文档库 最新最全的文档下载
当前位置:文档库 › mRNA的序列、结构以及翻译速率与蛋白质结构的关系

mRNA的序列、结构以及翻译速率与蛋白质结构的关系

mRNA的序列、结构以及翻译速率与蛋白质结构的关系
mRNA的序列、结构以及翻译速率与蛋白质结构的关系

蛋白质翻译总结

氨基酸的活化a.起始信号(AUG-甲硫氨酸密码子)和缬氨酸(GUG)极少出现i.真核生物起始氨基酸—甲硫氨酸,原核生物-甲酰甲硫氨酸 ii.SD序列:存在于原核生物起始密码子AUG上游7~12个核苷酸处的一种4~7个核苷酸的保 守片段,与16srRNA3’端反向互补。功能将mRNA的AUG起始密码子置于核糖体的适当位置以便起始翻译作用。 1)原核生物的SD序列:原核mRNA起始密码子上一段可与核糖体结合的序列。30s小亚基首先与 翻译因子IF-1(与30s结合)和IF-3(稳定小亚基,帮助其与mRNA结合位点的识别)结合,通过SD序列与mRNA模板相结合。 iii.真核生物依赖于结合5'帽,核糖体小亚基沿mRNA5'端帽子结构扫描到RBS iv.在IF2起始因子和GTP的帮助下,fMet-tRNA进入小亚基的P位,tRNA上的反密码子与mRNA密码子配对。 v.小亚基复合物与50s大亚基结合,GTP水解,释放翻译起始因子vi.翻译的起始 b.后续氨基酸与核糖体的集合:第二个氨酰-tRNA与EF-Tu.GTP形成复合物,进入核糖体的A位,水解产生GDP并在EF-Ts的作用下释放GDP并使EF-Tu结合另一分子GTP形成新的循环。i.肽键的生成:AA-tRNA占据A位,fMet-tRNA占据P位,在肽基转移酶的催化下,A位上的AA-tRNA转移到P位,P位上的起始tRNA转移至E位,与fMet-tRNA上的氨基酸生产肽键。起始RNA随后离开。 ii.移位:核糖体通过EF-G介导的GTP水解所提供的能量向mRNA模板3'末端移动一个密码子,二 肽基-tRNA完全进入P位点 iii.肽链的延申 c.当终止密码子UAA,UAG,UGA出现在核糖体的A位时,没有相应的AA-tRNA能与其结合,而释放因子能识别密码子并与之结合,水解P位上的多肽链与tRNA之间的二酯键,然后新生的肽链释放,核糖体大小亚基解体 i.肽链的终止 d.N端fMet或Met的切除i.二硫键的形成ii.特定氨基酸的修饰iii.新生肽段非功能片段的切除iv.蛋白质前体的加工 e.无义突变:DNA序列中任何导致编码氨基酸的三联密码子突变转变为终止密码子 UAA,UGA,UAG中的突变,使得蛋白质合成提前终止,合成无功能或无意义的多肽。1)错义突变:由于结构基因中某种核苷酸的变化使一种氨基酸的密码变成另一种密码。2)同工tRNA:识别携带相同氨基酸的tRNA i.校正tRNA: ii.tRNA种类 f.蛋白质的生物合成 1.翻译 2019年6月19日 19:50

蛋白质的翻译

Proteins Lu Linrong (鲁林荣)PhD Laboratory of Immune Regulation Institute of Immunology Zhejiang University ,School of Medicine Medical Research Building B815-819Email: Lu.Linrong@https://www.wendangku.net/doc/4a8105726.html, Website: https://www.wendangku.net/doc/4a8105726.html,/llr Molecular Biology

Why study proteins? ?Part of the central dogma ?Proteins are coded by genes ?They play crucial functional roles in almost every biological process

The life cycle of a protein ?Where does a protein come from? ?How is a protein processed, modified, translocated to the proper place and degraded? ?How to describe the are the functions? ??Protein synthesis (Translation) 蛋白质翻译 ?Protein maturation (folding, modification) and degradation 蛋白质成熟,降解 Structure and function of protein 蛋白质的结构与功能?Methods: protein-protein interaction et al 蛋白-蛋白相 互作用

