文档库 最新最全的文档下载
当前位置:文档库 › F进给量

F进给量

F进给量
F进给量

铣削切削参数计算表(附例证)

铣削切削参数计算表

符号术语单位公式

V 切削速度m/min

N 主轴转速r/min

Vf 工作台进给量

(进给速度)mm/min Vf=fznzn

mm/r Vf=fnn

fz 每齿进给量mm

fn 每转进给量mm/r

Q 金属去除率cm3/min

De 有效切削直径mm

3.3.1计算切削用量

(1)钻Φ23的孔。

①进给量

小直径钻头主要受钻头的刚性及强度限制大,在条件允许的情况下,应取较大的进给量,以降低加工成本

,提高生产效率。普通麻花钻削进给量可以按以下经验公式计算:

f =(0.01~0.02)d0 (3-1)

f—进给量

d0??—孔的直径

则由(3-1)得:

f =(0.01~0.02)×23=0.23~0.46

由于零件在加工23mm孔时属于低刚度零件,故进给量应乘系数0.75,则f=(0.23~0.46)×

0.75=0.1725~0.3mm/r,查表得出,现取f=0.25mm/r。此工序采用Φ23的麻花钻。所以进给量f= 0.25mm/z

②钻削速度

表3-2普通高速钢钻头钻削速度参考值单位:m/min

工件材料低碳钢中、高碳钢合金钢铸铁铝合金钢合金

切削速度25-30 20-25 15-20 20-25 40-70 20-40

切削速度:根据表3-2可得切削速度V=20m/min。

根据手册可得:nw=300r/min,故切削速度为

③切削工时

l=23mm,l1=13.2mm.

查《工艺手册》可得,切削工时计算公式:

(3-2)

1—切出量

2—切出量

—行程量

①扩孔的进给量

由《切削用量手册》可得得扩孔钻扩Φ24.8的孔时的进给量,并根据机床规格选取

F=0.3 mm/z

②切削速度

扩孔钻扩孔的切削速度,由《工艺手册》可得:

V=0.4V 钻(3-3)

其中V 钻为用钻头钻同样尺寸的实心孔时的切削速度.故

V=0.4×21.67=8.668m/min

按机床选取nw =195r/min.

③切削工时

切削工时时切入1=1.8mm,切出2=1.5mm,根据公式(3-2)得:

①粗铰孔时的进给量

根据有关资料介绍,铰孔时的进给量和切削速度约为钻孔时的1/2~1/3,故

F=1/3f钻=1/3×0.3=0.1mm/r (3-4)

所以:

V=1/3V钻=1/3×21.67=7.22m/min

②切削速度

按机床选取nw=195r/min,所以实际切削速度

③切削工时

切削工时,切入l2=0.14mm,切出l1=1.5mm.,根据公式(3-2)得

①精铰孔时的进给量

根据有关资料介绍,铰孔时的进给量和切削速度约为钻孔时的1/2~1/3,故根据公式(3-4)可得:V=1/3V钻=1/3×21.67=7.22m/min

②切削速度

按机床选取nw=195r/min,所以实际切削速度

③切削工时

切削工时,切入l2=0.06mm,切出l1=0mm,根据公式(3-2)得:

(2)铣φ55的叉口的上、下端面。

①进给量

采用端铣刀,齿数4,每齿进给量=0.15mm/z(《机械制造工艺与机床夹具课程设计指导》(吴拓、方琼

珊主编)。

故进给量f=0.6mm

②铣削速度:

由《数控加工工艺》(田春霞主编)中第五章表5-6得切削速度为9~18m/min

根据实际情况查表得V=15 m/min

③切削工时

引入l=2mm,引出l1=2mm,l3=75mm,根据公式(3-2)得:

(3)铣φ55的叉口

①进给量

由《工艺手册》表3.1-29查得采用硬质合金立铣刀,齿数为5个,由《数控加工工艺》(田春霞主编)中第

五章表5-5得硬质合金立铣刀每齿进给量f为0.15~0.30,由手册得f取0.15mm/z

故进给量f=0.75 mm/z.

②铣削速度:

由《数控加工工艺》(田春霞主编)中第五章表5-6得硬质合金立铣刀切削速度为45~90mm/ min, 根据实际

情况得V取70mm/min.

③切削工时

引入l=2mm,引出l1=2mm,l3=75mm,根据公式(3-2)得:

(4)铣35×3的上端面。

①进给量

采用端铣刀,齿数4,每齿进给量=0.15mm/z(《机械制造工艺与机床夹具课程设计指导》,吴拓、方琼

珊主编)。

故进给量f=0.6mm

②铣削速度:

由《数控加工工艺》(田春霞主编)中第五章表5-6得切削速度为9~18m/min

根据实际情况查表得V=15 m/min

③切削工时

切入l=3mm,行程l1=35,根据公式(3-2)得:

(5)铣40×16槽的表面。

①进给量

该槽面可用变速钢三面刃铣刀加工,由前定余量为2mm故可一次铣出,铣刀规格为φ32,齿数为8。根据实

际情况,取每齿进给量为0.15mm/z,ap=2mm故总的进给量为:

f=0.15×8=1.2 mm/z

②切削速度

由《工艺手册》表3.1-74,取主轴转速为190r/min。由表(3-1)得

(3-5)

Dc刀具直径

N主轴转速

则:

③切削工时

切入l=2mm切出l1=2mm,行程量l3=40mm,根据公式(3-2)得:

(6)铣40×16的槽。

①进给量

的槽可用高速钢三面刃铣刀加工,铣刀规格为φ16,齿数为10。由《机械加工工艺师手册》表21-5,取每

齿进给量为0.15mm/z,ap=2mm,故总的进给量为:f=0.15×10=1.5 mm/z

②切削速度

由《工艺手册》表3.1-74,取主轴转速为190r/min。根据公式(3-5)得:

③切削工时

切入l=2mm,切出l1=2mm行程量l2=40mm,根据公式(3-2)得:

(7)切断φ55叉口。

①进给量

采用切断刀,齿数4,每齿进给量=0.15mm/z(《机械制造工艺与机床夹具课程设计指导》(吴拓、方琼

珊主编)。

故进给量为:

f=0.6mm

②铣削速度:

