文档库 最新最全的文档下载
当前位置:文档库 › 复变函数论第三版课后习题答案

复变函数论第三版课后习题答案

复变函数论第三版课后习题答案
复变函数论第三版课后习题答案

第一章习题解答

(一)

1

.设z ,求z 及Arcz 。

解:由于3i z e π-== 所以1z =,2,0,1,

3

Arcz k k ππ=-+=±。

2

.设121z z =,试用指数形式表示12z z 及12

z z 。

解:由于6412,2i i z e z i e ππ

-==== 所以()6

46

41212222i i i

i

z z e e

e

e π

πππ

π

--===

54()14612

26

11222i

i i i z e e e z e πππππ

+-===。 3.解二项方程44

0,(0)z a a +=>。

解:1

244

4

(),0,1,2,3k i

i z

a e ae

k ππ

π+====。

4.证明2

2

21212122()z z z z z z ++-=+,并说明其几何意义。

证明:由于2

2

2

1212122Re()z z z z z z +=++

2

2

2

12

12122Re()z z z z z z -=+-

所以2

2

21212

122()z z z z z z ++-=+

其几何意义是:平行四边形对角线长平方和等于于两边长的和的平方。 5.设z 1,z 2,z 3三点适合条件:0321=++z z z ,1321===z z z 。证明z 1,z 2,z 3

是内

接于单位圆

1

=z 的一个正三角形的顶点。

证 由于1

321

===z z z

,知

321z z z ?的三个顶点均在单位圆上。

因为

3

33

31z z z ==

()[]()[]212322112121z z z z z z z z z z z z +++=+-+-=

21212z z z z ++=

所以, 1212

1-=+z z z z ,

)

())((1221221121212

21z z z z z z z z z z z z z z +-+=--=-

()322121=+-=z z z z

故 3

21

=-z z ,

同理

3

3231=-=-z z z z ,知

321z z z ?是内接于单位圆1=z 的一个正三角形。

6.下列关系表示点z 的轨迹的图形是什么?它是不是区域。 (1) 1212,()z z z z z z -=-≠; 解:点

z 的轨迹是1

z

与2z 两点连线的中垂线,不是区域。

(2)4z z ≤-; 解:令z x yi =+

由(4)x yi x yi +≤-+,即2222(4)x y x y +≤-+,得2x ≤ 故点

z 的轨迹是以直线2x =为边界的左半平面(包括直线2x =);不是区域。

(3)

1

11

z z -<+ 解:令z x yi =+,

由11z z -<+,得22(1)(1)x x -<+,即0x >; 故点

z 的轨迹是以虚轴为边界的右半平面(不包括虚轴);是区域。

(4)0arg(1),2Re 34

z z π

<-<≤≤且;

解:令z x yi =+

由0arg(1)42Re 3z z π?<-

1423y x x π?

<

,即0123y x x <<-??

≤≤? 故点

z 的轨迹是以直线2,3,0,1x x y y x ====-为边界的梯形(包括直线2,3x x ==;

不包括直线0,1y y x ==-);不是区域。 (5)2,1z z >>且-3; 解:点

z 的轨迹是以原点为心,2为半径,及以3z =为心,以1为半径的两闭圆外部,

是区域。

(6)Im 1,2z z ><且; 解:点

z 的轨迹是位于直线Im 1z =的上方(不包括直线Im 1z =),且在以原点

为心,2为半径的圆内部分(不包括直线圆弧);是区域。

(7)2,0arg 4

z z π

<<<

且;

解:点

z 的轨迹是以正实轴、射线arg 4

z π=及圆弧1z =为边界的扇形(不包括边界),

是区域。 (8)131

,2222

i z z i -

>->且 解:令z x yi =+

由1223122i z z i ?->????->

??

,得2

211

()2431()24

x y x y ?+->???

?+->?? 故点

z 的轨迹是两个闭圆2

21131

(),()2424

x

y x y +-=+-=的外部,是区域。

7.证明:z 平面上的直线方程可以写成C z a z a =+(a 是非零复常数,C 是实常数) 证 设直角坐标系的平面方程为

Ax By C +=将

11

Re (),Im ()22x z z z y z z z i

==+==-代入,得

C z B A z B A =-+-)i (21

)i (21

)i (21B A a +=

,则)i (21

B A a -=,上式即为

C z a z a =+。

反之:将,z x yi z x yi =+=-,代入C z a z a =+ 得()()a a x ia ia y c ++-= 则有

Ax By C +=;即为一般直线方程。

8.证明:

z 平面上的圆周可以写成

0.Azz z z c ββ+++=

其中A 、C 为实数,0,A β≠为复数,且2

AC β>。

证明:设圆方程为

22()0A x y Bx Dy C ++++=

其中0,A ≠当2

2

4B D AC +>时表实圆;

