文档库 最新最全的文档下载
当前位置:文档库 › L A B详解

L A B详解

L A B详解
L A B详解

L、A、B值

红、黄、蓝定义为色彩三原色

红、绿、蓝定义为色光三原色

<(L标-L测)平方+(A标-A测)平方+(B标-B测)平方>开根号=E值

Lab 颜色标尺按如下标识:

L (亮度) 轴表示黑白, 0 为黑, 100 为白

A (红绿)轴正值为红,负值为绿, 0 为中性色

B (黄蓝)轴正值为黄,负值为蓝, 0 为中性色

所有的颜色都可以通过任何一种Lab 标尺被感知并测量。这些标尺也可以用来表示标样同试样的色差,并通常有Δ为标识符。

如果Δ L为正,说明试样比标样浅,如果ΔL为负,说明试样比标样深。

如果Δ a 为正,说明试样比标样红(或者少绿),如果为负,说明试样绿(或者少红)

如果Δ b为正,说明试样比标样黄(或者少蓝),如果为负,说明试样蓝(或这少黄)

L,a,b 颜色差异还可以通过一个单独的色差符号ΔE来表示出来,ΔE被定义为样品的总色差,但不能表示出样品的色差的偏移方向,ΔE数值越大,说明色差越大,它通过下面的公式计算得来:△E*=[(△L*)2+(△a*)2+(△b*)2]1/2

从这可知L、a、b并无定值

注意大多数情况下,数据就是相对色差,而不就是绝对色差。

有些公司只要求总色差小于2,有些要求比较严格的,就会要求到L a b值

△a△b △c △l一般情况下均没有定值,但严格要求的话,应该就是各有要求、△E*=[(△L*)2+(△a*)2+(△b*)2]1/2

△c*=[(△a*)2+(△b*)2]1/2

如果△E小于等于2、0,建议△a△b△l均小于等于1、5

一般的,△E在1、5时目视可以分辨、

CIE Lab与Lch的色彩空间图

CIE 色空间坐标图

?CIE LAB

?LAB色空间就是基于一种颜色不能同时既就是蓝又就是黄这个理论而建立。所以,单一数值可用于描述红/绿色及黄/蓝色特徽。当一种颜色用CIE L*a*b*时,L* 表示明度值;a*表示红/绿及b*表示黄/蓝值。

?CIE LCH

?CIE LCH颜色模型采用了同L*a*b*一样的颜色空间,但它采用L表示明度值;C表示饱与度值及H 表示色调角度值得柱形坐标。

三维空间坐标与明度的变化

就是否可以接受的颜色匹配?

(一)、CIE1976色度空间及色差公式

从一开始研究色彩学,人们为了使色彩设计与复制更精确、更完美,为色彩的转换与校正制定合适的调整尺度或比例,减少由于空间的不均匀而带来的复制误差,在不断寻找一种最均匀的色彩空间,这种色彩空间,在不同位置,不同方向上相等的几何距离在视觉上有对应相等的色差,把易测的空间距离作为色彩感觉差别量的度量。若能得到一种均匀颜色空间,那么色彩复制技术就会有更大进步,颜色匹配与色彩复制的准确性就得到加强。

从CIE1931RGB系统到CIE1931XYZ系统,再到CIE1960UCS系统,再到

CIE1976LAB系统,一直都在向"均匀化"方向发展。CIE1931XYZ颜色空间只就是采用简单的数学比例方法,描绘所要匹配颜色的三刺激值的比例关系;CIE1960UCS 颜色空间将1931xy色度图作了线形变换,从而使颜色空间的均匀性得到了改善,但亮度因数没有均匀化。

为了进一步改进与统一颜色评价的方法,1976年CIE推荐了新的颜色空间及其有关色差公式,即CIE1976LAB(或L a b)系统,现在已成为世界各国正式采纳、作为国际通用的测色标准。它适用于一切光源色或物体色的表示与计算。

CIE1976L a b空间由CIEXYZ系统通过数学方法转换得到,转换公式为:

(5-17)

其中X、Y、Z就是物体的三刺激值;X0、Y0、Z0为CIE标准照明体的三刺激值;L表示心理明度;a、b为心理色度。

从上式转换中可以瞧出:由X、Y、Z 变换为L、a、b时包含有立方根的函数变换,经过这种非线形变换后,原来的马蹄形光谱轨迹不复保持。转换后的空间用笛卡儿直角坐标体系来表示,形成了对立色坐标表述的心理颜色空间,如图5-43所示。在这一坐标系统中,+a表示红色,-a表示绿色,+b表示黄色,-b表示蓝色,颜色的明度由L的百分数来表示。