蛋白质翻译

蛋白质的生物合成??翻译 一切生命现象不能离开蛋白质,由于代谢更新,即使成人亦需不断合成蛋白质(约400g/日)。蛋白质具有高度特异性。不同生物,它们的蛋白质互不相同。所以食物蛋白质不能为人体直接利用,需经消化、分解成氨基酸,吸收后方可用来合成人体蛋白质。 mRNA含有来自DNA的遗传信息,是合成蛋白质的“模板”,各种蛋白质就是以其相应的mRNA为“模板”,用各种氨基酸为原料合成的。mRNA不同,所合成的蛋白质也就各异。所以蛋白质生物合成的过程,贯穿了从DNA分子到蛋白质分子之间遗传信息的传递和体现的过程。 mRNA生成后,遗传信息由mRNA传递给新合成的蛋白质,即由核苷酸序列转换为蛋白质的氨基酸序列。这一过程称为翻译(translation)。翻译的基本原理见图14-1。 由图14-1可见,mRNA穿过核膜进入胞质后,多个核糖体(亦称核蛋白体,图中为四个)附着其上,形成多核糖体。作为原料的各种氨基酸在其特异的搬运工具(tRNA)携带下,在多核糖体上以肽键互相结合,生成具有一定氨基酸序列的特定多肽链。 合成后从核糖体释下的多肽链,不一定具有生物学活性。有的需经一定处理,有的需与其他成分(别的多肽链或糖、脂等)结合才能形成活性蛋白质。 第一节参与蛋白质生物合成的物质 参与蛋白质合成的物质,除氨基酸外,还有mRNA(“模板”)、tRNA(“特异的搬运工具”)、核糖体(“装配机”)、有关的酶(氨基酰tRNA合成酶与某些蛋白质因子),以及ATP、GTP等供能物质与必要的无机离子等。 一、mRNA与遗传密码 天然蛋白质有1010~1011种,组成蛋白质的氨基酸却只有20种。这20种氨基 1

蛋白质翻译

蛋白质合成——翻译 1、核糖体(ribosome)组成: 2、核糖体RNA(rRNA): 3、合成机制: *在蛋白质生物合成时,tRNA活化成携带有相应氨基酸的氨基酰 -tRNA是翻译过程启动的先决条件。 *细胞内共有20余种氨酰-tRNA合成酶分别参与合成不同的氨酰 -tRNA的合成。氨酰-tRNA合成酶具有底物的绝对专一性,对氨 基酸,tRNA两种底物都能高度特异性的识别。 *tRNA分为起始tRNA(特性的识别起始密码子)和延伸tRNA,真 核生物的起始tRNA携带甲硫氨酸(Met),书写为Met-tRNAi Met; 原核生物起始tRNA携带甲酰甲硫氨酸(fMet),由于甲硫氨酸 -NH2被甲酰化,书写为fMet-tRNAi fMet。(i表示起始initiation) *同工tRNA,一种氨基酸有多种密码子,所以就有多种tRNA, 这几种代表相同氨基酸的rRNA称为同工tRNA。 *活化过程需要ATP消耗: 第一步形成氨酰腺苷酸-酶复合体。 AA+ATP+酶(E)——>AA-AMP-E+PPi (E指氨酰-tRNA合成酶) 第二步是氨酰基转移到3’端 AA-AMP-E+tRNA——>AA-tRNA+E+AMP

4、具体过程: (1)氨基酸活化(同上) (2)翻译的起始:真核生物中,任何一个多肽的合成都是从生成甲硫氨酸-tRNAi Met开始的,因为甲硫氨酸的特殊性,体内存在两种tRNA Met,只有甲硫氨酸-tRNAi Met才能与核糖体小亚基40S结合,起始肽链合成,普通的tRNA Met中携带的甲硫氨酸只能在延伸过程中插入到A位点参与肽链合成。 真核生物中,40S小亚基首先与Met-tRNAi Met结合,再与模版mRNA结合,最后与60S大亚基结合生成80S*mRNA*Met-tRNAi Met复合物。起始复合物的生成需要GTP供能,还需要Mg2+,NH4+和3个起始因子(IF1,IF2,IF3)。 原核生物翻过起始过程: 第一步:30S小亚基首先与起始因子IF1,IF3结合,通过SD序列与mRNA模版结合。 第二步:在IF2和GTP帮助下,fMet-tRNAi fMet进入小亚基的P位置,tRNA上的反密码子与mRNA上的起始密码子配对。 第三步:带有tRNA,mRNA,三个起始因子的小亚基复合物与50S大亚基结合,GTP水解,释放起始因子。 *30S亚基具有专一性的识别和选择mRNA起始位点的特性。30S小亚基通过其16SrRNA的3'端与mRNA的5'端起始密码子上游的碱基序列(SD序列5'-AGGAGGU-3')配对结合。 *细菌核糖体上一般存在三个与氨酰-tRNA结合的位点,A位点(aminoacyl site,第二个密码子对应位点),P位点(peptidyl site)和E位点(exit site),只有fMet-tRNAi fMet能与第一个P位点相结合,其他所有的tRNA都必须通过A位点到达P位点,再由E位点离开核糖体。 真核生物的起始阶段基本相同,只是核糖体较大,有较多的起始因子(eIF)参与,其mRNA具有m7GpppNp 帽子结构(帽子与核糖体小亚基的18SrRNA的3'端序列之间存在不同于SD序列的碱基配对型相互作用。且有一种蛋白因子(eIF-4E)——帽子结合蛋白,能专一的识别mRNA的帽子结构,与mRNA的5'端结合生成蛋白质-mRNA复合物,并利用该复合物对eIF-3的亲和力与含有eIF-3的40S亚基结合。),Met-tRNAi Met

