文档库 最新最全的文档下载
当前位置:文档库 › 精准医学的大数据时代

精准医学的大数据时代

精准医学的大数据时代
精准医学的大数据时代

精准医学的大数据时代

健康科学的发展,是由转化医学向个体化医学,再向精准医学转变,其转变的本质是从诊断治疗到健康保障的转变。

转变的基础有两方面:

第一,组学基础:基因组、转录组、蛋白质组、代谢组等;

第二,基因型与表型的关联:涉及生物信息学、生物网络和系统生物学等的研究。

Part1 组学研究的机遇与挑战

创新的机遇在哪?挑战的问题又在哪里?

目前,人类基因组序列中超过97%的序列是非编码序列(Noncoding sequences),下图是各成分在人类基因组中的比例情况:

0.50% 1.50%

98%

RNA Coding(protein)Non-coding

非编码RNA(Non-coding RNA)是指不编码蛋白质的RNA。其中包括rRNA, tRNA, snRNA, snoRNA和microRNA等多种已知功能的RNA,还包括未知功能的RNA。这些RNA的共同特点是都能从基因组上转录,但不翻译成蛋白,在RNA 水平上就能行使各自的生物学功能了。

目前认为非编码RNA的主要部分是长非编码RNA。长链非编码RNA(LncRNA)是一类转录本长度超过200nt的RNA分子。许多LncRNA都具有保守的二级结构,剪切形式以及亚细胞定位,这种保守性和特异性表明它们是具有功能的。LncRNA在多种层面上调控基因的表达水平,包括表观遗传调控、转录调控以及转录后调控等。

早在2000年就有文章报道了PCGEM1是前列腺组织特异性雄激素调控基因。研究证明了PCGEM1表达在非裔美国人的前列腺癌(CaP)细胞中显著高于白种人美国男性。随后也有研究证明MALAT-1非编码RNA和胸腺素b4,在早期非小细胞肺癌的转移和存活起到作用。在癌症治疗中,我们过去一直将3%左右的编码序列作为药物靶点的主要研究对象。而人类中大约10~20万非编码RNA,每一个都有可能行驶功能。如果将非编码序列作为研究目标,对疾病的诊断与治疗,全新的药物设计与研发,动植物新品种、新性状的培育有着巨大的意义。

Part2大数据时代

用于大数据研究的商业测序仪,已实现Data per run 1Tbp的效率。海量数据的基因组、转录组、蛋白质组、代谢组、表观遗传组计算量都很大,90%以上的数据都很难分析,测序方法和生物信息分析仍然有待挖掘。我们也面临着大数据中的小样本难题,比如肿瘤,在一百个同样肿瘤的患者中,基因变异可能出现在不同的位点上,因此从表观上来讲,他们患的虽然是同一种疾病,但从微观上来说,他们基因变异的位点不同。对于这样一个样本来讲,虽然能获得这个疾病的大数据,但真正相同的样本量却不多。面临如此庞大的数据量,我们的样品却十分受限,各种疾病可供分析的数据受到技术和方法的限制,在数据采取上不够完善,对后续分析也造成困扰。

沃森手中小盒子内装的是耗时2个月,价值100万美元的“个人版”基因组图谱DVD光盘写在结尾,激励你,也激励我们。

“虽然我们目前还面临许多问题,但仍需要根据自己的需求,建立自己的精准医学,寻找我们的中国方向,所有的挑战都是机会”------ 陈润生

我们仍在努力,能做的,还有很多。

Journal References:

1.v asanthaSrikantan, ZhiqiangZou, GyorgyPetrovics, Linda Xu, Meena Augustus, Leland

Davis, Jeffrey R. Livezey, Theresa Connell, Isabell A. Sesterhenn, Kiyoshi Yoshino, Gregory S. Buzard, F. K. Mostofi, David G. McLeod, Judd W. Moul, and Shiv Srivastava.PCGEM1, a prostate-specific gene, is overexpressed in prostate cancer.

PNAS 2000; 97(12216) DOI: 10.1073/pnas.97.22.12216

2.Ji P1, Diederichs S, Wang W, B?ing S, Metzger R, Schneider PM, Tidow N, Brandt

B, Buerger H, Bulk E, Thomas M, Berdel WE, Serve H, Müller-Tidow C. MALAT-1, a novel noncoding RNA, and thymosin b4 predict metastasis and survival in early-stage non-small cell lung cancer.Oncogene 2003;22:8031–8041 DOI:10.1038/sj.onc.120692

3.Jeremy E. Wilusz, HongjaeSunwoo, and David L. Spector.Long noncoding RNAs:

functional surprises from the RNA world.GENES & DEVELOPMENT 2009;

23:1494–1504 DOI:10.1101/gad.1800909

医学大数据重塑整个精准医疗体系

医学大数据重塑整个精准医疗体系医学大数据的架构具有很强的扩展性,在获取人体的基本数据以后,不仅可以构建人体的解剖结构和生理结构,而且可以从分子层面去构建微观模型。例如,基于一些复杂的数学模型,可以从DNA序列推演到mRNA结构,最后构建这段DNA序列表达的蛋白结构。近年来包括医学在内的多种学科不断交叉融合,学术界的交流以及创业公司都在努力推动多种技术的融合。在医学上不仅仅牵涉到临床医学,同时涉及生物学、分子生物学、细胞生物学、化学等等,以及自动化,包括检测、统计、分析、影像等方面都会涉及。当然,数学肯定是最基础的,建立数学模型、复杂的算法都跟数学基础息息相关。新兴的大数据即数据科学,也离不开基础的计算机科学。所以,未来医学是众多学科融合的综合科学,大数据的价值是众多领域量化的数据融合,这就是技术趋势 市场需求是重要驱动 去解决实际临床问题更多依赖于医生的经验,不论是生理层面还是分子层面许多都还没有被完全的量化,而是记录在医生的经验当中。医院也已经采集到很多数据,存放在不同的计算机系统中,但是基本以数据孤岛的形式存在,并没有被充分利用和挖掘,而这些其实就是做基础研究最重要的数据 医学大数据发展有三大价值驱动力,首先是生活质量的提高,人们对生命质量或者是健康质量的不断追求和高标准的要求,其次是在高品质生命健康需求下促使成的生命科学技术的进步,最后是基于生命科学技术进步的临床手段不断丰富,临床治疗质量不断提高,这就是整个医学大数据价值驱动的核心。此外,巨大的患者人体组织器官替换的市场需求也是重要的驱动因素 整个再生医学行业的大背景是全球每年大概有8000多万的各种组织器官的需求,包括脏器器官、软骨、胰、颅颌面、眼膜等,目前只能通过捐献满足,而捐献所