表观反射率(反射率反照率)的计算

表观反射率(反射率、反照率)的计算 第一步、分别计算各个波段每个像元的辐射亮度L 值: L=Gain*DN+Bias 或者 min min min max min max )(*L QCAL QCAL QCAL QCAL L L L +---= 式中,QcaL 为某一像元的DN 值,即QCAL=DN 。 QCALmax 为像元可以取的最大值255。QCALmin 为像元可以取的最小值。如果卫星数据来自LPGS(The level 1 product generation system),则QCAL=1(Landsat-7数据属于此类型)。如果卫星数据来自美国的NLAPS ( National Landsat Archive Production System ),则QCALmin=0 (Ldsat-5的TM 数据属于此类型)。 根据以上情况,对于Landsat-7来说,可以改写为(QCALmin=1): min min max )1(*254L DN L L L +--= 对于Landsat-5来说,可以改写为(QCALmin=0): min min max *255L DN L L L +-= 表1 Iandsa-7 ETM+各个反射波段的Lmax 和Lmin 值 Table1The values of Lmmax and Lmin for reflecting bands of Landsat-7 表2 Landsat-5 TM 各反射波段的Lmax 和Lmin 值

的陆地、沙漠、冰与雪、水体、海冰、火山等6大类型)和太阳高度角状况来确定采用高增益参数或是低增益参数。一般低增益的动态范围比高增益大1.5倍,因此当地表亮度较大时,用低增益参数;其它情况用高增益参数。在非沙漠和冰面的陆地地表类型中,ETM+的1一3和5,7波段采用高增益参数,4波段在太阳高度角低于45度(天顶角>45度)时也用高增益参数,反之则用低增益参数。详见文献(NASA Landsat Project ScienceOffice , 1998b )。 第二步、计算各波段反射率(反照率、反射率)ρ: 波段) 为第i i Cos ESUN D L i () (2 θπρ???= 式中,p 为人气层顶(TOA)表观反射率(无量纲),π为常量(球面度str),L 为大气层顶进人卫星传感器的光谱辐射亮度(W ˙m-2-sr-1˙μm-1),D 为日地之间距离(天文单位),ESUN 为大气层顶的平均太阳光谱辐照度(W ˙m-2-sr-1˙μm-1),θ为太阳的天顶角(θ=90?-β,β为太阳高度角, Cos(θ)也可以这样计算:Cos(θ)=Sin φ*Sin δ+Cos φ*Cos δ*Cosh,式中φ甲为地理纬度,φ为太阳赤纬,h 为太阳的时角。太阳赤纬是太阳光与地球赤道平面的夹角)。 也可以是: 2 )365)5.93(2sin 0167.01(cos )()(??????-+?= D E L s sun T πθλλπρ 其中,θs 为太阳天顶角, D 为儒略历(Julian) 日期,这两个参数可由数据头文件读 出。L (λ) 为入瞳辐亮度, Esun 为外大气层太阳辐照度。 上式成立的条件是假设在大气层顶,有一个朗勃特(Laribcitian)反射面。太阳光以天顶角θ人射到该面,该表面的辐照度为E = ESUN*Cos(θ)/D 2(吕斯哗,1981)。该表面的辐射出射度M=πL(吕斯骤,1981)。根据Lanbertian 反射率定义,大气层顶的表观反射率P 等于M 和E 的比值,即 波段) 为第i i Cos ESUN D L E M i () (2 θπρ???= = 表 3 随时间变化的日地距离(天文单位) 表 4 Landsat-7 和Landsat-5的大气层顶平均太阳光谱辐照度ESUN(W ˙m-2-sr-1˙μm-1)

基于Labview的MP3的设计

基于Labview的MP3播放器的设计 该虚拟仪器—MP3播放器,主要用于播放已存储计算机磁盘中的音乐文件。它是将播放器的系统装入计算机,以通用的计算机硬件及操作系统为依托,实现音乐功能的。本系统主要利用labview的Activex, 属性节点,调用节点,Event structure等控制实现的。 该虚拟仪器的程序框图如下所示,下面对其的各个控件和函数做一下简单介绍: 图1:基于labview的MP3播放器的程序框图 (1)事件结构:包括一个或多个子程序框图或事件分支,结构执行时,仅有一个子程序框 图或分支在执行。事件结构可等待直至事件发生,并执行相应条件分支,处理该事件。 连线事件结构边框左上角的“超时”接线端,指定事件结构等待事件发生的时间,以毫秒为单位。默认值为–1,即永不超时。 (2)ActiveX容器:用于在VI的前面板上嵌入ActiveX对象。基于Windows的应用程序 可通过此方式在前面板上显示并与LabVIEW控件交互。可在ActiveX容器中放置两种类型的ActiveX对象。用户可自行创建新的ActiveX控件或文档。也可插入现有的 ActiveX控件或文档。框图中的MEDIA PLAYER就是现有的控件。 (3)属性节点:可自动调整为用户所引用的对象的类。LabVIEW的属性节点可访问 ActiveX属性。框图中的IWMPPLAYER4和IWMPCONTROLS均为所引用的对像的类。 (4)路径控件:用于输入或返回文件或目录的地址。 (5)字符串/数组/路径转换:使路径转换为字符串,以操作平台的标准格式描述路径。字符 是当前平台上通过标准格式路径表示的路径描述符。字符串的数据类型结构与路径一致。 下面是如何查找具体的控件与函数及对它们的参数设定过程: (1)属性节点调整为所引用对象的类:在程序框图中右键单击出“函数”选板,点击“互联接口”,选择ActiveX—属性节点—选择类—ActiveX—IWMPPLAYER4,左键单击属性栏,即可选择相应的属性—URL。若不止一个属性,则下拉属性栏,在按照相同的方法选择相应

