文档库 最新最全的文档下载
当前位置:文档库 › 液相HMF实验

液相HMF实验

液相HMF实验
液相HMF实验

实验二高效液相色谱法测定5-羟甲基糠醛

1 实验目的

1.1学习高效液相色谱仪的操作;

1.2了解高效液相色谱测定5-羟甲基糠醛的基本原理;

1.3掌握色谱法的基本概念,学习外标法计算样品含量的方法;

2 原理

试样中的5-羟甲基糠醛经提取后,用高效液相色谱C18反相柱对5-羟甲基糠醛进行分离,紫外检测器检测,以保留时间定性,外标法定量。

3 试剂

3.1 乙腈,色谱纯;

3.2 甲醇,色谱纯

3.3 乙酸乙酯,石油醚,分析纯;

3.4 5-羟甲基糠醛标准液:称取0.1440 g 5-羟甲基糠醛(纯度99%)标准品,用甲醇定容至25 mL容量瓶中,配制成浓度为5.76 mg/mL标准储备液。临用前稀释至0.36、0.18、0.045 mg/mL 标准溶液。

4 仪器与设备

4.1 高效液相色谱仪附紫外检测器。

4.2 超声波清洗器。

4.3 旋转蒸发仪。

5 分析步骤

准确称取1.5 g样品粉末于50 mL锥形瓶中,加入20 mL70%甲醇溶液,超声提取20 min 后过滤,残渣再以15 mL 70%甲醇溶液超声提取10 min后过滤,合并两次提取液。加入20 mL 石油醚进行脱色,脱色后的提取液于60 ℃旋转蒸发出去甲醇(只剩水溶液);该水溶液再用20 mL的乙酸乙酯萃取两次,合并后的萃取液于60 ℃下减压旋转蒸干。定量加入2mL 甲醇超声2 min溶解,用0.45μm甲醇超声2 min溶解,用0.45μm的有机系微孔滤膜过滤,进行色谱分析。

6 色谱条件

色谱柱:反相C18 5 μm,4.6×250 mm。

流动相:B相:乙腈,A相:0.1%甲酸水,比例A:B=9:1,临用前脱气。

检测波长:284 nm

进样量:10 μL。

流速:1.00 mL/min。

7 测定

分别吸取不同浓度的5-羟甲基糠醛标准工作溶液,注入高效液相色谱中,以保留时间定性。以浓度为横坐标,吸光值为纵坐标绘制标准曲线。

吸取样品溶液,注入高效液相色谱中,计算待测液的浓度。

8 思考题

8.1 液相色谱常配置的检测器有几种?

8.2 使用高效液相色谱仪时需要注意哪些问题?

高效液相色谱法在化学科学中的应用

高效液相色谱法在化学科学中的应用 随着现代社会与科学技术的发展,对各种复杂样品分离分析的要求越来越高,特别是在食品安全、环境监测、药物开发、生命科学等领域。“更快、更好的得到分析检验结果”这是广大分析工作者的愿望。2004年美国Waters公司推出了世界第一台最新研制的超高效液相色谱(Ultra Performance L iq2uid Chromatography, UPLCTM ) 。UPLC借助HPLC的理论及原理,涵盖了小颗粒填料、低系统体积及快速检测手段等全新技术,增加了分析的通量、灵敏度及色谱峰容量,它给实验室带来了新奇而强大的能力,成为分离分析的一个新兴的领域。UPLC的出现大大拓宽了液相色谱的应用范围和在分离分析科学中的重要地位,为分析化学工作者提供了又一个强有力的技术手段。 1.UPLC的基本原理 采用细粒径填料(117μm)和细内径柱子而获得柱效高达(100, 000 - 300, 000) 的液相色谱技术, 简称超高效液相色谱。UPLC系统是利用创新技术进行整体设计,从而大幅度改善色谱分离度、样品通量和灵敏度的最新液相色谱技术。相对于当今分析速度最快的高效液相色谱(HPLC) , UPLC的分析速度提高了9 倍,分辨率提高了2 倍,灵敏度提高了3倍,一次分析所得到的信息量大大超过了高效液相色谱。而这一分离分析领域的创新,是基于著名的Van Demeter方程,该方程是一个描述线速度和理论塔板高度(柱效)之间关系的经验性方程: H =A +B /μ +C u (1) 上式中, H为塔板高度,A为涡流扩散系数,B为纵向扩散系数, C为传质阻抗系数,μ为流动相流速。由于式中A、C两项与填料颗粒度( d p )之间的关系为: A ∝d p; C∝( d p) 2 ,因而方程式(1)可表达为:

高效液相色谱实验

化学与材料工程学院 环境监测分析实验报告 实验名称:高效液相色谱分析苯-甲苯混合物 专业班级:应化13 学号:150313135 姓名:朱建南 指导教师:翟春 实验地点:敬行楼A210 实验日期:2016年11月28日

高效液相色谱实验 一、实验目的 1.了解HPLC仪器的基本构造和工作原理,掌握HPLC的基本操作; 2.学习苯-甲苯混合物的定性分析方法; 3.评价色谱柱柱效; 4.了解色谱定量操作的主要方法以及各自特点; 5.学习未知样品的定量分析方法。 二、实验原理 不同组分因在互不相溶的流动相与固定相中的分配比不同,当两相做相对运动时,组分在两相之间反复进行多次分配,最终实现不同组分的分离。 色谱仪器的构成:包括高压输液系统、进样系统、分离系统,检测系统等 1.色谱定性分析方法 a保留时间定性 b 峰高增量定性 2.色谱定量分析方法 a 归一化法,要求所有组分必须全部出峰。 b 标准曲线法(外标法)。简单、方便, 结果受到操作技术因素以及具体色谱条件影响较大。 三、仪器与试剂 LC-1602A型高效液相色谱仪、甲醇(色谱纯) 、苯、甲苯、苯-甲苯 四、高效液相色谱仪操作步骤 1. 流动相的预处理 甲醇溶液,用0.45μm 有机滤膜过滤,超声波清洗器脱气10~20 min,装入流动相贮液瓶。 2. 准备苯-甲苯混合试样和苯、甲苯标样 3. 高效液相色谱仪操作 a 依次高压输液泵和检测器电源开关; b 打开色谱工作站,在仪器控制面板中,设置波长,并开灯; c打开三通阀,在仪器控制面板中,设置流速为5ml/min, 启动高压泵,排除流路中的气泡。排气结束后,点击停止按钮,停止高压泵。 d 关闭三通阀,设置最小压力(0.1)和最大压力(20),并设置实验需要的流速(0.5ml/min),启动高压泵。 e用平头微量注射器洗涤进样口后,取试液30 μL,将进样阀柄置于“Load”位置时

