文档库 最新最全的文档下载
当前位置:文档库 › 激光干涉法进行正弦力校准研究

激光干涉法进行正弦力校准研究

激光干涉法进行正弦力校准研究
激光干涉法进行正弦力校准研究

激光检测技术研究现状与发展趋势

激光检测技术研究现状与发展趋势 提要:激光检测学科发展现状在光电检测领域,利用光的干涉、衍射和散射进行检测已经有很长的历史。由泰曼干涉仪到莫尔条纹,然后到散斑,再到全息干涉,出现了一个个干涉场,物理量(如位移、温度、压力、速度、折射率等)的测量不再需要单独测量,而是整个物理量场一起进行测量。自从激光出现以后,电子学领域的许多探测方法(如外差、相关、取样平均、光子计数等)被引入,使测量灵敏度和测量精度得到大大提高。用激光检测关键技术(激光干涉测量技术、激光共焦测量技术、激光三角测量技术)实现的激光干涉仪、激光位移传感器等,可以完成纳米级非接触测量。可以说,超精密加工技术将随着高精密激光检测技术的发展而发展;在此基础上,提出了激光测量需解决的关键技术及今后的发展方向。 1.测量原理 1.1激光测距原理 先由激光二极管对准目标发射激光脉冲。经目标反射后激光向各方向散射。部分散射光返回到传感器接收器,被光学系统接收后成像到雪崩光电二极管上。雪崩光电二极管是一种内部具有放大功能的光学传感器,因此它能检测极其微弱的光信号。记录并处理从光脉冲发出到返回被接收所经历的时间,即可测定目标距离。

1.2激光测位移原理 激光发射器通过镜头将可见红色激光射向被测物体表面,经物体反射的激光通过接收器镜头,被内部的CCD线性相机接收,根据不同的距离,CCD线性相机可以在不同的角度下“看见”这个光点。根据这个角度及已知的激光和相机之间的距离,数字信号处理器就能计算出传感器和被测物体之间的距离。 2.激光测量系统的应用 激光功率和能量是描述激光特性的两个基本参数,激光功率计和能量计是最常用的两类激光测量仪器。随着激光技术的不断发展,对激光测试技术和测量仪器提出了更高要求。由于调Q和锁模激光的出现和应用,要求测量的激光功率已从毫瓦、瓦、千瓦、兆瓦直到千兆瓦以上。激光能量也从毫焦尔逐渐跨过千焦尔。脉冲激光的持续时间也由毫秒、微秒、毫微秒、而缩短至微微秒量级。光谱范围也从紫外、可见、红外扩展到近毫米波段。激光精密测量和某些生物医学方面的研究和应用(如眼科治疗、细胞手术器等)的发展,对激光测量的精度也提出了非常高的要求。 2.1激光非球面检测技术 长期以来,非球面检测技术一直制约着非球面制造精度的提高,尤其对于高精度非球面的检测。规的非球面检测方法如刀口阴影法、激光数字干涉法及接触式光栅测量法等,对于检测工件表面来说都有一定的局限性。原子力显微镜是利用纳米级的探针固定在可灵敏操控的微米级尺度的弹性悬臂上,当针尖很靠近样品时,其顶端的原子与

激光干涉仪操作规程

激光干涉仪操作规程 一、操作步骤 1.系统的相互连接 ·将PC10计算机系统与ML10 激光干涉仪用通讯电缆连接。 ·如果需要,将PC10计算机系统与EC10 环境补偿单元用通讯电缆连接。 ·将PC10、ML10、EC10分别接上电源线,再接到电源插板上。·通过稳压电源,将总电源线接到220V接地电源上。 2.激光的预热 闭合激光干涉仪开关,使激光预热大约15~20分钟,等激光指示灯出现绿色后,表明激光已稳定。 3.测量软件的启动 打开计算机,在“C”提示符下依次键入: ·CD/RENISHAW (RETURN) ·RCS (RETURN) ·a (RETURN) ·b (RETURN) 完成以上步骤后,测量软件已被启动。 4.光学镜的安装 ·将反射镜用夹紧块、安装杆、磁性表座固定在机床运动部件上。

·将反射镜和分光镜组合组成干涉镜;将干涉镜用夹紧块、安装杆、磁性表座固定在机床不可运动部件或其它固定部件上。 5.激光调整 ·调整激光,使其与测量方向一致。调整时,首先用粗光束调,然后用细光束调,保证信号强度达到测量精度要求并恒定(由计算机上信号强度指示确定)。 ·调整透射光线和折射光线重合。 6.目标值设定 根据测量要求,设定目标值,目标值的设定应尽可能的覆盖整个行程范围。 7.数据采集 ·按目标值设定要求编制数控测量程序,在每个测量点必须有足够的延时设定(由机床操作人员完成)。 ·设定数据采集参数,主要包括;线性/圆周、测量次数、单向/双向、测量信息等。 ·按“ALI+D”进行数据采集。 ·数据采集完后,按“ESC”终止采集过程。 8.数据分析 选择“数据分析”菜单,按相关标准要求进行数据分析,分别给出双向定位精度、重复性、反向偏差等精度指标。

