文档库 最新最全的文档下载
当前位置:文档库 › 刚柔耦合机械系统动力学仿真

刚柔耦合机械系统动力学仿真

刚柔耦合机械系统动力学仿真
刚柔耦合机械系统动力学仿真

№.3 陕西科技大学学报 J un.2006

?74?

J OU RNAL OF SHAANXI UN IV ERSIT Y OF SCIENCE &TECHNOLO GY Vol.24

3 文章编号:1000-5811(2006)03-0074-04

刚柔耦合机械系统动力学仿真

刘言松,曹巨江,张元莹

(陕西科技大学机电工程学院,陕西咸阳 712081)

摘 要:有限元技术和虚拟样机技术相结合,实现了对高速机械系统刚柔耦合的动力学仿真,

并以一个算例说明了该方法的可行性。

关键词:有限元技术;虚拟样机技术;刚柔耦合;动力学仿真

中图分类号:T H113 文献标识码:A

0 前言

机械系统的动力学分析与仿真是随着计算机技术的发展而不断成熟的,多体系统动力学是其理论基础。多体系统是指由多个物体通过运动副连接的复杂机械系统,多体系统动力学的根本目的是用计算机技术进行复杂机械系统的动力学分析与仿真。多体系统可分为多刚体系统和多柔体系统,前者是指对于低速运动的系统中的物体,由于其弹性变形不影响其大范围的运动特性,因此均被假定为刚体,后者是指在大型、轻质、高速的工况下,组成系统的物体的弹性变形直接影响了系统的运动特性,因而将所有或部分物体假定为柔性体。本文将研究如何利用有限元技术和虚拟样机技术实现刚柔耦合的机械系统的动力学仿真。

1 多柔体系统动力学方程的建立

建立如图1所示的多柔体的坐标系。e r 为惯性坐标系,e b 为动坐标系,前者不随时间变化,后者建立在柔性体上,用于描述柔性体的运动。e b 可以相对e r 进行有限的移动和转动,e b 在e r 中的坐标称为参考坐标。

图1 柔性体上节点P 的位置对于小变形的柔性体运动可以将其运动分解为:刚性运动———

刚性转动———变形运动3个阶段。如图1,对于柔性体上的任意一

点P ,其位置向量为:

r = r 0+A ( r p + u

p )(1)式中,r 为P 点在惯性坐标系e r 中的向量,r 0为动坐标系e b 原点在

e r 中的向量,u p 为相对变形量,可以用模态坐标来描述:

u p = Φp q f

(2)式中,Φp 为点P 满足里兹基向量所要求的假设变形模态矩阵,q f

为变形的广义坐标。

柔性体的运动方程可以通过式(3)的拉格朗日方程导出:d d t 5 L 5 ξ-5 L 5ξ+5 Γ5ξ

+5 Ψ5ξT λ- Q =0 Ψ=0

(3)式中:Ψ为约束方程;λ为对应约束方程的拉氏乘子;ξ为广义坐标,ξ=[x y z Ψθq i (i =1,…,M )]T =[r Ψq ]T ;q 为模态坐标;Q 为投影到ξ上的广义力;L 为拉格朗日项,L =T -W ,T 和W 分别表示动能和势

3收稿日期:2006-02-10

作者简介:刘言松(1975-),男,安徽省滁州市人,助教,硕士,研究方向:虚拟样机技术、机械动力学

第3期刘言松等:刚柔耦合机械系统动力学仿真能;Γ为能量损耗函数。

T 、W 、Γ的计算方法参考文献〔1〕,将T 、W 、

Γ计算公式代入式(3),得到柔性体的运动微分方程: M ¨ξ+ M ξ-125 M 5ξ ξT ξ+ K ξ+ f g + D ξ+5 Ψ5

ξT λ=Q (4)式中,M 为柔性体的质量矩阵,K 为对应于模态坐标q 的结构部件的广义刚度矩阵,f g

为重力,D 为包含阻尼系数d ij 的常值对称阵。

2 虚拟样机技术和有限元技术联合仿真

虚拟样机技术是一项新生的工程技术。借助于这项技术,工程师们可以在计算机上建立机械系统的模型,伴之以三维可视化处理,模拟在现实环境下系统的运动和动力特性,并根据仿真结果精化和优化系统的设计过程。虚拟样机技术的核心部分是多体系统运动学与动力学建模理论及其技术实现。作为应用数学一个分支的数值算法及时提供了求解这种问题的有效、快速算法。目前应用最广泛的虚拟样机技术软件平台是ADAMS ,其内置模块ADAMS/Flex

可以实现考虑物体弹性的动力学分析。

在ADAMS 中引入的柔性体需有物体的模态参数,物体模态的计算必须依靠功能强大的有限元软件来完成,前期建模则通过三维软件实现。具体工作流程如图2所示。

图2 柔性体仿真流程

2.1 模态分析及.mnf 文件的生成

把三维建模软件生成的机械构件导入有限元程序中,选择适当单元类型来划分单元。在构件与机械系统中的其它构件相对运动回转中心建立节点,并使用刚性区域处理此节点。对该构件进行模态分析后,选择ADAMS 作为外部节点使用的节点,创建.mnf 文件,此文件包含了柔性体的质量、质心、转动惯量、频率、振型以及对载荷的参与因子等信息。

图3 曲柄滑块机构刚柔耦合模型

2.2 柔性体与刚体的连接及其仿真

在机械系统中,一般选择弹性变形对系统性能影响较大的

构件作为柔性体,其它构件仍然作为刚体,所以在柔性体的.

mnf 文件导入ADAMS 后,通过外部节点与刚体之间创建运动

副,实现柔性体与刚体的连接。给系统施加力或者运动后,即

可实现机械系统的刚柔耦合的动力学仿真,从而精确分析系统

的输出响应。

3 算例在常见的曲柄滑块机构中,连杆的变形对该系统的性能会

产生较大影响,因此把连杆作为柔性体考虑,把曲柄和滑块作为刚体考虑。

3.1 建模并导出两种格式的文件

在三维建模软件U G 中建立曲柄滑块机构的装配模型,通过接口文件格式Parasolid 保存为后缀.xmt_t xt 文件供ADAMS 调用,保存为后缀.x_t 文件供有限元软件ANS YS 调用。

3.2 模态分析并生成.mnf 文件

在ANS YS 中调用连杆的.x_t 文件,定义其密度、弹性模量和泊松比,划分网格,添加外部节点并进行模态分析,最后利用ANSYS 的宏命令ADAMS ,_NMODES 生成ADAMS 程序所需的模态中性文件,后缀为.mnf 。

将.mnf 文件导入ADAMS 并替换原有的刚体连杆后的刚柔耦合模型如图3所示。

?57?