由《数控加工工艺》(田春霞主编)中第五章表5-6得切削速度为9~18m/min

根据实际情况查表得V=15 m/min

③切削工时

切出l=2mm,切出l1=2mm,行程量=75mm

数控 车床数控小径数控车床怎样计算螺纹牙高…大径…小径…

数控车床数控小径数控车床怎样计算螺纹牙高…大径…小径… d的算法有很多种,根据不同的罗纹有不同的值。下面我给你具体分开来算: 1:公制螺纹d=D-1.0825乘P; 2:55度英制螺纹d=D-1.2乘P; 3:60度圆锥管螺纹d=D-1.6乘P; 4:55度圆锥管螺纹d=D-1.28乘P; 5:55度圆柱管螺纹d=D-1.3乘P; 6:60度米制锥螺纹d=D-1.3乘P; 注:d=螺纹小径,D=螺纹大径,P=螺距,H就是牙形高度 粗牙就是M+公称直径(也就是螺纹大径)。例如:M10,M16 细牙就是M+公称直径乘螺距。例如:M10X1,M20X1.5 当螺纹为左旋时,会标注“左”,右旋时不标注。 还有一种标注法:例如,M10——5g6g(这就是外螺纹),M10——6H(这就是内螺纹) 注:内外螺纹都是大径算小径.公式一样 ? 数控车床怎样计算螺纹牙高…大径…小径…知道详细的说一下,还有公式?的答案: 牙形高度=D-d除2。这是单边量。 d的算法有很多种,根据不同的罗纹有不同的值。下面我给你具体分开来算: 1:公制螺纹d=D-1.0825乘P; 2:55度英制螺纹d=D-1.2乘P; 3:60度圆锥管螺纹d=D-1.6乘P;

4:55度圆锥管螺纹d=D-1.28乘P; 5:55度圆柱管螺纹d=D-1.3乘P; 6:60度米制锥螺纹d=D-1.3乘P; 注:d=螺纹小径,D=螺纹大径,P=螺距,H就是牙形高度 粗牙就是M+公称直径(也就是螺纹大径)。例如:M10,M16 细牙就是M+公称直径乘螺距。例如:M10X1,M20X1.5 当螺纹为左旋时,会标注“左”,右旋时不标注。 还有一种标注法:例如,M10——5g6g(这就是外螺纹),M10——6H(这就是内螺纹) 注:内外螺纹都是大径算小径.公式一样

牛顿环测曲率半径

牛顿环测曲率半径 Newton ring experiment 牛顿环是牛顿在1675年观察到的,到19世纪初由科学家杨氏用光的波动理论解释了牛顿环干涉现象。 【实验目的】 理解光的干涉 使用读数显微镜 牛顿环干涉法测量曲率半径 【实验原理】 空气薄层 明暗相间、内疏外密的同心圆环干涉图象 等厚干涉 干涉条纹形成条件为: ???????+==+= 为暗环 为明环2)12(2 2λ δλδλδK K d K K λλλ)(4)(2 222?2 n m D D n m r r R K r R n m n m K --=--=?→?= 【仪器介绍】 读数显微镜、钠灯、牛顿环 牛顿环

【实验内容】 1.按要求布置好器件; 2.观测牛顿环干涉条纹:调节目镜筒上的45°平板玻璃,使光垂直照在平凸透镜装置上,牛顿环放到载物平台上,调节目镜焦距清晰地看到十字叉丝和黄色背景,然后由下向上移动显微镜镜筒看清牛顿干涉环; 3.测量牛顿环直径:取m =24,n=15,转动测微手轮使十字叉丝向左移动到第27环,再倒回到24环,使十字叉丝与暗环的左侧相切,读出x 24左,逐条依次测量x 24左,直到读出x 15左,继续向原方向转动测微手轮,越过牛顿环的中心区域至第15环(右侧相切),读出x 15右,直至x 24右。将数据填入绘制的表格中。 右 右右左左左 242315152324,,...,;,...,,x x x x x x ? 注意:① 十字叉丝跟暗环相切; ② 十字叉丝尽量过圆心;③ 中心明环或暗环的环序数K=0;④ 读数跟螺旋测微计一样,估读到0.001mm 。 【数据处理及误差计算】 ①计算||右左K K K x x D -= ②采用逐差法

数控车床常用计算公式

数控车床常用计算公式 直径Φ 倒角量a 角度θ 正切函数tanθ 正弦函数sinθ 余弦函数cosθ 圆弧半径R 乘以号x 除以号÷先运算()内结果,再运算【】,再运算全式 一、外圆倒斜角计算 公式例子:Φ30直径外端倒角1、5x60°程式:GoX32Z2 1,倒角起点直径X=Φ-2xaxtanθ°X=30-2x1、5x1、732=24、804G1X24、804Z0F0、2 2,倒角起点长度Z=0其中tan60°由数学用表查出G1X30Z-1、5F0、15 3,倒角收点直径X=Φ;G1Z-50 4,倒角收点长度Z=-a。。。。。。 二、内圆倒斜角计算 公式例子:Φ20孔径外端倒角2x60°程式:GoX18Z2

1,倒角起点直径X=Φ+2xaxtanθ°x=20+2x2x1、732=26、928G1x26、928Z0F0、2 2,倒角起点长度Z=0G1X20Z-2F0、15 3,倒角收点直径X=Φ;G1Z-30 4,倒角收点长度Z=-a。。。。。。 三、外圆倒圆角计算 公式例子:Φ35直径外端圆角R3程式:GoX36Z2 1,倒角起点直径X=Φ-2*RX=35-2x3=29G1X29Z0F0、2 2,倒角起点长度Z=0G3X35Z-3R3F0、15 3,倒角收点直径X=Φ;G1Z-30 4,倒角收点长度Z=-R。。。。。。 四、内圆倒圆角计算 公式例子;Φ20孔径外端圆角R2程式:G0X18Z2 1,倒角起点直径X=Φ+2*RX=20+2x2=24G1X24Z0F0、2 2,倒角起点长度Z=0G2X20Z-2R2F0、1 3,倒角收点直径X=Φ;G1Z-25 4,倒角收点长度Z=-R。。。。。。 五、G90、G92数控指令R锥度值的计算: 例子:大端Φ35小端Φ32锥体长20牙长16mm让刀3mm加工 1、计算图上锥度比例值:(32-35)/20=-0、15程式;G0X37Z3 (起始端直径-收点端直径)÷锥体长度G92X33、8Z-16R-1、425F2