将2

2

11

,(),()22x y zz x z z y z z i

+==+=-代入,得 11

()()022

Azz B Di z B Di z c +-+++=

即0.Azz z z c ββ+++= 其中11

(),()22

B Di B Di ββ=+=- 且

2

2211

()44

4

B D A

C AC β=+>?=;

反之:令,z x yi a bi β=+=+代入2

0()Azz z z c AC βββ+++=>

得2

2

()0,A x y Bx Dy C ++++=其中2,2B a B b == 即为圆方程。

10.求下列方程(t 是实参数)给出的曲线。 (1)

t z i)1(+=; (2)t b t a z sin i cos +=;

(3)

t t z i

+

=; (4)2

2i t t z +=,

解(1)???∞

<<-∞==?+=+=t t y t x t y x z ,)i 1(i 。即直线x y =。

(2)

π

20,

sin cos sin i cos i ≤

a x t

b t a y x z ,即为椭圆122

22=+b y a x ;

(3)

????

?==?+=+=t y t x t t y x z 1

i i ,即为双曲线1=xy ; (4)???

??==?+=+=22221i i t y t x t t y x z ,即为双曲线1=xy 中位于第一象限中的一支。

11.函数z w 1

=

将z 平面上的下列曲线变成w 平面上的什么曲线()iv u w iy x z +=+=,?

(1)x y =; (2)()112

2

=+-y x

222211y x y

i

y x x iy x z w +-+=+==

2222,y x y v y x x u +-=+=,可得 (1)

()v

y x y y x y y x x u -=+--=+=+=

2

22222是w 平面上一直线;

(2)

()21

211222222=

+?

=+?=+-y x x x y x y x ,

于是

21

=

u ,是w 平面上一平行与v 轴的直线。

13.试证)arg (arg ππ≤<-z z 在负实轴上(包括原点)不连续,除此而外在z 平面上处处连续。

证 设z z f arg )(=,因为f (0)无定义,所以f (z )在原点z =0处不连续。 当z 0为负实轴上的点时,即)0(000<=x x z ,有 ?

?

?-=???????????? ??-???

??+=-+

→→→→→ππππx y x y z y x x y x x z z arctan lim arctan lim arg lim 00000

所以z

z z arg lim 0→不存在,即z arg 在负实轴上不连续。而argz 在z 平面上的其它点处的连续性

显然。

14. 设

00=≠z z 求证()z f 在原点处不连接。 证 由于

()01lim lim lim 42

062400=+=+=→→=→x x x x x z f x x x

y z

()21

lim lim 666003

=+=→=→y y y z f y y

x z

( )

? ? ? ? ? + = , 0 , 6 2 3 y x xy z f

可知极限

()z f

z0

lim

→不存在,故

()z f在原点处不连接。

16. 试问函数f(z) = 1/(1 –z )在单位圆| z | < 1内是否连续?是否一致连续?

【解】(1) f(z)在单位圆| z | < 1内连续.

因为z在X内连续,故f(z) = 1/(1 –z )在X\{1}内连续(连续函数的四则运算),因此f(z)在单位圆| z | < 1内连续.

(2) f(z)在单位圆| z | < 1内不一致连续.

令z n= 1 – 1/n,w n= 1 – 1/(n + 1),n∈N+.

则z n, w n都在单位圆| z | < 1内,| z n-w n | → 0,

但| f(z n)-f(w n)| = | n - (n + 1) | = 1 > 0,故f(z)在单位圆| z | < 1内不一致连续.

[也可以直接用实函数f(x) = 1/(1 –x )在(0, 1)不一致连续来说明,只要把这个实函数看成是f(z)在E = { z∈X | Im(z) = 0, 0 < Re(z) < 1 }上的限制即可.]

17. 试证:复数列z n = x n + i y n以z0 = x0 + i y0为极限的充要条件是实数列{x n}及{y n}分别以x0及y0为极限.

【解】(?) 若复数列z n = x n + i y n以z0 = x0 + i y0为极限,

则?ε > 0,?N∈N+,使得?n > N,有| z n -z0| < ε.

此时有| x n -x0| ≤ | z n -z0| < ε;| y n -y0| ≤ | z n -z0| < ε.

故实数列{x n}及{y n}分别以x0及y0为极限.

(?) 若实数列{x n}及{y n}分别以x0及y0为极限,则?ε > 0,

?N1∈N+,使得?n > N1,有| x n -x0| < ε/2;

?N2∈N+,使得?n > N2,有| y n -y0| < ε/2.

令N = max{N1, N2},则?n > N,有n > N1且n > N2,

故有| z n -z0| = | (x n -x0) + i (y n -y0)| ≤ | x n -x0| + | y n -y0| < ε/2 + ε/2 = ε.

所以,复数列z n = x n + i y n以z0 = x0 + i y0为极限.