陕西科技大学学报第24卷

3.3 添加约束并仿真在曲柄和地面、曲柄和连杆、连杆和滑块之间添加转动副,在滑块和地面之间添加滑动副。在曲柄和连杆、连杆和滑块之间添加转动副时必须选择连杆中外部节点作为对象添加。在曲柄和地面转动副上添加旋转运动,设置仿真时间0.4s ,step s 数为40,滑块的输出加速度如图4a 所示。相同条件下,若连杆作为刚体进行仿真,则滑块的输出最大加速度如图4b 所示

图4 滑块输出加速度

通过ADAMS 数据查询,在参数相同的前提下,柔性连杆条件中滑块的输出最大加速度为327.5758m ?s -2,而刚性连杆条件下滑块的输出最大加速度为328.9868m ?s -2。

4 结束语

显然,对于高速机械系统来说,构件的弹性变形已经明显的影响了系统的输出响应,如果将其简化为刚体,则和系统的实际情况差距较大,因此对高速机械系统来说,运用刚体和柔体耦合实现动力学仿真更接近真实情况。本文阐述了运用虚拟样机技术和有限元技术实现刚柔耦合仿真的途径和方法,为进行复杂机械系统的刚柔耦合动力学仿真以及构件的有限元结构分析提供了基础研究。

参考文献

〔1〕陈立平,张云清,任卫群,等.机械系统动力学分析及ADAMS 应用教程〔M 〕.北京:清华大学出版社,2005:56~62.

〔2〕李 军,刑俊文,覃文洁.ADAMS 实例教程〔M 〕.北京:北京理工大学出版社,2002:93~199.

〔3〕张保锋,谢金法,刘成晔,等.基于VP T 的2302R 2100自行电站传动系统动力学仿真的实现策略〔J 〕.汽车科技,2004,(3):22~24.〔4〕刘言松,贺 炜.弧面分度凸轮机构动力学仿真〔J 〕.现代制造工程,2006,(1):118~119.

DY NAMICS SIMU LATION OF MACHINE SYSTEM

BASED RIGID 2FL EXIB L E COUPL ING

L IU Yan 2song ,CAO J u 2jiang ,ZHAN G Yuan 2ying

(School of Mechanical and Electrical Engineering ,Shaanxi University of Science &Technology ,Xianyang

712081,China )

Abstract :St ruct ural analysis is an advantage of FEM ,but kinematics &dynamics analysis is

t hat

of virt ual prototype technology.This paper expounds t he met hod of dynamics simula 2tion

of high 2speed mechanical system based rigid 2flexible coupling ,combining FEM and vir 2t ual

p rototype technology ,and p roves t he feasibility of t his met hod using an example.K ey w ords :FEM ;virt ual prototype technology ;rigid 2flexible coupling ;dynamics simulation ?

67?

机械系统动力学

机械系统动力学报告 题目:电梯机械系统的动态特性分析 姓名: 专业: 学号:

电梯机械系统的动态特性分析 一、课题背景介绍 随着社会的快速发展,城市人口密度越来越大,高层建筑不断涌现,因此,现在对电梯的提出了更高的要求,随着科技的进步,在满足客观需求的基础上,电梯向着舒适性,高速,高效的方向发展。在电梯的发展过程中,安全性和功能性一直是电梯公司首要考虑的因素,其中舒适性也要包含在电梯的设计中,避免出现速度或者加速度出现突变,或者电梯运行过程中的振动引起人们的不适。因此,在电梯的设计过程中,对电梯进行动态特性分析是十分必要的。 二、在MATLAB中编程、绘图。 通过同组小伙伴的努力,已经得到了该系统的简化模型与运动方程。因此进行编程: 该系统的微分方程:[][][]{}[]Q x k x c x M= + ? ? ? ? ? ? + ? ? ? ? ? ?? ? ? ,其中矩阵[M]、 [C]、[K]、[Q]都已知。 该系统的微分方程是一个二阶一元微分方程,在MATLAB中,提供有求解常微分方程数值解的函数,其中在MATLAB中常用的求微分方程数值解的有7个:ode45,ode23,ode113,ode15s,ode23s,ode23t,ode23tb 。 ode是MATLAB专门用于解微分方程的功能函数。该求解器有变步长(variable-step)和定步长(fixed-step)两种类型。不同类型有着不同的求解器,其中ode45求解器属于变步长的一种,采用Runge-Kutta

算法;和他采用相同算法的变步长求解器还有ode23。 ode45表示采用四阶,五阶Runge-Kutta单步算法,截断误差为(Δx)^3。解决的是Nonstiff(非刚性)常微分方程。 ode45是解决数值解问题的首选方法,若长时间没结果,应该就是刚性的,可换用ode23试试。 Ode45函数调用形式如下:[T,Y]=ode45(odefun,tspan,y0) 相关参数介绍如下: 通过以上的了解,并对该微分方程进行变换与降阶,得出程序。MATLAB程序: (1)建立M函数文件来定义方程组如下: function dy=func(t,y) dy=zeros(10,1); dy(1)=y(2); dy(2)=1/1660*(-0.006*y(2)+0.003*y(4)-0.0006*y(10)-1.27*10^7*y(1)+1.27*10^7*y (3)+2.54*10^6*y(9)); dy(3)=y(4); dy(4)=1/1600*(+0.03*y(2)-0.007*y(4)+0.003*y(6)+1.27*10^7*y(1)-7.274*10^8*y(3 )+1.27*10^7*y(5)); dy(5)=y(6);