三坐标测量机的测头半径补偿与曲面匹配

三坐标测量机的测头半径补偿与曲面匹配 李 春 刘书桂 (天津大学精密测试技术与仪器国家重点实验室 天津 300072) 摘要 在非均匀双三次B—样条函数的基础上,导出自由曲面任意点的法矢量通用算法,进而提出自由曲面测头半径补偿公式;为了更好的消除自由曲面测量中的定位误差,提出了应用单纯形法,对测量原始点进行坐标平移和旋转变换,从而较好的解决了曲面匹配问题。 关键词 自由曲面 测头补偿 曲面匹配 The Probe Rad ius Com pen sa tion of Free-form Surface and Surface M a tch i ng L i Chun L iu Shugu i (S ta te K ey L abora tory of P recision M easu ring T echnology and Instrum en t, T ianj in U n iversity,T ianj in300072,Ch ina) Abstract Based on non2unifo rm B2sp lines,a new current algo rithm w ith no rm al vecto r of random free2fo rm surface’s po int is deduced,and mo re,a fo rm ula w ith p robe compensati on is p ropo sed.W e offer a arithm etic nam ed si m p lex m ethod in o rder to eli m inating o rientati on erro r in the p rocess of free2fo rm surface m easurem ent.It can settle surface m atch ing w ell by sh ifting and ro tating the m easuring coo rdinate system. Key words F ree2fo rm surface P robe compensati on Surface m atch ing 1 引 言 三坐标测量机由于其测量精度和智能化程度较高,广泛应用于制造业的CAD CAM、产品检测和质量控制[1]。用三坐标测量机的球形测头测量自由曲面时,得到的数据是测头中心轨迹,由于测头总有一定的半径r,因此测得的是与被测曲面相距r的包络面。为了得到所需的测量表面,需要求出球心轨迹面所构成的包络面,这个过程被称为测头半径补偿。在实际测量过程中,并不能做到实际曲面和标准曲面完全重合,需要将被测曲面进行旋转、平移等坐标变换,使被测曲面与标准曲面大致重合,从而达到曲面检测的目的,这个过程称之为曲面匹配。 2 测头半径补偿方法 用球形测头测量曲面时,测头与被测曲面为点接触,测头半径补偿的关键是确定曲面在接触点处的法矢。球测头与被测曲面接触时,球心一定在被测点的法线上,而且被测点一定在球心轨迹面过球心点的法线上。因此不论能否得知被测面的法线方向或是球心面的法线方向,都能对测头半径进行补偿。 本文提出了一种新方法,不在测量过程中补偿测头半径,而只是收集测头中心坐标值,然后应用曲面建模理论,计算出球心各点的法矢量值,继而补偿测头半径。 (1)自由曲面的偏导数求法 首先,根据三坐标测量机所得的原始测量点,我们可以反求出双三次B—样条自由曲面的模型[2]: S(u,v)=∑ n i=0 ∑m j=0 N i,4(u)N j,4(v)P i,j(1)其中N i,4(u),N j,4(v)为双三次B—样条基函数, P i,j为控制预点。 先求曲面沿u向的切矢量,即对S(u,v)求偏导: S u(u,v)= 5 5u S(u,v) =∑ m j=0 N j,4(v)u∑ n i=0 N i,4p(u)P i,j 第24卷第4期增刊 仪 器 仪 表 学 报 2003年8月

数控机床常用计算项目与计算方法

数控机床常用计算项目与计算方法

目录 一、AC主轴伺服电机及变频调速电机 ●几个基本概念 (一)主轴电机转速的计算 (二)主轴电机额定输出扭矩及最大输出扭矩的计算。 (三)主轴电机恒扭矩转速范围内实际输出功率的计算。 (四)机床主轴额定输出扭矩及最大输出扭矩的计算。 车、铣、钻方式下,主轴及电机所需功率的计算 一、AC主轴伺服电机及变频调速电机 ●基本概念 1、电机的功率负载特性: 做为一般驱动负载工作的回转电机有以下三种常用的功率负载特性: (1)连续工作制(S1):是指该电机在额定工作条件和负载条件下允许长时间、不间断的工作。(2)短时工作制(S2):是指该电机在规定的短时间内允许超出额定功率进行运转工作,其超载时间优先采用10、30或60分钟等。(3)断续工作制(S3):是指该电机应按一定的通、断周期进行工作,以保证电机在大电流、超载情况下不致因电机温度过高,击穿绝源而烧坏。 在S3工作制下工作的电机允许的每一通、断工作周期为10分钟,例FANUC AC主轴电机规定在50%ED率下(S3工作制),其循环时间周期为10分钟(即ON:5min,OFF:5min)。 目前的AC主轴电机有一个重要特性就是允许在S2或S3工作制下运转,其实际就是一种短的工作制电机。如FANUC的α11型主轴电机的额定连续输出功率为11kw。S2工作制下的30分钟时间内允许的超载功率为15kw。因数控机床在实际超载切削时每一次走刀时间很难超出30分钟,故许多机床制造厂在标定其生产的某型机床动力参数时,常用主轴电机的30分钟超载功率做为其样本上标示的主轴电机的主参数。同样,进行数控机床设计时,设计者亦充分利用好主轴电机的这种特性。 特别需要指出的是,目前多采用的标准型普通变频电机,其仅能在S1工作制下工作,不允许超载使用,因此设计者选用时必须注意。但随着技术的发展,最近市场上出现了一种称为“变频主轴电机”的新型变频电机,其恒功率的拐点转速控制频率(周波)为33.3Hz,不但大幅降低了电机的拐点转速,提高了电机低速时的特性能力,且允许在S2工作制下进行30分钟超载运行,是一种具有良好价格性能比的新型电机。 2、电机的负载特性及主轴电机的拐点转速nj: 无论AC主轴电机还是变频调速电机,其在nj拐点转速以上进行无级调速时,均基本为恒功率调速。即随着电机转速的提高,其输出功率保持基本不变,而电机的输出扭矩则随转速的升高而下降;其在nj拐点转速以下进行无级调速时,均为恒扭矩调速,即随着电机转速的下降,其输出扭矩恒定不变,而电机的输出功率则随转速的降低而下降。因此机床主轴在低速段进行粗加工而转速又落入电机的恒扭矩段转速时,设计者必须认真校核此时电机的实际输出功率能否满足切削所实际需要的功率,否则会出现“闷车”现象。

刀具半径补偿的目的与方法

刀具半径补偿的目的与方法 (1)刀具半径补偿的目的 在车床上进行轮廓加工时,因为车刀具有一定的半径,所以刀具中心(刀心)轨迹和工件轮廓不重合。若数控装置不具备刀具半径自动补偿功能,则只能按刀心轨迹进行编程(图(1-11)中点划线),其数值计算有时相当复杂,尤其当刀具磨损、重磨、换新刀等导致刀具直径变化时,必须重新计算刀心轨迹,修改程序,这样既繁琐,又不易保证加工精度。当数控系统具备刀具半径补偿功能时,编程只需按工件轮廓线进行(图(4-10)中粗实线),数控系统会自动计算刀心轨迹坐标,使刀具偏离工件轮廓一个半径值,即进行半径补偿。 图(4-10)刀具半径补偿 a) 外轮廓b)内轮廓 (2)刀具半径补偿的方法 控刀具半径补偿就是将刀具中心轨迹过程交由数控系统执行,编程时假设刀具的半径为零,直接根据零件的轮廓形状进行编程,而实际的刀具半径则存放在一个可编程刀具半径偏置寄存器中,在加工工程中,数控系统根据零件程序和刀具半径自动计算出刀具中心轨迹,完成对零件的加工。当刀具半径发生变化时,不需要修改零件程序,只需修改存放在刀具半径偏置寄存器中的半径值或选用另一个刀具半径偏置寄存器中的刀具半径所对应的刀具即可。 G41指令为刀具半径左补偿(左刀补),G42指令为刀具半径右补偿(右刀补),G40指令为取消刀具半径补偿。这是一组模态指令,缺省为G40。 使用格式: 说明:(1)刀具半径补偿G41、G42判别方法,如图(4-11)所示,规定沿着刀具运动方向看,刀具位于工件轮廓(编程轨迹)左边,则为左刀补(G41),反之,为刀具的右刀补(G42)。