激光技术的发展及应用论文

激光技术的发展及应用 引言 随着激光技术的飞速发展和广泛应用激光已成为工业生产,科学探测和现代军事战争中极为重要的工具。总结了激光技术在工业生产,军事,国防,医疗等行业中的应用,提出激光技术应用领域的发展趋势。 “激光”一词是“LASER”的意译。LASER原是Light amplificati on by stimulated emissi on of radiation取字头组合而成的专门名词,在我国曾被翻译成“莱塞”、“光激射器” 、“光受激辐射放大器”等。激光具有普通光源发出的光的所有光学特性,是上世纪 60 年代所诞生和发展起来的新技术。1964年,钱学森院士提议取名为“激光”,既反映了“受激辐射”的科学内涵,又表明它是一种很强烈的新光源,贴切、传神而又简洁,得到我国科学界的一致认同并沿用至今。 激光不是普通的光,其特性是任何光都无法比拟的。激光能量密度高,其亮度比太阳表面还高数百亿倍;[1]激光方向性强,其发散度仅为毫弧度量级,所以用途非常广泛。由于激光的优异特性,使激光在工业生产,科技探测,军事等方面得到了广泛应用,激光渗透到社会的各个行业,而且发展潜力还非常大,激光也成为了当代科学发展最快的科学领域之一。 一、激光发展史 激光技术的启蒙研究发展就完全印证了上面的话。最早对激光做出理论研究的人是爱因斯坦,1916年爱因斯坦提出受激辐射的概念,即处于高能级的原子受外来光子作用,当外来光子的频率与其跃迁频率恰好一致时,原子就会从高能级跃迁到低能级,并发射与外来光子完全相同的另一光子,新发出的光子不仅在

频率方面与外来光子相一致,而且在发射方向、偏振态以及位相等方面均与外来光子相一致,因此,受激辐射具有相干性;在发生受激辐射时,一个光子变成了两个光子,利用这个特点,可实现光放大,并且能够得到自然条件下得不到的相干光. 受激辐射提出后,陆续有科学家进行研究。如1916-1930年间拉登堡及其合作者对氖的色散的研究并于1933年绘制出色散系数随放电带电流密度变化的曲线。1940年法布里坎特首先注意到了负吸收现象。这一阶段发展并不迅速。到了第二次世界大战之后,1947年兰姆和雷瑟夫指出通过粒子数反转可以受激辐射,从此激光理论的研究开始突破。1952年帕塞尔及其合作者实现了粒子数反转,观察到了负吸收现象。第二年,韦伯产生了利用受激辐射诱发原子或分子,从而放大电磁波的思想,进而提出了微波辐射器的原理。1957年斯科威尔实现了固体顺磁微波激射器。既然微波可以激发受激辐射,那么红外乃至可见光等也应该可以。1958年汤斯和肖洛发表了著名的“红外与光学激射器”一文,1959年汤斯提出了建造红宝石激光器的建议。终于1960年由休斯航空公司的莱曼建造出第一部可用的激光装置。(我国第一台红宝石激光器于15个月后的1961年8月建成。)从此人类拥有了激光这一利器。 由于生产技术不成熟,激光技术产生之初并未有太多实际用途。后虽有切割,光束武器等应用,但又受制于制造成本高昂和气候条件复杂等。几十年来各方面工程师和专家一直努力改进创新激光技术及应用,随着激光技术的发展成熟,今天,它已经广泛地应用于生产生活的各方面。 二、激光的特点及激光器 激光的特点主要有四点,一是方向性好,激光束偏离轴线的发散角往往非常小,甚至可以用来测量地球到月球的精确距离(发射到38万公里外的月球形成的光斑直径不超过一公里);二是亮度高,激光功率在空间高度集中,亮度是普通太阳光的百万倍;三是单色性好,比如氪激光的波长范围只有4.7微埃,比原来个公认单色性最好的氪灯高出数个数量级;四是相干性好,激光器输出的光子频率、偏振、相位和传播方向都完全一致,这使得很多光学实验的精度大大提高。

激光干涉仪功能与应用

SJ6000激光干涉仪产品具有测量精度高、测量速度快、测量范围大、分辨力高等优点。通过与不同的光学组件结合,可以实现对线性、角度、平面度、直线度(平行度)、垂直度、回转轴等参数的精密测量,并能对设备进行速度、加速度、频率-振幅、时间-位移等动态性能分析。 在相关软件的配合下,可自动生成误差补偿方案,为设备误差修正提供依据。

1.静态测量 SJ6000激光干涉仪的系统具有模块化结构,可根据具体测量需求选择不同组件。SJ6000基本线性测量配置: 图1-基本线性配置 SJ6000全套镜组:

图2-SJ6000全套镜组 镜组附件: 图3-SJ6000 镜组附件 镜组安装配件: 图4-SJ6000 镜组安装配件

1.1. 线性测量 1.1.1. 线性测量构建 要进行线性测量,需使用随附的两个外加螺丝将其中的一个线性反射镜安装在分光镜上,组装成“线性干涉镜”。线性干涉镜放置在激光头和线性反射镜之间的光路上,用它的反射光线形成激光光束的参考光路,另一束光入射到线性反射镜,通过线性反射镜的线性位移来实现线性测量。如下图所示。 图5-线性测量构建图 图6-水平轴线性测量样图图7-垂直轴线性测量样图 1.1. 2. 线性测量的应用 1.1. 2.1. 线性轴测量与分析 激光干涉仪可用于精密机床、三坐标的定位精度、重复定位精度、微量位移精度的测量。测量时在工作部件运动过程中自动采集并及时处理数据。

图8-激光干涉仪应用于机密机床校准 图9-激光干涉仪应用于三坐标机校准 SJ6000软件内置10项常用机床检验标准,自动采集完数据后根据所选标准自动计算出所需误差数据,可生成误差补偿表,为机床、三坐标的误差修正提供依据。