20. 如果复数列{z n}合于lim n→∞z n = z0≠∞,证明lim n→∞ (z1 + z2 + ... + z n)/n = z0.

当z0≠∞时,结论是否正确?

【解】(1) ?ε > 0,?K∈N+,使得?n > K,有| z n -z0| < ε/2.

记M = | z1-z0 | + ... + | z K-z0 |,则当n > K时,有

| (z1 + z2 + ... + z n)/n-z0 | = | (z1-z0) + (z2-z0) + ... + (z n-z0) |/n

≤ ( | z1-z0 | + | z2-z0 | + ... + | z n-z0 |)/n

= ( | z1-z0 | + ... + | z K-z0 |)/n + ( | z K +1-z0 | + ... + | z n-z0 |)/n

≤M/n + (n-K)/n · (ε/2) ≤M/n + ε/2.

因lim n→∞ (M/n) = 0,故?L∈N+,使得?n > L,有M/n < ε/2.

令N = max{K, L},则当n > K时,有

| (z1 + z2 + ... + z n)/n-z0 | ≤M/n + ε/2 < ε/2 + ε/2 = ε.

所以,lim n→∞ (z1 + z2 + ... + z n)/n = z0.

(2) 当z0≠∞时,结论不成立.这可由下面的反例看出.

例:z n = (-1)n ·n,n∈N+.显然lim n→∞z n = ∞.

但?k∈N+,有(z1 + z2 + ... + z2k)/(2k) = 1/2,

因此数列{(z1 + z2 + ... + z n)/n}不趋向于∞.

[这个结论的证明的方法与实数列的情况完全相同,甚至反例都是一样的.]

2.如果it e

z=,试证明

(1)nt z z n n

cos 21=+; (2)nt z z n

n

sin i 21=-

解 (1)

nt e e e e z z n n sin 21

int int int int =+=+=+

-

(2)

nt e e e e z z n n sin i 21int

int int int =-=-=-

-

4.设iy x z +=,试证

y

x z y x +≤≤+2

证 由于

y

x y x y x y x z +=++≤

+=22

222

()

2

2

22

2222

22

2

y x y

x y x y x y x z +=

++≥+=

+=

y

x z y

x +≤≤+2

6. 设| z | = 1,试证:| (a z + b )/(b * z + a * ) | = 1.(z *表示复数z 的共轭) 【解】此题应该要求b * z + a * ≠ 0.

| a z + b | = | (a z + b )* | = | a * z * + b * | = | a * z * + b * | · | z | = | (a * z * + b *) · z | = | a * z * · z + b * · z | = | a * | z |2 + b * · z | = | b * z + a * |. 故| (a z + b )/(b * z + a * ) | = 1.

8. 试证:以z 1, z 2, z 3为顶点的三角形和以w 1, w 2, w 3为顶点的三角形同向相似的充要条件为

1

1133

2211w z w z w z = 0. 【解】两个三角形同向相似是指其中一个三角形经过(一系列的)旋转、平移、位似这三种初等几何变换后可以变成另一个三角形(注意没有反射变换).例如

z'z 3

1

2

我们将采用下述的观点来证明:

以z 1, z 2, z 3为顶点的三角形和以w 1, w 2, w 3为顶点的三角形同向相似的充要条件是:将它们的一对对应顶点都平移到原点后,它们只相差一个位似旋转.

记f 1(z ) = z - z 1 (将z 1变到0的平移);f 3(z ) = z - w 1 (将0变到w 1的平移); 那么,三角形z 1z 2z 3与三角形w 1w 2w 3同向相似 ? 存在某个绕原点的旋转位似变换f 2(z ) = z 0 z , 使得f 2 ( f 1(z k )) = f 3(w k ),(k = 2, 3),其中z 0∈X \{0}

? 存在z 0∈X \{0},使得z 0(z k - z 1) = w k - w 1,(k = 2, 3) ? (w 2 - w 1)/(z 2 - z 1) = (w 3 - w 1)/(z 3 - z 1) ?

1

31

31

212w w z z w w z z ----= 0

?

1

11

13131212w w z z w w z z ----= 0 ?

1

11

33

2211w z w z w z = 0.[证完] 9. 试证:四个相异点z 1, z 2, z 3, z 4共圆周或共直线的充要条件是 (z 1 – z 4)/(z 1 – z 2) : (z 3 – z 4)/(z 3 – z 2)为实数.

【解】在平面几何中,共线的四个点A , B , C , D 的交比定义为

(A , B ; C , D ) = (AC /CB ) : (AD /DB ).

这是射影几何中的重要的不变量.

类似地,在复平面上,(不一定共线的)四个点z 1, z 2, z 3, z 4的交比定义为

[z 1z 2, z 3z 4] = (z 1 – z 3)/(z 2 – z 3) : (z 1 – z 4)/(z 2 – z 4).