动力学主要仿真软件

车辆动力学主要仿真软件 I960年,美国通用汽车公司研制了动力学软件DYNA主要解决多自由度 无约束的机械系统的动力学问题,进行车辆的“质量一弹簧一阻尼”模型分析。作为第一代计算机辅助设计系统的代表,对于解决具有约束的机械系统的动力学问题,工作量依然巨大,而且没有提供求解静力学和运动学问题的简便形式。 随着多体动力学的谨生和发展,机械系统运动学和动力学软件同时得到了迅速的发展。1973年,美国密西根大学的N.Orlandeo和,研制的ADAM 软件,能够简单分析二维和三维、开环或闭环机构的运动学、动力学问题,侧重于解决复杂系统的动力学问题,并应用GEAR刚性积分算法,采用稀疏矩阵技术提高计算效率° 1977年,美国Iowa大学在,研究了广义坐标分类、奇异值分解等算法并编制了DADS软件,能够顺利解决柔性体、反馈元件的空间机构运动学和动力学问题。随后,人们在机械系统动力学、运动学的分析软件中加入了一些功能模块,使其可以包含柔性体、控制器等特殊元件的机械系统。 德国航天局DLF早在20世纪70年代,Willi Kort tm教授领导的团队就开始从事MBS软件的开发,先后使用的MBS软件有Fadyna (1977)、MEDYNA1984),以及最终享誉业界的SIMPAC( 1990).随着计算机硬件和数值积分技术的迅速发展,以及欧洲航空航天事业需求的增长,DLR决定停止开发基于频域求解技术的MED YN软件,并致力于基于时域数值积分技术的发展。1985年由DLR开发的相对坐标系递归算法的SIMPACI软件问世,并很快应用到欧洲航空航天工业,掀起了多体动力学领域的一次算法革命。 同时,DLR首次在SIMPAC嗽件中将多刚体动力学和有限元分析技术结合起来,开创了多体系统动力学由多刚体向刚柔混合系统的发展。另外,由于SIMPACI算法技术的优势,成功地将控制系统和多体计算技术结合起来,发

自主机器人研究报告

自主机器人研究总结报告 一、课题研究背景和意义 工业机器人是最典型的机电一体化数字化装备,技术附加值很高,应用范围很广,作为先进制造业的支撑技术和信息化社会的新兴产业,将对未来生产和社会发展起着越来越重要的作用。在国际上,工业机器人技术日趋成熟,已经成为一种标准设备而得到工业界广泛应用,从而也形成了一批在国际上较有影响力的、著名的工业机器人公司,这些公司已经成为其所在地区的支柱性企业。在众多制造业领域中,应用工业机器人最广泛的领域是汽车及汽车零部件制造业。如在毛坯制造(冲压、压铸、锻造等)、机械加工、焊接、热处理、表面涂覆、上下料、装配、检测及仓库堆垛等作业中,机器人都已逐步取代了人工作业。 工业机器人在制造业的应用范围越来越广阔,其标准化、模块化、网络化和智能化的程度也越来越高,功能越来越强,并向着成套技术和装备的方向发展。工业机器人技术正在向智能机器和智能系统的方向发展,其发展趋势主要为:结构的模块化和可重构化;控制技术的开放化、PC化和网络化;伺服驱动技术的数字化和分散化;多传感器融合技术的实用化;工作环境设计的优化。在汽车领域,应用最广泛的是中载和重载机器人,因此开发具有较高负载能力的机器人意义更大。 二、课题研究的总体目标及完成情况

2.1 课题研究的总体目标、考核指标 2.1.1总体目标 开发出具有自主创新的点焊机器人及周边应用成套设备样机,解决机器人产业化过程中的机器人本体优化设计、基于网络的新型控制器技术、系统集成技术等关键技术问题,进行小批量生产,解决机器人产业制造中的加工工艺问题、制造精度问题和机器人整体制造成本降低问题,在此基础上进行产业化,并首先在奇瑞汽车生产线上进行示范应用,逐步形成中国的工业机器人品牌,促进我国新型工业机器人技术的应用和产业发展。同时制订和完善适合我国国情的安全规范和技术规范,在技术上创新,争取获得多项专利。 2.1.2 主要技术指标 其技术指标如下: (1)本体参数要求 在满足机械本体刚度、强度、转动惯量及一些其它技术参数的基础上选择结构简单、机身紧凑的机身设计,以满足轻量化、低成本及可维护性要求。具体参数范围要求如下:

车辆系统动力学仿真大作业(带程序)

Assignment Vehicle system dynamics simulation 学院:机电学院 专业:机械工程及自动化 姓名: 指导教师:

The model we are going to analys: The FBD of the suspension system is shown as follow:

According to the New's second Law, we can get the equation: 2 )()(221211mg z z c z z k z m --+-=???? 221212)()(z k mg z z c z z k z m w +-----=? ??? 0)()()()(222111222111=-++--+-++--+? ? ? ? ? ? ? ?w w w w z L z k z L z k z L z c z L z c z m χχχχ 0)()()()(2222111122221111=-++----++---? ? ? ? ? ? ? ?w w w w z L z L k z L z L k z L z L c z L z L c J χχχχχ d w w w w Q z L z k z L z c z m ,111111111)()(-=------? ? ? ? ?χχ d w w w w Q z L z k z L z c z m ,222222222)()(-=-+--+-? ????χχ When there is no excitation we can get the equation: 2)()(221211mg z z c z z k z m --+-=???? 2 21212)()(z k mg z z c z z k z m w +-----=? ??? Then we substitude the data into the equation, we write a procedure to simulate the system: Date: ???? ?? ??? ??==?==?===MN/m 0.10k m 25.1s/m kN 0.20MN/m 0.1m kg 3020kg 2100kg 3250w 2l c k I m m by w b