医学数据挖掘

第一章 .填空 1.数据挖掘和知识发现的三大主要技术为:数据库、统计学、机器学习2.数据挖掘获得知识的表现形式主要有 6 种:规则、决策树、 知识基网络权值、公式、案例 3.规则是由前提条件、结论两部分组成 4.基于案例推理的基础是案例库 5.知识发现的基本步骤:数据选择、处理、转换、数据挖掘、解释与评价。数据挖掘是知识发现的关键步骤 6.数据挖掘的核心技术是:人工智能、机器学、统计学 7. 目前数据挖掘在医学领域的应用集中在疾病辅助诊断、药物开发、医院信息系统、遗传学等方面 二.名解 1.数据挖掘:在数据中正规的发现有效的、新颖的、潜在有用的、并且最终可以被读懂的模式的过程 2.案例推理:当要解决一个新问题时,利用相似性检索技术到案例库中搜索与新问题相似的案例,再经过对就案例的修改来解决新问题三.简答 1.数据挖掘的特点 a 挖掘对象是超大型的, b 发现隐含的知识, c 可以用于增进人类认知的知识, d 不是手工完成的 2.案例是解决新问题的一种知识,案例知识表示为三元组 a 问题描述:对求解的问题及周围环境的所有特征的描述, b 解描述:

对问题求解方案的描述,c 效果描述:描述解决方案后的结果情况,是失败还是成功 3.医学数据挖掘存在的关键问题 a 数据预处理, b 信息融合技术, c 快速的鲁棒的书库挖掘算法, d 提供知识的准确性和安全性 4.数据挖掘在遗传学方面的应用 遗传学的研究表明,遗传疾病的发生是由基因决定的,基因数据库搜索技术在基因研究上做出了很多重大发现,其工作主要包括:a 从各种生物体的大量序列中定位出具有某种功能的基因,b 在基因中搜索与某种具有高阶结构或功能的蛋白质相似的高阶结构序列 第二章 一.填空 1.的对象分为:关系型、数据仓库、文本、复杂类型2.从用户角度来看,数据仓库的基本组成包括:数据源、数据存储、应用工具、可视化用户界面 3.数据仓库是最流行的数据模型是多维数据模型,多维数据模型将数据看作是数据立方体的形式,数据立方体是由维和事实来定义 4.常用的多维数据模式包括:星型模式、雪花模式、事实星座模式。星型模式是由事实表和维表构成 5. DM分为:WEB内容挖掘、WEB结构挖掘、WEB使用 挖掘 二.名解 1. 数据仓库:一个面向主题的、集成的、时变的、非易失的数

大数据+精准医疗

大数据+精准医疗 2012年全国居民慢性病死亡率为533/10万,占总死亡人数的86.6%。心脑血管病、癌症和慢性呼吸系统疾病为主要死因,占总死亡的79.4%,其中心脑血管病死亡率为271.8/10万,癌症死亡率为144.3/10万(前五位分别是肺癌、肝癌、胃癌、食道癌、结直肠癌),慢性呼吸系统疾病死亡率为68/10过标化处理后,除冠心病、肺癌等少数疾病死亡率有所上升外,多数慢性病死亡率呈下降趋势。慢性病的患病、死亡与经济、社会、人口、行为、环境等因素密切相关。一方面,随着人们生活质量和保健水平不断提高,人均预期寿命不断增长,老年人口数量不断增加,我国慢性病患者的基数也在不断扩大;另一方面,随着深化医药卫生体制改革的不断推进,城乡居民对医疗卫生服务需求不断增长,公共卫生和医疗服务水平不断提升,慢性病患者的生存期也在不断延长。慢性病患病率的上升和死亡率的下降,反映了国家社会经济条件和医疗卫生水平的发展,是国民生活水平提高和寿命延长的必然结果。当然,我们也应该清醒地认识到个人不健康的生活方式对慢性病发病所带来的影响,综合考虑人口老龄化等社会因素和吸烟等危险因素现状及变化趋势,我国慢性病的总体防控形势依然严峻,防控工作仍面临着巨大挑战。 大数据的分析和应用都将在医疗行业发挥巨大的作用,提高医疗效率和医疗效果。 一、临床操作 在临床操作方面,有5个主要场景的大数据应用: 1.比较效果研究 通过全面分析病人特征数据和疗效数据,然后比较多种干预措施的有效性,可以找到针对特定病人的最佳治疗途径。 基于疗效的研究包括比较效果研究(Comparative Effectiveness Research, CER)。研究表明,对同一病人来说,医疗服务提供方不同,医疗护理方法和效果不同,成本上也存在着很大的差异。精准分析包括病人体征数据、费用数据和疗效数据在内的大型数据集,可以帮助医生确定临床上最有效和最具有成本效益的治疗方法。医疗护理系统实现CER,将有可能减少过度治疗(比如避免那些副作用比疗效明显的治疗方式),以及治疗不足。从长远来看,不管是过度治疗还是治疗不足都将给病人身体带来负面影响,以及产生更高的医疗费用。 2.临床决策支持系统 临床决策支持系统可以提高工作效率和诊疗质量。目前的临床决策支持系统分析医生输入的条目,比较其与医学指引不同的地方,从而提醒医生防止潜在的错误,如药物不良反应。通过部署这些系统,医疗服务提供方可以降低医疗事故率和索赔数,尤其是那些临床错误引