基于LabVIEW的数据采集与处理系统设计

基于LabVIEW的数据采集与处理系统设计 摘要:虚拟仪器作为一种基于图形化编程的新型概念仪器,以计算机作为运行媒介,节省了大量的显示、控制硬件,越来越显示出它独有的优势。基于LabVIEW的数据采集与处理系统,整体采用了循环结构与顺序结构相结合的形式,实现了模拟信号的采集与实时动态显示,并且仿真出了对数据的采集和报警功能,并且能够存储数据,进行各种自定义设置,显示效果良好,对现实中的数据采集与处理系统具有很大的借鉴作用。 关键词:虚拟仪器;数据采集;数据处理;LabVIEW

The Design of Data Acquisition and Processing System Based on LabVIEW Abstract:As a kind of virtual instrument based on graphical programming the new concept of instruments, run at the computer as a medium, save a large amount of display, control hardware, more and more shows its unique advantages. Data acquisition and processing system based on LabVIEW, and the overall adopted loop structure and order structure, in the form of the combination of the dynamic analog signal acquisition and real-time display, and the simulation of the data collection and alarm function, and the ability to store data, for a variety of Settings, display effect is good, the reality of the data acquisition and processing system has a great reference. Keywords:Virtual Instrument;Data Collection;Data Processing;LabVIEW;

玻璃的反射率和透光率计算

玻璃的反射率和透光率计算 设r 为每个界面反射率 r=((n-1)/(n+1))2 ,n 是玻璃的折射率,等于1.5,则r=4% 单片玻璃有两个界面,设其反射率为R ,PVB 的透过率为0.92 则 R=r e r r t ??-+-β22)1( 式中β 为吸收率系数,等于1M -1,t 为厚度。 (1)采光顶8+12A+6+1.52PVB+6mm 中空钢化夹胶玻璃 R= %00.792.004.0)04.01(04.02020.022=???-+-x e 单片玻璃的透过率为T ,t e r T β-?-=2)1( %1.8392.0)04.01(020.012=??-=-x e T (2)幕墙10+12A+10mm 中空钢化玻璃 R= %00.792.004.0)04.01(04.02020.022=???-+-x e %1.8392.0)04.01(020.012=??-=-x e T 综合以上计算,采光顶8+12A+6+1.52PVB+6mm 中空钢化夹胶玻璃,幕墙10+12A+10mm 中空钢化玻璃的反射率为7.00%,透光率为83.1%。 玻璃的热传导系数 66333.43.2111d G ++=εδ 66352.1733.452.13.2111+?+=εG 1111-+=i o εεε 式中: G 中空夹胶玻璃的导热系数,c h m kcal o 2/ δ 夹层的厚度(mm ) ε 有效放射率

i o εε 外、内側玻璃的放射率,0.896 d 原板玻璃公称厚度之和,( mm ) (1)采光顶8+12A+6+1.52PVB+6mm 中空钢化夹胶玻璃 23956.066352.33812.033.412 3.2111=+?+=G 中空夹胶玻璃的热传导系数 o i h h G K 1111++= 式中: o h 外侧空气对流系数,17.5 c h m k c a l o 2/ i h 内侧空气对流系数,7.4 c h m k c a l o 2/ 31568.25 .1714.7123956.01=++=K c h m k c a l o 2/ K m W K 2/702..23600 420031568.2=?= (2)幕墙10+12A+10mm 中空钢化玻璃 228..066332812.033.412 3.2111=+?+=G 夹胶玻璃的热传导系数 o i h h G K 1111++= 式中: o h 外侧空气对流系数,17.5 c h m k c a l o 2/ i h 内侧空气对流系数,7.4 c h m k c a l o 2/ 37938.25 .1714.71228.01=++=K c h m k c a l o 2/ K m W K 2/776..23600 420037938.2=?=

地表反射率计算

算计射率石市地表反黄 一、数据预处理 1、打开:用 ENVI5.1 将黄石市 2000 年遥感影像数据的 3,、4、5 波段打开 (1)用鼠标左键双击 ENVI5.1 图标,打开 ENVI5.1 程序; (2)打开黄石市 2000 年遥感影像数据的 3,、4、5 波段。 File→Open Image File→选择黄石市 2000 年遥感影像数据的 3、4、5 波段→打开。

波段进行合成。 4、5年遥感影像数据的 3、 2、合成:对黄石市 2000 感遥2000 年 File Basic Tools→LayerStacking→Import →选择黄石市 →2000_band543_hecheng→波段543影像数据的、、→Ok→Choose 命名() 打开→Ok 黄石市遥感影像。、裁剪:用黄石市边界矢量数据裁剪合成后的20003 波段;5 3、4、遥感影像数据的(1)打开合成后的黄石市2000 年

)→打开→Ok2000_band543_hecheng File→OpenImage File→选图()打开黄石市边界矢量数据;2( →选图(黄石市边界范围.evf)→打开File Vector→OpenVector 备注:建立掩膜时一定要将 2000_band543_hecheng 和黄石市矢量边界的影像 打开。 (3)以黄石市边界矢量数据建立掩膜; Basic Tools→Masking→Bulid Mask→Display #1→Options →Import EVFS→选图(111)→Ok→Choose→命名 (2000_band543_hecheng_yanmo)→ 打开→Apply