蛋白质翻译习题

一、选择题 【单选题】 1.下列氨基酸活化的叙述哪项是错误的 A.活化的部位是氨基酸的α-羧基 B.活化的部位是氨基酸的α-氨基 C.活化后的形式是氨基酰-tRNA D.活化的酶是氨基酰-tRNA合成酶 E.氨基酰tRNA既是活化形式又是运输形式 2.氨基酰tRNA的3’末端腺苷酸与氨基酸相连的基团是 A.1’-OH B.2’-磷酸 C.2’-OH D.3’-OH E.3’-磷酸3.哺乳动物的分泌蛋白在合成时含有的序列是 A.N末端具有亲水信号肽段 B.在C末端具有聚腺苷酸末端 C.N末端具有疏水信号肽段 D.N末端具有“帽结构” E.C末端具有疏水信号肽段 4.氨基酸是通过下列哪种化学键与tRNA结合的 A.糖苷键 B.磷酸酯键 C.氢键 D.酯键 E.酰胺键 5.代表氨基酸的密码子是 A.UGA B.UAG C.UAA D.UGG E.UGA和UAG 6.蛋白质生物合成中多肽链的氨基酸排列顺序取决于 A.相应tRNA专一性 B.相应氨基酰tRNA合成酶的专一性 C.相应mRNA中核苷酸排列顺序 D.相应tRNA上的反密码子 E.相应rRNA的专一性 7.与mRNA中密码5’ACG3’相对应的tRNA反密码子是 A.5’UGC3’ B.5’TGC3’ C.5’GCA3’ D.5’CGT3’ E.5’CGU3’8.不参与肽链延长的因素是 A.mRNA B.水解酶 C.转肽酶 D.GTP E.Mg2+ 9.能出现在蛋白质分子中的下列氨基酸哪一种没有遗传密码 A.色氨酸 B.甲硫氨酸 C.羟脯氨酸 D.谷氨酰胺 E.组氨酸10.多肽链的延长与下列何种物质无关 A.转肽酶 B.甲酰甲硫氨酰-tRNA C.GTP D.mRNA E.EFTu、EFTs和EFG 11.下述原核生物蛋白质生物合成特点错误的是 A.原核生物的翻译与转录偶联进行,边转录、边翻译、边降解(从5’端) B.各种RNA中mRNA半寿期最短 C.起始阶段需ATP D.有三种释放因子分别起作用 E.合成场所为70S核糖体 12.可引起合成中的肽链过早脱落的是 A.氯霉素 B.链霉素 C.嘌呤霉素 D.四环素 E.放线菌酮13.肽键形成部位是 A.核糖体大亚基 P位 B.核糖体大亚基A位 C.两者都是 D.两者都不是 E.核糖体大亚基E位14.关于核糖体叙述正确的是 A.多核糖体在一条mRNA上串珠样排列 B.多核糖体在一条DNA上串珠样排列 C.由多个核糖体大小亚基聚合而成 D.在转录过程中出现 E.在复制过程中出现 15.翻译过程中哪个过程不消耗GTP A.起始因子的释放 B.进位 C.转肽 D.移位 E.肽链的释放16.下列哪一种过程需要信号肽 A.多核糖体的合成 B.核糖体与内质网附着 C.核糖体与mRNA附着 D.分泌性蛋白质合成 E.线粒体蛋白质的合成 17.哺乳动物细胞中蛋白质合成的重要部位是 A.核仁 B.细胞核 C.粗面内质网 D.高尔基体 E.溶酶体

相关文档