本题的结论是说:复平面上四个点共圆或共线的充要条件是其交比为实数. (?) 分两种情况讨论

(1) 若(z 1 – z 4)/(z 1 – z 2)为实数,则(z 3 – z 4)/(z 3 – z 2)也是实数. 设(z 1 – z 4)/(z 1 – z 2) = t ,t ∈P .则z 4 = (1 – t )z 1 + t z 2,

故z4在z1, z2所确定的直线上,即z1, z2, z4共线.

因此,同理,z1, z2, z3也共线.所以,z1, z2, z3, z4是共线的.

(2) 若(z1–z4)/(z1–z2)为虚数,则(z3–z4)/(z3–z2)也是虚数.

故Arg ((z1–z4)/(z1–z2)) ≠kπ,Arg ((z3–z4)/(z3–z2)) ≠kπ.

而Arg ((z1–z4)/(z1–z2)) – Arg ((z3–z4)/(z3–z2))

= Arg ((z1–z4)/(z1–z2) : (z3–z4)/(z3–z2)) = kπ.

注意到Arg ((z–z4)/(z–z2)) = Arg ((z4–z)/(z2–z))是z2–z到z4–z的正向夹角,

若Arg ((z1–z4)/(z1–z2)) = Arg ((z3–z4)/(z3–z2)),

则z1, z3在z2, z4所确定的直线的同侧,且它们对z2, z4所张的角的大小相同,

故z1, z2, z3, z4是共圆的.

若Arg ((z1–z4)/(z1–z2)) = Arg ((z3–z4)/(z3–z2)) + π,

则z1, z3在z2, z4所确定的直线的异侧,且它们对z2, z4所张的角的大小互补,

故z1, z2, z3, z4也是共圆的.

(?) 也分两种情况讨论

(1) 若z1, z2, z3, z4是共线的,则存在s, t∈P\{0, 1},使得

z4 = (1 –s)z3 + s z2,z4 = (1 –t)z1 + t z2,

那么,z3–z4 = s (z3 –z2),即(z3–z4)/(z3–z2) = s;

而z1–z4 = t (z1 –z2),即(z1–z4)/(z1–z2) = t,

所以,(z1–z4)/(z1–z2) : (z3–z4)/(z3–z2) = t/s∈P.

(2) 若z1, z2, z3, z4是共圆的,

若z1, z3在z2, z4所确定的直线的同侧,那么,

Arg ((z4–z1)/(z2–z1)) = Arg ((z4–z3)/(z2–z3))

因此(z4–z1)/(z2–z1) : (z4–z3)/(z2–z3)是实数.

也就是说(z1–z4)/(z1–z2) : (z3–z4)/(z3–z2)是实数.

若z1, z3在z2, z4所确定的直线的异侧,

则Arg ((z4–z1)/(z2–z1)) + Arg ((z2–z3)/(z4–z3)) = (2k + 1)π,

故Arg ((z1–z4)/(z1–z2) : (z3–z4)/(z3–z2))

= Arg ((z1–z4)/(z1–z2)) – Arg ((z3–z4)/(z3–z2))

= Arg ((z1–z4)/(z1–z2)) + Arg ((z3–z2)/(z3–z4))

= Arg ((z4–z1)/(z2–z1)) + Arg ((z2–z3)/(z4–z3)) = (2k + 1)π,

所以,(z1–z4)/(z1–z2) : (z3–z4)/(z3–z2)仍为实数.[证完]

这个题目写的很长,欢迎同学们给出更简单的解法.

11. 试证:方程| z -z1 |/| z -z2 | = k ( 0 < k ≠ 1,z1≠z2 )表示z平面的一个圆周,其圆心为z0,半径为ρ,且z0 = (z1 -k2 z2)/(1-k2),ρ = k | z1 -z2|/| 1-k2 |.

【解】到两定点距离成定比的点的轨迹是圆或直线.当比值不等于1时,轨迹是一个圆,这个圆就是平面几何中著名的Apollonius圆.

设0 < k ≠ 1,z1≠z2,z0 = (z1 -k2 z2)/(1-k2),ρ = k | z1 -z2|/| 1-k2 |.

?z∈X,| z -z0 | = ρ

?| z - (z1 -k2 z2)/(1-k2)| = k | z1 -z2|/| 1-k2 |

?| z(1-k2)- (z1 -k2 z2) | = k | z1 -z2 |

?| (z -z1) -k2 (z-z2)| = k | z1 -z2|

?| (z -z1)/k-k (z-z2) | = | z1 -z2|

?| (z -z1)/k-k (z-z2) | = | (z -z1)- (z-z2) |

?| (z -z1)/k-k (z-z2) |2 = | (z -z1) - (z-z2) |2

?| z -z1 |2/k2 + k2 | z-z2 |2 = | z -z1 |2 + | z-z2 |2

?(1/k2 - 1)| z -z1 |2 = (1-k2 ) | z-z2 |2

?| z -z1 |2/k2 = | z-z2 |2

?| z -z1 |/| z-z2 | = k.[证完]

直接地双向验证,可能需要下面的结论,其几何意义非常明显的.