激光测量技术研究现状与发展趋势

激光测量技术研究现状与发展趋势授课教师:冯其波谢芳 学院:理学院 专业:光信息科学与技术 班级:光科0704班 姓名:杨涛 07272111 (组长) 颜川力 07272110 杨一帆 07272112 戴瑞辰 07272094 (副组长) 赵晓军 07272117 激光测量技术研究现状与发展趋势 光科0704:杨涛戴瑞辰杨一帆颜川力赵晓军 提要:激光检测学科发展现状在光电检测领域,利用光的干涉、衍射和散射进行检测已经有很长的历史。由泰曼干涉仪到莫尔条纹,然后到散斑,再到全息干 涉,出现了一个个干涉场,物理量(如位移、温度、压力、速度、折射率等)的测量不再需要单独测量,而是整个物理量场一起进行测量。自从激光出现以后, 电子学领域的许多探测方法(如外差、相关、取样平均、光子计数等)被引入,使测量灵敏度和测量精度得到大大提高。用激光检测关键技术(激光干涉测量技 术、激光共焦测量技术、激光三角测量技术)实现的激光干涉仪、激光位移传感 器等,可以完成纳米级非接触测量。可以说,超精密加工技术将随着高精密激光

检测技术的发展而发展;在此基础上,提出了激光测量需解决的关键技术及今 后 的发展方向。 Developing Situation of laser detection .In the field of photoelectric detection, there`ve been a long history of making a detection by using the principle of interference, diffraction and scattering of light. Interference field such as Tieman interferometer, Moire fringe, speckle and Holographic interferometry were designed one after another. Form then on, instead of measuring every physical quantity (displacement, temperature, pressure, velocity, refractive index) in turn, people measure the physical field entirely. After the development of laser, a number of detection methods (heterodyne, correlation, sample averaging, photon-counting) were invented, which lead to the improvement of the sensitivity and accuracy of the detection. People use the laser interferometer and Laser Displacement Transducer with key technologies of the laser detection to make nano-scaling non-contact measurement. It is clear that Super Precision Technology will raise to a new level according to the development of the High Precision laser detection; take which as the foundation, we advance the key technologies which belongs to the laser detection field, and also development direction of the field. 关键词:激光测量,扫描隧道显微镜,激光干涉仪,激光共焦测量技术 1 激光测量系统

激光干涉仪软硬件介绍讲解

激光干涉仪软硬件介绍 本次试验我们使用的仪器为:Renishaw 激光器测量系统。 这个系统由“软件”与“硬件”两个部分组成,所以我们认识他,就是搞清楚各是什么硬件和软件。 看到这个章节时,可定有人会问还有什么硬软件之分的吗?答案是肯定的! 先问大家一个问题:只有躯体的人就是一个正常的人吗?答案是否定的! 一个正常的人不但须要一个实实在在的躯体,还需要由看不见的意识性的东西——思想的存在! 3.1 激光干涉仪是由什么硬件组成 3.1.1 什么是硬件? 硬件:硬件就是我们看到的一堆由金属、塑料等材料堆成的被称之为“Renishaw 激光干涉仪”的东西(事实上,它是由一些机壳和电路板等物构成)。因为是一些看得见、摸得着的东西,又因为都是“硬”的,所以被人们形象地称为“硬件”。 3.1.2具体硬件名称以及各自的用途是什么? 一、本次使用激光检测仪主要检测螺距误差,因此我们主要使用到以下的仪器: (1)ML10 激光器 Renishaw ML10 Gold Standard 激光器

以上四个图案为激光罩在不同的状态下的作用 A)无光束射出 B)缩小横截面光束及目标 C)最答光束及目标 D)标准测量位置射出最大光来的横截面以及反射光束的探测器孔Renishaw ML10 Gold Standard 激光器:

ML10 是一种单频 HeNe 激光器,内含对输出激光束稳频的电子线路及对由测量光学镜产生的干涉条纹进行细分和计数处理。 其主要作用简单概括为:发射红外线以及返收红外线供特定的软件做分析,记录相关的数据。 (2)三脚架

三脚架及云台可用来安装 ML10 激光器,将 ML10 激光器设置在不同的高度,并充分控制 ML10 激光束的准直。对于大多数机床校准设置,建议将 ML10 激光器安装在三脚架和云台上。 三脚架、安装云台和 ML10 激光器三合一体,可为 ML10 光束准直提供下列调整:高度调整 水平平移调整 角度偏转偏转调整 角度俯仰调整 其中高度调整是由图9上显示的高度曲柄控制的,水平平移是由图2上显示的平移控制旋钮控制,角度偏转偏移是由图2上显示的旋转微调旋钮控制。图2后的两个示意图为水平平移和角度偏移的使用方法。 (3)EC10 环境补偿装置