图(4-11)刀具半径补偿判别方法 (2)使用刀具半径补偿时必须选择工作平面(G17、G18、G19),如选用工作平面G17指令,当执行G17指令后,刀具半径补偿仅影响X、Y轴移动,而对Z轴没有作用。 (3)当主轴顺时针旋转时,使用G41指令车削方式为顺车,反之,使用G42指令车削方式为逆车。而在数控机床为里提高加工表面质量,经常采用顺车,即G41指令。 (4)建立和取消刀补时,必须与G01或G00指令组合完成,配合G02或G03指令使用,机床会报警,在实际编程时建议使用与G01指令组合。建立和取消刀补过程如图(4-12)所示,使刀具从无刀具半径补偿状态O点,配合G01指令运动到补偿开始点A,刀具半径补偿建立。工件轮廓加工完成后,还要取消刀补的过程,即从刀补结束点B,配合G01指令运动到无刀补状态O点。 图(4-12)刀具半径补偿的建立和取消过程 a) 左刀补的建立和取消b) 右刀补的建立和取消

实验十九用牛顿环测透镜地曲率半径思考题

实验十九用牛顿环测透镜的曲率半径思考题 光的干涉是光的波动性的一种表现。若将同一点光源发出的光分成两束,让它们各经不同路径后再相会在一起,当光程差小于光源的相干长度,一般就会产生干涉现象。干涉现象在科学研究和工业技术上有着广泛的应用,如测量光波的波长,精确地测量长度、厚度和角度,检验试件表面的光洁度,研究机械零件内应力的分布以及在半导体技术中测量硅片上氧化层的厚度等。牛顿环、劈尖是其中十分典型的例子,它们属于用分振幅的方法产生的干涉现象,也是典型的等厚干涉条纹。 【实验目的】 1.观察和研究等厚干涉现象和特点。 2.学习用等厚干涉法测量平凸透镜曲率半径和薄膜厚度。 3.熟练使用读数显微镜。 4.学习用逐差法处理实验数据的方法。 【实验仪器】 测量显微镜,钠光光源,牛顿环仪,牛顿环和劈尖装置。 图1 实验仪器实物图 【实验原理】 1.牛顿环 “牛顿环”是一种用分振幅方法实现的等厚干涉现象,最早为牛顿所发现。为了研究薄膜的颜色,牛顿曾经仔细研究过凸透镜和平面玻璃组成的实验装置。他的最有价值的成果是发现通过测量同心圆的半径就可算出凸透镜和平面玻璃板之间对应位置空气层的厚度;对应于亮环的空气层厚度与1、3、5…成比例,对应于暗环的空气层厚度与0、2、4…成比例。但由于他主张光的微粒说(光的干涉是光的波动性的一种表现)而未能对它作出正确的解释。

直到十九世纪初,托马斯.杨才用光的干涉原理解释了牛顿环现象,并参考牛顿的测量结果计算了不同颜色的光波对应的波长和频率。 牛顿环装置是由一块曲率半径较大的平凸玻璃透镜,将其凸面放在一块光学玻璃平板(平晶)上构成的,如图2所示。平凸透镜的凸面与玻璃平板之间形成一层空气薄膜,其厚度从中心接触点到边缘逐渐增加。若以平行单色光垂直照射到牛顿环上,则经空气层上、下表面反射的二光束存在光程差,它们在平凸透镜的凸面相遇后,将发生干涉。其干涉图样是以玻璃接触点为中心的一系列明暗相间的同心圆环(如图3所示),称为牛顿环。由于同一干涉环上各处的空气层厚度是相同的,因此称为等厚干涉。 图2 牛顿环装置图3 干涉圆环 与级条纹对应的两束相干光的光程差为

数控车床常用计算公式

直径Φ 倒角量a 角度θ 正切函数tanθ 正弦函数sinθ 余弦函数cosθ 圆弧半径R 乘以号x 除以号÷先运算()内结果,再运算【】,再运算全式 一、外圆倒斜角计算 公式例子:Φ30直径外端倒角1.5x60°程式:GoX32Z2 1,倒角起点直径 X=Φ-2xaxtanθ°X=30-2x1.5x1.732=24.804G1X24.804Z0F0.2 2,倒角起点长度Z=0其中tan60°由数学用表查出G1X30Z-1.5F0.15 3,倒角收点直径X=Φ;G1Z-50 4,倒角收点长度Z=-a。。。。。。 二、内圆倒斜角计算 公式例子:Φ20孔径外端倒角2x60°程式:GoX18Z2

1,倒角起点直径 X=Φ+2xaxtanθ°x=20+2x2x1.732=26.928G1x26.928Z0F0.2 2,倒角起点长度Z=0G1X20Z-2F0.15 3,倒角收点直径X=Φ;G1Z-30 4,倒角收点长度Z=-a。。。。。。 三、外圆倒圆角计算 公式例子:Φ35直径外端圆角R3程式:GoX36Z2 1,倒角起点直径X=Φ-2*RX=35-2x3=29G1X29Z0F0.2 2,倒角起点长度Z=0G3X35Z-3R3F0.15 3,倒角收点直径X=Φ;G1Z-30 4,倒角收点长度Z=-R。。。。。。 四、内圆倒圆角计算 公式例子;Φ20孔径外端圆角R2程式:G0X18Z2 1,倒角起点直径X=Φ+2*RX=20+2x2=24G1X24Z0F0.2 2,倒角起点长度Z=0G2X20Z-2R2F0.1 3,倒角收点直径X=Φ;G1Z-25 4,倒角收点长度Z=-R。。。。。。 五、G90、G92数控指令R锥度值的计算: 例子:大端Φ35小端Φ32锥体长20牙长16mm让刀3mm加工 1、计算图上锥度比例值:(32-35)/20=-0.15程式;G0X37Z3