基于Labview模板

基于Labview的虚拟示波器设计 院部:电气与信息工程学院 学生姓名:邓静 专业:自动化 班级:自本1004班

第1章绪论 1.1虚拟仪器的基本概念 电子测量仪器发展到今天,总体上经过了四个历程,按出现的时间顺序依次为;模拟仪器,数字仪器,智能仪器,虚拟仪器。其中,为了与虚拟仪器区别开来,我们又把前三种称为传统仪器。虚拟仪器是电子计算机技术与现代测量技术深层次结合的产物,是用户在普通PC机上,应用各种软件平台,根据自身的需要,设计和定义的软硬件相结合的一种测量仪器。利用计算机强大的图形显示功能,建立虚拟仪器的控制面板,用户通过对面板的操作实现对虚拟仪器的操作,就像操作一台普通的测量仪器一样。 1.2虚拟仪器的构成 从构成要素上讲,虚拟仪器主要由计算机,仪器硬件(如数据采集卡)和应用软件构成;从总线标注上讲,包括有PC-DAQ系统,GPIB系统,VXI系统等。 1.3虚拟仪器的较传统仪器的优势 (1)传统仪器的控制面板只有一个,在这个操作面板上,需要放置各种按钮,容易导致混乱和混淆。而虚拟仪器可以有多个控制面板,各个面板之间的切换十分方便,使每个面板变得简单,从而提高了操作的正确性和方便性。 (2)虚拟仪器大量用应用软件来替代传统仪器中的硬件,从而使仪器的硬件变得简单。 (3)虚拟仪器使仪器的功能可以有用户自定义,而不是只能由厂家来定义,从而使得仪器更加好用,方便。 (4)由于用软件替代硬件,仪器的更新升级大都只要更新软件,从而使得仪器的升级换代更加迅速,研发周期缩短。 (5)虚拟仪器的发展可与计算机的发展同步,与网络及周边设备同步。 1.4虚拟仪器的现状及发展方向 虚拟仪器的概念最初是由美国国家仪器公司(National Instruments Corp,简称NI)于1986年提出,NI公司在80年代研制和推出了许多总线系统的虚拟仪器,后来,美国HP公司,Tektronic公司,Racal公司也在此方面有了很多进展。虚拟仪器在国外发展很快,以NI公司为首的很多公司已经在市场上推出了大量基于虚拟仪器技术的电子仪器产品。据“世界仪表及自动化”杂志预测,虚拟仪器在21世纪中期将占到仪器市场50%左右的份额。虚拟仪器在本世纪发展很快,大有取代传统仪器的趋势。 近年来,世界很多公司推出了不少虚拟仪器软件开发平台,使仪器的使用者可以开发组建自己需要的虚拟仪器。其中,比较具有代表性的是NI公司Labview 平台和Labwindows/CVI平台。相比而言,Labwindows是为熟悉C语言的传统软

基于LabVIEW的拼图游戏设计

摘要 关键字 目录 1、绪论 1.1 G语言与虚拟仪器的概述 1.1.1 G语言的概述 虚拟仪器编程语言LabVIEW是一种图形化的程序语言,又称为“G”语言。LabVIEW 是一个功能比较完善的软件开发环境,它是为替代常规的BASIC或C语言而设计的。作为编写应用程序的语言,除了编程方式不同之外,LabVIEW具有编程语言的所有特性。使用这种语言编程时,基本不用写代码,取而代之的是流程图。 G语言是一种适合于任何编程任务,具有扩展函数库的通用编程语言。G语言和传统高级编程语言的最大的差别在于编程方式上的不同,一般高级语言采用的方法为本编程,而G 语言采用图形化编程方式。G语言编写的程序称之为虚拟仪器VI(Virtual Instrument),因为它的界面和功能与真实仪器基本相似,在LabVIEW环境平台下开发的应用程序都会被冠以.VI的后缀,以表示虚拟仪器的含义。G语言定义了数据类型、结构类型和模块调用语法规则等编程语言的基本要素等,在功能的完整性和应用的灵活性上毫不不逊于任何高级语言,G语言同时还具有丰富的扩展函数库。这些扩展函数库主要面向数据采集、GPIB以及串行仪器控制、数据分析、数据显示与数据存储等途径。G语言还包括常用的程序调试工具,例如包括断步调试、允许设置断点、数据探针和动态显示执行程序流程等功能[1]。 1.1.2 虚拟仪器的概述 虚拟仪器(Virtual Instrument)就是在以计算机为核心的硬件平台上,根据用户对仪器的设计定义,具有虚拟面板、用软件实现虚拟控制面板设计和测试功能的一种计算机仪器系统。使用者用鼠标点击虚拟面板,就可以操作这台计算机系统硬件平台。它是将现有的计算机技术、软件设计技术和高性能模块化硬件结合在一起而建立起来的功能强大而又灵活易变的仪器。 虚拟技术、计算机技术与网络技术是信息技术最重要的组成部分,它们被称为21世纪科学技术中的三大核心技术。电子测量仪器发展至今,大体经历了模拟仪器、分立元件式仪器、数字化仪器和智能仪器。目前,微电子技术和计算机技术的飞速发展,测试技术与计算机层次的结合使得虚拟仪器应运而生。虚拟仪器的出现导致了传统仪器的结构、概念和设计观点都发生了巨大变革,使得人类的测试技术进入了一个新的发展纪元。在过去的20年中,个人电脑应用的迅速普及促进了测试测量和自动化仪器系统的革新,其中最显著的就是虚拟仪器的出现与发展。虚拟仪器为工程师和科学家们提高生产效率、测量精度以及系统性能方面做出了卓越的贡献。 虚拟仪器的概念是由美国国家仪器公司提出来的,虚拟仪器本质是虚拟现实一个方面的应用结果。也就是说虚拟仪器是一种功能意义上的仪器,它充分利用计算机系统强大的数据处理能力,在基本硬件的支持下,利用软件完成数据的采集、控制、数据分析和处理

