.1-8) N v≤ N c b(7.2.1-9) 1. 单个螺栓受剪承载力设计N v b = n vπd2f v b/4 (7. 2.1-1) N c b= d∑tf c b(7.2.1-3) N v b = n vπd2f v b/4 =1×π×102×140×10-3/4= 11.00kN N c b= d∑tf c b= 10×4×305×10-3= 12.20kN 2. 单个螺栓受拉承载力设计N t b = πd e2f t b/4 (7.2.1-5) N t b = πd e2f t b/4 = π×8.592×170×10-3/4 = 9.85kN 3. 计算螺栓单个受力1)以螺栓群左下角点为原点的螺栓点位置坐标

螺旋桨UG建模

由桨叶截面尺寸表得到三维建模坐标 直径D 螺距P 后倾角θ 螺距角φ 1、 计算出0.2R 、0.3R …… 2、 利用反正切函数计算出螺距角:以0.2R 举例 φ-0.2R=ATAN(P/(2*π*0.2R)),弧度表示 φ-0.2R/π*180°或用=DEGREES(φ-0.2R)函数,角度表示 3、 中心线距导边-最厚点距导边=中心线距最厚点=H X 4、 h X =最厚点距导边-X 5、 计算0.2R-0坐标 注:h X =最厚点距导边-X ;H X =中心线距导边-最厚点距导边=中心线距最厚点

6、叶梢坐标 7、通过延伸插值得到0.1R处的叶宽、最大叶厚、最大叶厚至导边、中心线至导 边,再用第5步计算。

螺旋桨UG中建模 1、导入三维坐标 2、连接样条曲线,随边点-导边点-随边点;连接螺旋桨轮廓 3、将螺旋桨轮廓打断于叶梢点:编辑-曲线-分割曲线,类型选“在结点处”,选 择曲线,结点方法选“选择结点”,确定。 或者采用添加点然后重新绘制两条样条曲线的方式,添加点:插入-基准/点,选择几何体中选择要添加点的样条曲线,等弧长定义中点数输入需要的点即可。 4、建立螺旋桨包面:主曲线—叶梢点+桨叶切面;次曲线—随边+导边+随边。 5、将桨叶表面封闭起来:插入-网格曲面-N边曲面-外环选择曲线即可 裁去上述封闭曲面多余部分:修剪片体-目标选择片体-边界对象选择边界曲线-选择区域保留! 6、桨叶片体缝合:插入-组合-缝合,选择需要缝合的片体即可 7、阵列桨叶:阵列特征-选择特征(选桨叶包面)-布局(选圆形)-旋转轴(选 桨榖对称轴)-角度方向(间距选数量和节距,数量选叶数,节距角为360/n),确定。阵列后可能所有桨叶多余的片体都要修剪—此功能好像不成功 或者采用旋转功能:编辑-移动对象-运动选角度-角度72°-结果复制原先的-非关联副本数4 8、建立桨榖。目测回转的曲线为拍照CAD得到。回转-选择曲线-指定矢量(选 桨榖对称轴)-其他默认即可。 此处可能涉及到显示/隐藏功能,可用快捷键Ctrl+shift+k,可用功能编辑-显示和隐藏-全部显示 9、将桨叶与桨榖求和:求和-选择体即可 10、螺旋桨建模完成。据说导出为iges格式。

COMPASS轴系和螺旋桨计算(SRM06)

COMPASS-RULES计算软件用户手册 轴系和螺旋桨计算(SRM06) 二零零九年七月

轴系和螺旋桨计算程序(SRM06) 目 录 1概述 (1) 2计算方法 (1) 3程序流程图 (2) 4操作说明 (3) 4.1 操作界面及布局 (3) 4.2 输入数据 (4) 4.2.1 基本数据 (4) 4.2.2 轴径、桨叶厚度、螺旋桨安装1、螺旋桨安装2 (5) 4.3 数据打印说明 (8) 4.4 计算结果保存 (9) 5保存数据文件 (9) 6运行环境 (9)