用牛顿环测透镜的曲率半径实验报告

用牛顿环测透镜曲率半径 [实验目的] 1.观察光的等厚干涉现象,了解干涉条纹特点。 2.利用干涉原理测透镜曲率半径。 3.学习用逐差法处理实验数据的方法。 [实验原理] 牛顿环条纹是等厚干涉条纹。 由图中几何关系可得 22222)(k k k k d Rd d R R r -=--= 因为R>>d k 所以 k k Rd r 22= (1) 由干涉条件可知,当光程差 ??? ???? =+=+=?==+=?暗条纹 明条纹 )0,1,2(k 2)12(22 )1,2,(k 22ΛΛλλλλk d k d k k (2) 其干涉条纹仅与空气层厚度有关,因此为等厚干涉。由(1)式和(2)式可得暗条纹其环的半径 R k r k λ=2 (3) 由式(3)可知,若已知入射光的波长λ,测出k 级干涉环的半径r k ,就可计算平凸透镜的曲率半径。 所以 λ m D D R k m k 42 2-=+ (4) 只要测出D k 和D k+m ,知道级差m ,并已知光的波长λ,便可计算R 。

[实验仪器] 钠光灯,读数显微镜,牛顿环。 [实验内容] 1.将牛顿环置于读数显微镜载物合上,并调节物镜前反射玻璃片的角度,使显微镜的视场中充满亮光。 2.调节升降螺旋,使镜筒处于能使看到清晰干涉条纹的位置,移动牛顿环装置使干涉环中心在视场中央。并观察牛顿环干涉条纹的特点。 3.测量牛顿环的直径。由于中心圆环较模糊,不易测准,所以中央几级暗环直径不要测,只须数出其圈数,转动测微鼓轮向右(或左)侧转动18条暗纹以上,再退回到第18条,并使十字叉丝对准第18条暗纹中心,记下读数,再依次测第17条、第16条…至第3条暗纹中心,再移至左(或右)侧从第3条暗纹中心测至第18条暗纹中心,正式测试时测微鼓轮只能向一个方向转动,只途不能进进退退,否则会引起空回测量误差。 4.用逐差法进行数据处理及第18圈对第8圈,第17圈对第7圈…。其级差m=10,用(4)式计算R 。 [实验数据处理] 在本实验中,由于在不同的环半径情况下测得的R 的值是非等精度的测量,故对各次测量的结果进行数据处理时,要计算总的测量不确定度是个较复杂的问题。为了简化实验的计算,避免在复杂的推导计算中耗费过多时间,本实验中研究测量的不确定度时仅按等精度测量的情况估算(22k m k D D -+)的标准偏差,而忽略B 类不确定度的估算和在计算中因不等精度测量所带来的偏差。 表1 牛顿环测量数据 m =10,λ=5.893×10-4mm

牛顿环法测曲率半径

牛顿环法测曲率半径2014年11月28日

牛顿环法测曲率半径 光的干涉现象表明了光的波动的性质,干涉现象在科学研究与计量技术中有着广 泛的应用。在干涉现象中,不论何种干涉,相邻干涉条纹的光程差的改变都等于相干光 的波长,可见光的波长虽然很小,但干涉条纹间的距离或干涉条纹的数目是可以计量的 因此,通过对干涉条纹数目或条纹移动数目的计量,可以得到以光的波长为单位的光程 差。 利用光的等厚干涉可以测量光的波长,检验表面的平面度,球面度,光洁度,以 及精确测量长度,角度和微小形变等 一 ?实验内容 图1 本实验的主要内容为利用干射法测量平凸透镜的曲率半径。 1.观察牛顿环 将牛顿环按图2所示放置在读数显微镜镜筒和入射光调节架下方,调节玻璃片的 角度,使通过显微镜目镜观察时视场最亮。 调节目镜,看清目镜视场的十字叉丝后,使显微镜镜筒下降到接近牛顿环仪然后 缓慢上升,直到观察到干涉条纹,再微调玻璃片角度和显微镜,使条纹清晰。 2. 测牛顿环半径

使显微镜十字叉丝交点和牛顿环中心重合,并使水平方向的叉丝和标尺平行()与显微镜移动方向平行)。记录标尺读数。 转动显微镜微调鼓轮,使显微镜沿一个方向移动,同时数出十字叉丝竖丝移过的暗环数,直到竖丝与第N环相切为止(N根据实验要求决定)。记录标尺读数。 3.重复步骤2测得一组牛顿环半径值,利用逐差法处理得到的数据,得到牛顿环半径R和R 的标准差。 二.实验原理 图1 如图所示,在平板玻璃面DCF上放一个曲率半径很大的平凸透镜ACB C点为接触点,这样在ACB和DCF之间,形成一层厚度不均匀的空气薄膜,单色光从上方垂直入射到透镜上,透过透镜,近似垂直地入射于空气膜。分别从膜的上下表面反射的两条光线来自同一条入射光线,它们满足相干条件并在膜的上表面相遇而产生干涉,干涉后的强度由相遇的两条光线的光程差决定,由图可见,二者的光程差△'等于膜厚度e的两倍, 即厶=2e 此外,当光在空气膜的上表面反射时,是从光密媒质射向光疏媒质,反射光不发生相位突变,而在下表面反射时,则会发生相位突变,即在反射点处,反射光的相位与入射光的相位之间相差,与之对应的光程差为/2,所以相干的两条光线还 具有/2的附加光程差,总的光程差为 A = A'-4-2/2 = + (1) 当△满足条件

数控车削切削用量的选择原则、方法及主要问题

数控车削切削用量的选择原则、方法及主要问题 数控车削加工中的切削用量包括背吃刀量ap、主轴转速n或切削速度vc(用于恒线速度切削)、进给速度vf或进给量f。这些参数均应在机床给定的允许范围内选取。 切削用量的选用原则 (1)切削用量的选用原则 粗车时,应尽量保证较高的金属切除率和必要的刀具耐用度。 选择切削用量时应首先选取尽可能大的背吃刀量ap,其次根据机床动力和刚性的限制条件,选取尽可能大的进给量f,最后根据刀具耐用度要求,确定合适的切削速度vc。增大背吃刀量ap可使走刀次数减少,增大进给量f有利于断屑。 精车时,对加工精度和表面粗糙度要求较高,加工余量不大且较均匀。选择精车的切削用量时,应着重考虑如何保证加工质量,并在此基础土尽量提高生产率。因此,精车时应选用较小(但不能太小)的背吃刀量和进给量,并选用性能高的刀具材料和合理的几何参数,以尽可能提高切削速度。 (2)切削用量的选取方法 ①背吃刀量的选择粗加工时,除留下精加工余量外,一次走刀尽可能切除全部余量。也可分多次走刀。精加工的加工余量一般较小,可一次切除。在中等功率机床上,粗加工的背吃刀量可达8~10mm;半精加工的背吃刀量取0.5~5mm;精加工的背吃刀量取0.2~1.5mm。 ②进给速度(进给量)的确定粗加工时,由于对工件的表面质量没有太高的要求,这时主要根据机床进给机构的强度和刚性、刀杆的强度和刚性、刀具材料、刀杆和工件尺寸以及已选定的背吃刀量等因素来选取进给速度。精加工时,则按表面粗糙度要求、刀具及工件材料等因素来选取进给速度。进给速度νf 可以按公式ν f =f×n计算,式中f表示每转进给量,粗车时一般取0.3~0.8mm /r;精车时常取0.1~0.3mm/r;切断时常取0.05~0.2mm/r。 ③切削速度的确定切削速度vc可根据己经选定的背吃刀量、进给量及刀具耐用度进行选取。实际加工过程中,也可根据生产实践经验和查表的方法来选取。粗加工或工件材料的加工性能较差时,宜选用较低的切削速度。精加工或刀具材料、工件材料的切削性能较好时,宜选用较高的切削速度。切削速度vc确定后,可根据刀具或工件直径(D)按公式n=l000vc/πD 来确定主轴转速n(r/min)。在工厂的实际生产过程中,切削用量一般根据经验并通过查表的方式进行选取。常用硬质合金或涂层硬质合金切削不同材料时的切削用量推荐值见表1表2为常用切削用量推荐表,供参考。