命题:若复数z, w≠ 0,则| | z | ·w /| w| - | w| ·z /| z| | = | w -z |.

证明:我们用z*表示复数z的共轭.

| | z | ·w /| w| - | w| ·z /| z| |2

= | | z | ·w /| w| |2 + | | w| ·z /| z| |2- 2Re[( | z | ·w /| w|) · (| w| ·z /| z|)* ]

= | z |2 + | w|2- 2Re( w ·z* ) = | w -z |2.

或更直接地,| | z | ·w /| w| - | w| ·z /| z| |

= | | z | ·w /| w| - | w| ·z /| z| | · | z*/| z| | · | w*/| w| |

= | (| z | ·w /| w| - | w| ·z /| z|) ·(z*/| z|) · (w*/| w|) |

= | (| z | · (z*/| z|) - | w| ·(w*/| w|)) | = | w -z |.

12. 试证:Re(z) > 0 ? | (1 -z)/(1 + z) | < 1,并能从几何意义上来读本题.

【解】Re(z) > 0 ?点z在y轴右侧

?点z在点-1和点1为端点的线段的垂直平分线的右侧

?点z在点-1和点1为端点的线段的垂直平分线的与1同侧的那一侧

?点z到点-1的距离大于点z到点1的距离

?|1 + z | > | 1 -z | ?| (1 -z)/(1 + z) | < 1.

不用几何意义可以用下面的方法证明:

设z = x + i y,x, y∈P.

| (1 -z)/(1 + z) | < 1 ?|1 + z | > | 1 -z | ?|1 + z |2 > | 1 -z |2

? 1 + z2 + 2Re(z) > 1 + z2- 2Re(z) ?Re(z) > 0.

[由本题结论,可知映射f(z) = (1 -z)/(1 + z)必然把右半平面中的点映射到单位圆内的点.并且容易看出,映射f(z)把虚轴上的点映射到单位圆周上的点.

问题:f(z)在右半平面上的限制是不是到单位圆的双射?f(z)在虚轴上的限制是不是到单位圆周的双射?]

???-?±≠≥·?≤≡⊕??αβχδεφγηι?κλμνοπθρστυ?ωξψζ∞??????∏∑?Φ⊥∠?√§ψ

∈???????∠?????§NZΘ∑?∏TEHPXK#?→←↑↓?∨∧??????∑ΓΦΛΩ?

?m∈N+,?m∈N+,★?α1, α2, ..., αn?lim n→∞,+n→∞?ε > 0,∑u n,∑n≥ 1u n,m∈P,

?ε > 0,?δ> 0,【解】?[0, 2π]l 2 dx,f(x) = (-∞, +∞)[-π, π]∑1 ≤k≤n u n,[0, 2π]

复变函数试题与答案

第一章 复数与复变函数 一、 选择题 1.当i i z -+= 11时,5075100z z z ++的值等于( ) (A )i (B )i - (C )1 (D )1- 2.设复数z 满足3 )2(π = +z arc ,6 5)2(π = -z arc ,那么=z ( ) (A )i 31+- (B )i +-3 (C )i 2321+- (D )i 2 123+- 3.复数)2 ( tan πθπ θ<<-=i z 的三角表示式是( ) (A ))]2 sin()2 [cos(sec θπ θπθ+++i (B ))]2 3sin()23[cos(sec θπ θπθ+++i (C ))]23sin()23[cos(sec θπθπθ+++-i (D ))]2 sin()2[cos(sec θπ θπθ+++-i 4.若z 为非零复数,则2 2z z -与z z 2的关系是( ) (A )z z z z 222≥- (B )z z z z 22 2=- (C )z z z z 22 2≤- (D )不能比较大小 5.设y x ,为实数,yi x z yi x z +-=++=11,1121且有1221=+z z ,则动点),(y x 的轨迹是( ) (A )圆 (B )椭圆 (C )双曲线 (D )抛物线 6.一个向量顺时针旋转 3 π ,向右平移3个单位,再向下平移1个单位后对应的复数为 i 31-,则原向量对应的复数是( ) (A )2 (B )i 31+ (C )i -3 (D )i +3