基于Labview的数据采集系统设计

武汉工程大学邮电与信息工程学院 毕业设计(论文)说明书 论文题目基于Labview的数据采集系统设计 2013年5月25日

目录 摘要........................................................................................................................................ I I Abstract .................................................................................................................................... III 第一章绪论........................................................................................................................ - 1 - 1.1背景.......................................................................................................................... - 1 - 1.2国内外技术现状...................................................................................................... - 1 - 1.3数据采集技术的介绍............................................................................................. - 2 - 1.4虚拟仪器的介绍...................................................................................................... - 9 - 第二章PCI8602的硬件结构及性能.................................................................................. - 13 - 2.1 功能概述............................................................................................................... - 13 - 2.2元件布局图及简要说明........................................................................................ - 15 - 2.3信号输入输出连接器............................................................................................ - 17 - 2.4 各种信号的连接方法........................................................................................... - 18 - 2.5各种功能的使用方法............................................................................................ - 21 - 2.6 CNT定时/计数功能.............................................................................................. - 22 - 第三章PCI8602的编程函数........................................................................................... - 23 - 3.1 编程纲要............................................................................................................... - 23 - 3.2 PCI设备操作函数接口......................................................................................... - 25 - 第四章数据采集的程序设计............................................................................................ - 33 - 4.1 前面板设计........................................................................................................... - 33 - 4.2 程序后面板设计................................................................................................... - 33 - 4.3 vi层次结构............................................................................................................ - 40 - 第五章采集实验结果及总结.......................................................................................... - 41 - 5.1 实验结果............................................................................................................... - 41 - 5.2 总结与展望........................................................................................................... - 42 - 致谢...................................................................................................................................... - 43 - 参考文献.............................................................................................................................. - 44 -

地表反射率,温度,植被指数

地表反射率、温度、植被指数、几何精纠正和Landsat影像

Basic Tools|Band Math,在Band Math对话框中输入公式,公式中的b3和b4分别选取第3和第4波段的地表反射率。然后导出结果。 二、地表温度反演 1、计算辐射亮度。加载htm影像,根据头文件中的数据,得到1、2波段的辐射亮度的计算公式0.067086617777667001*b1+(-0.067086617777667001)和0.037204722719868001*b2+(3.1627953249638470),步骤同上,得出辐射量度的计算结果。 2、辐射反演。利用公式T=k2/ln(k1/Lλ+1)算地物的辐射反演,其中T为开尔温度;查找参数值:k1=666.09; k2=1282.71;Lλ分别利用步骤1中的波段1和波段2的辐射量度。 3、统计反演后的地物的温度值,并比较其差异。打开反演后的温度影像,右击影像选择ROI Tool,统计各种地物值的最大值,最小值,均值,标准差,将其统计到Excel中,比较其差异。 结果与分析 一、DNVI建模 【地表反射率】

第3波段第4波段【DNVI】 【3、4波段表观反射率和地表反射率的线性关系】

【表观反射率和地表反射率的线性关系数学表达式】 波段关系式波段关系式 1波段y=0.8933*x+0.0473 4波段y=0.9401*x+0.0065 2波段y=0.8801*x+0.0242 5波段y=0.9399*x+0.001 3波段y=0.9161*x+0.0143 7波段y=0.9584*x+0.0004 【部分地物的DNVI值】 地物DNVI值min max mean stdev Reservior 0.057713 0.338587 0.145087 0.038598 Snow -0.12395 0.152669 0.025088 0.031572 Bare Land 0.105628 0.374843 0.192701 0.043621 Urban -0.356923 0.038094 -0.273288 0.045284 Plant 0.333387 0.786695 0.656094 0.081619 Desert 0.071897 0.155663 0.100783 0.014291 River 0.043469 0.429917 0.127503 0.08131 【结果与分析】:通过对提取地物的DNVI值的可以发现,绿色的DNVI值比较高,原因是绿色植物叶绿素引起的红光吸收和叶肉组织引起的近红外光反射使得植被在近红外波段和红光波段有很大的差异;水体和