柔性机器人的动力学研究

柔性机器人的动力学研究 摘要:现代机械向高速、精密、轻型和低噪声等方向发展,为了提高机械产品的动态性能、工作品质,必须十分重视机构动力学的研究。特别对于高速运行的机器人,在外力与惯性力作用下,构件的弹性变形不可忽略,它不仅影响了机构的轨迹精 度和定位精度,破坏系统运行的稳定性和可靠性,同时降低了工作效率和整机的使用寿命。对有害动态响应的消减是机械动 力学研究的重要问题。本文以柔性机器人为例,阐述了柔性机器人动力学分析的研究现状及其发展趋势,对Lagrange法,有 限元法、变Newton-Euler方法、Kane方法等方法进行了详细阐述和比较为柔性机器人的控制和优化设计提供科学基础。 关键字:柔性机器人动力学Lagrange 变Newton-Eule方法Kane方法有限元法 Dynamics of Flexible Manipulators Name: Liu Fuxiu Student ID: 1211303007 (Mechanical Engineering of Guangxi University, Mechanical Design and Theory 12 research) Abstract:The modern machinery to speed, precision, lightweight, and low noise direction, in order to improve the dynamic performance and quality of work of mechanical products, Research into the dynamics must be attached great importance to institutions. Especially for high-speed operation of the robot, under the external force and inertial force, the elastic deformation member can not be ignored, it only affects the body path accuracy and positioning accuracy, destroy the stability and reliability of the system, while reducing the efficiency and whole life. Abatement of hazardous dynamic response is an important issue of mechanical dynamics. In this paper, flexible robot, for example, describes the flexible robot dynamics analysis of present situation and development trend of the Lagrange method, finite element method, variable Newton-Euler method, Kane method and other methods were described in detail and compared to the flexible robot control and optimize the design to provide a scientific basis. Keywords: flexible robot dynamics Lagrange Newton-Euler method FEM method Kane finite element method 1 引言 现代科学技术的发展和进步产生了机器人,机器人是机器进化和技术进步的必然结果,而机器人技术有促进生产力的发展。“机器人”源于捷克语“robota”,意思为工作。美国机器人协会对它的定义是:“机器人是一种可再编程的多功能操作机,可以用各种编程的动作完成多种作业,用于搬运材料、工件、工具和专用装置”。自从1959年的Unimation公司推出第一台工业机器人以来,各种机器人或机械手广泛运用于许多领域。它们可以替代人类劳动,完成各种精密、繁重环境恶劣,甚至是危险的任务。 机器人动力学主要研究机器人机构的动力学,机器人机构包括机械结构和驱动装置,它是机器人的本体,是机器人实现各种功能运动和操作任务的执行机构,也是机器人系统中的被控对象。对机器人动力学的研究,应该说,在机器人一出现就已经开始,且随着机器人技术的发展而不断地加以丰富和积累。机器人动力学与其他一般力学、机构动力学比较,它与现代控制技术和计算技术更为密切相关。设计机器人的控制系统,以及实时控制机器人本身的过程中,不可避免地要运用现代计算技术,因此对于动力学的研究必须适应现代计算技术,并需要解决一系列新的问题。如何合理有效地降低机器人的机构重量,成为削减机器人系统总重量的关键所在,近年来,国际竞争越来越激烈,用户在希望成本降低的同时,对机器人的精度、工作速度、负载能力也提出了越来越高的要求。然而,机构的惯性力和角速度的平方成正比,随着工作速度的不断提高,惯性力将成为柔性机械臂变形的主要影响因素。因此,必须尽可能精确地分析机器人在高速情况下的运动动力学特性,从而有效地提高其精度,以上诸多因素导致了柔性机器人及其设计理论的出现。

机械设计基础第十四章 机械系统动力学

第十四章 机械系统动力学 14-11、在图14-19中,行星轮系各轮齿数为123z z z 、、,其质心与轮心重合,又齿轮1、2对质心12O O 、的转动惯量为12J J 、,系杆H 对的转动惯量为H J ,齿轮2的质量为2m ,现以齿轮1为等效构件,求该轮系的等效转动惯量J ν。 2222 2121221 12323121 13212 1 13222 12311212213121313 ( )()()()1()()()( )()()()o H H H o H J J J J m z z z z z z z z z O O z z z z z z z O O J J J J m z z z z z z z z νννωωω ωωωω ωω ωωωωνω=+++=-= += +=+-=++++++解: 14-12、机器主轴的角速度值1()rad ?从降到时2()rad ?,飞轮放出的功 (m)W N ,求飞轮的转动惯量。 max min 122 2 121 ()2 2F F Wy M d J W J ?ν??ωωωω==-=-? 解: 14-15、机器的一个稳定运动循环与主轴两转相对应,以曲柄和连杆所组成的转动副A 的中心为等效力的作用点,等效阻力变化曲线c A F S ν-如图14-22所示。等效驱动力a F ν为常数,等效构件(曲柄)的平均角速度值25/m rad s ?=, 3 H 1 2 3 2 1 H O 1 O 2

不均匀系数0.02δ=,曲柄长度0.5OA l m =,求装在主轴(曲柄轴)上的飞轮的转动惯量。 (a) W v 与时间关系图 (b )、能量指示图 a 2 24()2 3015m Wy=25N m 25 6.28250.02 c va OA vc OA OA va F W W F l F l l F N Mva N J kg m νν=∏?∏=∏+==∏= =?解:稳定运动循环过程 14-17、图14-24中各轮齿数为12213z z z z =、,,轮1为主动轮,在轮1上加力矩1M =常数。作用在轮 2 上的阻力距地变化为: 2r 22r 020M M M ??≤≤∏==∏≤≤∏=当时,常数;当时,,两轮对各自中心的转动惯量为12J J 、。轮的平均角速度值为m ω。若不均匀系数为δ,则:(1)画出以轮1为等效构件的等效力矩曲线M ν?-;(2)求出最大盈亏功;(3)求飞轮的转动惯量F J 。 图14-24 习题14-17图 40Nm 15∏ 12.5∏ 22.5∏ 15Nm ∏ 2∏ 2.5∏ 4∏ 25∏ 1 1 z 2 z 2 r M 2 M ∏ 2∏ 2?

研究生《机械系统动力学》试卷及答案

太原理工大学研究生试题 姓名: 学号: 专业班级: 机械工程2014级 课程名称: 《机械系统动力学》 考试时间: 120分钟 考试日期: 题号 一 二 三 四 五 六 七 八 总分 分数 1 圆柱型仪表悬浮在液体中,如图1所示。仪表质量为m ,液体的比重为ρ,液体的粘性阻尼系数为r ,试导出仪表在液体中竖直方向自由振动方程式,并求固有频率。(10分) 2 系统如图2所示,试计算系统微幅摆动的固有频率,假定OA 是均质刚性杆,质量为m 。(10分) 3 图3所示的悬臂梁,单位长度质量为ρ,试用雷利法计算横向振动的周期。假定梁的 变形曲线为?? ? ?? -=x L y y M 2cos 1π(y M 为自由端的挠度)。(10分) 4 如图4所示的系统,试推导质量m 微幅振动的方程式并求解θ(t)。(10分) 5 一简支梁如图5所示,在跨中央有重量W 为4900N 电机,在W 的作用下,梁的静挠度δst=,粘性阻尼使自由振动10周后振幅减小为初始值的一半,电机n=600rpm 时,转子不平衡质量产生的离心惯性力Q=1960N ,梁的分布质量略去不计,试求系统稳态受迫振动的振幅。(15分) 6 如图6所示的扭转摆,弹簧杆的刚度系数为K ,圆盘的转动惯量为J ,试求系统的固有频率。(15分) 7如图7一提升机,通过刚度系数m N K /1057823?=的钢丝绳和天轮(定滑轮)提升货载。货载重量N W 147000=,以s m v /025.0=的速度等速下降。求提升机突然制动时的钢丝绳最大张力。(15分) 8某振动系统如图8所示,试用拉个朗日法写出动能、势能和能量散失函数。(15分) 太原理工大学研究生试题纸