7.使得2 2 z z =成立的复数z 是( ) (A )不存在的 (B )唯一的 (C )纯虚数 (D )实数 8.设z 为复数,则方程i z z +=+2的解是( ) (A )i +- 43 (B )i +43 (C )i -4 3 (D )i --43 9.满足不等式 2≤+-i z i z 的所有点z 构成的集合是( ) (A )有界区域 (B )无界区域 (C )有界闭区域 (D )无界闭区域 10.方程232= -+i z 所代表的曲线是( ) (A )中心为i 32-,半径为2的圆周 (B )中心为i 32+-,半径为2的圆周 (C )中心为i 32+-,半径为2的圆周 (D )中心为i 32-,半径为2的圆周 11.下列方程所表示的曲线中,不是圆周的为( ) (A ) 22 1 =+-z z (B )433=--+z z (C ) )1(11<=--a az a z (D ))0(0>=-+++c c a a z a z a z z 12.设,5,32,1)(21i z i z z z f -=+=-=,则=-)(21z z f ( ) (A )i 44--(B )i 44+(C )i 44-(D )i 44+- 13.0 0) Im()Im(lim 0z z z z x x --→( ) (A )等于i (B )等于i -(C )等于0(D )不存在 14.函数),(),()(y x iv y x u z f +=在点000iy x z +=处连续的充要条件是( ) (A )),(y x u 在),(00y x 处连续(B )),(y x v 在),(00y x 处连续 (C )),(y x u 和),(y x v 在),(00y x 处连续(D )),(),(y x v y x u +在),(00y x 处连续

复变函数论第三版课后习题答案

第一章习题解答 (一) 1 .设2z =z 及A rcz 。 解:由于32i z e π- = 所以1z =,2,0,1,3 A rcz k k ππ=- +=± 。 2 .设1 21z z = = ,试用指数形式表示12z z 及 12 z z 。 解:由于6 4 12,2i i z e z i e π π - += == = 所以( )646 4 12 12222i i i i z z e e e e π π π π π - - === 54( )14 6 12 2 6 112 2 2i i i i z e e e z e π ππππ+ - = = = 。 3.解二项方程440,(0)z a a +=>。 解:1 244 4 (),0,1,2,3k i i z a e ae k ππ π+= ===。 4.证明2 2 2 1212 122()z z z z z z ++-=+,并说明其几何意义。 证明:由于2 2 2 1212 122Re()z z z z z z +=++ 2 2 2 121 2 122R e () z z z z z z -=+- 所以2 2 2 12 12122()z z z z z z ++-=+ 其几何意义是:平行四边形对角线长平方和等于于两边长的和的平方。 5.设z 1,z 2,z 3三点适合条件:0 321=++z z z , 1 321===z z z 。证明z 1,z 2,z 3是内 接于单位圆1 =z 的一个正三角形的顶点。 证 由于 1 321===z z z ,知 3 21z z z ?的三个顶点均在单位圆上。 因为 3 33 3 1z z z == ()[]()[]2 12322112121z z z z z z z z z z z z +++=+-+-= 2 1212z z z z ++= 所以, 12121-=+z z z z , 又 ) ())((1221221121212 2 1z z z z z z z z z z z z z z +-+=--=- ()3 22121=+-=z z z z

《复变函数论》试卷一

《复变函数论》试卷一 一、填空(30分) 1. 将复数()πααα≤≤+-=0sin cos 1i z 化为三角表示式,则=z 把它化为指数表示式,则=z 2.=+i e π3 ,()i i +1的辐角的主值为 3. =z 0是()44sin z z z f =的 阶零点. 4.0z 是()z f 的()1>m m 阶零点,则0z 是 () z f '1 的 阶极点. 5.已知()()2323cxy x i y bx ay z f +++=为解析函数, 则___________________===c b a 6.方程0273=+z 的根为 , , 二、简要回答下列各题(15分) 1. 用复数i 去乘复数i +1的几何意义是什么? 2. 函数()z f 在0z 解析有哪几个等价条件? 3. 设函数()z f 在单连通区域D 内处处解析,且不为零,C 是D 内的任一简 单闭曲线,问积分()() dz z f z f c ? '是否等于零,为什么? 三、计算下列积分(16分) 1. c zdz ?,c 是从点1i -到点1i +的有向直线段 2. 20 2cos d πθ θ +? 四、(12分) 求函数() 1 1z z +在圆环112z <-<内的洛朗级数展开式.