仪器分析实验室建设汇总

仪器分析实验室建设 一仪器分析实验室原有条件 仪器分析实验室在过去多年建设的基础上,98年按教育厅合格实验室的要求,开展了合格实验室建设,在原有基础上,充实了部分仪器设备,改善实验条件,增加实验项目和增加仪器设备配套台数,改善学生实验能力培养的条件,同时通过加强管理,实现管理规范化,取得了良好效果,特别是对药品、仪器的管理得到进一步加强,生均实验面积达 2.4m2、/人。能开出教学计划要求的全部实验。此外,还可以对外进行分析检测服务,开展相关科研项目。实验室具有实验仪器84台套,实验面积517平方米,设备总值约22万元。 原有仪器分析实验室情况 二、仪器分析实验室近期建设情况 我校环境工程专业已有20年的办学历史。经二十年的建设,环境工程专业已具有较强的办学实力,师资队伍职称结构合理,双师型比例达60%。在教学改革,科研及对外技术服务,教材编写,实验室建设及校内外实训基地建设等方面都取得了一定成果,培养了大量的毕业生,他们在我省基层环保单位,已成为技术和管理骨干,受到广泛好评。

我校环境工程专业目前为国家级专业教学改革试点专业,为建设试点专业,教育部资助125万元专项经费。上述资金到位后,环境工程实验室在原有的基础上,结合本专业的特点,加强了校内实训基地建设,以化学实验室获省教育厅高校“双基合格实验室”为契机,学校加大了对实验实训基地建设的投入力度,扩展实验室面积,并拨出专项资金约13万元进行维修。现专业实验室面积约1200平方米,新增仪器设备已于2002年5月到位并投入使用。 仪器分析实验室新增仪器设备如下表 日本岛津AA—6800原子吸收分光光度仪,是当今世界上技术先进,性能优良的大型仪器。氢化物发生器的配置更扩大了检测的范围,可检测浓度为PPb 级的包括Na、Mg、Zn、Fe、Al、Cu、Pb、Cd、As等各种金属元素。 TRACE GC2000气相色谱是由Thermo Finnigan生产的新一代产品,该仪器配置了FID、ECD、NPD三个检测器可分析烷烃、苯、含氯有机物、农残等多种物质的含量。 日本岛津UV-2401紫外分光光度仪采用了双光速技术,该仪器使用范围广,稳定性好,可检测吸收峰在110-900纳米内的各种无机物和有机物,通过对扫描

高效液相色谱实验报告

高效液相色谱实验报告 一、实验目的 1了解液相色谱的发展历史及最新进展 2 学习液相色谱的基本构造及原理 3 掌握液相色谱的操作方法和分析方法,能够通过HPLC分离测定来对目标化合物的分析鉴定。 二、实验原理 液相色谱法采用液体作为流动相,利用物质在两相中的吸附或分配系数的微小差异达到分离的目的。当两相做相对移动时,被测物质在两相之间进行反复多次的质量交换,使溶质间微小的性质差异产生放大的效果,达到分离分析和测定的目的。液相色谱与气相色谱相比,最大的优点是可以分离不可挥发而具有一定溶解性的物质或受热后不稳定的物质,这类物质在已知化合物中占有相当大的比例,这也确定了液相色谱在应用领域中的地位。 高效液相色谱可分析低分子量、低沸点的有机化合物,更多适用于分析中、高分子量、高沸点及热稳定性差的有机化合物。80%的有机化合物都可以用高效液相色谱分析,目前以已经广泛应用于生物工程、制药工程、食品工业、环境检测、石油化工等行业。 三、高效液相色谱的分类 吸附色谱法、分配色谱法、空间排阻色谱法、离子交换色谱法、亲和色谱法、化学键合相色谱法 四、高效液相色谱仪的基本构造 高效液相色谱至少包括输液系统、进样器、分离柱、检测器和数据处理系统等几部分。 1 输液系统: 包括贮液及脱气装置、高压输液泵和梯度洗脱装置。贮液装置用于存贮足够量、符合HPLC要求的流动相。高效液相色谱柱填料颗粒比较小,通过柱子的流动相受到的流动阻力很大,因此需要高压泵输送流动相。 2 进样系统: 将待测的样品引入到色谱柱的装置。液相色谱进样装置需要满足重复性好、死体积小、保证柱中心进样、进样时引起的流量波动小、便于实现自动化等多项要求。进样系统包括取样、进样两项功能。 3 分离柱: 色谱柱是色谱仪的心脏、柱效高、选择性好、分析速度快是对色谱柱的一般要求。商品化的HPLC微粒填料,如硅胶和以硅胶为基质的键合相、氧化铝、有机聚合物微球(包括离子交换树脂)等的粒度通常在3μm、5μm、7μm、以及10μm。采用的固定相粒度甚至可以达到1μm,而制备色谱所采用的固定相粒度通常大于10μm。HPLC填充柱效的理论值可以达到50000/m~160000/m理论板,一般采用100-300mm的柱长可满足大多数样品的分析的需要。由于柱效内、外多种因素的影响,因此为使色谱柱达到其应有的效率。应尽量的减小系统的死体积。 4 检测系统: HPLC检测器分为通用型检测器和专用型检测器两类。通用型检测器可连续测量色谱柱流出物(包括流动相和样品组分)的全部特性变化。这类检测仪器包括示差折光检测器、介

各类仪器分析实验室要求

各类仪器分析实验室要求 气相色谱分析室主要是对容易转化为气态而不分解的液态有机化合物及气态样品的分析。仪器设备主要有气相色谱仪,具有计算机控制系统及数据处理系统,自动化程度很高,对有机化合物具有高效的分离能力,所用载气主要有:H2、N2、Ar、He、CO2等。但对高沸点化合物,难挥发的及热不稳定的化合物、离子化合物、高聚物的分离却无能为力。要求局部排风及避免阳光直射在仪器上,避免影响电路系统正常工作的电场及磁场存在,一般设计:仪器台(应离墙以便仪器维修)、万向排气罩、电脑台(一般在仪器台旁配置)、边台、洗涤台、试剂柜等 液相色谱分析室主要体现在高效率分离,对复杂的有机化合物分离制取纯净化合物,定量分析和定性分析,仪器设备主要有:高效液相色谱仪,适宜于高沸点化合物、难挥发化合物、热不稳定化合物、离子化合物、高聚物等,弥补气相色谱仪的不足。环境和实验室基础装备设计要求与气相色谙室相近。 质谱分析室主要是对纯有机物的定性分析,实现对有机化合物的分子量、分子式、分子结构的测定,分析样品可以是气体、液体、固体,主要设备有质谱仪、气-质联用仪。质谱仪是利用电磁学的原理,使物质的离子按照基特征的质荷比(即质量m与电荷e之比—m/e)来进行分离并进行质谱分析的仪器,缺点是对复杂有机混合物的分离无能为力。气相色谱分离效率高,定量分析简便的特点,结合质谱仪灵敏度高,定性分析能力强的特点,两种仪器联用为气-质联用仪。可以取长补短,提高分析质量和效率。质谱仪可能有汞蒸汽逸出,要考虑局部排风。 光谱分析室主要是根据物质对光具有吸收、散射的物理特征及发射光的物理特性,在分析化学领域建立化学分析。主要的仪器是原子发射光谱仪、原子吸收光谱仪,分光光度计、原子荧光光谱仪、荧光分光光度计、X射线荧光仪、红外光光谱仪、电感耦合等离子体(LCP)