机床动力学建模的拓展传递矩阵法

万方数据

万方数据

万方数据

万方数据

2010年11月吴文镜等:机床动力学建模的拓展传递矩阵法73 刀。Q=F(9)Q=E522'Jo+E623’10+E7乙110+ 毛毛.10+岛乞J0+Eloz7'j0+ 层Ilz8.10+层12磊.10+E13zF+E30zD(10) F=E14互.10+E15乞.10+巨6毛'lo+ 巨725’10+E18乙J0+E927'lo+ £20磊_lo+E2lz9.10+£22磊+E3l乞(11) 互.o=ElZ6.1+E227.I+E328.1+层429.1(12) 由式(7)~(11)得 (五oE5一E14)互Z2.o+(正oE6一E15)五z3.o+ (五oE7一E16)五乙.o+(五oE8一E17)毛z5.o+ (墨oE9一E18)r6瓦.1+(互oElo—E19)弓Z7.1+ (互oEll—E20)磊z8,1+(正。巨2一E21)写z9.1+ (7ioEl3一E22)z-+(7io岛。一百31)ZF=0(13) 由式(6)、(12)得 互,D(El乙,J+E227.1+E328.I+E4毛,1)=rl,』Z1.,(14)对于状态矢量磊'l、历'l、z8'1、而,1均为刚体1上的状态矢量,位移元素线性相关,有 易327.1=E24互,,(15) 易3磊,l=E25五,J(16) £2329.1=E26互.,(17)联合(13)~(17)将其写成矩阵的形式有 瓦lzalI=048×l(18)zall=(乏,o召。别,。罨。烈,。 z五磊。罨。z0砟磊)1 磊和Zo分别为激振点和拾振点的状态矢量,兀¨为48×69的高维矩阵。 3.2结合面参数 直线进给功能部件中主要存在直线滚动导轨结合面以及电动机定子与滑板之间的螺栓结合面。对于导轨结合面模型简化为1个法向线性弹簧一阻尼系统、1个横向的线性弹簧一阻尼系统和3个转动方向的扭转弹簧一阻尼系统,以综合反映结合部各方向的微幅振动。通过锤击试验分别测定导轨法向和横向及3个扭转方向的传递函数,定义法向为Z,横向为y,3个坐标轴分别为A、B、C。 根据单自南度系统振动方程计算出导轨各方向的接触刚度,根据半功率法计算接触阻尼。最终计算得到导轨结合面参数如表l所示。电动机与滑板之问的螺栓结合面参数如表2所示。导轨结合面参数测试结果见图7。 表l导轨结合部参数结果 参数数值 刚度kr/(MN?m‘1253 刚度kJ(GN?m“12.14 刚度“/(kN?m?rad。。1693 }94度ks/(MN?m?rad‘)1.73 刚度kd(kN?m?rad。1727 阻尼c;l(N?s?m“1641.5 阻尼cJ(N?s?m’)l034.9 雕尼“/(N?m?s?rad。)0.1447 阻尼c洲N?m?s?rad。。)2.011 阻尼Cc/(N?1tl?s?md1)09602 表2螺栓结合部参数 参数数值 刚度k,/(GN?m。。1o.25 刚度k,J(GN?m’)0,25 刚度kfl(GN?m。)2.10 阻尼c.r/(N?s?m。)125 阻尼e,I(N?s?m。。1125 阻尼c∥(N?s?m“)250 (a)测试现场 {||卜M以旷藩三h∥ 迎卜—t——专—上‘_妻蔫k套 图7导轨结合面参数测试结果 3.3滑板有限元自由度缩减模型建-fr 创建有限元自由度缩减模型首先采用通用有限元软件得到零件的有限元法(Finiteelementmethod,FEM)}-莫-型,根据零件特点选择质量集中点、 结合面连接节点、外力作用节点以及需要考察的节 万方数据

机械动力学考试答案

图4 机器安装示意图 88、一个质量20Kg 的机器,按图4所示方式安装。若弹簧的总刚度 为17KN/m ,总阻尼为300m s N ?。试求初始条mm x 250=,s mm x 3000= 时的振动响应。 88、解:由0=++kx x c x m 代入数据后得 08501501017300203=++=?++x x x x x x (8分) 其中,152=a ,8502=n ω,计算阻尼比和固有圆频率 17.2826.012.291126.02 .295.722=-?=-=<===ζωωωζn d n a (4分) 将初始条件代入 00020020arctan )(ax x x ax x x A d d +=++= ω?ω (4分) 得: o d d ax x x mm ax x x A 3.555.25.730017.2825arctan arctan )(4.30)17.2825.7300(25)(0002220020?+?=+==?++=++= ω?ω(2分)

则系统的振动响应为 4. 305.7+ =-t x t(2分)e sin( 28 ) 96 .0 . 17

1. “机械动力学”主要研究哪些内容,请以任一机器为对象举例说明研究内容及其相互关系。 答:机械动力学是研究机械在力的作用下的运动和机械在运动中产生的力,并从力与运动的相互作用的角度进行机械设计和改进的科学。动力学主要研究内容概括起来有:1,共振分析;2,振动分析与动载荷计算;3,计算机与现代测试技术的运用;4,减震与隔振。柴油机上的发动机,发动机不平衡时会产生很强的地面波,从而产生噪声,而承受震动的结构,发动机底座,会由于振动引起的交变应力而导致材料的疲劳失效,而且振动会加剧机械零部件的磨损,如轴承和齿轮的磨损等,并使机械中的紧固件如螺母等变松。在加工时还会导致零件加工质量变差。通过对共振的研究和分析,使机械的运转频率避免共振区,避免机械共振事故的发生,通过振动分析与动载荷计算可以求出在外力作用下机械的真实运动,运用计算机和现代测试技术对机械的运行状态进行检测,以及故障诊断,模态分析以及动态分析,现实中机器运转时由于各种激励因素的存在,不可避免发生振动,为了减小振动,通常在机器底部加装弹簧,橡胶等隔振材料。 2.简述在刚性运动前提下,如何进行运动构件的真实运动分析求解(请列出步骤)? 答:首先建立等效力学模型,将复杂的机械系统简化为一个构件,即等效构件,根据质点系动能定理,将作用于机械系统上的所有外力和外力矩、所有构件的质量和转动惯量,都向等效构件转化;其次计算等效构件上的等效量(包括等效力矩,等效力,等效质量,等效转动惯量);再次建立等效构件的运动方程式,有两种形式,能量形式和力矩形式;最后通过方程式求出等效构件的角速度函数和角加速度函数,这样便可以求出机械系统的真实运动规律。 3.在弹性运动假设下,有哪些弹性动力学建模方法,各有什么特点?请解释“瞬时刚化” 的概念。) 答:弹性动力学模型有集中参数模型和有限元模型。集中参数模型建立起的运动方程为常微分方程,但是由于质量简化过多,模型粗糙,精度比较差;有限元建立的运动方程也为常微分方程,但相较集中参数模型精确,适应性广,可以模拟复杂形状的构件,运算模型统一。瞬时刚化:机构在运动到循环中的某一位置时,可将机构的形状和作用在其上的载荷瞬时冻结起来,从而可瞬时的将机构看做一个刚体结构。