激光干涉仪使用方法

用激光干涉仪系统进行精确的线性测量 — 最佳操作及实践经验 1 简介 本文描述的最佳操作步骤及实践经验主要针对使用激光干涉仪校准机床如车床、铣床以及坐标测量机的线性精度。但是,文中描述的一般原则适用于所有情况。与激光测量方法相关的其它项目,如角度、平面度、直线度和平行度测量不包括在内,用于实现0.1微米即 0.1 ppm以下的短距离精度测量的特殊方法(如真空操作)也不包括在内。 微米是极小的距离测量单位。(1微米比一根头发的1/25还细。由于太细,所以肉眼无法看到,接近于传统光学显微镜的极限值)。可实现微米级及更高分辨率的数显表的广泛使用,为用户提供了令人满意的测量精度。尽管测量值在小数点后有很多位数,但并不表明都很精确。(在许多情况下精度比显示的分辨率低10-100倍)。实现1微米的测量分辨率很容易,但要得到1微米的测量精度需要特别注意一些细节。本文描述了可用于提高激光干涉仪测量精度的方法。 2 光学镜组的位置 光学镜的安放应保证其间距变化能够精确地反映待校准机器部件的线性运动,并且不受其它误差的影响。方法如下: 2.1 使Abbe(阿贝)偏置误差降至最低 激光测量光束应当与需要校准的准线重合(或尽量靠近)。例如,要校准车床Z轴的线性定位精度,应当对测量激光光束进行准直,使之靠近主轴中心线。(这样可以极大降低机床俯仰 (pitch) 或扭摆 (yaw) 误差对线性精度校准数据的影响。 2.2 将光学镜组固定牢靠 要尽量减小振动影响并提高测量稳定性,光学镜组应牢牢固定所需的测量点上。安装支柱应尽可能短,所有其它紧固件的横截面都应尽量牢固。磁力表座应直接夹到机床铸件上。 避免将其夹到横截面较薄的机器防护罩或外盖上。确保紧固件表面平坦并没有油污和灰尘。 2.3 将光学镜组直接固定在相关的点上 材料膨胀补偿通常只应用在与测量激光距离等长的材料路径长度上。如果测量回路还包括附加的结构,该―材料死程‖的任何热膨胀或收缩或因承载而发生的偏斜都将导致测量误差。为尽量减少此类误差,最好将光学镜组直接固定到所需的测量点上。在机床校准中,一个光学镜通常固定在工件夹具上,而另一个光学镜组则固定在刀具夹具上。激光测量将会精确地反映刀具和工件之间发生的误差。即使机器防护系统和机器盖导致难于接近,也一定要尽量将干涉镜和角锥反射镜都固定到机器上。不要将一个光学镜安装在机器内部而另一个安装在外部如支在机器外地面的三脚架上,因为整台机器在地基上的移动可能导致校准无效。然而,是否拆下导轨防护罩时需仔细考虑,因为这可能改变机器性能。

激光干涉位移测量技术

激光干涉位移测量技术 张欣(2015110034) 摘要:为了实现纳米级以上分辨力位移的测量研究,利用激光干涉位移测量技术可以达到纳米级分辨力,其具有可溯源、分辨力高、测量速度快等特点,是目前位移测量领域的主流技术。本文对目前主要的激光干涉位移测量技术进行了分类介绍,并对各种干涉仪的特点进行了分析,最后介绍了激光干涉位移测量技术的国内外发展现状和趋势。 关键词:纳米级;激光干涉;位移测量; 1 引言 干涉测量技术( interferometry ) 是基于电磁波干涉理论,通过检测相干电磁波的图样,频率、振幅、相位等属性,将其应用于各种相关的测量技术的统称。用于实现干涉测量技术的仪器被称为干涉仪。在当今多个科研领域,干涉测量技术都发挥着重要的作用,包括天文学,光纤光学,以及各种工程测量学。其中由于上个世纪60年代激光的研制成功,使得激光干涉测量技术在各种精密工程领域得到了广泛的应用。它的基本功能是将机械位移信息变成干涉条纹的电信号,再对干涉条纹进行调理和细分,进而获得所需要的测量信息。整个激光干涉测量系统中主要的组成部分有光电转换、信号调理、信号细分处理。 1.1激光干涉仪分类 激光干涉仪是以干涉测量为原理,利用激光作为长度基准,对数控设备(加工中心、三坐标测量机等)的位置精度(定位精度、重复定位精度等)、几何精度(抚养扭摆角度、直线度、垂直度)进行精密测量的精密测量技术。由于激光具有波长稳定、波长短、具有干涉性,使得激光在现代光电测量系统中占据了重要的地位,尤其是在激光干涉测量系统中。下面介绍激光干涉仪测量原理以及激光干涉仪。 光的相长干涉和相消干涉: 图1.光的相长以及相消干涉 如果两束光相位相同,光波会叠加增强,表现为亮条纹,如果两束光相位相反,光波会相互抵消,表现为暗条纹。图1.1就是光的相长以及相消干涉,而激光干涉仪主要依据的原理就是激光的干涉产生明亮