实验5 高效液相色谱应用实验

实验5高效液相色谱应用实验 一、实验目的 1、熟悉高效液相色谱分离分析的原理。 2、掌握根据保留值,用已知纯物质对照定性的分析方法。 3、掌握用归一化法定量测定混合物各组分的含量。 4、掌握用微量进样器进样的基本操作和色谱软件的一般操作。 二、方法原理 高效液相色谱法是一种重要的色谱分离技术。根据所用固定相和分离机理的不同,一般将高效液相色谱法分为分配色谱、吸附色谱、离子交换色谱等。 在分配色谱中,组分在色谱柱上的保留程度取决于它们在固定相和流动相之间的分配系数K: 组分在固定相中的浓度 K= ———————————— 组分在流动相中的浓度 显然,K值越大,组分在固定相上的保留时间越长固定相与流动相之间的极性差值也越大。因此,出现了流动相为非极性而固定相为极性物质的正相色谱法和流动相为极性而固定相为非极性的反相色谱法。目前应用最广的固定相是通过化学反应的方法将固定液键合到硅胶表面上,即所谓的键合固定相。若将正构烷烃等非极性物质(如n-C18烷)键合到硅胶基质上,以极性溶剂(如甲醇和水)为流动相,则可分离常用的有机化合物。 三、仪器与试剂 高效液相色谱仪、紫外(254nm)检测器、色谱柱C18柱(250mm×4.6mm)、注射器(25μL) 流动相甲醇+ 水(使用前应超声波脱气)、甲苯、苯甲醇、苯甲酸(均为分析纯)、未知混合样品(甲苯、苯甲醇、苯甲酸的混合溶液) 四、实验步骤 1. 以流动相为溶剂,配制甲苯、苯甲醇、苯甲酸的标准溶液,浓度均为10mg/mL。 2. 在老师的指导下开启液相色谱仪,设定操作条件。 3. 待仪器稳定后,分别用注射器进甲苯、苯甲醇、苯甲酸溶液各5μL,进样的同时,要作好记录保留时间。 4. 进未知混合样品5μL,记下各组分色谱峰的保留时间。 5. 以标准物的保留时间为基准,给未知样品各组分定性。 6. 根据标准物的峰面积,估算未知样品中相应组分的含量。

HPLC实验高效液相色谱分析实验

仪器分析实验报告实验名称:高效液相色谱分析实验

一、实验目的 1. 了解HPLC的结构,了解仪器的开、关程序。 2. 了解流动相的制备和样品溶液的制备。 3. 知道仪器的运行程序和进行样品分析。 二、仪器和试剂 仪器:美国安捷伦1200型HPLC、10μL的微量注射器 试剂:磷酸乙腈溶液(PH=3)、重蒸水、邻氯苯甲酸 三、实验步骤 1.流动相的准备 流动相只有一组:PH=3的磷酸乙腈溶液,进过脱气,用蠕动泵输送。2.开机,色谱柱平衡 当1完成后,开机,待色谱柱平衡。 3.样品溶液的准备 配置好邻氯苯甲酸溶液,按要求选好滤纸的孔径大小。用低压过滤装置过滤,由于美国安捷伦1200型HPLC配有脱气装置,因此滤液无需事先脱气就可以进行分析。 4.基线的查看 由于仪器内部压力的变化可以引起基线的不断波动,因此,需等待压力稳定后,基线平稳才能进行进样。 5.样品进样分析

用10μL的微量注射器取5μL的邻氯苯甲酸,微量注射器中不能有气泡,将微量注射器的针头插入到注射的孔时,打开微量注射阀,将邻氯苯甲酸注射进去后,迅速关闭阀门,抽出针头,等待仪器的分析结果。 6.色谱柱的清洗 分析工作结束后,要清洗进样阀中的残留样品,也要用适当的液体来清洗色谱柱。 7.关机 实验完毕后,关闭仪器和电脑。 四、实验数据及处理 1.LC参数 2.色谱柱参数 3.四元泵状态 A:0.0%流速:1.000ml/min B:0.0%压力:91bar C:0.0% D:0.0%

5.色谱分析谱图见附页,经过注射5μL的邻氯苯甲酸,得到三组实验色谱图, 根据谱图列表数据如下: 色谱柱长(L)、理论塔板高度(H)与理论塔板数(n)三者的关系为: n = L / H 理论塔板数和色谱参数之间的关系为: n = 16 ( t R / W b ) 2 = 5.54 ( t R / Y1/2 ) 2 则取第五组数据计算得: t R=2.437 min = 146.22s Y1/2 = 2.354(0.1375min / 4 ) = 4.855125 s n = 5.54 ( t R / Y1/2 ) 2 =5025 (块)

分析化学答案第18章 经典液相色谱法

第18章 经典液相色谱法 思考题 3. 已知某混合物试样A 、B 、C 三组分的分配系数分别为440、480、520,三组分在薄层色谱上R f 值的大小顺序如何? 解: ∵m s f V V K R +=11 ,Vs 、Vm 一定,K 越大,R f 越小。 ∴ R fA > R fB > R Fc 习题 1. 假如一个溶质的分配比为0.2,求它在色谱流动相中的百分率是多少。 解:∵ 2.0==m s W W k %3.83%1002 .011%100=?+=?+=s m m W W W A 2. 一根色谱柱长10cm,流动相流速为0.01cm/s ,组分A 的洗脱时间为40min ,A 在流动相 中消耗多少时间? 解:min 7.1660 01.0100=?==u L t 即A 在流动相中消耗的时间为16.7min. 3. 已知A 与B 物质在同一薄层板上的相对比移值为1.5。展开后,B 物质色斑距原点9cm , 此时溶剂前沿到原点的距离为18cm, 求A 物质的展距和R f 。 解:5.19 )() (====A B A B f A f t l l l R R R l a = 9×1.5 = 13.5 cm 75.018 5.130===l l R A fA 4. 今有两种性质相似的组分A 和B ,共存于同一溶液中。用纸色谱分离时,它们的比移值 R f 分别为0.45和0.63。欲使分离后两斑点中心间的距离为2cm ,滤纸条应取用多长? 解:设A 组分的展距为l A , 则B 组分的展距为l A +2 , 45.00== l l R A fA 63.020=+=l l R A fB cm l 1.1145 .063.020=-=