五、(12分) 证明方程24290z z ++=在单位圆1z =内及其上无解. 六、(15分) 求映射,把带形区域0Re 2z <<共形映射成单位圆1w <,且把1z =映 射成0w =,把2z =映射成1w =. 《复变函数》试卷二 一、填空题(20分) 1. -2是 的一个平方根 2. 设2 1i z --= ,则,=z Argz = =z Im 3. 若2 2z z =,则θi re z =满足条件 4. =z e e ,() =z e e Re 5. 设1≠=θi re z ,则()=-1ln Re z 6. 设变换βαβα,,+=z w 为复常数,则称此变换为 变换,它是由 等三个变换复合而成. 7. 幂级数∑∞ =1 2n n n z n 的收敛半径=R 8.函数 b az +1 在0=z 处的幂级数展开式为 ,其收敛半径为 9.变换z e W =将区域π<

复变函数论第三版课后习题答案解析

1.设 z 1 3i ,求 z 及 Arcz 。 解:由于 z 1, Arcz 2k , k 0, 1, 。 3 (z 1 z 2)( z 1 z 2) z 1z 1 z 2z 2 (z 1z 2 z 2z 1) 2 z 1z 2 z 1 z 2 3 第一章习题解 答 (一) 2.设 z 1 i , z 3 1 ,试用指数形式表示 1 2 2 z 1z 2 及 z 1 。 z 2 4 i 6i 1 i i 解:由于 z 1 e 3 4 , z 2 3 i 2e 1 2 2 i i ( )i i 所以 z1z2 e 4i 2e 6i 2e ( 4 6)i 2e 12i i z 1 e 4 1 e (4 6)i i z 2 2e 6 2 5i 1 1 e 12 。 2 3.解二项方程 z 4 a 4 0,(a 0) 。 2k i 解: z 4 a 4 (a 4e i )4 ae 4 ,k 0,1,2,3 。 4.证明 z 1 2 2 z 1 z 2 z 1 z 2 证明:由于 2 2 z 1 z 2 z 1 2 2 z 2 2 z 1 z 2 2( z 1 所以 z 1 z 2 其几何意义是: z 2 ) 2 2 ,并说明其几何意义。 2 2 Re(z 1 z 2) z 2 2Re(z 1 z 2) z 1 z 2 2( z 1 z 2 ) 平行四边形对角线长平方和等于于两边长的和的平方。 5.设 z 1, z 2,z 3三点适合条件: z1 z2 z3 0 z 1 z 2 z3 1 。证明 z 1,z 2, z 3是内 接于单位 圆 z 1 的一个正三角形的顶点。 证 由于 z 1 z 2 z3 1 ,知 z 1z 2z 3 的三个顶点均在单位圆上。 因为 所以, z 1z 2 z 1z 2 1 , 所以 z 1 z 2

第二学期 复变函数论期末试卷A

黄冈师范学院 2009—2010学年度第二学期期末试卷 考试课程:复变函数论 考核类型:考试A 卷 考试形式:闭卷 出卷教师: 考试专业:数信学院数教 考试班级:数教200701-02班 一、 选择题(每小题4分,共20分) 1、复数i z 45-=,则=2Re z ( ) A 、40 B 、9 C 、-40 D 、-9 2、关于复数z ,下列不正确的是( ) A 、||2z z z = B 、)Im()Re(iz z = C 、z Argz arg = D 、z z sin )sin(-=- 3、已知xy i y x z f 2)(22+-=,则)(z f ''是( ) A 、2 B 、y x 22- C 、2z D 、0 4、下列等式中不正确的是( ) A 、?==0cos 111z dz z B 、02111=?=dz e z z z C 、??=dz z f k dz z kf )()( D 、? =z z e dz e 5、下列级数收敛的是( ) A 、∑∞ =+1)21(n n i n B 、∑∞=??????+-12)1(n n n i n C 、∑∞=02cos n n in D 、∑∞=+o n n i )251( A 卷 【第 1 页 共 2 页】

二、填空题(每小题4分,共20分) 1、=-)22(i Arg ____________; 2、函数z e z f =)(是以 _______为基本周期; 3、幂级数∑∞ =12n n n z 的收敛半径R=____________; 4、函数()z z f cos =在0=z 处的泰勒级数是_________ ; 5、计算积分?==1||1 2 z z dz e 二、 判断题(每小题2分,共10分) 1、在几何上,θi re z =与)2(πθk i re z +=表示同一个复角.( ) 2、当复数z=0时,则有0=z 和0arg =z .( ) 3、可导函数一定处处连续,连续函数不一定处处可导.( ) 4、若)(z f 在区域D 内解析,则)(z f 在D 内存在无穷阶导数.( ) 5、收敛级数的各项必是有界的.( ) 三、 计算及证明题(8+8+10+12+12,共50分) 1、若0321=z z z ,则复数321,,z z z 中至少有一个为零(8分) 2、已知解析函数iv u z f +=)(的虚部为222121y x v +- =,且0)0(=f ,求)(z f (8分) 3、已知c 为从z =0到z =2+i 的直线段,求?dz z c 2(10分) 4、将z e z -1在0=z 处展成幂级数(12分) 5、将函数2 )(+=z z z f 按1-z 的幂展开,并指出它的收敛范围.(12分) A 卷 【第 2 页 共 2 页】