基于labview密码登录系统设计

论文名称:基于labview的登录系统 一、功能说明 密码系统主要是防止非授权用户的非法进行,只有合法的用户在验证后才能进行测试和其它一些操作,比如查看数据等,增加系统和测试数据的安全性。 图1 登录界面 密码系统里面记录了当前用户的用户名、用户密码、用户权限、总共的登录次数和最后的登录时间。使用时系统默认用户名—“chenchengwei”,其密码为“0”,用户权限是管理员,登录次数为7。下图是第7次登录后的界面:

图 2 第7次登录后的界面 输入用户名后,可以按回车键,光标会跳到密码输入栏,输入密码后,可以按回车键进行密码确认,也可以点击“用户登录”,单击“用户登录”或按下回车键进行验证,如果用户信息不正确的话,会提示“用户名或密码错误,请重新输入”,如果用户输入三次错误的用户名和密码时,会提示“输入错误的用户名或密码次数超出限制,请联系系统管理员确认您的用户名和密码!”,此时请联系管理员确认正确的用户名和密码。 如果用户信息正确,则允许登录,如图2所示。 如果用户的权限只是测试员的话,则只有“进入系统”、“修改密码”、“退出系统”这几个按键可用,选择“修改密码”则可以对自己的密码进行修改,如下图:

图 3 修改密码 如果用户权限是管理员的话,则多了一个“用户管理”的功能,用于对当前所有用户的密码等信息进行管理,如下图所示: 图 4 用户管理 可以进行的管理包括: 增加用户——弹出对话框提示输入新用户的用户名、密码、权限,确认后完成用户增加;

图 5 增加用户 删除用户——选择左边的任意一个用户,点删除用户,确认后删除该用户; 图 6 删除用户 编辑用户——双击某一行时,可以对该用户的密码和权限进行修改,但用户名、登录次数和最后登录时间不能改变。

地表反射率的计算

地表覆盖反射率的计算(6s软件的应用) 9月23日首先在envi软件中打开已经处理好的真彩色影像(TM543波段),我的影像因为没有居中,所以首先进行了裁剪,让影像满幅居中再操作。 1、打开遥感影像,并裁减居中: 先打开7个波段影像,, 选中543,。合成,,,在弹出的对话框中点,按住ctrl再选中这3项 ,点ok,命名为。 打开矢量边界,,,选中。建立掩膜, ,,,,,重命名为,点,形成掩膜文件。再应用掩膜,选文件,点 ,选,,,重命名为,形成影像

。所以接下来对背景进行裁剪,,,选,,,选,,,,, 重命名为,形成影像。 2、让#1和Scroll中的红方框大致居中,在#1中任意位置双击弹出“光标位置评估”,或者右键找出也可。

(可是我不太清楚调出这个的目的?) 3、寻找我们应用的黄石市遥感影像中头文件为MTL.txt的文件,以写字板的形式打开,方便查看遥感影像的具体信息。 找到影像获取的时间即“DATE _ACQUIRED”,这个原始的影像获取时间才是我们需要的,不要被其他的信息误导。 因为6s识别不了具体的时分秒,所以我们需要将具体时间换算成小时,即此处的02:26:32应转换成2.43小时。 4、打开中的,

我们在运行6s的一切操作,都是按着这个步骤来的,但是期间会出现一些专业术语的特定要求,所以我们需要打开另外的文件,书名如下: 打开到35页,IGEOM,从对应上我们找到TM影像,即Landset对应的数字为7, 接下来,我们运行6s软件。打开中的,

Geometrical conditions (几何条件) igeom [0-7]:7(因为IGEOM,从对应上我们找到TM影像,即Landset对应的数字为7); 输好后只按一次enter键; 4、接下来输入时间:

基于LABVIEW的用户登录界面设计

基于LABVIEW的用户登录界面设计 Labview具有功能强大的数学工具,用在传感器设计上可大大降低软件的设计负担。对于一个实际的传感器使用,其用户数量有限,其登陆界面设计可以完全借助其数组函数和数据记录文件完成,而不是数据库,这样既减轻了系统的重量,也减轻了系统的负荷。没有牵涉第三方的软件,系统的稳定性也大大提高。本文设计了一个简单的用户登录系统的2个模块,希望能对读者有所启发。 1)用户初始文件的建立 Labview的数据记录文件具有较强的功能,并且不能用写字本打开,因此作为一般的保密级别可以用来存储初程序运行环境数据,本文用来存储登陆系统的用户数据。 本程序采用两个套嵌while循环,用于批量产生用户名单,内

While采用三个文本输入框,分别输入用户姓名、用户初始密码、用户权限等内容,并用系统时间空间获取用户建立时间,通过数组创建函数创建成一维数组,点击确定键完成一个用户的建立,可以继续进行下一个用户的建立(当然你也可以只建立一个超级用户,在超级用户登陆后继续建立用户名单),用户建立完毕点击停止按钮完成用户名单建立,形成一个二维数组,由于点击停止键时,最后一个用户名单会重复建立,故采用数组删除函数去掉最后一行,然后创建一个文件,用数据记录函数将该名单存储在你希望的文件夹内(本例放在桌面上,面板上的数组是为验证程序而建立的,可以去掉)。 2)登陆界面 登陆面板实际上只有两个文本输入控件:用户名和密码。程序首先将记录文件读入内存,让后将第一列(索引0列)的所有用户列出来,用一维数组搜索函数搜索该用户密码所在的行号,再用该行号将该用户的信息从记录文件索引出来。由于密码放在第二列(1列),直接从用户的记录信息索引第第二列(索引1列)取出该用户密码),直接用文本比较“等于”函数进行比较用户输入的密码是否与其预设的密码一致。 至于修改用户名单、用户权限等内容可用“数组的删除、插入”