液相色谱实验报告

华南师范大学实验报告 液相色谱分析混合样品中的苯和甲苯 一、实验目的 1、掌握高效液相色谱定性和定量分析的原理及方法; 2、了解高效液相色谱的构造、原理及操作技术。 二、实验原理 高效液相色谱由储液器,泵、进样器、色谱柱、检测器、记录仪等几部分组成,储液器中的流动相被高压泵打入系统,样品溶液经进样器进入流动相,被流动相载入色谱柱内,由于样品溶液中的各组分在两相中具有不同的分配系数,在两相中作相对运动,经过反复多次的吸附—解吸的分配过程,各组分在移动速度上产生较大的差别,被分离成单个组分依次从柱内流出,通过检测器时,样品浓度被转换成电信号传送到记录仪。 三、主要仪器和试剂 主要仪器:岛津液相色谱仪(LC-10AT)[配有紫外检测器,Phenomenex ODS 柱]; 10μL微量注射器 试剂:苯标准溶液:10.0μL/mL; 甲苯标准溶液:10.0μL/mL; 苯、甲苯混合标准溶液:10.0μL/mL; 甲醇:80% ; 苯和甲苯混合待测溶液; 四、实验步骤 1、标准溶液的配制系列 用100μL的微量注射器分别量取10μL、20μL、50μL、100μL的苯和甲苯的混合标准溶液(10.0μL/mL),再分别加入90μL、80μL、50μL、0μL甲醇将其稀释,作为待测液,其浓度分别为1μL/mL、2μL/mL、5μL/mL、10μL/mL 2、色谱条件优化 ①按操作规程开机,并调好色谱条件,使仪器处于工作状态。控制流动相流速为甲醇: 0.8mL/min、水:0.2 mL/min;柱温30℃;检测波长254nm;观察记录保留时间,通过软件分析两峰分离效果。 ②改变色谱条件,控制流动相流速为甲醇:0.95mL/min、水:0.05 mL/min;柱温30℃;检测波长254nm;观察记录保留时间,通过软件分析两峰分离效果。

高效液相色谱仿真实验

高效液相色谱仿真实验 一、实验概述: 以液体做流动相的色谱称为液相色谱。人们把已经比较成熟的气相色谱理论应用于液相 色谱,使液相色谱得到了迅速的发展。随着其他科学技术的发展,出现了新型的高压输液泵、 高效的固定相和柱填充技术、高灵敏度的检测器,加上计算机的应用,使得液相色谱实现了 高效率和高速度。这种分离效率高、分析速度快的液相色谱称为高效液相色谱(High performanee liquid chromatography, HPLC )。 二、实验装置: Agilent(安捷伦)1100系列液相色谱系统简介: Agile nt1100 系列HPLC组件和系统,将Agile nt长期的化学分析经验与领先的计算机技术结合,把网络技术引入了实验室。从1996年以来,在全球已经安装了超过130,000台1100组件和55,000多套化学工作站数据处理系统,成为目前单一型号市场占有率最高的液 相色谱系统。 本仿真软件是模拟用Agile nt化学工作站的数据处理系统进行样品分析和数据采集(色谱图)的过程。 注:本软件只是模拟分析的过程和内容,并不涉及其原理,所以实验中的参数调节对结果并 没有影响,而真实实验结果是随参数的变化而变化的,这一点需要特别注意! 实验主界面:

3 刮创制画宣 ■ I ; 1 I ■ ■ I ' rill ■■ IB III I I I 1 I 稠环芳S.VXE 回醇和醞的分折 J 监 &]窑无醉的仔高“貂 割有机绥的分离,T 胳 丈件名⑧:|稠环芳咗.孤£ 文件类型 ①:卜站仿宣实验丈祥 2.1狐) 三] 厂以貝读方式打开? 用鼠标左键点中你要做的实验,此文件名会出现在对话框的“文件名” 一栏的文本框 中,在此实验文件上面双击左键或者点击“打开”按钮打开实验文件。 三、实验操作: 第一步:选取实验 点击主菜单上的“实验选取”,会出现如下的对话框: 取消| 化学工作站界面:

实验室设计规范(20200523203207)