机械系统动力学试题

机械系统动力学试题 一、 简答题: 1.机械振动系统的固有频率与哪些因素有关?关系如何? 2.简述机械振动系统的实际阻尼、临界阻尼、阻尼比的联系与区别。 3.简述无阻尼单自由度系统共振的能量集聚过程。 4. 简述线性多自由度系统动力响应分析方法。 5. 如何设计参数,使减振器效果最佳? 二、 计算题: 1、 单自由度系统质量Kg m 10=, m s N c /20?=, m N k /4000=, m x 01.00=, 00=? x ,根据下列条件求系统的总响应。 (a ) 作用在系统的外激励为t F t F ωcos )(0=,其中N F 1000=, s rad /10=ω。 (b ) 0)(=t F 时的自由振动。 2、 质量为m 的发电转子,它的转动惯量J 0的确定采用试验方法:在转子径向R 1的地方附加一小质量m 1。试验装置如图2所示,记录其振动周期。 a )求发电机转子J 0。 b )并证明R 的微小变化在R 1=(m/m 1+1)·R 时有最小影响。 3、 如图3所示扭转振动系统,忽略阻尼的影响 J J J J ===321,K K K ==21 (1)写出其刚度矩阵; (2)写出系统自由振动运动微分方程; (2)求出系统的固有频率; (3)在图示运动平面上,绘出与固有频率对应的振型图。 1 θ(图2)

(图3) 4、求汽车俯仰振动(角运动)和跳振(上下垂直振动)的频率以及振 动中心(节点)的位置(如图4)。参数如下:质量m=1000kg,回转半径r=0.9m,前轴距重心的距离l1=0.1m,后轴距重心的距离l2=1.5m,前弹簧刚度k1=18kN/m,后弹簧刚度k2=22kN/m (图4) 5、如5图所示锻锤作用在工件上的冲击力可以近似为矩形脉冲。已知 工件,铁锤与框架的质量为m1=200 Mg,基础质量为m2=250Mg,弹簧垫的刚度为k1=150MN/m,土壤的刚度为k2=75MN/m.假定各质量的初始位移与速度均为零,求系统的振动规律。

国防科大的主要科研方向

1.计算流体力学与应用 主要开展飞行器气动布局及分析、非流动及动态特性研究、高精度数值计算方法研究、面向多体分离和物体变形引起流固耦合非定常流动问题的数值模拟方法和气动弹性等问题研究。 2.高超声速空气动力学主要开展高超声速飞行器一体化设计、高超声速气动力(热)预示方法、吸气式飞行器布局优化设计、再入飞行器气动光学效应、等离子体数值模拟方法、非平衡流动模拟方法及应用等方面的研究。 3.实验空气动力学与应用研究低跨超/高超声速空气动力气实验模拟技术与设备,包括超声速风洞和高超声速风洞的设计理论与技术,研究飞行器的气动力/气动热实验技术、飞行器流场结构先进的接触精细测试技术及其在工业军事上的应用。 4.飞行器结构分析与设计 本方向主要开展材料本构理论、断裂与损伤力学理论和界面力学理论,固体火箭发动机结构完整性分析与贮存寿命预估,线弹性、粘弹性、塑性材料和复合材料结构的动、静态响应与稳定性分析、优化与试验,结构振动控制技术,非线性动力学理论与应用等方面研究。 5.束能与电磁推进 主要研究吸气式脉冲激光爆震推力器数值模拟、太阳光热推力器高温陶瓷加热室制备、激光与放电烧蚀脉冲等离子体推力器等。

6.推进系统动态学与状态监控 主要研究可重复使用运载器推进系统故障诊断与健康监控、液体火箭发动机瞬变过程动力学建模与仿真、卫星推进系统故障诊断与自主管理等。 7.火箭发动机燃烧与流动主要研究火箭发动机燃烧稳定性、冲压流动与燃烧机理、合成射流与推力矢量控制、凝胶推进剂雾化与燃烧技术等。 8.飞行器总体设计技术本研究方向主要开展导弹、运载等飞行器的总体方案论证和多学科协同设计、精度分析与评估、航天器回收与航空救生技术等方面的研究。 9、飞行器总体技术 本研究方向重点开展高超声速飞行器总体一体化设计、飞行器布局优化设计及应用等方面的研究。 10、高超声速推进技术本研究方向主要开展超燃冲压发动机、发动机地面试验与飞行试验技术、高超声速飞行器机体/推进系统一体化设计、超声速燃烧与流动机理等方面的研究。 11、燃气引射技术本研究方向主要开展航空航天发动机高空模拟试验系统等方面的研究。

汽车动力学仿真模型的发展

!汽车动力学发展历史简介 汽车动力学是伴随着汽车的出现而发展起来的 一门专业学科。人们很早就认识到“$%&’()*+”转向和应用弹性悬架可使乘客感到更加舒适等基本原 理[,],但那只是一种感性的认识。在各国学者的不懈 努力下,这门学科逐渐发展成熟。-’.’/在,00#年1)’%23举行的题为“车辆平顺性和操纵稳定性”的会议上发表的论文,对,00"年以前汽车动力学的发 展做了较为全面的总结[ !],见表,。近年来汽车动力学又有了进一步发展,大量的高水平学术论文和经典的汽车动力学专著相继被发表,而且开发出许多专为汽车动力学研究建立模型的软件,如美国密西根大学开发的$456%*(、$45678)等商业软件。汽车是一复杂的连续体系统,要想对其进行动力特性的预测和优化需建立经合理简化的抽象汽车模型,以达到缩短产品开发周期、保证整车性能指标和降低产品成本的目的。 "汽车动力学模型的发展 汽车动力学从严格意义上来讲包括对一切与车 辆系统相关运动的研究,然而最为核心的是平顺性和操纵稳定性这两大领域,一般认为平顺性主要研究影响车身的垂向跳跃、俯仰、侧倾振动的因素,而操纵稳定性主要研究车辆的横向、横摆和侧倾运动。建模时一般假设平顺性和操纵稳定性之间无偶合关系。 "#!汽车平顺性模型 在汽车平顺性的早期研究阶段,限于当时数学、 力学理论、计算手段及试验方法,把系统简化成集中质量—弹簧—阻尼模型,如图,所示。 图,整车集中质量—弹簧—阻尼模型 此类模型一般先以函数的形式给出其动能!和势能"以及表达系统阻尼性质的物理量耗散能 !的表达式: 【摘要】汽车动力学包括对一切与车辆系统相关运动的研究,其最核心的是平顺性和操纵稳定性这两大领域。在简要说明了汽车动力学发展过程的基础上介绍了平顺性和操纵稳定性两大领域的模型发展过程。平顺性模型主要经过集中质量—弹簧—阻尼模型、有限元模型和动态子结构模型阶段;而操纵稳定性模型从低自由度线性模型、非线性多自由度模型发展到多体模型。最后提出了汽车动力学仿真模型的发展动向。 主题词:汽车动力学模型发展 中图分类号:9:;,<,文献标识码:$ 文章编号:,"""=#>"#(!""#)"!=""",=": $%&%’()*%+,(-.%/01’%$2+3*0140*5’3,0(+6(7%’ ?2*+.@’8A?2*+.B8+.2*8AC48D*8/8+AB8*D6+.E’8 (B8/8+9+8F’(785G ) 【89:,;31,】H’28%/’IG+*)8%7754I8’7*//)6F’)’+57(’/’F*+556F’28%/’7G75’)*+I 857%6(’8752’5J6E8’/I76E (8I’K *L8/85G *+I 2*+I/8+.75*L8/85G<1+52’M*M’(AI’F’/6M8+.M(6%’776E )6I’/76E F’28%/’(8I’*L8/85G *+I 2*+I/8+.75*L8/85G *(’8+K 5(6I4%’I *E5’(I’F’/6M)’+5%64(7’6E F’28%/’IG+*)8%78778)M/G 8+5(6I4%’I