数据挖掘论文医学数据论文:医学数据挖掘综述

数据挖掘论文医学数据论文:医学数据挖掘综述 摘要:医学数据挖掘是提高医学信息管理水平,为疾病的诊断和治疗提供科学准确的决策,促进医疗发展的需要。该文主要介绍了医学数据的特点,医学数据挖掘的发展状况和应用的技术方法,同时展望了数据挖掘技术在医学领域的应用前景。 关键词:数据挖掘;医学数据;神经网络;关联规则 summary of medical data mining wang ju-qin (department of computer technology, wuxi institute of technology, wuxi 214121, china) abstract: medical data mining is necessary for improving the management level of medical information, providing scientific decision-making for the diagnosis and treatment of disease, and promoting the development of medicine. this paper mainly introduces the characters of mining medical data, the application and methods used in medicine, and also the application prospect medical field is outlined. key words: data mining; medical data; neural network; association rules

大数据在医疗方面有什么作用

数据挖掘随着计算机技术得到了广泛应用,从而提高了数据利用效率,拓展了知识发现的广度与深度。数据挖掘已有较多成熟方法,并在医学大数据挖掘中取得了一定成果。数据挖掘是指从数据库中,提取隐含在其中的人们事先未知、潜在的有用的信息和知识的过程。目前,医院已积累了大量医疗相关数据。 数据挖掘在医学大数据研究中已取得了较多成果,通过文献检索,总结了三方面的应用现状。 疾病早期预警医疗领域往往需要更精确的实时预警工具,而基于数据挖掘的疾病早期预警模型的建立,有助于提高疾病的早期诊断、预警和监护,同时,也有利于医疗机构采取预防和控制措施,减少疾病恶化及并发症的发生。 疾病早期预警,首先要收集与疾病相关的指标数据或危险因素,然后建立模型,从而发现隐含在数据之中的发病机制和病情之间的联系。Forkan等采集日常监测的心率、舒张压、收缩压、平均血压、呼吸率、血氧饱和度等生命体征数据,以J48决策树、随机森林树及序列最小优化算法等建立疾病预警模型,用于远程家庭监测,识别未曾诊断过的疾病发生,并将监测结果发送到医疗急救机构,实现生命体征大数据、病人及医疗机构的完整衔接,以降低突发疾病及死亡的发生率。 Easton等利用贝叶斯分类算法建立了中风后遗症死亡预测模型,认为中风后遗症死亡概率与中风发生后的时间长短成函数关系,有助于中风后遗症患者的后续监护。Tayefi等基于决策树算法建立了冠心病预测模型,该模型发现hs-CRP作为新的冠心病预测标志物,比传统的标志物(如FBG、LDL)更具特异性。 慢性病研究糖尿病、高血压、心血管疾病等慢性病正在影响着人们的健康,识别慢性病危险因素并建立预警模型有助于降低慢性疾病并发症的发生。Alagugowr等建立的心脏病预警系统,从心脏病大数据库中提取特征指标,通过K-means聚类算法识别出心脏病危险因素,又以Apriori算法挖掘高频危险因素与心脏病危险等级之间的关联规则。Ilayaraja等则以高频项集寻找心脏病危险因素并识别病人风险程度,该方法能够回避无意义项集的产生,从而解决了以往研究中项集数量多、所需存储空间大等问题。 CH Jen等对慢性疾病并发症风险识别的研究分三个步骤,首先,选择健康人群体检数据和慢性病患者相关疾病数据,以带有序列前项选择的线性判别分析来寻找相关疾病的特征变量;然后,以K-NN对特征变量进行分类处理;最后,将K-NN算法的分类结果应用于慢性疾病预警模型的建立。Aljumah等先后以回归分析和SVM用于预测和判断糖尿病不同治疗方式与不同年龄组之间的最佳匹配,为患者选择最佳治疗方式提供依据。 Perveen等对糖尿病的预测研究,采用患者人口学数据和临床指标数据,并分别用Adaboost集成算法、Bagging算法及决策树三种算法来建立预测模型,认为Adaboost集成算法的精确性更高。 辅助医学诊断医学数据不仅体量大,而且错综复杂、相互关联。对大量医学数据的分析,挖掘出有价值的诊断规则,将对疾病诊断提供参考。Yang等基于决策树算法和Apriori算法,对肺癌病理报告与临床信息之间的关联性进行了研究,为肺癌病理分期诊断提供依据,从而可回避诊断中需要手术方法获取病理组织。

肿瘤的精准医疗:概念、技术和展望

肿瘤的精准医疗:概念、技术和展望 杭渤1,2,束永前3,刘平3,魏光伟4,金健1,郝文山5,王培俊2,李斌1,2,毛建华1 摘要精准医疗是指与患者分子生物病理学特征相匹配的个体化诊断和治疗策略。肿瘤为一复杂和多样性疾病,在分子遗传上具有很大异质性,即使相同病理类型的癌症患者,对抗癌药物反应迥异,因此肿瘤学科成为精准医疗的最重要领域之一。组学大数据时代的来临和生物技术的迅速发展奠定了精准医疗的可行性。本文介绍精准和个体化医疗的概念、基础和意义,简述近年来在此领域的最新进展,以及对实施精准医疗的方法和技术进行分析和归纳,首次将其分为间接方法(生物标志物检测及诊断)和直接方法(病人源性细胞和组织在抗癌药物直接筛选的应用),最后扼要阐述精准医疗的前景和面临的挑战。 关键词:精准医疗个体化医疗分子组学生物标志物检测病人源性细胞和组织 Precision cancer medicine: Concept, technology and perspectives HANG Bo1,2, SHU Yongqian3, LIU Ping3, WEI Guangwei4, JIN Jian1, HAO Wenshan5, WANG Peijun2, LI Bin1,2, MAO Jianhua1 Abstract Precision medicine is defined as an approach to personalized diagnosis and treatment, based on the omics information of patients. Human cancer is a complex and intrinsically heterogeneous disease in which patients may exhibit similar symptoms, and appear to have the same pathological disease, for entirely different genetic reasons. Such heterogeneity results in dramatic variations in response to currently available anti- cancer drugs. Therefore, oncology is one of the best fields for the practice of precision medicine. The availability of omics- based big data, along with rapid development of biotechnology, paves a way for precision medicine. This article describes the concept, foundation and significance of precision medicine, and reviews the recent progresses in methodology development and their clinical application. Then, various current available biotechniques in precision medicine are evaluated and classified into indirect (biomarker-based detection and prediction) and direct (patient-derived cells and tissues for direct anti-cancer drug screening) categories. Finally, perspectives of precision medicine as well as its facing challenge are briefly discussed. Key words: precision medicine personalized medicine omics biomarker detection patient-derived cells and tissue 2011年,美国国家科学院在“迈向精准医疗:构建生物医学研究知识网络和新的疾病分类体系”报告中,对“精准医疗(precision medicine)”的概念和措施做了系统的论述[1]。报告探讨了一种新的疾病命名的可能性和方法,该方法基于导致疾病的潜在的分子诱因和其他因素,而不是依靠传统的病人症状和体征。报告建议通过评估患者标本中的组学(omics)信息,建立新的数据网络,以促进生物医学研究及其与临床研究相整合。美国总统奥巴马在2015年1月20日的国情咨文中正式将“精准医疗计划”作为美国新的国家研究项目发布,致力于治愈癌症和糖尿病等疾病,让每个人获得个性化的信息和医疗,从而“引领一个医学新时代”。此举措很快得到了美国政府研究机构和医学界的热烈响应[2, 3],当然也包括来自医学界和社会的争议。 1 精准医疗与个体化医疗1.1 定义 什么是精准医疗(又称精确医学),其与通常所讲的个体化医疗(personalized medicine)又是什么关系?精准医疗就是与患者分子生物病理学特征,如基因组信息,相匹配的个体化诊断和治疗策略。个体化医疗利用诊断性工具去检测特定的生物标志物,尤其是遗传性标志物,然后结合患者的病史和其他情况,协助决定哪一种预防或治疗干预措施最适用于特定的患者。通俗地讲,个体化医疗就是考虑患者本身的个体差异,药物治疗因人而异,为理想化的治疗。而精准医疗着眼于一组病患或人群(图1),相对于个性化医疗针对个体病患的情况更为宽泛,更可行。两者有共同的内涵。也有医疗和研究机构将这两个概念放在一起,如杜克大学的“精准和个体化医疗中心”。 图1精准医疗的核心Fig. 1 Heart of precision medicine