实验室规划设计 实验室的建设,无论是新建、扩建、或是改建项目,它不单纯是选购合理的仪器设备,还要综 合考虑实验室的总体规划、合理布局和平面设计,以及供电、供水、供气、通风、空气净化、安全措施、 环境保护等基础设施和基本条件。因此实验室的建设是一项复杂的系统工程,在现代实验室里,先进的 科学仪器和优越完善的实验室是提升现代化科技水平,促进科研成果增长的必备条件。“以人为本,人 与环境”己成为人们高度关注的课题。本着“安全、环保、实用、耐久、美观、经济、卓越、领先”, 的规划设计理念。规划设计主要分为七个方面:化验室设计要求、平面设计系统、单台结构功能设计系 统、供排水设计系统、电控系统、特殊气体配送系统、有害气体输出系统等六个方面。下面就按上述六 方面依次讲解。 一、化验室设计要求 根据化验任务需要,化验室有贵重的精密仪器和各种化学药品,其中包括易燃及腐蚀性药品。另 外,在操作过程中常产生有害的气体或蒸气。因此,对化验室的房屋结构、环境、室内设施等有其特殊 的要求,在筹建新化验室或改建原有化验室时都应考虑。 化验室用房大致分为三类:精密仪器实验室、化学分析实验室、辅助室(办公室、储藏室、钢瓶 室等)。 化验室要求远离灰尘、烟雾、噪音和震动源的环境中,因此化验室不应建在交通要道、锅炉房、 机房及生产车间近旁(车间化验室除外)。为保持良好的气象条件,一般应为南北方向。 1. 精密仪器室 精密仪器室要求具有防火、防震、防电磁干扰、防噪音、防潮、防腐蚀、防尘、防有害气体侵入 的功能,室温尽可能保持恒定。为保持一般仪器良好的使用性能,温度应在15~30℃,有条件的最好控制在18~25℃。湿度在60%-70%,需要恒温的仪器室可装双层门窗及空调装置。 仪器室可用水磨石地或防静电地板,不推荐使用地毯,因地毯易积聚灰尘,还会产生静电、大型 精密仪器室的供电电压应稳定,一般允许电压波动范围为±10%。必要时要配备附属设备(如稳压电源等)。为保证供电不间断,可采用双电源供电。应设计有专用地线,接地极电阻小于4Ω。 气相色谱室及原子吸收分析室因要用到高压钢瓶,最好设在就近室为能建钢瓶室(方向朝北)的 位置。放仪器用的实验台与墙距离500mm,以便于操作与维修,室内有有良好的通风,原子吸收仪器上方 设局部排气罩。 微型计算机和微机控制的精密仪器对供电电压和频率有一定要求。为防止电压瞬变、瞬时停电、 电压不足等影响仪器动作,可根据需要选用不间断电源(UPS)。 在设计专用的仪器分析室的同时,就近配套设计相应的化学处理室,这在保护仪器和加强管理上 是非常必要的。 2. 化学分析室 在化学分析室中进行样品的化学处理和分析测定,工作中常使用一些小型的电器设备及各种化学 试剂,如操作不慎也具有一定的危险性,针对这些使用特点,在化学分析室设计上应注意以下要求:(1)建筑要求化验室的建筑应耐火或用不易燃的材料建成,隔断和顶棚也要考虑到防火性能。可采用水磨石地面,窗户要能防尘,室内采光要好,门应向外开,大实验室应设两个出口,以利于发生 意外时人员的撤离。 (2)供水和排水供水要保证必须的水压、水质、和水量以满足仪器设备正常运行的需要,室内 总阀门应设在易操作的显著位置,下水道应采用耐酸碱腐蚀的材料,地面应有地漏。 (3)通风设施由于化验工作中常常会产生有毒或易燃的气体,因此化验室要有良好的通风条 件,通风设施一般有3种: ①全室通风采用排气扇或通风竖井,换气次数一般为5次/时。 ②局部排气罩一般安装在大型仪器发生有害气体部位的上方。在教学实验室中产生有害气体的上方,设置局部排气罩以减少室内空气的污染。 ③通风柜这是实验室常用的一种局部排风设备。内有加热源、水源、照明等装置。可采用防

仪器分析高效液相色谱试题及答案

高效液相色谱习题 一:选择题 1、在液相色谱法中,提高柱效最有效的途径就是(D ) A、提高柱温 B、降低板高 C、降低流动相流速 D、减小填料粒度 2、在液相色谱中,为了改变柱子的选择性,可以进下列那种操作(C ) A、改变固定液的种类 B、改变栽气与固定液的种类 C、改变色谱柱温 D、改变固定液的种类与色谱柱温 3、在液相色谱中,范第姆特方程中的哪一项对柱效的影响可以忽略( B ) A、涡流扩散项 B、分子扩散项 C、流动区域的流动相传质阻力 D、停滞区域的流动相传质阻力 4、在高固定液含量色谱柱的情况下,为了使柱效能提高,可选用 (A ) A、适当提高柱温 B、增加固定液含量 C、增大载体颗粒直径 D、增加柱长 5、在液相色谱中, 为了提高分离效率, 缩短分析时间, 应采用的装置就是 ( B ) A、高压泵 B、梯度淋洗 C、贮液器 D、加温 7、在液相色谱中, 某组分的保留值大小实际反映了哪些部分的分子间作用力?( C ) A、组分与流动相 B、组分与固定相 C、组分与流动相与固定相 D、组分与组分 8、在液相色谱中, 通用型检测器就是 (A ) A、示差折光检测器 B、极谱检测器 C、荧光检测器 D、电化学检测器 9、在液相色谱中, 为了获得较高柱效能, 常用的色谱柱就是 (A ) A、直形填充柱 B、毛细管柱 C、U形柱 D、螺旋形柱 10、纸色谱的分离原理, 与下列哪种方法相似? ( B) A、毛细管扩散作用 B、萃取分离 C、液-液离子交换 D、液-固吸附 二:简答题 1、在液相色谱中,色谱柱能在室温下工作,不需恒温的原因就是什么? 答:由于组分在液-液两相的分配系数随温度的变化较小,因此液相色谱柱不需恒温

仪器分析实验讲义-2013

分析科学与分析技术实验(二)
试用教程
(第二版)
华东师范大学化学系 仪器分析实验室
2013 年 1 月

目 录
实验一 实验二 实验三 实验四 实验五 实验六 实验七 实验八 实验九 实验十 盐酸与醋酸混合液的电导滴定(实验楼 D-304)……….………..…… 3 电位法测定水中氯离子的含量(实验楼 D-304)…………………….. 7 氟离子选择性电极测定水中微量氟(实验楼 D-304)……………….. 12 阳极溶出伏安法测定镉(实验楼 D-304)………………………………15 荧光法测定维生素 B2 的含量(实验楼 D-310).....……………..…..… 19 紫外分光光度法定性及定量分析(实验楼 D-320)………………….. 23 高效液相色谱基本参数设定及定量分析(实验楼 D-318)…..……… 26 气相色谱法基本参数测定及定量分析(实验楼 D-312)…………….. 30 原子吸收法(石墨炉法)测定废水中的铜(实验楼 D-308)……..…. 33 样品的红外吸收光谱的测绘(实验楼 D-208)…………………...…… 37
实验十一 核磁共振波谱测定化学位移及自旋耦合常数(实验楼 D-316)……...41
2

实验一
盐酸与醋酸混合液的电导滴定
一、实验目的与要求 1、了解溶液电导(率)的基本概念,电导(率)测定的原理及其应用。 2、掌握 DDS-11AT 数字电导率仪的使用方法。
二、实验原理 在电解质溶液中, 带电的离子在电场作用下做有规则的移动, 从而传递电荷, 使溶液具有导电作用。 其导电能力的强弱称为电导 G, 单位为西门子, 以 S 表示。 因为电导是电阻的倒数,所以,只要测出溶液的电阻值,便可知道其电导。 故采用两个电极插入溶液中,以测出两极间的电阻值 R。当温度一定时,根据欧 姆定律,R 与两极间距离 L(cm)成正比,与电极的截面积 A(cm2)成反比: R = 1/G = ρL/A ρ——电阻率,Ω·cm 当电极固定不变,A 与 L 也固定不变时,L/A 为常数,以 J 表示: 即 J = L /A J——电极常数,cm-1 由(1)、(2)式得: G = l/(ρJ) ……………………(3) ……………………(2) ……………………(1)
因为电导是电阻的倒数,电导率是电阻率的倒数,所以 K = 1/ρ K——电导率,S/cm 由(3) 、 (4)式得: K = G·J …………………… (5) …………………… (4)
当电极常数已知,则通过(5)式,可以将测得的电导值换算为电导率,这 也就是电导率仪的工作原理。 单位换算关系:1 S/cm = 103 mS/cm = 106 μS/cm 本实验以标准 NaOH 溶液滴定盐酸和醋酸的混合溶液。在滴定过程中,因 为溶液中迁移率较大的 H+被加入的 OH-中和,而代替它的是迁移率较小的 Na+ 离子和难以电离的水,因此溶液的电导(率)不断降低,直到 HCl 完全被中和
3