激光干涉测量

激光干涉测量 xxxxx xxxxx xxxxx 摘要:干涉测量技术是以光波干涉原理为基础进行测量的一门技术。 20世纪60年代以来,由于激光的出现、隔振条件的改善及电 子与计算机技术的成熟,使干涉测量技术得到长足发展。本文 介绍了激光干涉的基本原理。 关键词:激光干涉测量双频激光干涉仪 由于科学技术的进步,干涉测量技术已经得到相当广泛的应用。一方面因为微电子、微机械、微光学和现代工业提出了愈来愈高的精度和更大的量程,其它方法难以胜任;另一方面因为当代干涉测量技术本身具有灵敏度高、量程大、可以适应恶劣环境、光波和米定义联系而容易溯源等特点,因而在现代工业中应用非常广泛。 激光的出现在世界计量史上具有重大的意义。用稳频的氦氖激光器作为光源,由于它的相干长度很大,干涉仪的测量范围可以大大的扩展;而且由于它的光束发散角小,能量集中,因而它产生的干涉条纹可以用光电接收器接收,变为电讯号,并由计数器一个不漏的记录下来,从而提高了测量速度和测量精度,比如说我国自行设计与制造的以氦氖激光器作为光源的光电光波比长仪,可以在20分钟之内把1米线纹尺上1001条刻线依次自动鉴定完毕,精度达到±0.2μm,这就是激光干涉仪的成功例证。 一、激光干涉仪的介绍 激光干涉仪,以激光波长为已知长度,利用迈克耳逊干涉系统测量位移的通用长度测量,有单频的和双频的两种。 1、单频激光干涉仪 从激光器发出的光束,经扩束准直后由分光镜分为两路,并分别从固定反射镜和可动反射镜反射回来会合在分光镜上而产生干涉条纹。当可动反射镜移动时,干涉条纹的光强变化由接受器中的光电转换元件和电子线路等转换为电脉冲信号,经整形、放大后输入可逆计数器计算出总脉冲数,再由电子计算机按计算式[356-11]式中λ为激光波长(N 为电脉冲总数),算出可动反射镜的位移量L。使用单频激光干涉仪时,要求周围大气处于稳定状态,各种空气湍流都会引起直流电平变化而影响测量结果。 2、双频激光干涉仪 双频激光干涉仪是在单频激光干涉仪的基础上发展的一种外差式干涉仪,,双频激光干涉仪可以在恒温,恒湿,防震的计量室内检定量块,量杆,刻尺和坐标测量机等,也可以在普通车间内为大型机床的刻度进行标定,既可以对几十米的大量程进行精密测量,也可以对手表零件等微小运动进行精密测量,既可以对几何量如长度、角度.直线度、平行度、平面度、

大影响激光干涉仪测量精度的因素

大影响激光干涉仪测量 精度的因素精选文档 TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-

6大激光干涉仪影响因素,提高数控机床检测准确度全靠它了! 激光干涉仪是精度最高的线性位移测量仪器,其光波可以直接对米进行定义,可溯源至国家标准,通过与不同的光学组件结合,可以实现对各类机床的线性、角度、平面度、直线度(平行度)、垂直度、回转轴等参数的精密测量,并能对设备进行速度、加速度、频率-振幅、时间-位移等动态性能分析,在相关软件的配合下,可自动生成误差补偿方案,为设备误差修正提供依据。 但是我们在使用中往往会出现检测偏离值,偏离我们的预估,以至于在高精度检测时,对设备产生怀疑。今天我们来扒一扒引起激光干涉仪测量误差的部分原因。 因测量光学镜组的安装高度不在被测设备的运动轴上引起的测量误差称之为阿贝误差。产生的原因是设备移动时存在俯仰、扭摆差,因此光学镜组与运动轴偏置距离越远,引起的阿贝误差越大。 角度、偏置距离引起的误差表(单位:um)

上表可得:角度1″在500mm偏置距离下引起的误差大约是。 来个实际案例:以检测机床时不同安装高度为具体说明。 线性镜组安装距工作台10cm: 线性镜组安装距工作台30cm 线性镜组安装距工作台50cm 实验结果:按GB/《机床检验通则》2000版分析标准得出结果,镜组安装高度偏离设备运动轴线越远,检测结果中重复精度以及定位精度就越差。

正确方式:设备校准时线性镜组的安装高度应该尽量靠近被测轴,使激光光束与运动轴重合(或尽量靠近),减小阿贝误差。 扩展:SJ6000激光干涉仪用户在进行两台同类设备定位精度的对比时,应该进行同轴比对,即共用线性镜组,这样才具有可比性。 环境补偿单元能准确采集空气温度、压力、相对湿度信息,基于Edlen公式计算空气折射率,以此对激光波长进行补偿。 1000mm示值因环境温度、压力、空气湿度各自变化引起的示值变化量(单位:um)

激光光刻技术的研究与发展

第41卷第5期红外与激光工程2012年5月Vol.41No.5Infrared and Laser Engineering May.2012 激光光刻技术的研究与发展 邓常猛1,2,耿永友1,吴谊群1,3 (1.中国科学院上海光学精密机械研究所中国科学院强激光材料重点实验室,上海201800; 2.中国科学院研究生院,北京100049; 3.功能无机材料化学省部共建教育部重点实验室(黑龙江大学),黑龙江哈尔滨150080) 摘要:光刻技术作为制备半导体器件的关键技术之一将制约着半导体行业的发展和半导体器件的性能。随着半导体工业的发展,集成电路的特征尺寸越来越小,光刻技术将面临新的挑战。分析了激光光刻技术,包括投影式光刻和激光无掩膜光刻技术的研究现状,着重介绍了极紫外光刻(EUVL)作为下一代光刻技术的发展前景和技术难点、激光无掩膜光刻技术的发展,特别是激光近场扫描光刻、激光干涉光刻、激光非线性光刻等新技术的最新进展及其在高分辨率纳米加工领域的应用前景。 关键词:投影式光刻;无掩膜光刻;发展趋势 中图分类号:TN305.7文献标志码:A文章编号:1007-2276(2012)05-1223-09 Research development of laser lithography technology Deng Changmeng1,2,Geng Yongyou1,Wu Yiqun1,3 (1.Key Laboratory of Material Science and Technology for High Power Lasers,Shanghai Institute of Optics and Fine Mechanics,Chinese Academy of Sciences,Shanghai201800,China;2.Graduate University of the Chinese Academy of Sciences,Beijing100049,China;3.Key Laboratory of Functional Inorganic Material Chemistry(Heilongjiang University), Ministry of Education,Harbin150080,China) Abstract:Lithography technology,as one of the key technologies in the manufacture of semiconductor devices,has played an important role in the development of semiconductor industry.As the critical dimension of integrated circuit is decreased to smaller and smaller,lithography technology will face new challenges.In this review,the progress and status on laser lithography were presented,including projection lithography and laser maskless lithography.The foreground and technology challenges of extreme ultraviolet lithography(EUVL),which was considered to be the next generation lithography,were analyzed.The progress and application prospect in high-resolution nano lithography patterning of laser maskless lithography,especially of near-field scanning optical microscopy,laser interference and nonlinearity lithography etc,were discussed. Key words:projection lithography;maskless lithography;development trend 收稿日期:2011-09-05;修订日期:2011-10-03 基金项目:国家自然科学基金(60977004,50872139) 作者简介:邓常猛(1985-),男,博士生,主要从事光刻技术和光刻材料方面的研究。Email:chmdeng@https://www.wendangku.net/doc/4c7951412.html, 导师简介:吴谊群(1957-),女,研究员,博士生导师,主要从事高密度光存储和光电子学功能材料方面的研究。Email:yqwu@https://www.wendangku.net/doc/4c7951412.html,