医学数据挖掘研究

医学数据挖掘研究 陈彬玫① ①成都市郫县中医医院,610225 摘要当今医疗数据海量增长,利用数据挖掘找出对各类医疗决策有价值的知识迫在眉睫。本文介绍了大数据时代背景下医学数据的内容和特点,并研究了数据仓库构建医疗信息化知识平台的动力、关键技术,最后总结了医学数据挖掘挑战。 关键词医学数据;数据挖掘;数据仓库; 1 引言 以计算机技术为核心的信息与通信技术凭借互联网的飞速发展,大大地促进了医疗卫生行业各个应用领域和行业的发展,形成了包括医院信息系统、公共卫生信息系统、远程医疗、家庭护理和区域协同医疗等数百亿的医疗卫生ICT产业,并得到了学术界和工业界的广泛重视。医疗信息化的发展,也促进了医疗数据的爆炸性增长。 但是,医疗信息化也面临很多问题。在资源利用方面,大病小病都找三甲医院,优质医疗资源紧张,医生的经验与精力也有限,没有充分发挥医生的价值。在医患信息交流方面,信息缺乏,信息不对称。民众医学健康、预防、康复知识匮乏,信息化建设的过程中也缺乏病人的主动参与。对于医疗行业本身,患者个体差异大,医疗疾病种类繁多,复合疾病常见,关系复杂,很难标准化、自动化。在医学认知方面,新的疾病不断产生和变化,医疗发展水平还有未知领域。 人的健康是开展医疗信息化的最终目的,也是国家投入巨资推动医疗信息化的出发点和落脚点。目前,区域医疗信息化是投资的重点,其主要内容是以电子病历和电子档案为基础的数据集成和共享。在这些信息系统的基础上,医疗服务将从传统经验分析和临床试验发展到从海量医疗健康数据中挖掘医疗知识,利用信息化技术创造优质的医疗服务惠及广大民众。 2 医学数据挖掘的研究动力 2.1 伦理需求身体健康是人类社会的本质需求。因此,医疗信息化的根本使命是保证人们身体健康,满足个性化医疗服务,最大限度保证公民的医疗质量和医疗安全。通过信息化建设和数据挖掘平台的建设,可以促进现代医疗模式的应用,大大扩展了医疗服务的活动范围。进而使得社会获得巨大的信息化红利,提高人们的生活水平和生活质量。 2.2 经济效益医疗行业是继电信行业之后最有可能深入广泛开展数据挖掘并从中获得实际效益的行业之一。医疗行业是具有大量现金流的行业,完全有能力通过开展数据挖掘。作为根本的民生举措,国家也在持续加大投入。计世资讯《2013年中国医卫行业信息化建设与IT应用趋势研究报告》的研究结果显示,2012年中国医卫行业IT投入达185.6亿元,较2011年同比增长22.6%;2013年医卫行业信息化建设投入将继续保持理性状态,呈现平稳增长趋势。2013年中国医卫行业的IT投资规模约为225.5亿元人民币,较2012年同比增长21.5%。如下图所示。