《机械动力学》——期末复习题及答案

《机械动力学》期末复习题及答案1、判断 1.机构平衡问题在本质上是一种以动态静力分析为基础的动力学综合,或动力学设计。 答案:正确 2.优化平衡就是采用优化的方法获得一个绝对最佳解。 答案:错误 3.惯性力的计算是建立在主动构件作理想运动的假定的基础上的。 答案:正确 4.等效质量和等效转动惯量与机械驱动构件的真实速度无关。 答案:正确 5.作用于等效构件上的等效力(或等效力矩)所作的功等于作用于系统上的外力所作的功。答案: 错误 6.两点动代换后的系统与原有系统在静力学上是完全等效的。 答案:错误 7.对于不存在多余约束和多个自由度的机构,动态静力分析是一个静定问题。 答案:错误 8.摆动力的完全平衡常常会导致机械结构的简单化。 答案:错误 9.机构摆动力完全平衡的条件是:机构运动时,其总质心作变速直线运动。 答案:错误 10.等效质量和等效转动惯量与质量有关。 答案:错误 11.平衡是在运动设计完成之前的一种动力学设计。 答案:错误 12.在动力分析中主要涉及的力是驱动力和生产阻力。 答案:正确 13.当取直线运动的构件作为等效构件时,作用于系统上的全部外力折算到该构件上得到等效力。答案:正确 14.摆动力的平衡一定会导致机械结构的复杂化。 答案:错误 15.机器人操作机是一个多自由度的闭环的空间机构。 答案:错误 16.质量代换是将构件的质量用若干集中质量来代换,使这些代换质量与原有质量在运动学上等效答案:正确 17.弹性动力分析考虑构件的弹性变形。 答案:正确 18.机构摆动力矩完全平衡的条件为机构的质量矩为常数。 答案:错误

19.拉格朗日方程是研究约束系统静力动力学问题的一个普遍的方法。 答案:正确 20.在不含有变速比传动而仅含定速比传动的系统中,传动比为常数。 答案:正确 21.平衡分析着眼于全部消除或部分消除引起震动的激振力。 答案:正确 22.通路定理是用来判断能否实现摆动力完全平衡的理论。 答案:错误 23.无论如何,等效力与机械驱动构件的真实速度无关。 答案:正确 24.综合平衡不仅考虑机构在机座上的平衡,同时也考虑运动副动压力的平衡和输入转矩的平衡。答案:正确 25.速度越快,系统的固有频率越大。 答案:错误 26.平衡的实质就是采用构件质量再分配等手段完全地或部分地消除惯性载荷。 答案:正确 27.优化综合平衡是一个多目标的优化问题,是一种部分平衡。 答案:正确 28.机构摆动力完全平衡的条件为机构的质量矩为常数。 答案:正确 29.当以电动机为原动机时,驱动力矩是速度的函数。 答案:错误 30.为了使得等效构件的运动与机构中该构件的运动一致,要将全部外力等效地折算到该机构上这 一折算是依据功能原理进行的。 答案:正确 2、单选 1.动力学反问题是已知机构的(),求解输入转矩和各运动副反力及其变化规律。 A.运动状态 B.运动状态和工作阻力 C.工作阻力 D.运动状态或工作阻力 答案:B 2.平衡的实质就是采用构件质量再分配等手段完全地或部分地消除()。 A.加速度 B.角加速度 C.惯性载荷 D.重力 答案: C 3.摆动力的完全平衡常常会导致机械结构的()。 A.简单化

车辆动力学相关的软件及特点

SIMPACK车辆动力学习仿真系统 SIMPACK软件是德国INTEC Gmbh公司(于2009年正式更名为SIMPACK AG)开发的针对机械/机电系统运动学/动力学仿真分析的多体动力学分析软件包。它以多体系统计算动力学(Computational Dynamics of Multibody Systems)为基础,包含多个专业模块和专业领域的虚拟样机开发系统软件。SIMPACK软件的主要应用领域包括:汽车工业、铁路、航空/航天、国防工业、船舶、通用机械、发动机、生物运动与仿生等。 SIMPACK是机械系统运动学/动力学仿真分析软件。SIMPACK软件可以分析如:系统振动特性、受力、加速度,描述并预测复杂多体系统的运动学/动力学性能等。 SIMPACK的基本原理就是通过搭建CAD风格的模型(包括铰、力元素等)来建立机械系统的动力学方程,并通过先进的解算器来获取系统的动力学响应。 SIMPACK软件可以用来仿真任何虚拟的机械/机电系统,从仅仅只有几个自由度的简单系统到诸如一个庞大的火车。SIMPACK软件可以应用在我们产品设计、研发或优化的任何阶段。 SIMPACK软件独具有的全代码输出功能可以将我们的模型输出成Fortran或C代码,从而可以实现与任意仿真软件的联合。 车辆动力学仿真carsim CarSim是专门针对车辆动力学的仿真软件,CarSim模型在计算机上运行的速度比实时快3-6倍,可以仿真车辆对驾驶员,路面及空气动力学输入的响应,主要用来预测和仿真汽车整车的操纵稳定性、制动性、平顺性、动力性和经济性,同时被广泛地应用于现代汽车控制系统的开发。CarSim可以方便灵活的定义试验环境和试验过程,详细的定义整车各系统的特性参数和特性文件。 CarSim软件的主要功能如下: 适用于以下车型的建模仿真:轿车、轻型货车、轻型多用途运输车及SUV; 可分析车辆的动力性、燃油经济性、操纵稳定性、制动性及平顺性; 可以通过软件如MATLAB,Excel等进行绘图和分析; 可以图形曲线及三维动画形式观察仿真的结果;包括图形化数据管理界面,车辆模型求解器,绘图工具,三维动画回放工具,功率谱分析模块;程序稳定可靠;