数控编程常用计算方法

第3章数控编程中的数学处理 (一)目的与要求 通过本章内容的学习,使学生了解数控编程前数学处理的主要内容和基本方法,掌握利用三角函数计算基点坐标,为数控编程做准备。 (二)教学内容 1.三角函数法计算基点坐标 2.非圆曲线节点坐标的概念 3.辅助坐标点的设定与计算 (三)教学要求 1.掌握利用三角函数计算基点坐标的方法 2.了解非圆曲线节点坐标的概念 3.掌握辅助坐标点的计算 (四)重点与难点 重点:利用三角函数计算基点坐标 难点:辅助坐标点的设定与计算 (五)学习指导 1、数值计算的内容 对零件图形进行数学处理是编程前的一个关键性的环节。数值计算主要包括以下内容。 (1)基点和节点的坐标计算 零件的轮廓是由许多不同的几何元素组成。如直线、圆弧、二次曲线及列表点曲线等。各几何元素间的联结点称为基点,显然,相邻基点间只能是一个几何元素。 当零件的形状是由直线段或圆弧之外的其他曲线构成,而数控装置又不具备该曲线的插补功能时,其数值计算就比较复杂。将组成零件轮廓曲线,按数控系统插补功能的要求,在满足允许的编程误差的条件下,用若干直线段或圆弧来逼近给定的曲线,逼近线段的交点或切点称为节点。编写程序时,应按节点划分程序段。逼近线段的近似区间愈大,则节点数目愈少,相应地程序段数目也会减少,但逼近线段的误差d应小于或等于编程允许误差d允,即d≤d允。考虑到工艺系统及计算误差的影响,d允一般取零件公差的1/5~1/10。 (2)刀位点轨迹的计算 刀位点是标志刀具所处不同位置的坐标点,不同类型刀具的刀位点不同。对于具有刀具半径补偿功能的数控机床,只要在编写程序时,在程序的适当位置写入建立刀具补偿的有关指令,就可以保证在加工过程中,使刀位点按一定的规则自动偏离编程轨迹,达到正确加工的目的。这时可直接按零件轮廓形状,计算各基点和节点坐标,并作为编程时的坐标数据。 当机床所采用的数控系统不具备刀具半径补偿功能时,编程时,需对刀具的刀位点轨迹进行数值计算,按零件轮廓的等距线编程。 (3)辅助计算 辅助程序段是指刀具从对刀点到切人点或从切出点返回到对刀点而特意安排的程序段。切入点位置的选择应依据零件加工余量而定,适当离开零件一段距离。切出点位置的选择,应避免刀具在快速返回时发生撞刀。使用刀具补偿功能时,建立刀补的程序段应在加工零件之前写入,加工完成后应取消刀具补偿。某些零件的加工,要求刀具“切向”切入和“切向”切出。以上程序段的安排,在绘制走刀路线时,即应明确地表达出来。数值计算时,按照走刀路线的安排,计算出各相关点的坐标。 2、基点坐标的计算 零件轮廓或刀位点轨迹的基点坐标计算,一般采用代数法或几何法。代数法是通过列方程组的方法求解基点坐标,这种方法虽然已根据轮廓形状,将直线和圆弧的关系归纳成若干

数控车床对刀原理及方法步骤(实用详细)

数控车床对刀原理及对刀方法 对刀是数控加工中的主要操作和重要技能。在一定条件下,对刀的精度可以决定零件的加工精度,同时,对刀效率还直接影响数控加工效率。 仅仅知道对刀方法是不够的,还要知道数控系统的各种对刀设置方式,以及这些方式在加工程序中的调用方法,同时要知道各种对刀方式的优缺点、使用条件(下面的论述是以FANUC OiMate数控系统为例)等。 1 为什么要对刀 一般来说,零件的数控加工编程和上机床加工是分开进行的。数控编程员根据零件的设计图纸,选定一个方便编程的坐标系及其原点,我们称之为程序坐标系和程序原点。程序原点一般与零件的工艺基准或设计基准重合,因此又称作工件原点。 数控车床通电后,须进行回零(参考点)操作,其目的是建立数控车床进行位置测量、控制、显示的统一基准,该点就是所谓的机床原点,它的位置由机床位置传感器决定。由于机床回零后,刀具(刀尖)的位置距离机床原点是固定不变的,因此,为便于对刀和加工,可将机床回零后刀尖的位置看作机床原点。 在图1中,O是程序原点,O'是机床回零后以刀尖位置为参照的机床原点。 编程员按程序坐标系中的坐标数据编制刀具(刀尖)的运行轨迹。由于刀尖的初始位置(机床原点)与程序原点存在X向偏移距离和Z向偏移距离,使得实际的刀尖位置与程序指令的位置有同样的偏移距离,因此,须将该距离测量出来并设置进数控系统,使系统据此调整刀尖的运动轨迹。

所谓对刀,其实质就是侧量程序原点与机床原点之间的偏移距离并设置程序原点在以刀尖为参照的机床坐标系里的坐标。 2 试切对刀原理 对刀的方法有很多种,按对刀的精度可分为粗略对刀和精确对刀;按是否采用对刀仪可分为手动对刀和自动对刀;按是否采用基准刀,又可分为绝对对刀和相对对刀等。但无论采用哪种对刀方式,都离不开试切对刀,试切对刀是最根本的对刀方法。 以图2为例,试切对刀步骤如下: ①在手动操作方式下,用所选刀具在加工余量范围内试切工件外圆,记下此时显示屏中的X坐标值,记为Xa。(注意:数控车床显示和编程的X坐标一般为直径值)。 ②将刀具沿+Z方向退回到工件端面余量处一点(假定为α点)切削端面,记录此时显示屏中的Z坐标值,记为Za。 ③测量试切后的工件外圆直径,记为φ。 如果程序原点O设在工件端面(一般必须是已经精加工完毕的端面)与回转中心的交点,则程序原点O在机床坐标系中的坐标为 Xo=Xa-φ(1) Zo=Za 注意:公式中的坐标值均为负值。将Xo、Zo设置进数控系统即完成对刀设置。3 程序原点(工件原点)的设置方式 在FANUC数控系统中,有以下几种设置程序原点的方式:①设置刀具偏移量补偿;②用G50设置刀具起点;③用G54~G59设置程序原点;④用“工件移”设置程序原点。 程序原点设置是对刀不可缺少的组成部分。每种设置方法有不同的编程使用方式、不同的应用条件和不同的工作效率。各种设置方式可以组合使用。