激光干涉技术的发展历史、现状与应用前景

科技动态 ——地壳运动与地震 2008年12月第4期(总第90期) 目次 激光干涉技术的发展历史、现状与应用前景 (1) 全球性地震监测的过去、现在和未来 (7) 利用ALOS/PALSAR数据资料采用INSAR方法测定地震造成的地壳形变 (8) PIXEL:日本INSAR地壳形变研究社团 (8) 利用多天线GPS形变监测系统进行滑坡监测 (9) ENVISAT卫星SCANSAR干涉测量法测到的西藏大范围形变 (9) 利用远、近场地震资料确定深源地震的破裂速度 (10) 中国首度举办世界地震工程大会回良玉出席大会开幕式并致辞 (10) 国际空间站安装地震预报实验装置 (11) 科学家探测到震前细微地质变化——有望预警地震 (12) 国家测绘局、中国地震局联合召开新闻发布会公布汶川地震地形变化监测结果 (13) 14 4米―通天石柱‖立珞珈山建地壳运动监测网 ····································································· 中、外文期刊专题文献题录 (14) 应变集中带与大地震的关系 (25) i

地壳活动综合观测系统的研发和取得的成果以及今后的连续观测 (26) 湖北省地震局抗震救灾英雄模范卓力格图抵京接受表彰 (30) 湖北省地震局赴四川地震灾区现场工作队被授予“湖北青年五四奖状” (30) 《湖北省地震应急预案(修订稿)》通过评审 (30) 郭生练出席湖北省地震应急快速反应系统项目建设总结表彰会 (31) 西班牙兰萨若特自治州主席率代表团访问湖北 (31) 湖北省地震重点监视防御区工作会议在武汉召开 (32) 武汉地震工程院参建湖北援川项目 (32) 郭唐永研究员赴韩国庆州参加中韩SLR研讨会并进行合作交流 (32) 王佩莲被省科协授予―湖北省科技传播十大杰出人物‖称号 (33) 《科技动态》2008年总目录 (34) 主编:郭唐永副主编:贾冬青责任编辑:饶扬誉贾冬青 i i

激光干涉仪使用技巧讲解

厨 f静堂鸯溅斌技术)2007亭第弘誊第{O麓 激光干涉仪使用技巧 Precise G口洫to Vsine a Laser Interferometer 魏纯 (广州市计最检测技术研究院,广东广州510030) 瓣萎:本文讨论了激光予涉仪在使用巾的准直等技礴,用户在实际使用中增加葺芒件以及维护巾邋蓟的同舔。燕键词:激光平涉仪;准直 l引言高性能激光干涉仪具有快速、高准确测量的优点,是校准数字机床、坐标测量机及其它定位装置精度及线性指标最常用的标准仪器,弦者所在单位使用的是英国RENISHAW公闭生产的MLl0激光干涉仪,具有性能稳定,使罱方便等特点。 通过较长时闯使用,作者认为测量人员除了要考虑环境、温度、原理等影响测量的常规因素外,掌握一些激光干涉仪的使用技巧会使测量互作事半功倍。 2原理介绍

MLl0激光干涉仪是根据光学千涉基本原理设计磊成酌。从MLl0激光器射出的激光束有单一频率,其标称波长隽0.633pLIn,且其长期波长稳定健(真空状态)要高于0.1ppm。当此光束抵达偏振分光镜时,会被分为两道光束一一道反射光糯一道透射光。这两道光射向其反光镜,然后透过分光镜反射圈去,在激光头内的探测器形成一道干涉光束。若光程差没有任俺变讫,探测器会在樵长性秘楣潢性于涉的两极找到稳定的信号。若光程差确实有变化,探测器会在 每一次光程改变时,在相长性和相消性干涉的弼极找 到变动的信号。这些变化(援格)会被计算并用来测量两个光程闻的差异变化。测量的光程就是栅格数乘以光束大约一半的波长。 值褥注意的是,激光束的波长取决于所通过敖空气折射率。由于空气折射率会随着温度、压力和相对湿度而变化,用来计算测蹩值的波长值可能需要加以李}偿,以配合这魍环境参数豹改变。实际上就测量准确度而言,此类补偿在进行线性位移(定位精度)测量,特别是量程较大时,非常重要。3激光干涉仪使用技巧 3.1 Z轴激光光路快速准直方法 用激光干涉仪进行线性测量时,无论是数字机 床、还是坐标测燮枫,z轴测量酵激光光路的礁童榻对X、Y轴准直来说,要困难的多。尤其是在z轴距离较长的情况下,要保证激光光束经反射镜反射后回到激 先探测器的强度满足测量对对光强的要求,准妻激光光路往往需要很长时间。 根据作者长期使用的经验,按照“离处动尾部,低处动整体”的调整方法,将会大大缩短漆直时闻。(“尾部”是指MLl0激光器电源接口边上的倾斜度调蹩旋钮和三兔架云台上的旋转微调控制旋锂,“整体”是指三