1概述 z本计算程序是对CCS《钢质海船建造与入级规范》(2001)第 3 篇第 11 章“轴系及螺旋桨”和第 14 章有关部分中需要计算的内容进行计算。为扩展应用范围,还加入了“有健连接螺旋桨液压湿式安装时的推入量计算” 和ICAS统一要求“无冰区加强要求的螺旋桨无健安装”部分。 z本程序具有如下功能: 1)轴径计算(含冰区加强); 2)联轴器法兰厚度、过渡园角半径计算;联轴器螺栓直径计算(采用普通螺栓时的预 紧力计算); 3)联轴器、螺旋桨的键有效面积计算; 4)联轴器液压无健套合时的轴向推入量计算; 5)螺旋桨桨叶厚度计算(含冰区加强); 6)螺旋桨油压无健安装时的轴向推入量计算; 7)有健连接螺旋桨液压湿式安装时的推入量计算; 8)ICAS中无冰区加强要求的螺旋桨无健安装。 z注意:主机类型、额定功率、额定转速、主机列数、冲程数、气缸直径、活塞行程、曲臂回转半径、连杆长度、单缸往复质量、机械效率等数据属多分支模块公共数据,这些数据修改后会影响到其它模块的计算结果。 2计算方法 z按照CCS 《钢质海船建造与入级规范》(2001)第 3 篇第 11 章“轴系及螺旋桨”和第 14 章有关部分。“有健连接螺旋桨液压湿式安装时的推入量计算” 和“ICAS中无冰区加 强要求的螺旋桨无健安装”参考《船舶机构检验》(人民交通出版社,1994)第八章第五节。

键联接和销联接设计

一、复习思考题 1试述普通平键的类型、特点和应用。 2平键联接有哪些失效形式? 3试述平键联接和楔键联接的工作原理及特点。 4试按顺序叙述设汁键联接的主要步骤。 二.单项选择题(从给出的A 、B. C 、D 中选一个答案) 1为了不过于严重削弱轴和轮毂的强度,两个切向键最好布置成 ____________ A.在轴的同一母线上 B. 180° C. 120° ~ 130° D. 90° 平键联接能传递的最大扭矩T,现要传递的扭矩为1.5T,则应 __________ A.安装一对平键 B.键宽b 增大到1.5倍 C.键长L 增大到1.5倍 D.键高h 增大到1.5倍 7如需在轴上安装一对半圆键,则应将它们布置在 ________ 。 A.相隔90° B.相隔120。位置 C.轴的同一母线上 D.相隔180° 8花键联接的主要缺点是 _______ , 2平键联接工作时,是靠 __________ 和 ________ 侧而的挤压传递转矩的。 3花键联接的主要失效形式,对静联接是 __________ ,对动联接是 ________ 。 4 ________ 键联接,既可传递转矩,又可承受单向轴向载荷,但容易破坏轴与轮毂的对中性。 5平键联接中的静联接的主要失效形式为 __________ ,动联接的主要失效形式为__________ :所以 习题与参考答案 三、填空题 1在平键联接中,静联接应校核 强度;动联接应校核 强 度。 A.应力集中 B.成本高 C.对中性与导向性差 平键 B20X 80 GB/T1096—1979 中,20X80 是表示 A.键宽X 轴径 C.键宽X 键长 能构成紧联接的两种键是 ______ ° A.楔键和半圆键 B.半圆键和切向键 一般采用 _____ 加工B 型普通平键的键槽。 A.指状铳刀 B.盘形铳刀 设讣键联接时,键的截而尺寸bxh 通常根据_ A.传递转矩的大小 B.传递功率的大小 B.键髙X 轴径 D.键宽X 键髙 C.楔键和切向键 D.平键和楔键 C.插刀 由标准中选择。 C.轴的直径 D.车刀 D.轴的长度 D.对轴削弱

17机械基础键销及其连接

编号:QD—0706—13 版本:C/0 流水号: 审阅日期: Array 授课教师: 审阅签名: 提交日期:2012/11/02

教 学内 容 第一步:复习上节课内容 轴的种类有哪些?轴的作用是什么? 第二步:讲授新课 新课导入:轴是将动力或运动通过轴上零件进行传递,但如何使这种传递有 效进行呢? 方法之一是利用键来固定轴上零件。请学生结合前而学的内容举例! 「普通平键(A 型、B 型、C 型) 一、平键S 导向平键 匕骨键 识读:键 C25X125 GB/T 1096-2003 ? ? ? 启发学生看教材,试试能否说出上式的含义。 识读结果一一C 型平键,键宽25,长125,髙度查表获取。 1、普通平键:受力而一一两侧面 用教具给学生演示 尺寸选用原则:长度比轮毂先短5?10mm, 提问:要求长度值满足比轮毅先短5?10mm 就是正确吗? 否,必须是标准尺寸! 一一标准件! 导向平键较普通平键长,使轴上零件有滑动的空间。 为防止键体在轴中松动,用两个螺钉将其固左在轴上,英中部制有起键 螺钉。 2、导向平键 教学过程 教学方法 教师提问法 (约5分钟) 导入新课 (约3分钟) 演示: 约2分钟 讲授,讨论。 (约20分钟) CD CZ A E