医疗大数据的应用

医疗大数据的应用 医疗大数据带给人类的福音早在2009年google公司的一个案例中直接可以体现,google借助大数据技术比美国疾病控制与预防中心提前1到2周预测到了甲型H1N1流感爆发,此事震惊了医学界和计算机领域的科学家。 (1)服务居民。居民健康指导服务系统,提供精准医疗、个性化健康保健指导,使居民能在医院,社区及线上的服务保持连续性。例如,提供心血管、癌症、高血压、糖尿病等慢性病干预、管理、健康预警及健康宣教;同时减少患者住院时间,减少急诊量,提高家庭护理比例和门诊医生预约量。 卢红强调,无论做慢病管理还是随访也好,尤其是做健康管理,都是需要有数据支撑的,没有数据支撑,所有的健康管理都是虚的。她举例表示,单纯从体检数据不可能给患者做到全面的健康咨询和精准健康管理服务的。体检是有限的,一定要结合患者的医疗数据,所以做好这件事情是一定要有一个数据的平台来支撑的,这个数据平台做什么?就是把分散在医院各方面的数据聚集起来,提供一个可视化的展现形式,提供给大夫,大夫透过这些数据、结果来更好的为患者提供健康服务。 (2)服务医生。临床决策支持,如用药分析、药品不良反应,疾病并发症,治疗效果相关性分析,抗生素应用分析,或者是制定个性化治疗方案。 这些都是要以药品质量反映,疾病的并发症,这些在我们的信息系统中都有不同程度的体现。卢红举例说,不良反映,最早以前我们医院是有一套体系,大家报药品的不良反映,但是报完了之后没有反馈,这个信息收集完了之后报给国家,国家没有把这个信息反馈给医院。我们就提出建议:医院作为数据的供给者,非常希望上级可以把数据的结果反馈回来。后来,上级定期把结果反馈回来,我们从内网中体现出来,医生就能够经常看到。 (3)服务科研。包括疾病诊断与预测、提高临床实验设计的统计工具和算法,临床实验数据的分析与处理等方面。在目前的医院里,喜欢做科研的医生对这方面的呼声非常高,第一是希望自己有一个平台,把自己所关注的病例能够及时的放到平台中来进行管理。第二个,当这些数据都放进去以后,他会透过这个数据来设计一些科研的方案,透过这 个平台能够产生一些他认为的指标 出来,反过来这些指标对他的临床工 作又有一定的指导意义。 (4)服务管理机构。对行政管理部门是 有一定的意义的。 (5)公众的健康服务。包括危及健康因 素的监控与预警、网络平台,社区服 务等方面。大家都知道,上海在卫生 医疗领域积累了大量的数据,行业专 家通过诊疗数据作相关疾病的分析, 最后得出一个分布图,在浦东这个区 域里,糖尿病的患者究竟是聚集在哪 一个区域,高血压的患者又是在哪一 个区域,肝癌的患者在哪一个区域, 得到了这样一个分析数据以后,再进 一步分析这个区域里的人的饮食习 惯,或者是这个区域的人群来源结 构,这一个地区的人群饮食习惯,都 做了进一步的分析,去找到他患糖尿 病或者是高血压的一个因素在哪里, 这就是一个很典型的大数据分析得 到的结果,反过来为公共决策部门进 行服务的典型案例。 大数据平台让医生从录入者变成使 用者 卢红认为信息化推行这么多年仍有 很多问题的一个非常重要的原因,就 是医生只是数据的录入者,没有真正 成为数据的使用者、利用者。 随着大数据技术的不断成熟,通过建 立大数据平台、数据的支撑,让医生 在治疗、随访等实际工作中受益。让 医生的角色真正从录入者向使用者 转变。 卢红将大数据平台带来医疗服务及 医生的益处主要归于以下几类: 1、精准医疗。 比如说抗菌药物的使用,抗菌药物需 要控制,但是大家总也找不出很好的 方法去控制。我们有很多的规定,但 是这些规定如果没有平台支撑的控 制,这种规定都是空的。第一没办法 执行下去,第二没有办法核查。比如 说这位患者用某一个抗菌药物,理论 上用了3天就不能用了,必须要做抗 菌药物的耐药性的检测,耐药性的检 测是送给微生物检查,微生物室得到 一个结论,这个患者对哪个菌种耐 药,马上就要换。但是实际的工作中 常常是这个大夫可能用了这个抗菌 药物用了10天,觉得没有效果了又 换,又用了几天没有效果,才想起来做耐 药性的检测,但是如果系统在这方面能够 很好的把控的话,我相信抗菌药物使用, 按照国家的标准,抗菌药物的使用是一定 能够控制下来的。 2、个人治疗计划。 通过对历次住院信息的分析,制定本次治 疗计划,为医生提供参考。这就是对一个 个体,上次有公司到医院来讲课,他说我 能够把患者历次的信息都看得到,我说你 看到只是仅仅展现出来,大夫所需要的不 仅仅是把这些信息看到,而是需要能够把 历次的住院信息中的某个专科疾病所关 注的指标,用一种时序的方式展现出来, 这就是需要大数据的分析手段来给大夫 提供这样的展现形式,只有这样,我们的 大夫才能一目了然。前面关注的指标是透 过什么发生了这样的变化,他就非常清晰 了。 如果简单的展示,上次看他的病情是什 么,第二次是什么,第一次用了什么药, 第二次用了什么,其实这个没有太大的意 义。只有对这些数据进行分析,透过时序 的方法展现出来,对我们的大夫才会有指 导意义。 3、为医生和科研服务。 通过对某个专科疾病的分析提供可参考 的治疗方案,为科研提供分析数据。 举个例子不同的医院疾病不一样,比如说 某个医院有10个前10位的看病最多的, 就把这10个看病最多的医院病案搜索出 来,用大数据的方法分析好,就能为医生 提供非常好的服务。 4、为患者健康服务提供数据支撑。 健康管理,慢病管理,病人随访等等。尤 其是健康管理,如果没有一个数据支撑的 管理都是空话,包括慢病管理也好,因为 慢病管理虽然是糖尿病,但是有可能产生 了一个并发症,肯定到医院治疗过,这些 数据都是要被收集到这个平台里的,提供 给管理慢病的大夫。包括社康的大夫他也 是非常需要这些数据的,透过这样的数据 支撑,就可以提供很好的服务。 大数据可以带给医院、医生、患者这么多 好外,如何让这一切能为现实,医院能做 些什么呢?卢红谈到,目前医院在尝试通 过一些数据分析公司来做平台建设的工 作,通过平台提供数据服务,包括健康管 理、慢病管理、病人随访,包括转诊、科 研等等,都要建立在这个平台上。透过底 层的大数据分析支撑,来为这些所有的业 务提供数据支撑的服务。