《机械系统动力学仿真分析软件》

| 论坛社区 《机械系统动力学仿真分析软件》(MSC.ADAMS.2005.R2)R2 资源分类: 软件/行业软件 发布者: Coolload 发布时间: 2005-12-18 20:22 最新更新时间: 2005-12-19 07:04 浏览次数: 14548 实用链接: 收藏此页 eMule资源 下面是用户共享的文件列表,安装eMule后,您可以点击这些文件名进行下载 [机械系统动力学仿真分析软件].[$u]MSC.ADAMS.2005.R2.rar201.2MB [机械系统动力学仿真分析软 295.4MB 件].MSC_ADAMS_V2005_ISO-LND-CD1.iso [机械系统动力学仿真分析软185.0MB

件].MSC_ADAMS_V2005_ISO-LND-CD2.bin [机械系统动力学仿真分析软 6.5KB 件].Msc.Adams.v2005.Iso-Lnd-Cd1-Crack.rar 全选480.4MB eMule主页下载eMule使用指南如何发布 中文名称:机械系统动力学仿真分析 软件 英文名称:MSC.ADAMS.2005.R2 版本:R2 发行时间:2005年12月15日 制作发行:美国MSC公司 地区:美国 语言:英语 简介: [通过安全测试] 杀毒软件:Symantec AntiVirus 版本: 9.0.0.338 病毒库:2005-12-16 共享时间:10:00 AM - 24:00 PM(除 非线路故障或者机器故障) 共享服务器:Razorback 2.0 [通过安装测试]Windows2000 SP4 软件版权归原作者及原软件公司所 有,如果你喜欢,请购买正版软件

机械系统动力学

《机械系统动力学》 机械系统动力学中分析中的 仿真前沿 学院:机械工程学院 专业:机制一班 姓名:董正凯 学号:S12080201006

摘要 计算机及其相应技术的发展为建立机械系统仿真提供了一个有效的手段,机械系统动力学中的许多难题均可以采用仿真技术来解决,本文主要讲述了目前在机械系统动力学的分析中仿真技术主要的研究重点及其研究中主要存在的问题。 关键词:机械系统动力学仿真系统建模

机械系统动力学中分析中的仿真前沿 机械专业既是一个传统的专业,又是一个不断融合新技术、不断创新的专业。随着科技的发展,计算机仿真技术越来越广泛地应用在各个领域。基于多体系统动力学的机械系统动力学分析与仿真技术,从二十世纪七十年代开始吸引了众多研究者,已解决了自动化建模和求解问题的基础理论问题,并于八十年代形成了一系列商业化软件,到了九十年代,机械系统动力学分析与仿真技术更已能成熟应用于工业界。 目前的研究重点表现在以下几个方面: (1)柔性多体系统动力学的建模理论 多刚体系统的建模理论已经成熟,目前柔性多体系统的建模成了一个研究热点,柔性多体系统动力学由于本身既存在大范围的刚体运动又存在弹性变形运动,因而其与有限元分析方法及多刚体力学分析方法有密切关系。事实上,绝对的刚体运动不存在,绝对的弹性动力学问题在工程实际中也少见,实际工程问题严格说都是柔性多体动力学问题,只不过为了问题的简化容易求解,不得不化简为多刚体动力学问题、结构动力学问题来处理。然而这给使用者带来了不便,同一个问题必须利用两种分析方法处理。大多商用软件系统采用的浮动标架法对处理小变形部件的柔性系统较为有效,对包含大变形部件的柔体多体系统会产生较大仿真分析误差甚至完全错误的仿真结论。最近提出的绝对节点坐标方法,是对有限元技术的拓展和较大创新,在常规有限元中梁单元、板壳单元采用节点微小转动作为节点坐标,因而不能精确描述刚体运动。绝对节点坐标法则采用节点位移和节点斜率作为节点坐标,其形函数可以描述任意刚体位移。利用这种方法梁和板壳可以看作是等参单元,系统的质量阵为一常数阵,然而其刚度阵为强非线性阵,这与浮动标架法有截然不同的区别。这种方法已成功应用于手术线的大变形仿真中。寻求有限元分析与多刚体力学的统一近年来成为多体动力学分析的一个研究热点,绝对节点坐标法在这方面有极大的潜力,可以说绝对节点坐标法是柔性多体力学发展的一个重要进展。另外,各种柔性多体的分析方法之间是否存在某种互推关系也引起了人们的注意,如两个主要分析方法:浮动标架法、绝对节点坐标法之间是否可以互推?这些都具有重大理论意义。 另外柔性多体系统动力学中由于大范围的刚体运动与弹性变形运动相互耦合,采用浮动标架法时,即便是小变形问题,由于处于高速旋转仍会产生动力刚化现象。如果仅仅采用小变形理论,将产生错误的结论,必须计及动力刚化效应。动力刚化现象已成为柔性多体动力学的一个重要研究方面。如何利用简单的补偿方法来考虑动力刚化是问题的关键。 柔性多体系统动力学中关于柔性体的离散化表达存在三种形式:基于有限元分析的模态表达,基于试验模态分析的模态表达和基于有限元节点坐标的有限元列式。有限元列式由于大大地增加了系统的求解规模使其应用受到限制,因而一般采用模态分析方法,对模态进行模态截断、模态综合,从而缩减系统的求解规模。为了保证求解精度,同时又能提高求解速度如何进行模态截断、模态综合就成了一个关键问题。再者如何充分利用试验模态分析的结果也是一个关键性研究课题,这一方面的研究还不够深入。 柔性多体系统动力学可以计算出每一时刻的弹性位移,通过计算应变可计算计算出应力。由于一般的多柔体分析程序不具备有限元分析功能,因而柔性体的应力分析都是由有限元程序处理。由于可以计算出每个柔性体的应力的变化历

相关文档