教学过程 教学方法 教学内容 键槽较长,滑键在轴的键槽上有滑动量,而与轮毂是固宦连接。 也就是说,滑键与轴上的零件固左为一体,工作时二者一起沿长长的轴槽 滑动.适应于轴上零件移动距离较大的场合 二、半圆键 讲授,讨论。 (约10分 钟) 半圆键的两个侧而为半圆形, 工作而:两侧而。 适用:锥形轴、轻载连接。 特点:对中性好。 力 ) v?T b) 提问:为什么说选用于轻载连接? 探键槽局部较深,对轴的强度削弱较大! 讲授,讨论。 (约5分 钟) 三、花键:特点:对中性好,承载力强、加工成本髙。 工作而:侧而。 花键已标准化,按齿廉的不同,可分矩形花键和渐开线花键。 用教具演示 四、楔键 键的上表面和轮毂槽底而均制成1: 100的斜度,装配时将键用力打入槽内,使轴与轮毂之间的接触而产生很大的径向压紧力,转动时靠接触而的摩擦力来 传递转矩及单向轴向力。 分普通楔键和钩头楔键两种形式。 楔键的左心性差,在冲击、振动或变载荷下,联接容易松动。适用于不要求准确定心、低速运转的场合。 讲授■讨论。 (约5分 钟) 五、切向键 可采用由一对1: 100斜度的普通楔键拼合而成。 工作而:键的上、下两而。

键联接和销联接设计word文档

习题与参考答案 一、复习思考题 1 试述普通平键的类型、特点和应用。 2 平键联接有哪些失效形式? 3 试述平键联接和楔键联接的工作原理及特点。 4 试按顺序叙述设计键联接的主要步骤。 二、单项选择题(从给出的A、B、C、D中选一个答案) 1 为了不过于严重削弱轴和轮毂的强度,两个切向键最好布置成。 A.在轴的同一母线上 B. 180° C. 120°~ 130° D. 90° 2 平键B20×80 GB/T1096—1979中,20×80是表示。 A. 键宽×轴径 B. 键高×轴径 C. 键宽×键长 D. 键宽×键高 3 能构成紧联接的两种键是。 A. 楔键和半圆键 B. 半圆键和切向键 C. 楔键和切向键 D. 平键和楔键 4 一般采用加工B型普通平键的键槽。 A. 指状铣刀 B. 盘形铣刀 C. 插刀 D. 车刀 5 设计键联接时,键的截面尺寸b×h通常根据由标准中选择。 A. 传递转矩的大小 B. 传递功率的大小 C. 轴的直径 D. 轴的长度 6 平键联接能传递的最大扭矩T,现要传递的扭矩为1.5T,则应。 A. 安装一对平键 B. 键宽b增大到1.5倍 C. 键长L增大到1.5倍 D. 键高h增大到1.5倍 7 如需在轴上安装一对半圆键,则应将它们布置在。 A. 相隔90° B. 相隔120°位置 C.轴的同一母线上 D. 相隔180° 8 花键联接的主要缺点是。 A. 应力集中 B. 成本高 C. 对中性与导向性差 D. 对轴削弱 三、填空题 1 在平键联接中,静联接应校核强度;动联接应校核强度。 2 平键联接工作时,是靠和侧面的挤压传递转矩的。 3 花键联接的主要失效形式,对静联接是,对动联接是。 4 键联接,既可传递转矩,又可承受单向轴向载荷,但容易破坏轴与轮毂的对中性。 5 平键联接中的静联接的主要失效形式为,动联接的主要失效形式为;所以

柱模板(设置对拉螺栓)设计计算书

柱模板(设置对拉螺栓)计算书 一、工程属性 二、荷载组合 4k c 012c min[0.22×24×4×1×1.15×2.51/2,24×2]=min[38.4,48]=38.4kN/m 2 承载能力极限状态设计值S 承=0.9max[1.2G 4k +1.4Q 3k ,1.35G 4k +1.4×0.7Q 3k ]=0.9max[1.2×38.4+1.4×2,1.35×38.4+1.4×0.7×2]=0.9max[48.88,53.8]=0.9×53.8=48.42kN/m 2 正常使用极限状态设计值S 正= G 4k =38.4 kN/m 2 三、面板验算