基于LABVIEW的课程设计_

毕业论文声明 本人郑重声明: 1.此毕业论文是本人在指导教师指导下独立进行研究取得的成果。除了特别加以标注地方外,本文不包含他人或其它机构已经发表或撰写过的研究成果。对本文研究做出重要贡献的个人与集体均已在文中作了明确标明。本人完全意识到本声明的法律结果由本人承担。 2.本人完全了解学校、学院有关保留、使用学位论文的规定,同意学校与学院保留并向国家有关部门或机构送交此论文的复印件和电子版,允许此文被查阅和借阅。本人授权大学学院可以将此文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本文。 3.若在大学学院毕业论文审查小组复审中,发现本文有抄袭,一切后果均由本人承担,与毕业论文指导老师无关。 4.本人所呈交的毕业论文,是在指导老师的指导下独立进行研究所取得的成果。论文中凡引用他人已经发布或未发表的成果、数据、观点等,均已明确注明出处。论文中已经注明引用的内容外,不包含任何其他个人或集体已经发表或撰写过的研究成果。对本文的研究成果做出重要贡献的个人和集体,均已在论文中已明确的方式标明。 学位论文作者(签名): 年月

关于毕业论文使用授权的声明 本人在指导老师的指导下所完成的论文及相关的资料(包括图纸、实验记录、原始数据、实物照片、图片、录音带、设计手稿等),知识产权归属华北电力大学。本人完全了解大学有关保存,使用毕业论文的规定。同意学校保存或向国家有关部门或机构送交论文的纸质版或电子版,允许论文被查阅或借阅。本人授权大学可以将本毕业论文的全部或部分内容编入有关数据库进行检索,可以采用任何复制手段保存或编汇本毕业论文。如果发表相关成果,一定征得指导教师同意,且第一署名单位为大学。本人毕业后使用毕业论文或与该论文直接相关的学术论文或成果时,第一署名单位仍然为大学。本人完全了解大学关于收集、保存、使用学位论文的规定,同意如下各项内容:按照学校要求提交学位论文的印刷本和电子版本;学校有权保存学位论文的印刷本和电子版,并采用影印、缩印、扫描、数字化或其它手段保存或汇编本学位论文;学校有权提供目录检索以及提供本学位论文全文或者部分的阅览服务;学校有权按有关规定向国家有关部门或者机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入学校有关数据 库和收录到《中国学位论文全文数据库》进行信息服务。在不以赢利为目的的前提下,学校可以适当复制论文的部分或全部内容用于学术活动。 论文作者签名:日期: 指导教师签名:日期:

地表反射率计算

黄石市地表反射率计算 一、数据预处理 1、打开:用ENVI5.1将黄石市2000年遥感影像数据的3,、4、5波段打开(1)用鼠标左键双击ENVI5.1图标,打开ENVI5.1程序; (2)打开黄石市2000年遥感影像数据的3,、4、5波段。 File→Open Image File→选择黄石市2000年遥感影像数据的3、4、5 波段→打开。 2、合成:对黄石市2000年遥感影像数据的 3、 4、5波段进行合成。 Basic Tools→Layer Stacking→Import File→选择黄石市2000年遥感影像数据的3、4、5波段→Ok→Choose→命名(2000_band543_hecheng)→

打开→Ok 3、裁剪:用黄石市边界矢量数据裁剪合成后的2000黄石市遥感影像。(1)打开合成后的黄石市2000年遥感影像数据的3、 4、5波段; File→Open Image File→选图(2000_band543_hecheng)→打开→Ok (2)打开黄石市边界矢量数据; Vector→Open Vector File→选图(黄石市边界范围.evf)→打开

备注:建立掩膜时一定要将2000_band543_hecheng和黄石市矢量边界的影像打开。 (3)以黄石市边界矢量数据建立掩膜; Basic Tools→Masking→Bulid Mask→Display#1→Options→Import EVFS→选图(111)→Ok→Choose→命名(2000_band543_hecheng_yanmo)→打开→Apply (4)应用掩膜; Basic Tools→Masking→Apply Mask→2000_band543_hecheng→ Select Mask Bang→2000_band543_hecheng_yanmo→Ok→Ok→Choose→命名(2000_band543_hecheng_clip)→打开→Ok