食品仪器分析-高效液相色谱参考答案

高效液相色谱习题 一、填空题 1.高效液相色谱分析是将流动相用高压泵输送,使压力高达 5 MPa以上,并采用新型的化学键合固定相,是分离效率很高的液相色谱法。 2.高效液相色谱法的特点是分离性能高、分析速度快、检测器灵敏度高、应用范围广。 3.高效液相色谱法和气相色谱法的共同之处是分离功能、分析功能、在线分析。 4.高效液相色谱分析根据分离机理不同可分为四种类型,即液固色谱、 液液色谱、键合相色谱、凝胶色谱。 5.高效液相色谱中的液一液分配色谱采用的新型固定相叫化学键合相,它是利用 化学方法将固定液官能团键合在载体表面上的。 6.通常把固定相极性大于流动相极性的一类色谱称为正相色谱。反之称为 反相色谱。 7.高效液相色谱仪通常由储液器、输液泵、梯度淋洗器、进样器、色谱柱、检测器、色谱工作站七部分组成。 8.高效液相色谱仪中使用最广泛的检测器为紫外检测器,另外还有折光检测器、 荧光检测器等等。 9.高效液相色谱主要用于分析沸点高的、分子量大的、受热易分解的以及具有生理活性物质的分析。 二、判断题

√、√、?、?、√、√、?、√、?、√、?、√、√、?、√、?、?、√、?、√、√、?、?、?、?、?、?、?、√、? 1.液一液色谱流动相与被分离物质相互作用,流动相极性的微小变化,都会使组分的保留值出现较大的改变。 (√) 2.利用离子交换剂作固定相的色谱法称为离子交换色谱法。(√)3.紫外吸收检测器是离子交换色谱法通用型检测器。(×)4.检测器性能好坏将对组分分离产生直接影响。(×)5.高效液相色谱适用于大分子,热不稳定及生物试样的分析。(√)6.高效液相色谱中通常采用调节分离温度和流动相流速来改善分离效果。(×)7.键合固定相具有机械性能稳定,可使用小粒度固定相和高柱压来实现快速分离。(√) 8.在液相色谱中为避免固定相的流失,流动相与固定相的极性差别越大越好。(×)9.正相分配色谱的流动相极性大于固定相极性。(×)10.反相分配色谱适于非极性化合物的分离。(√)11.高效液相色谱法采用梯度洗脱,是为了改变被测组分的保留值,提高分离度(×)12.液相色谱柱一般采用不锈钢柱、玻璃填充柱。(×) 13.液相色谱固定相通常为粒度5~10μm。(×) 14.示差折光检测器是属于通用型检测器,适于梯度淋洗色谱。(×) 15.离子交换色谱主要选用有机物作流动相。(×) 16.体积排阻色谱所用的溶剂应与凝胶相似,主要是防止溶剂吸附。(×) 17.在液一液色谱中,为改善分离效果,可采用梯度洗脱。(√)

高效液相色谱技术在中药化学中的应用

高效液相色谱法在中药化学中的应用 邓哲中药化学201581800027 摘要:中药的研究对其的化学成分研究也是必不可少的,而高效液相色谱法在化学成分研究中显现出独特的优势,具有分析速度快、高灵敏度、高分离效能的特点。本文综述了高效液相色谱法在中药化学成分苷类、黄酮类、生物碱类、鞣质类等化合物中的应用,进一步阐明高效液相色谱法是中药化学成分研究最有力的手段。 关键字:高效液相色谱法;中药化学;应用 前言 高效液相色谱法(High Performance Liquid Chromatography,简称HPLC)是一种以液体为流动相的现代柱色谱分离分析方法,成为现代极为重要的化学分析手段。同样,经过20多年的实践经验表明,高效液相色谱(HPLC)成为一种非常有效和普遍适用的植物药分析方法[1]。中药来源于植物、动物、矿物,部分属于植物药的范围,与植物药有着相似之处,所以高效液相色谱(HPLC)运用于中药的研究是可行的、合理的、有效的,特别对于中药化学成分的研究,凸显出高效液相色谱巨大的优势。近年来,随着中药现代化和国际化的需求,高效液相色谱技术的不断进步,高效液相色谱法(HPLC)在中药化学成分的研究日益增多,可以这样说,只要是涉及到化学成分,必用高效液相色谱进行定性分析和含量测定。本文重点介绍了高效液相色谱法及其在中药化学成分苷类、醌类、黄酮类、萜类、生物碱和鞣质中的应用。 高效液相色谱法发展历史及其特点

高效液相色谱法发展历史 科学上第一次提出“色谱”名词并用来描述这种实验的人是俄国植物学家茨维特(Tsweet),见于1906年他的论文报道:将一含有植物色素石油醚的溶液从一根装有碳酸钙吸附剂的玻璃管中上端加入,然后用纯的石油醚淋洗,结果玻璃管内按照不同的吸附顺序出现不同的色带,他把这些色带称之为“色谱图”(Chromatography)。随后的20年这一分析技术并没有科学界的关注和重视,直到1931年,库恩(Kohn)报道他们关于胡萝卜素的分离方法,色谱法才引起科学界的关注。[2] 1941-1956年是各种色谱技术和理论的发展阶段,为HPLC色谱的出现打下良好的基础,例如1941年,马丁(Matin)和辛格(Synge)用装满硅胶微粒的色谱柱,成功的分离了乙酰化氨基酸混合物,建立了液-液分配色谱法,并获得了1952年的诺贝尔奖。1944年,康斯坦因(Consden)和马丁建立了纸色谱。1949年,马丁建立了色谱保留值与热力学常数之间的基本关系式。1952年,马丁和辛格创立了气相色谱法,建立了塔板理论。1956年,斯达(Stall)建立了薄层色谱法。同年,范.底姆特(Van Deemter)提出了色谱理论方程,后来吉丁斯(Gid-dings)对此方程做进一步改进,并提出折合参数的概念。20世纪60年代早期,用气相色谱(GC)分离混合物成为热点,但对于蛋白质、高分子化合物和极性化合物难以气化,无法用气相色谱分离,从而分析学家将目光转向液相色谱,当时的液相色谱分离时间很长,柱效非常低。针对这一问题,科学家们经过不断的探索,发现通过减少液相色谱仪中填充颗粒的直径和使用高压增大流动相的速度,液相色谱能够采用高效液相色谱(HPLC)模式。 20世纪80年代,计算机的使用使HPLC技术进一步完善并达到一个新的高