光刻技术及其应用的现状与展望

光刻技术及其应用的现状与展望

1 引言 光刻技术作为半导体及其相关产业发展和进步的关键技术之一,一方面在过去的几十年中发挥了重大作用;另一方面,随着光刻技术在应用中技术问题的增多、用户对应用本身需求的提高和光刻技术进步滞后于其他技术的进步凸显等等,寻找解决技术障碍的新方案、寻找COO更加低的技术和找到下一俩代可行的技术路径,去支持产业的进步也显得非常紧迫,备受人们的关注。就像ITRS 对未来技术路径的修订一样,上世纪基本上3~5年修正一次,而进入本世纪后,基本上每年都有修正和新的版本出现,这充分说明了光刻技术的重要性和对产业进步的影响。2005年ITRS对未来几种可能光刻技术方案进行预测。也正是基于这一点,新一轮技术和市场的竞争正在如火如荼的展开,大量的研发和开发资金投入到了这场竞赛中。因此,正确把握光刻技术发展的主流十分重要,不仅可以节省时间和金钱,同时可以缩短和用户使用之间的周期、缩短开发投入的回报时间,因为光刻技术开发的投入比较庞大。 2 光刻技术的现状及其应用状况 众说周知,电子产业发展的主流和不可阻挡的趋势是“轻、薄、短、小”,这给光刻技术提出的技术方向是不断提高其分辨率,即提高可以完成转印图形或者加工图形的最小间距或者宽度,以满足产业发展的需求;另一方面,光刻工艺在整个工艺过程中的多次性使得光刻技术的稳定性、可靠性和工艺成品率对产品的质量、良率和成本有着重要的影响,这也要求光刻技术在满足技术需求的前提下,具有较低的COO和COC。因此,光刻技术的纷争主要是厂家可以提供给用户什么样分辨率和产能的设备及其相关的技术。 2.1 以Photons为光源的光刻技术 在光刻技术的研究和开发中,以光子为基础的光刻技术种类很多,但产业化前景较好的主要是紫外(UV)光刻技术、深紫外(DUV)光刻技术、极紫外(EUV)光刻技术和X射线(X-ray)光刻技术。不但取得了很大成就,而且是目前产业中使用最多的技术,特别是前两种技术,在半导体工业的进步中,起到了重要作用。

激光干涉仪检测方法

FANUC、OKUMA机床的激光干涉仪检测方法 一、光的相干性 二、激光干涉法测距原理 三、FANUC螺补参数的设定 四、关于FANUC系统正负方向补偿号的计算方法 五、FANUC的检测用程式 六、OKUMA螺补参数的设定 七、OKUMA检测程式 八、检测值输入的方法

一、光的相干性 相長性干涉 當兩個波長相同的光束波形同步射出時,其波峰位置會如下圖 2 一般重合,固稱為“相長性干涉”。在相長性干涉的情況下,輸出波的振幅等於兩個輸入波的振幅之和。 ?相消性干涉 當兩個相干光束波形以180°的相位差異步射出時,一個輸入光束的波峰位置會如下圖3 一般與另一個輸入光束的波谷重合,固稱為“相消性干涉”。在相消性干涉的情況下,兩個輸入波會互相抵消而產生暗淡的光

二、激光干涉法测距原理 图片: 根据光的干涉原理,两列具有固定相位差,而且有相同频率、相同的振动方向或振动方向之间夹角很小的光相互交叠,将会产生干涉现象,如图所示。由激光器发射的激光经分光镜A分成反射光束S1和透射光束S2。两光束分别由固定反射镜M1和可动反射镜M2反射回来,两者在分光镜处汇合成相干光束。若两列光S1和S2的路程差为Nλ(λ为波长,N为零或正整数),实际合成光的振幅是两个分振幅之和,光强最大。当S1和S2的路程差为λ/2(或半波长的奇数倍)时,合成光的振幅和为零,此时光强最小。 激光干涉仪就是利用这一原理使激光束产生明暗相间的干涉条纹,由光电转换元件接收并转换为电信号,经处理后由计数器计数,从而实现对位移量的检测。由于激光的波长极短,特别是激光的单色性好,其波长值很准确。所以利用干涉法测距的分辨率至少为λ/2,