基于LABVIEW的AD

基于Labview的ADD波形 第一部分:概述 随着计算机技术、大规模集成电路技术和通讯技术的飞速发展,仪器技术领域发生了巨大的变化,美商国家仪器公司(National Instruments)于八十年代中期首先提出基于计算机技术的虚拟仪器的概念,把虚拟测试技术带入新的发展时期,随后研制和推出了基于多种总线系统的虚拟仪器。 LabVIEW是一种程序开发环境,由美国国家仪器(NI)公司研制开发的,类似于C和BASIC开发环境,但是LabVIEW 与其他计算机语言的显著区别是:其他计算机语言都是采用基于文本的语言产生代码,而LabVIEW使用的是图形化编辑语言G 编写程序,产生的程序是框图的形式。 与C和BASIC一样,LabVIEW也是通用的编程系统,有一个完成任何编程任务的庞大函数库。LabVIEW的函数库包括数据采集、GPIB、串口控制、数据分析、数据显示及数据存储,等等。LabVIEW也有传统的程序调试工具,如设置断点、以动画方式显示数据及其子程序(子VI)的结果、单步执行等等,便于程序的调试。 本次就是一个基于labview平台的一次设计来达到对虚拟仪器课程的掌握,尽量使用学习到知识,在设计过程中有些部分存在对于总体设计影响不大,仅仅作为对知识的巩固。 本次的ADD waveforms 设计能够对两种不同的信号进行的

运算,由于现有的示波器仅能对两组波形进行简单的加减,而ADD waveforms能够进行除加减意外的乘除运算。 第二部分:设计的思路与基本原理 本次设计是基于labiew界面的一个虚拟仪器的设计,所设计的虚拟仪器要具有对一个正弦波、一个三角波进行各种合成运算的功能,可完成add、divide、multip、subtra四种基本数学运算的功能。 通过以上的目标,我们可以分别选择能产生三角波、正弦波的子VI,再通过一个条件结构来确定每次输入的波形需要进行那种运算,然后在波形图中显示出来以供观察,最后可以比较ADD前的波形与ADD之后的,同时对最终信号进行了频谱分析。 本次设计结构主要有这基本分组成:条件结构、信号产生子VI、信号合并、波形验证部分、控制开关部分、频谱分析部分。在接下来的部分会对这些部分做详细的介绍。 第三部分:设计模块与元器件的介绍 一:前面板的介绍 如图1-2为labview的前控制面板,即模拟硬件部分:

表观反射率(反射率、反照率)的计算(完整资料).doc

此文档下载后即可编辑 表观反射率(反射率、反照率)的计算 第一步、分别计算各个波段每个像元的辐射亮度L 值: L=Gain*DN+Bias 或者 min min min max min max )(*L QCAL QCAL QCAL QCAL L L L +---= 式中,QcaL 为某一像元的DN 值,即QCAL=DN 。 QCALmax 为像元可以取的最大值255。QCALmin 为像元可以取的最小值。如果卫星数据来自LPGS(The level 1 product generation system),则QCAL=1(Landsat-7数据属于此类型)。如果卫星数据来自美国的NLAPS ( National Landsat Archive Production System ),则QCALmin=0 (Ldsat-5的TM 数据属于此类型)。 根据以上情况,对于Landsat-7来说,可以改写为(QCALmin=1): min min max )1(*254L DN L L L +--= 对于Landsat-5来说,可以改写为(QCALmin=0): min min max *255L DN L L L +-= 表1 Iandsa-7 ETM+各个反射波段的Lmax 和Lmin 值 Table1The values of Lmmax and Lmin for reflecting bands of Landsat-7 ETM+(W ˙m-2-sr-1˙μm-1) 表2 Landsat-5 TM 各反射波段的Lmax 和Lmin 值

Table 2 The values of Lmax and Lmin for reflecting bands of Landsat-5 TM (W ˙m-2-sr-1˙μm-1) 表类型(非沙漠和冰面的陆地、沙漠、冰与雪、水体、海冰、火山等6大类型)和太阳高度角状况来确定采用高增益参数或是低增益参数。一般低增益的动态范围比高增益大1.5倍,因此当地表亮度较大时,用低增益参数;其它情况用高增益参数。在非沙漠和冰面的陆地地表类型中,ETM+的1一3和5,7波段采用高增益参数,4波段在太阳高度角低于45度(天顶角>45度)时也用高增益参数,反之则用低增益参数。详见文献(NASA Landsat Project ScienceOffice , 1998b )。 第二步、计算各波段反射率(反照率、反射率)ρ: 波段)为第i i Cos ESUN D L i ()(2θπρ???= 式中,p 为人气层顶(TOA)表观反射率(无量纲),π为常量(球面度 str),L 为大气层顶进人卫星传感器的光谱辐射亮度(W ˙m-2-sr-1˙μm-1),D 为日地之间距离(天文单位),ESUN 为大气层顶的平均太阳光谱辐照度(W ˙m-2-sr-1˙μm-1),θ为太阳的天顶角(θ=90?-β,β为太阳高度角, Cos(θ)也可以这样计算:Cos(θ)=Sin φ*Sin δ+Cos φ*Cos δ*Cosh,式中φ甲为地理纬度,φ为太阳赤纬,h 为太阳的时角。太阳赤纬是太阳光与地球赤道平面的夹角)。 也可以是: 2)365)5.93(2sin 0167.01(cos )()(??????-+?=D E L s sun T πθλλπρ 其中,θs 为太阳天顶角, D 为儒略历(Julian) 日期,这两个参数可 由数据头文件读出。L (λ) 为入瞳辐亮度, Esun 为外大气层太阳辐照

相关文档