高效液相色谱实验

实验1 气相色谱分析条件的选择和色谱峰的定性鉴定 一、目的要求 1.了解气相色谱仪的基本结构、工作原理与操作技术; 2.学习选择气相色谱分析的最佳条件,了解气相色谱分离样品的基本原理; 3.掌握根据保留值,作已知物对照定性的分忻方法。 4.掌握归一化法测定混合物各组分的含量。 二、基本原理 气相色谱是对气体物质或可以在一定温度下转化为气体的物质进行检测分析。由于物质的物性不同,其试样中各组份在气相和固定液液相间的分配系数不同,当汽化后的试样被载气带入色谱柱中运行时,组份就在其中的两相间进行反复多次分配,由于固定相对各组份的吸附或溶解能力不同,虽然载气流速相同,各组份在色谱柱中的运行速度就不同,经过一定时间的流动后,便彼此分离,按顺序离开色谱柱进入检测器,产生的讯号经放大后,在记录器上描绘出各组份的色谱峰。根据出峰位置,确定组分的名称,根据峰面积确定浓度大小。 对—个混合试样成功地分离,是气相色谱法完成定性及定量分析的前提和基础。而其中气相色谱分离条件的选择至为关键。主要涉及以下几个方面: 1. 载气对柱效的影响: 载气对柱效的影响主要表现在组分在载气中的扩散系数D m(g)上,它与载气分子量的平方根成反比,即同一组分在分子量较大的载气中有较小的D m(g) 。根据速率方程: (1)涡流扩散项与载气流速无关; (2)当载气流速u 小时,分子扩散项对柱效的影响是主要的,因此选用分子量较大的载气,如N2、Ar,可使组分的扩散系数D m(g)较小,从而减小分子扩散的影响,提高柱效; (3)当载气流速u 较大时,传质阻力项对柱效的影响起主导作用,因此选用分子量较小的气体,如 H2、He 作载气可以减小气相传质阻力,提高柱效。 2. 载气流速(u)对柱效的影响: 从速率方程可知,分子扩散项与流速成反比,传质阻力项与流速 成正比,所以要使理论塔板高度H最小,柱效最高,必有一最佳流速。 对于选定的色谱柱,在不同载气流速下测定塔板高度,作H-u 图。 由图可见,曲线上的最低点,塔板高度最小,柱效最高。该点所 对应均流速即为最佳载气流速。在实际分析中,为了缩短分析时间, 选用的载气流速稍高于最佳流速。 3. 固定液的配比又称为液担比。

仪器分析实验室环境要求

仪器分析实验室环境要求 1.气相色谱分析室 主要是对容易转化为气态而不分解的液态有机化合物及气态样品的分析。仪器设备主要有气相色谱仪,具有计算机控制系统及数据处理系统,自动化程度很高,对有机化合物具有高效的分离能力,所用载气主要有:H2、N2、Ar、He、CO2等。但对高沸点化合物,难挥发的及热不稳定的化合物、离子化合物、高聚物的分离却无能为力。要求局部排风及避免阳光直射在仪器上,避免影响电路系统正常工作的电场及磁场存在,一般设计:仪器台(应离墙以便仪器维修)、万向排气罩、电脑台(一般在仪器台旁配置)、边台、洗涤台、试剂柜等 2.液相色谱分析室 主要体现在高效率分离,对复杂的有机化合物分离制取纯净化合物,定量分析和定性分析,仪器设备主要有:高效液相色谱仪,适宜于高沸点化合物、难挥发化合物、热不稳定化合物、离子化合物、高聚物等,弥补气相色谱仪的不足。环境和实验室基础装备设计要求与气相色谙室相近。 3.质谱分析室 主要是对纯有机物的定性分析,实现对有机化合物的分子量、分子式、分子结构的测定,分析样品可以是气体、液体、固体,主要设备有质谱仪、气-质联用仪。质谱仪是利用电磁学的原理,使物质的离子按照基特征的质荷比(即,质量m与电荷e之比:m/e)来进行分离并进行质谱分析的仪器,缺点是对复杂有机混合物的分离无能为力。气相色谱分离效率高,定量分析简便的特点,结合质谱仪灵敏度高,定性分析能力强的特点,两种仪器联用为气-质联用仪。可以取长补短,提高分析质量和效率。质谱仪可能有汞蒸汽逸出,要考虑局部排风。

4.光谱分析室 主要是根据物质对光具有吸收、散射的物理特征及发射光的物理特性,在分析化学领域建立化学分析。主要的仪器是原子发射光谱仪、原子吸收光谱仪,分光光度计、原子荧光光谱仪、荧光分光光度计、X射线荧光仪、红外光光谱仪、电感耦合等离子体(LCP)光谱仪、拉曼光谱仪等。实验室应尽量远离化学实验室、以防止酸、碱、腐蚀性气体等对仪器的损害,远离辐射源;室内应有防尘、防震、防潮等措施。仪器台与窗、墙之间要有一定距离,便于对仪器的调试和检修。应设计局部排风。使用原子吸收罩排风较为适宜。 以上实验室,根据实际需要可设置样品处理室,一般有洗涤台、实验台、通风柜等设备,同化学实验室类似。