用牛顿环测量透镜的曲率半径(附数据处理)

007大学实验报告评分: 课程:学期:指导老师:007 年级专业:学号:姓名:习惯一个人007 实验3-11 用牛顿环测量透镜的曲率半径 一. 实验目的 1.进一步熟悉移测显微镜使用,观察牛顿环的条纹特征。 2.利用等厚干涉测量平凸透镜曲率半径。 3. 学习用逐差法处理实验数据的方法。 二.实验仪器 牛顿环仪,移测显微镜,低压钠灯 三.实验原理 牛顿环装置是由一块曲率半径较大的平凸玻璃透镜,以其凸面放在一块光学玻璃平板(平晶)上构成的,如图1所示。平凸透镜的凸面与玻璃平板之间的空气层厚度从中心到 边缘逐渐增加,若以平行单色光垂直照射到牛顿环上,则经空气层上、下表面反射的二光 束存在光程差,它们在平凸透镜的凸面相遇后,将发生干涉。从透镜上看到的干涉花样是 以玻璃接触点为中心的一系列明暗相间的圆环(如图2所示),称为牛顿环。由于同一干涉 环上各处的空气层厚度是相同的,因此它属于等厚干涉。 由图1可见,如设透镜的曲率半径为R,与接触点O相距为r处空气层的厚度为d,其几

何关系式为: 由于R>>d,可以略去d 2 得 (3-11-1) 光线应是垂直入射的,计算光程差时还要考虑光波在平玻璃板上反射会有半波损失,从而带来λ/2的附加程差,所以总程差为 产生暗环的条件是: 其中k=0,1,2,3,...为干涉暗条纹的级数。综合(23-1)、(23-2)和(23-3)式可得第k级暗环的半径为: (3-11-2) 由(4)式可知,如果单色光源的波长 已知,测出第m级的暗环半径rm ,即可得出平凸透镜 的曲率半径R;反之,如果R已知,测出rm 后,就可计算出入射单色光波的波长 。但是 用此测量关系式往往误差很大,原因在于凸面和平面不可能是理想的点接触;接触压力会 引起局部形变,使接触处成为一个圆形平面,干涉环中心为一暗斑。或者空气间隙层中有了尘埃,附加了光程差,干涉环中心为一亮(或暗)斑,均无法确定环的几何中心。实际测量时,我们可以通过测量距中心较远的两个暗环的半径rm 和rn 的平方差来计算曲率半径R。因为 rm 2 =mR rn 2 =nR (3-11-3) 两式相减可得 所以半径 R 为 λ )(42 2 n m D D R n m --= (3-11-4) 四.实验步骤与内容 1.调整显微镜的十字叉丝与牛顿环中心大致重合。 2.转动测微鼓轮,使叉丝的交点移近某暗环,当竖直叉丝与条纹相切时(观察时要注意视 差),从测微鼓轮及主尺上读下其位置x。为了熟练操作和正确读数,在正式读数前 应反复练习几次,直到同一个方向每次移到该环时的读数都很接近为止。 3.在测量各干涉环的直经时,只可沿同一个方向旋转鼓轮,不能进进退退,以避免测微

数控车床粗糙度计算公式

数控车床粗糙度计算公式 今天讲一下关于车削的表面粗糙度的计算方式,只需要将切削参数代入即可计算出可能最高的表面粗糙度。下面跟yjbys 小编一起来学习车削表面粗糙度的计算方式吧! 车削表面粗糙度=每转进给的平方*1000/刀尖R 乘8 以上计算方式是理论上的可能达到最坏的的效果,实际上因刀具品质、机床刚性精度、切削液、切削温度、切削速度、材料硬度等等原因,会将粗糙度提高或者降低的,如果你用上面的计算方式计算出来的粗糙度都不能满足想达到的效果,请先更改切削参数。但进给一般和切深有着密切的关系,一般进给是切深的10%~20%之间,排削的效果是最好的切削深度,因为屑的宽度和厚度最合比例 以上公式的各个参数我下面详细一项项解释一下对粗糙度的影响,如有不正请指点: 1:进给--进给越大粗糙度越大,进给越大加工效率越高,刀具磨损越小,所以进给一般最后定,按照需要的粗糙度最后定出进给2:刀尖R--刀尖R 越大,粗糙度越降低,但切削力会不断增大,对机床的刚性要求更高,对材料自身的刚性也要求越高。建议一般切削钢件6150 以下的车床不要使用R0.8 以上的刀尖,而硬铝合金不要用R0.4 以上的刀尖,否则车出的的真圆度、直线度等等形位公差都没办法保证了,就算能降低粗糙度也是枉然! 3:切削时要计算设备功率,至于如何计算切削时所需要的功率(以电机KW 的80%作为极限),下一帖再说。要注意的时,现在大部分的数控车床都是使用变频电机的,变频电机的特点是转速越高扭力越大,转速越低扭力越小,所以计算功率是请把变频电机的KW 除2 比较保险。而转速的高低又与切削时的线速度有密切关系,而传统的普车是

. 三坐标测量机测头的测球半径补偿误差的计算

三坐标测量机测头的测球半径补偿误差的计算 2010-2-5 15:49:00 来源:《工具技术》阅读:161次我要收藏 【字体:大中小】 摘要:介绍了三坐标测量机的发展与测量头的分类,结合实例重点分析了触发式测头的测球半径补偿误差的产生原因、计算方法和预防措施。 1 引言 从1950年英国FERRANTI公司制造出第一台数字式测头移动型三坐标测量机、1973年前西德OPTON公司完成三维测头设计并与电子计算机配套推出第一个三坐标测量系统 以来,经过几十年的快速发展,坐标测量技术已臻成熟,测量精度得到极大提高,测量软件功能更加强大,操作界面也日益完善,生产厂家遍布全球,开发出了适于不同用途的三坐标测量机型。几十年的发展充分证明,现代三标测量系统打破了传统的测量模式,具有通用、灵活、高效等特点,可以通过计算机控制完成各种复杂零件的测量,符合机械制造业中柔性自动化发展的需要,能够满足现代生产对测量技术提出的高精度、高效率要求。 除用于空间尺寸及形位误差的测量外,应用坐标测量机对未知数学模型的复杂曲面进行测量,提取复杂曲面的原始形状信息,重构被测曲面,实现被测曲面的数字化,不仅是坐标测量机应用的一个重要领域,也是反求工程中的关键技术之一,近年来也得到快速发展。 2 测头的分类 测量头作为测量传感器,是坐标测量系统中非常重要的部件。三坐标测量机的工作效率、精度与测量头密切相关,没有先进的测量头,就无法发挥测量机的卓越功能。坐标测量机的发展促进了新型测头的研制,新型测头的开发又进一步扩大了测量机的应用范围。按测量方法,可将测头分为接触式(触发式)和非接触式两大类。触发式测量头又分为机械接触式测头和电气接触式测头;非接触式测头则包括光学显微镜、电视扫描头及激光扫描头等。本文讨论的重点为触发式测头。