关于循证医学精准医学和大数据研究的几点看法

关于循证医学、精准医学和大数据研究的几点看法 转自:中华流行病学微平台 唐金陵1, 李立明2.1. 999077 中国香港中文大学公共卫生及基层医疗学院;2. 100191 北京大学公共卫生学院摘要循证医学仍是当今最好的医学实践模式。需要注意的是,证据本身不等于决策,决策还必须考虑现有资源和人们的价值取向。证据显示,绝大多数患者不会因使用降血压、降血脂、降血糖、抗癌药而预防重要并发症或死亡,说明现代医学的很多诊断和治疗都不精准,找到那几个为数不多的对治疗有反应的患者就成了现代医学的梦。精准医学应运而生,但它并不是新概念,也不等于孤注一掷的基因测序。精准医学依赖的大队列多因素研究由来已久,也不是新方法。医学一直在寻求精准,而且在人类认知的各个层面都有所建树,如疫苗和抗体、血型与输血、影像对病灶的定位以及白内障晶体替换手术。基因不是达到精准的唯一途径,只是提供了新的可能性。但是多数基因和疾病关联强度很低,说明基因精准指导防治的价值可能不大,利用大数据和其他预测因素是精准医学的必经之路。在使用大数据问题上,强调拥有总体、大样本、关联关系而淡化因果关系,是严重的误导。科学从来不会待考察了总体后才进行推论;研究需要的样本量恰恰与效果大小成反比;否定因果关系就是对流行病学科学原理和方法的否定,放弃了对真实性的保障,最终会导致防治的无效。

因此,在确认疗效上,基于大数据的现实世界观察性结果不能取代随机对照试验的实验性证据。本文谨希望以怀疑和批评的方式,激发出精准医学和大数据蕴藏的真正潜力。关键词: 循证医学;精准医学;大数据;现实世界研究;流行病学方法一循证医学中的情与理 循证医学呼吁医学实践须基于现有最好的应用型(而不是基础型)研究证据[1-2]。没有循证医学的敦促,医学研究就多会停留在理论上;没有循证医学的反馈,医学研究可能会偏离正确的轨道;没有循证医学这张盾牌,资本就会更肆无忌惮地让医学为利润服务。然而,在肯定证据在医学决策中重要性的同时,还必须强调证据本身并不是决策,决策还必须兼顾现有资源的多寡、患者的需要和价值取向。 如果把证据称为理,证据以外可以影响决策的因素就是情。如果理是科学发现的客观事实(如一个药物被证明有效),情就是人们如何利用这些事实的主观情感和好恶。医学决策,情与理缺一不可。在20世纪90年代循证医学初期,人们对医学应用型(主要是流行病学)研究及其产生的科学证据认识不足、重视不够,有必要特别突出证据在决策中的重要性。但是在证据和指南被视为“绑架”了医学实践的今天,有必要重申或特别关注其他因素在决策中不可或缺的作用,尽管目前还有很多医学指南和实践并非基于证据。 研究证明一个药物有效,这是理。理是中性的、稳定的,具

精准医学大数据汇交与共享政策研究

精准医学大数据汇交与共享政策研究 精准医学作为医学科技发展的前沿方向,现已成为世界各国新一轮科技竞争的战略制高点。为加快重大疾病防控技术突破、占据未来医学及相关产业发展主导权、打造我国生命健康产业发展的新驱动力,我国积极加强精准医学研究布局,将其纳入国家“十三五”规划,并将“精准医学研究”列为国家重点研发计划重点专项之一。伴随我国精准医学计划的实施,将产生海量多源异构的精准医学大数据。这些数据既是各精准医学研究项目的重要成果产出,也是日后开展医学研究工作宝贵的知识来源,如不能及时汇交并且合理共享,将难以发挥其 最大价值,造成人力、物力、财力的极大浪费。但精准医学大数据汇交与共享是一项复杂的活动,不能单靠技术的进步而实现,还需要运 用政策的强制手段进行保障和规范。我国至今尚未发布针对精准医学大数据的政策性文件,势必影响数据的管理与成果转化。而国外在精准医学大数据管理方面已出台相关政策,可以为我国政策制定提供借鉴。基于此,本研究将在广泛调研和分析国内外典型精准医学相关数据政策的基础上,以目前我国资助的精准医学研究中层次最高、影响力最大的国家重点研发计划“精准医学研究”重点专项为例,分析其数据汇交与共享要求、各利益相关方的利益诉求以及主要利益相关方的政策建议。通过对现存政策和我国实际需求的分析,尝试提出适用于我国实际情况的精准医学大数据汇交与共享政策建议。本研究就最终完成的工作包括:(1)系统梳理了国内外不同层面科学数据政策的 相关研究,借鉴其研究思路及政策内容分析框架,总结现有研究的局

限性,包括:①对精准医学细分领域数据政策的探索不足;②重共享、轻汇交,对汇交部分政策内容研究不足;③政策建议趋于宏观层面,微观层面对具体内容的建议有待加强;(2)调研了国内外科研资助机构典型科学数据汇交与共享的相关政策,并从基本特征以及具体内容两方面对政策进行了分析,借鉴有益经验,为后续研究提供参考;(3)立足我国实际,以目前我国资助的精准医学研究中层次最高、影响力最大的“精准医学研究”重点专项为例,总结其数据汇交与共享要求、可能涉及到的数据汇交、管理和使用主体,并对其中部分利益相关方的权益和政策建议进行分析和调研,为精准医学大数据汇交与共享政策的制定提供现实依据;(4)结合政策调研和我国实际情况,提出了我国精准医学大数据汇交与共享政策制定的建议,包括宏观和微观两个层面:宏观层面的建议包括:①加强国家统筹,健全政策制度体系;②注重权益保护,优化利益权衡机制;③建立监管部门,完善监督管理体制;④强化质量建设,统一数据标准规范。微观层面对数据汇交与共享的具体环节进行了细化,重点对数据汇交、数据保存与管理、数据共享、数据汇交与共享计划、利益相关方职责、权益保护以及监督与奖惩机制7个方面的政策内容进行详细界定。