激光全息技术及其发展

激光全息技术及其发展 所谓全息照片就是一种记录被摄物体反射(或透射)光波中全部信息的先进照相技术。全息照片不用一般的照相机,而要用一台激光器。激光束用分光镜一分为二,其中一束照到被拍摄的景物上,称为物光束;另一束直接照到感光胶片即全息干板上,称为参考光束。当光束被物体反射后,其反射光束也照射在胶片上,就完成了全息照相的摄制过程。全息照片和普通照片截然不同。用肉眼去看,全息照片上只有些乱七八糟的条纹。 可是若用一束激光去照射该照片,眼前就会出现逼真的立体景物。更奇妙的是,从不同的角度去观察,就可以看到原来物体的不同侧面。而且,如果不小心把全息照片弄碎了,那也没有关系。随意拿起其中的一小块碎片,用同样的方法观察,原来的被摄物体仍然能完整无缺地显示出来。全息照相的原理是利用光的干涉原理,利用两束光的干涉来记录被摄物体的信息。 1948年,英国人丹尼斯·加拍正在研究光的干涉现象,以提高电子显微镜的分辨率。光的干涉在日常生活中常能见到:吹几个肥皂泡,给阳光一照,能呈显艳丽的色彩;在一张纸屏上戳两个小孔,让光透射到墙上,便可看到明暗相间的条纹。原来,光是一种波,包含有振幅与位相两个物理要素。当两束相干光迭加时,在位相相同的地方波幅相加,出现亮纹,位相相反的地方就为暗纹。加拍从这些若明若暗的干涉图中,得到了启发。既然光的干涉现象是光波位相不同所造成的,那么,换句话说,在光的干涉图中,就记录有光的位相信息。而这不正是照相技术渴望以求的吗? 原来,普通照片是根据景物所反射的光波亮度强弱感光而成的,它只能记录光的振幅信息,拍摄的景物是平面图像,没有立体真实感。只有当光的位相信息也能被同时记下来,并重新表现出来时,照片才能给人以远近深浅的立体感。加柏在光干涉的现象中,找到了解决普通照相缺陷的途径,提出了全息照相的理论。激光解决难题,加拍的方法看来似乎极为简单,但要完全解决拍摄全息照相的难题并非轻而易举,因为当时缺乏理想的单色相干光源。60年代激光的问世,才为全息术提供了理想的相干光源。1963年,在美国密执安大学从事雷达工作的利思和乌巴特尼克斯两个人首先做出了第一张成功的全息照相。 激光全息照相用不着普通照相机所用的透镜,只要把激光分为两束,一束照明物体,使其反射成物波;一束作为参考光直接射向底片。由于从景物上反射的物波,到达底片所经历的光程各不相同,因而位相千差万别,与参考光相干涉的结果,便在底片上同时记下了全部信息。 全息照相的底片上面尽是干涉花纹。只有用与记录时相同的参考光照明全息底片时,才能将原始物波重现出来。而且,在我们眼睛中,这个立体的再现现象与真实的物体简直无法区分了。 激光全息摄影很快得到了广泛应用。前面讲到的那家珠宝店,就是把最吸引人的珠宝拍摄在一帧围成圆筒形状的全息照相底片上,再套置在一盏清晰明亮的白炽照明灯上,放进橱窗,就此以假乱真。同样地,对于收藏珍贵的历史文物、稀有动物标本、各种精制器件、复杂的分子结构模型、医学或生物学的图像等都可以制作成全息照片加以展示。全息术的重要作用

激光微加工技术讲解

自1960年第一台激光器问世以来,激光的研究及其在各个领域的应用得到了迅速的发展。其高相干性在高精密测量、物质结构分析、信息存储及通信等领域得到了广泛应用。激光的高方向性和高亮度可广泛应用于加工制造业。随着激光器件、新型受激辐射光源,以及相应工艺的不断革新与优化,尤其是近20年来,激光制造技术已渗入到诸多高新技术领域和产业,并开始取代或改造某些传统的加工业。 1987 年美国科学家提出了微机电系统(MEMS发展计划,这标志着人类对微机械的研究进入到一个新的时代。目前,应用于微机械的制造技术主要有半导体加工技术、微光刻电铸模造(LIGA工艺、超精密机械加工技术以及特种微加工技术等。其中,特种微加工方法是通过加工能量的直接作用,实现小至逐个分子或原子的去除加工。特种加工是利用电能、热能、光能、声能、化学能等能量形式进行加工的,常用的方法有:电火花加工、超声波加工、电子束加工、离子束加工、电解加工等等。近年来发展起来一种可实现微小加工的新方法:光成型法,包括立体光刻工艺、光掩膜层工艺等。其中利用激光进行微加工显示出巨大的应用潜力和诱人的发展前景。 为适应21世纪高新技术的产业化、满足微观制造的需要,研究和开发高性能激光源势在必行。作为激光加工的一个分支,激光微加工在过去十年被广泛关注。其中原因之一是由于更加有效的激光源不断涌现。比如具有非常高峰值功率和超短脉冲固体激光,有很高光束质量的二极泵浦的Nd:YAG激光器等。另外一个原因是有了更为精确、高速的数控操作平台。但一个更为重要的原因是不断涌现的工业需求。在微电子加工中,半导体层的穿孔、寄存器的剪切和电路修复都用到激光微加工技术。激光微加工一般所指加工尺寸在几个到几百微米的工艺过程。激光脉冲的宽度在飞秒(fs )到纳秒(ns )之间。激光波长从远红外到X 射线的很宽波段范围。目前主要应用于微电子、微机械和微光学加工三大领域。随着激光微加工技术的发展和成熟,将在更广的领域得到推广和应用。 二、激光微加工技术的主要应用 随着电子产品朝着便携式、小型化的方向发展,单位体积信息的提高(高密度)和单位时间处理速度的提高(高速化)对微电子封装技术提出不断增长的新需

相关文档