液相基本原理

液相色谱柱原理 与液相色谱柱的性能相关的因素很多,基质(matrix)或者说担体、载体的化学性质、键合相(固定液)的化学性质、填料形状大小粒度分布、碳量和键合度等等。 色谱柱填料可以由基质直接构成,如硅胶、氧化铝、高交联度的苯乙烯-二乙烯苯或者甲基丙烯酸酯等等;也可以在这些基质的基础上涂布或化学键合固定液来构成,如:最经典的各种ODS柱、氨基柱、氰基柱等。 一、我们先来看看各主要基质的特点: 1、硅胶 硅胶是陶瓷性质的无机物基质,刚性大,不易变形。化学性质较稳定,但对于水溶液尤其碱性水溶液仍然是不稳定的,即使表面经过良好的化学键合,覆盖了固定液,还是要注意水、碱性溶液、酸性溶液对硅胶的溶解作用,基质或者说是柱床(packed bed)溶解对色谱柱的影响是致命的。以硅胶为基质的填料构成了目前绝大多数的色谱柱填料。纯硅胶填料适宜分离溶于有机溶剂的极性、弱极性的非强离解型的化合物,硅胶也可以做凝胶色谱但柱效较低。硅胶基质键合固定相的高压液相填料,有其他填料无法比拟的高分离效能。 2、二氧化铝 二氧化铝和硅胶相似,但对水溶液、酸性碱性水溶液溶液更加不稳定。所以,极少用作键合固定相的基质,也是适宜分离溶于有机溶剂的极性、弱极性的非强离解型的化合物,尤其是分离芳香族碳氢化合物。酸性易离解的化合物容易在二氧化铝上形成死吸附。另外,氧化铝分离几何异构体能力优于硅胶。 3、聚合物填料 聚合物基质受压会变形,压力限度低但pH使用范围宽。苯乙烯-二乙烯苯基质疏水性强,使用任何流动相,在整个pH范围内稳定,可以用强酸、强碱来清洗色谱柱。甲基丙烯酸酯基质比苯乙烯-二乙烯苯疏水性更强,但可以通过适当的功能基修饰变成亲水性的。由于不耐压、有溶胀性,所以聚合物填料适宜用于大分子像蛋白质或合成的高聚物,另外还可以制成分子排阻、离子交换柱。近年发展迅速的大孔树脂,实际上主体就是苯乙烯-二乙烯苯聚合物或类似的合成高聚物。 由于硅胶基质的绝对地位,以下主要以硅胶为例。 二、形状大小粒度分布 基质要成为填料,首先要制成合适的形状和大小。硅胶形状有:薄壳型、无定形全多孔、球形全多孔,另外还有先做成微珠再堆积成球形全多孔的。通常只说不定形、球形。无定形全多孔的填料容易制备、价格低、粒度分布较均匀,但涡流扩散大,渗透性差,比较难填装出稳定的柱床,一般用来做制备柱。球形全多孔填料涡流扩散小,渗透性好;如果是硅胶先做成珠子再堆积而成的话,具有传质阻抗小、载样量大的优点,柱效也更高。球形填料外形对称,比较容易填出稳定的柱床。填料的大小一般不能直接测量,因为填料粒度有一定分布范围,一般给出的大小只是用一定方法测得的表观大小。填料大小与柱效、柱压的关系为:柱效与填料大小成反比,柱压与填料大小的二次方成正比。所以,快速分析柱使用3微米粒度的填料、一般做成5厘米长,就是为了降低柱压;需要注意到降低粒度所得到的柱效增加跟不上柱压的增加快。 基质做成合适的形状和大小后,可以通过各种化学修饰(modified)的手段,获得各种不同选择性的填料。有时候,我们增加柱长、降低填料粒度都无法把一个化合物分离的更好,这时候就要考虑使用选择性更好的填料。 三、碳量和键合 硅胶主要通过表面的极性硅醇基保留极性分子,属于正相分离模式。通过硅烷化技术,可以把各种不同性质的功能团(functional group)建合到硅胶表面,例如:键合十八烷基(ODS,

仪器分析论文

仪器分析论文 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

有机质谱仪的组成及MS的发展与应用 2015/12/6 目录

有机质谱仪的组成及MS的发展与应用 摘要:质谱分析法是化学领域中非常重要的一种分析方法, 是一项测量离子质量和强度 的技术, 通过测定分子质量和相应的离子电荷比以完成待测样品中分子结构的分析。如 今各种色谱与多种模式的质谱的联用技术,集色谱的强大分离能力和质谱的强定性能力 于一体,已经成为分离和分析复杂样品的首选方法。质谱仪器是由真空系统、分析系统 和数据系统组成。在高分辨条件下, 将质谱信号通过计算机运算, 可以获知其元素组成, 因此, 质谱仪还具有元素分析的功能。随着时代的发展, 质谱已成为有机化学、生物化学、环境化学、食品化学、毒物学、药物学、医学、地质、石油化工等领域进行分析和 科学研究的有力手段。 关键词:有机质谱仪;组成;原理;发展与应用 第一章绪论 引言 40年代初世界上第一台商品质潜仪间世以后,质潜仪汗始用十石油成份 分析、放射性同位素的测定和石油精炼过程监控等在第一次世界大战期间,质谱法成为 原子能工业中测定核原料成份有效手段质谱法已从物理扩展到化学、原子能、冶金和真 空等领域[1]。 质谱仪又称质谱计。和不同的仪器。即根据在中能够偏转的原理,按物质、或分子碎片的质量差异进行分离和检测物质组成的一类仪器。质谱仪按应用范围分为、和。按分 辨本领分为高分辨、中分辨和低分辨质谱仪。其中,有机质谱仪是应用最广泛的质谱

仪。另外,质谱仪是一个用来分析和鉴定未知化合物,量化已知化合物和解析化合物的结构和分子性质的强大分析工具。质谱技术因具有检测精确度高、分析速度快、所需样品和试剂少的优点,已成为分析化学学科中不可或缺的分析工具之一。 质谱法在一次分析中可提供丰富的结构信息,将分离技术与质谱法相结合是分离科学方法中的一项突破性进展。当前,经典多元统计分析方法和现代数据挖掘的工具都被应用于质谱数据分析,发展了两类方法用来鉴别化合物,一种是基于质谱相似性的数据库检索方法;另一种是质谱结构解析(Structure Elucidation)方法;数据库检索方法是基于相似性理论发展起来的,利用各种各样的衡量相似性的准则例如相关系数、共同峰的个数、峰出现的概率等等,通过快速的扫描质谱数据库中大量的数据,利用计算机找到与要鉴别的化合物具有最相似质谱的化合物。然而,当待测化合物的分子量比较大时,分子结构组合呈指数级增长,在数据库中很难找到匹配好的化合物,并且标准质谱数据库的数据只是自然届化合物中很小的一部分,很多化合物的质谱数据在质谱库中找不到,这给质谱数据库搜索方法带来很大的局限性。 质谱 随着电子技术、新材料、新工艺的发展,尤其是计算机技术的日新月异,促进了质谱仪技术的提高,使仪器的性能指标、自动化程度和几何尺寸都达到了新的水平。为适应科技进步和市场需要,用于有机分析的质谱仪正朝着超高分辨高灵敏度质谱仪和小型台式质谱仪两个方向发展。有机质谱仪和其它分析仪器相比较的一个显着特点它可以和其它某些仪器联机(GC/ MS, LC/ MS等), 也可以同其它质谱联机(MS/ MS)[2]。这不仅可以集中二种以上分析方法的长处, 弥补单一分析方法的不足, 还能产生一些新的分析测试功能, 大大拓展了质谱仪的应用范围。

相关文档
相关文档 最新文档