模板设计平面图 1、强度验算 最不利受力状态如下图,按四等跨连续梁验算 静载线荷载q1=0.9×1.35bG4k=0.9×1.35×0.6×38.4=27.99kN/m 活载线荷载q2=0.9×1.4×0.7bQ3k=0.9×1.4×0.7×0.6×2=1.06kN/m

M max=-0.107q1l2-0.121q2l2=-0.107×27.99×0.262-0.121×1.06×0.262=-0.21kN·m σ=M max/W=0.21×106/(1/6×600×152)=9.18N/mm2≤[f]=15N/mm2 满足要求! 2、挠度验算 作用线荷载q=bS正=0.6×38.4=23.04kN/m ν=0.632ql4/(100EI)=0.63×23.04×257.144/(100×10000×(1/12×600×153))= 0.38mm≤[ν]=l/400=257.14/400=0.64mm 满足要求! 四、小梁验算 小梁上作用线荷载q=bS承=0.26×48.42=12.45 kN/m

键和销连接

机械基础导学案 课题:键和销连接课型:新授课执笔:朱根东 审核:翁志国课时:1课时使用时间:2012年3月25日 [学习目标和重点难点] 学习目标: 1.了解键联接的用途及特点; 2.熟悉键联接的类型、应用特点、应用场合; 3.掌握平键联接的联接形式、平键的尺寸选用及标记; 4.熟悉销联接的应用形式;掌握销联接的应用特点,尤其是定位销的应用特点。 学习重点: 1.键联接的类型、应用特点、应用场合; 2.平键联接的联接形式、平键的尺寸选用及标记; 3.销联接的应用形式;掌握销联接的应用特点,尤其是定位销的应用特点。 学习难点: 1.键联接的类型、应用特点、应用场合; 2.平键联接的联接形式、平键的尺寸选用及标记; [学具准备和学法指导] 多媒体课件、讨论与任务驱动 [学习内容] 一、键联接的功用及特点 1.功用:联接轴与轴上零件,实现周向固定而传扭。 2.特点:结构简单,工作可靠,装拆方便,且键是标准件。 二、键联接的类型、应用特点和应用场合

类型键的工作面应用特点应用场合 紧键联接 楔键联接 上、下表面 (上表面有 1∶100斜 度) ①靠键打入键槽,挤压联接、传扭 ②可承受不大的单向轴向力 ③对中性差,冲击、变载下易松脱 用于对中性要求不 高的低速场合 切向键联接 上、下两个 平行表面 ①由一对单面有1∶100斜度的楔键组成 ②键槽深,对轴削弱大,对中性差 用于轴径(>60mm), 对中性要求不高,传 扭大的低速场合 松键联接平键 联接 A型 两侧面 ①靠键两侧面挤压传扭 ②对中性好,精度高,但不能承受轴向力 ③能用于高速、变载冲击的场合 应用广泛B型轴端部 C型轴端部 导向平键联接两侧面 ①相当于普通平键的加长,轴上零件可相对轴作轴向移 动 ②键较长,需设起键螺钉孔 用于轴上滑移件的 联接半圆键联接两侧面 ①键为半圆形,可绕轴槽底摆动,自动适应装配 ②键槽深,对轴削弱大 用于轻载或辅助性 联接,尤其是锥形轴 端的联接 花键 联接 矩形花键联 接 键齿的侧面 ①键齿多,接触面大,承载能力大 ②对中性,导向性好;有外径、内径、齿侧三种定心方 式,常用内径定心 ③齿槽浅,对轴削弱小 ④加工复杂,成本高 广泛用于载荷大、定 心精度高的场合 渐开线齿花 键联接 ①具有花键联接的共同特点 ②键齿为α=30°的渐开线齿廓,齿根厚,强度大,承载 大 ③可用齿轮加工方法加工;有齿形和齿侧两种定心方式 用于定心精度要求 高,载荷大,尺寸大 的场合 三角形齿花 键联接 ①具有键联接的共性 ②内花键为直线齿形,外花键为α=40°的渐开线齿形 ③键齿细小,承载能力小 用于轻载、小直径或 薄壁件与轴联接的 场合

相关文档
相关文档 最新文档