医学数据挖掘

第一章 一.填空 1.数据挖掘和知识发现的三大主要技术为:数据库、统计学、机器学习 2.数据挖掘获得知识的表现形式主要有6种:规则、决策树、知识基网络权值、公式、案例 3.规则是由前提条件、结论两部分组成 4.基于案例推理CBR的基础是案例库 5.知识发现的基本步骤:数据选择、处理、转换、数据挖掘、解释与评价。数据挖掘是知识发现的关键步骤 6.数据挖掘的核心技术是:人工智能、机器学、统计学 7.目前数据挖掘在医学领域的应用集中在疾病辅助诊断、药物开发、医院信息系统、遗传学等方面 二.名解 1.数据挖掘DM:在数据中正规的发现有效的、新颖的、潜在有用的、并且最终可以被读懂的模式的过程 2.案例推理CBR:当要解决一个新问题时,CBR利用相似性检索技术到案例库中搜索与新问题相似的案例,再经过对就案例的修改来解决新问题 三.简答 1.数据挖掘的特点 a挖掘对象是超大型的DB,b发现隐含的知识,c可以用于增进人类认知的知识,d不是手工完成的 2.案例是解决新问题的一种知识,案例知识表示为三元组 a问题描述:对求解的问题及周围环境的所有特征的描述,b解描述:对问题求解方案的描述,c效果描述:描述解决方案后的结果情况,是失败还是成功 3.医学数据挖掘存在的关键问题 a数据预处理,b信息融合技术,c快速的鲁棒的书库挖掘算法,d提供知识的准确性和安全性 4.数据挖掘在遗传学方面的应用 遗传学的研究表明,遗传疾病的发生是由基因决定的,基因数据库搜索技术在基因研究上做出了很多重大发现,其工作主要包括:a从各种生物体的大量DNA序列中定位出具有某种功能的基因,b在基因DB中搜索与某种具有高阶结构或功能的蛋白质相似的高阶结构序列 第二章 一.填空 1.DM的对象分为:关系型DB、数据仓库、文本DB、复杂类型DB 2.从用户角度来看,数据仓库的基本组成包括:数据源、数据存储、应用工具、可视化用户界面 3.数据仓库是最流行的数据模型是多维数据模型,多维数据模型将数据看作是数据立方体的形式,数据立方体是由维和事实来定义 4.常用的多维数据模式包括:星型模式、雪花模式、事实星座模式。星型模式是由事实表

大数据在医疗中的应用

大数据在医疗行业如何应用 医疗行业将和银行、电信、保险等行业一起首先迈入大数据时代。大数据的分析和应用都将在医疗行业发挥巨大的作用,提高医疗效率和医疗效果。 一、临床操作 在临床操作方面,有5个主要场景的大数据应用: 1.比较效果研究 通过全面分析病人特征数据和疗效数据,然后比较多种干预措施的有效性,可以找到针对特定病人的最佳治疗途径。 基于疗效的研究包括比较效果研究(Comparative Effectiveness Research,CER)。研究表明,对同一病人来说,医疗服务提供方不同,医疗护理方法和效果不同,成本上也存在着很大的差异。精准分析包括病人体征数据、费用数据和疗效数据在内的大型数据集,可以帮助医生确定临床上最有效和最具有成本效益的治疗方法。医疗护理系统实现CER,将有可能减少过度治疗(比如避免那些副作用比疗效明显的治疗方式),以及治疗不足。从长远来看,不管是过度治疗还是治疗不足都将给病人身体带来负面影响,以及产生更高的医疗费用。 2.临床决策支持系统 临床决策支持系统可以提高工作效率和诊疗质量。目前的临床决策支持系统分析医生输入的条目,比较其与医学指引不同的地方,从而提醒医生防止潜在的错误,如药物不良反应。通过部署这些系统,医疗服务提供方可以降低医疗事故率和索赔数,尤其是那些临床错误引起的医疗事故。在美国Metropolitan儿科重症病房的研究中,两个月内,临床决策支持系统就削减了40%的药品不良反应事件数量。 3.医疗数据透明度 提高医疗过程数据的透明度,可以使医疗从业者、医疗机构的绩效更透明,间接促进医疗服务质量的提高。

根据医疗服务提供方设置的操作和绩效数据集,可以进行数据分析并创建可视化的流程图和仪表盘,促进信息透明。流程图的目标是识别和分析临床变异和医疗废物的来源,然后优化流程。仅仅发布成本、质量和绩效数据,即使没有与之相应的物质上的奖励,也往往可以促进绩效的提高,使医疗服务机构提供更好的服务,从而更有竞争力。 4.远程病人监控 从对慢性病人的远程监控系统收集数据,并将分析结果反馈给监控设备(查看病人是否正在遵从医嘱),从而确定今后的用药和治疗方案。 2010年,美国有1.5亿慢性病患者,如糖尿病、充血性心脏衰竭、高血压患者,他们的医疗费用占到了医疗卫生系统医疗成本的80%。远程病人监护系统对治疗慢性病患者是非常有用的。远程病人监护系统包括家用心脏监测设备、血糖仪,甚至还包括芯片药片,芯片药片被患者摄入后,实时传送数据到电子病历数据库。举个例子,远程监控可以提醒医生对充血性心脏衰竭病人采取及时治疗措施,防止紧急状况发生,因为充血性心脏衰竭的标志之一是由于保水产生的体重增加现象,这可以通过远程监控实现预防。更多的好处是,通过对远程监控系统产生的数据的分析,可以减少病人住院时间,减少急诊量,实现提高家庭护理比例和门诊医生预约量的目标。 5.对病人档案的先进分析 在病人档案方面应用高级分析可以确定哪些人是某类疾病的易感人群。举例说,应用高级分析可以帮助识别哪些病人有患糖尿病的高风险,使他们尽早接受预防性保健方案。这些方法也可以帮患者从已经存在的疾病管理方案中找到最好的治疗方案。 二、付款/定价 对医疗支付方来说,通过大数据分析可以更好地对医疗服务进行定价。以美国为例,这将有潜力创造每年500亿美元的价值,其中一半来源于国家医疗开支的降低。