数控机床常用计算项目与计算方法

目录 一、AC主轴伺服电机及变频调速电机 ●几个基本概念 (一)主轴电机转速的计算 (二)主轴电机额定输出扭矩及最大输出扭矩的计算。 (三)主轴电机恒扭矩转速范围内实际输出功率的计算。 (四)机床主轴额定输出扭矩及最大输出扭矩的计算。 车、铣、钻方式下,主轴及电机所需功率的计算 一、AC主轴伺服电机及变频调速电机 ●基本概念 1、电机的功率负载特性: 做为一般驱动负载工作的回转电机有以下三种常用的功率负载特性: (1)连续工作制(S1):是指该电机在额定工作条件和负载条件下允许长时间、不间断的工作。(2)短时工作制(S2):是指该电机在规定的短时间内允许超出额定功率进行运转工作,其超载时间优先采用10、30或60分钟等。(3)断续工作制(S3):是指该电机应按一定的通、断周期进行工作,以保证电机在大电流、超载情况下不致因电机温度过高,击穿绝源而烧坏。 在S3工作制下工作的电机允许的每一通、断工作周期为10分钟,例FANUC AC主轴电机规定在50%ED率下(S3工作制),其循环时间周期为10分钟(即ON:5min,OFF:5min)。 目前的AC主轴电机有一个重要特性就是允许在S2或S3工作制下运转,其实际就是一种短的工作制电机。如FANUC的α11型主轴电机的额定连续输出功率为11kw。S2工作制下的30分钟时间内允许的超载功率为15kw。因数控机床在实际超载切削时每一次走刀时间很难超出30分钟,故许多机床制造厂在标定其生产的某型机床动力参数时,常用主轴电机的30分钟超载功率做为其样本上标示的主轴电机的主参数。同样,进行数控机床设计时,设计者亦充分利用好主轴电机的这种特性。 特别需要指出的是,目前多采用的标准型普通变频电机,其仅能在S1工作制下工作,不允许超载使用,因此设计者选用时必须注意。但随着技术的发展,最近市场上出现了一种称为“变频主轴电机”的新型变频电机,其恒功率的拐点转速控制频率(周波)为33.3Hz,不但大幅降低了电机的拐点转速,提高了电机低速时的特性能力,且允许在S2工作制下进行30分钟超载运行,是一种具有良好价格性能比的新型电机。 2、电机的负载特性及主轴电机的拐点转速nj: 无论AC主轴电机还是变频调速电机,其在nj拐点转速以上进行无级调速时,均基本为恒功率调速。即随着电机转速的提高,其输出功率保持基本不变,而电机的输出扭矩则随转速的升高而下降;其在nj拐点转速以下进行无级调速时,均为恒扭矩调速,即随着电机转速的下降,其输出扭矩恒定不变,而电机的输出功率则随转速的降低而下降。因此机床主轴在低速段进行粗加工而转速又落入电机的恒扭矩段转速时,设计者必须认真校核此时电机的实际输出功率能否满足切削所实际需要的功率,否则会出现“闷车”现象。 在我国,因发电厂采用50Hz频率(周波)数发电,故对标准AC主轴电机(如FANUC的α系列)和标准普通变频电机而言,因多采用4极(4P)绕组电机,则nj拐点转速值应为1500r/min。

用牛顿环测曲率半径

一.用牛顿环测曲率半径 光学元件的球面曲率半径可以用各种方法和仪器来测定。常用的有机械法(如用球径仪测量)和光学法。采用什么方法和仪器,主要取决于所测曲率半径的大小和精度。本试验介绍的牛顿环法是光学法的一种,这种方法适用于测定大的曲率半径,球面可以是凸面也可以是凹面。 【实验目的】 1 学习用牛顿环测量球面曲率半径的原理和方法; 2 学会使用测量显微镜和钠光灯。 【实验原理】 1 等厚干涉 如图,有面广源S 上某一原子发出的某种波长为λ的光线1和2投射到bb 面上(bb 面两边介质的折射率分别为N 和n )。其中一条(光线1)经aa 表 线2)相遇于bb 表面附近的C 点,因而在C 点产生干涉。在C 点处就可以观察到干涉条纹。 如果aa 和bb 表面之间是很薄的空气夹层(折射率n=1),而且夹角很小,光线又近乎垂直地入射到bb 表面上,光线11’和22’的光程差是 2/2h δλ=+ 光程差只与厚度h 有关。式中λ/2是因为光线由光疏介质射到光密介质且在aa 界面反射时有一相位突变引起的附加光程差。 产生第m 级(m 为一整数)暗条纹的条件是 2(21) ,0,1,2,2 2 h m m λλ + =+=… 即 12h m λ= 产生第m 级亮条纹的条件是 22,0,1,2,2 2 h m m λ λ + ==… 即 1()22 h m λ =- 因此,在空气层厚度相同处产生同一级干涉条纹,厚度不同处产生不同的干涉条纹,如图所示。图中(a)表示上下两个表面的平面性很好,因而产生规则的干涉条纹;(b)表示两个表面的平面性很差,产生了很不规则的干涉花样。这些都叫做等厚干涉条纹。 2 用牛顿环测一球面的曲率半径 (1)将待测凸透镜的球面AOB 放在平面CD 的上面,如图所示,则形成一个从中心O 向四周逐渐增厚的空气层。如果单色光源上某一点发出的光线近乎垂直地入射,则其中一部分光线经AOB 表面反射,另一部分经CD 表面反射,形成两束相干光。这两束光中的两条反射光线将在AOB 表面上某一T 点相遇,从而在T 点产生干涉。由于AOB 表面是球面,整个干涉条纹是明暗相间的圆环,称为牛顿环。 如果AOB 表面与CD 在O 点紧密接触,则在O 点h=0(δ=λ/2),牛顿环是一个暗斑。如果在O 点非紧密接触,则h ≠0,牛顿环的中心就不一定是暗斑,也可能是一亮斑(即δ=m λ,

相关文档
相关文档 最新文档