医疗大数据及精准医疗

医疗大数据及精准医疗 谢邦昌 台北医学大学管理学院及大数据研究中心院长/主任 大数据得趋势以及价值就是现在最热门得话题,也改变了许多企业经营得方式,对于各行各业来说就是势必就是一个大挑战,能否将大数据得力量从危机到转机就要瞧现代经营者有没有转变传统型态得思维? 首先什么就是大数据?传统数据一年得数据量大概为3TB左右,以现今数据来说一天得资料量为50TB,由这简单得数据量差就可以得知传统数据跟现今数据得差异多么庞大,也就就是现在俗称得大数据时代。数据庞大之下,不管就是银行业、传统零售业、社会建设公共方面甚至就是医疗保健产业对数据处理、分析方式以及经营企业得模式将会有所改变。 在过往得医疗诊断历史,到医院瞧病时必须耗费许多时间等待瞧诊,而医生瞧诊又要再花费时间。当医生要求病患拍摄X光片或检验时,又要再花额外许多时间诊断。而在现今医疗信息高度发展得台湾,瞧诊程序从网络挂号、候诊顺序、诊间病历调阅、医师医令、处方开立、放射影像存取、检查检验数据储存等,无数得数据信息便在医院中传递、交换、储存。同时大多数得生理检验信息在您回诊时得以从电子病历中检索,这些我们认为理所当然得信息处理,在台湾我们只要花费少许得时间如一个早上便完成了,而这一切正就是仰赖医学信息分析与医疗大数据得交换处理。 医学大数据得产生,主要归功于医疗设备数字化及电子化病历发展两大领域得突破,透过仪器数字化,医院得以获得更多病人疾病与健康信息纪录。而在病人医疗诊断方面,为了完善纪录病患个人资料、诊断数据与过往医疗纪录等,即促成了电子病历系统发展。医学大数据发展由过去纸张记录、纸本信息数字化、医学纪录储存到现今多信息整合,其数据量有着爆炸性得成长,不仅由过去个人社经信息、诊断信息等文字媒介,更拓展到多媒体影像信息,如X光影像,动态视讯影像信息,如核磁共振MRI以及电讯号信息,如心电图等等,这些庞大医学数据得汇集与高度整合技术能力,正就是台湾医学信息领域发展领先得原因,同时更显得医学数据发展得多元应用及其重要性。 而由医疗健保产业来说,个人医疗信息终端得产生给医疗产业带来革命性得变化,连结了传统医院、政府(社会保障)、保险公司、药物生产公司等相关产业,形成新得行业生态圈。将互联网+医疗保健去建构一个智能得健康系统,在整个健康系统下会有智能得合作伙伴,包含医院、医生、诊所、学术中心、保险公司、药厂、医疗设备制造商、政府等相关人员等,接着产生出个人化得护理体系,其中包含个人健康、成本节约、提高效率、病人教育、增强通信、绩效度量、预防等

医疗大数据+AI是推动精准医疗和临床科研的新引擎

融合论坛INTEGRATION FORUM 58软件和集成电路SOFTWARE AND INTEGRATED CIRCUIT 从1987年从业到现在32年了,我是第一次以医疗行业企业经营者和专业人士的身份来跟大家分享。从国家政策的角度来讲,国家将健康医疗大数据应用发展的建设工作纳入到了“健康中国2030”规划当中,这对健康医疗大数据的属性和发展战略提出了具体的要求,也为医疗行业以健康医疗大数据为抓手、正确有效地推进医改进程指出了路线和方向。目前医疗行业的大数据需求呈现出三大趋势。一是数据来源多样化。在医疗过程中,医生根据的是HIS (医院信息系统)、LIS (实验室信息管理系统)、E M R (电子病历)、PAC S (影像归档和通信系统)等数据,但常常忽视患者遗传背景、基因、环境等信息。现在整个医疗行 业,专业纵向细化深入、横向碎片化发展趋势非 常明显。 二是关注角度多样化。除了关注治疗效 果,我们还要关注治疗过程中患者的状态、并 发症、死亡率,关注医院救治过程的执行状况 以及收费情况。 三是知识和工具多元化。对医疗救治的认 识,已经从经验积累向数据积累转化,需要医 生在成长过程中重视方法论的培养,包括必须 熟练掌握计算机工具,学会对海量信息进行处 理。 人工智能的概念最早于1956年在美国达特 茅斯大学首次人工智能研讨会中提出,最早的 医疗场景落地探索尝试出现在上世纪70年代的 —海南沃华医疗器械有限公司董事长郝庄严 大数据+人工智能就是有效精 准数据+优秀算法,将碎片化医 疗数据化零为整,将医疗救治 从经验积累转化为数据积累, 以此服务临床科研、提升医技 能力,打造“健康中国”。 医疗大数据+AI 是推动精准医疗和临床科研的新引擎

数据挖掘技术及其在医学上的应用

数据挖掘技术及其在医学上的应用 数据挖掘技术及其在医学上的应用 冯敏1阴珊珊2许涛3 1、泰山医学院信息工程学院271016 2、泰安市疾病预防控制中心传染病防制科2710003、济南广播电视大学 信息技术学院250001 1引言 很多人已经意识到数据中潜在的大量商机,并踏踏实实地进行着从数据中沙里淘金的 工作。自20世纪80年代中期以来,人们利用信息技术生产和搜集数据的能力大幅度提高,大量数据库被用于商务管理、生产控制、市场分析、工程设计和科学探索等领域。但是,面对不断增加的海量数据,人们已不再满足于数据库的查询功能,而是提出了深层次 的问题:能不能从数据中提取信息或者知识为决策服务?要解决这一问题,就数据库技术 而言已经无能为力,同样,传统的统计技术也面临极大的挑战。这就急需有新的方法来处 理这些数据。于是,集统计学、数据库、机器学习、可视化等技术于一身的综合性学科 “数据挖掘”应运而生。近年来,数据挖掘技术在零售业、电信业、金融业、医疗卫生等 许多领域得到了广泛的应用。 2数据挖掘技术介绍 2.1定义和发展 数据挖掘又称数据库中的知识发现(KnowledgeDiscoveryi nDatabase,KDD),是从大量的数据中,抽取潜在的、有价值的知识(模 式或规则)的过程。数据挖掘所挖掘的数据,可以存放在数据库、数据仓库或其它信息存 储中。这是一个年青的跨学科领域,源于诸如数据库系 统、数据仓库、统计、机器学习、数据可视化、信息提取和高性能计算。其它有贡献 的领域包括神经网络、模式识别、空间数据分析、图像数据库、信号处理和一些应用领域,包括商务、经济和生物信息学等[1]。随着数据挖掘技术的逐步发展和完善,近年来在 金融、电信、零售、医疗卫生、科学研究等多个领域中得到成功应用,发挥了巨大作用。 当前,KDD国际研讨会的研究重点逐渐从发现方法等理论研究转向系统应用研究和数据 挖掘工具的开发,注重多种发现策略和技术的集成,以及多种学科之间的相互渗透。 2.2数据挖掘方法 数据挖掘常用的技术方法有特征化规则、关联规则、分类和预测规则、聚类规则、局 外者分析规则、演变分析规则等。

相关文档
相关文档 最新文档