复变函数论第四版答案钟玉泉

复变函数论第四版答案钟玉泉 (1)提到复变函数,首先需要了解复数的基本性质和四则运算规则。怎么样计算复数的平方根,极坐标与 xy 坐标的转换,复数的模之类的。这些在高中的时候基本上都会学过。 (2)复变函数自然是在复平面上来研究问题,此时数学分析里面的求导数之类的运算就会很自然的引入到 复平面里面,从而引出解析函数的定义。那么研究解析函数的性质就是关键所在。最关键的地方就是所谓 的Cauchy—Riemann 公式,这个是判断一个函数是否是解析函数的关键所在。 (3)明白解析函数的定义以及性质之后,就会把数学分析里面的曲线积分的概念引入复分析中,定义几乎 是一致的。在引入了闭曲线和曲线积分之后,就会有出现复分析中的重要的定理:Cauchy 积分公式。这 个是复分析的第一个重要定理。 (4)既然是解析函数,那么函数的定义域就是一个关键的问题。可以从整个定义域去考虑这个函数,也可 以从局部来研究这个函数。这个时候研究解析函数的奇点就是关键所在,奇点根据性质分成可去奇点,极 点,本性奇点三类,围绕这三类奇点,会有各自奇妙的定理。(5)复变函数中,留数定理是一个重要的定理,反映了曲线积分和

零点极点的性质。与之类似的幅角定理 也展示了类似的关系。 (6)除了积分,导数也是解析函数的一个研究方向。导数加上收敛的概念就可以引出Taylor 级数和 Laurent 级数的概念。除此之外,正规族里面有一个非常重要的定理,那就是Arzela 定理。 (7)以上都是从分析的角度来研究复分析,如果从几何的角度来说,最重要的定理莫过于Riemann 映照 定理。这个时候一般会介绍线性变换,就是Mobius 变换,把各种各样的区域映射成单位圆。研究 Mobius 变换的保角和交比之类的性质。 (8)椭圆函数,经典的双周期函数。这里有Weierstrass 理论,是研究Weierstrass 函数的,有经典的 微分方程,以及该函数的性质。 以上就是复分析或者复变函数的一些课程介绍,如果有遗漏或者疏忽的地方请大家指教。

《复变函数》-期末试卷及答案(A卷)

《复变函数》试卷 第1页(共4页) 《复变函数》试卷 第2页(共4页) XXXX 学院2016—2017学年度第一学期期末考试 复变函数 试卷 一、单项选择题(本大题共10小题,每题3分,共30分,请从每题备选项中选出唯一符合题干要求的选项,并将其前面的字母填在题中括号内。) 1. =)i Re(z ( ) A.)i Re(z - B.)i Im(z C.z Im - D.z Im 2. 函数2 ) (z z f =在复平面上 ( ) A.处处不连续 B. 处处连续,处处不可导 C.处处连续,仅在点0= z 处可导 D.处处连续,仅在点0=z 处解析 3.设复数a 与b 有且仅有一个模为1,则b a b a --1的值 ( ) A.大于1 B.等于1 C.小于1 D.无穷大 4. 设x y z f y x z i )(i +-=+=,,则=')(z f ( ) A.i 1+ B.i C.1- D.0 5.设C 是正向圆周 1=z ,i 2sin π=?dz z z C n ,则整数n 等于 ( ) A.1- B.0 C.1 D.2 6.0=z 是2 1 )( z e z f z -=的 ( ) A.1阶极点 B.2阶极点 C. 可去奇点 D.本性奇点 7.幂级数!2)1(0 n z n n n n ∑∞ =-的和函数是 ( ) A.z e - B.2 z e C.2 z e - D.z sin 8.设C 是正向圆周 2=z ,则 =?C z dz 2 ( ) A.0 B.i 2π- C.i π D.i 2π 9.设函数)(z f 在)0( 00+∞≤<<-

复变函数课后习题答案(全)

习题一答案 1.求下列复数的实部、虚部、模、幅角主值及共轭复数: (1) 1 32i + (2) (1)(2) i i i -- (3)13 1 i i i - - (4)821 4 i i i -+- 解:(1) 132 3213 i z i - == + , 因此: 32 Re, Im 1313 z z ==-, 232 arg arctan, 31313 z z z i ==-=+ (2) 3 (1)(2)1310 i i i z i i i -+ === --- , 因此, 31 Re, Im 1010 z z =-=, 131 arg arctan, 31010 z z z i π ==-=-- (3) 133335 122 i i i z i i i -- =-=-+= - , 因此, 35 Re, Im 32 z z ==-, 535 ,arg arctan, 232 i z z z + ==-= (4)821 41413 z i i i i i i =-+-=-+-=-+ 因此,Re1,Im3 z z =-=, arg arctan3,13 z z z i π ==-=-- 2.将下列复数化为三角表达式和指数表达式: (1)i(2 )1 -+(3)(sin cos) r i θθ + (4)(cos sin) r i θθ -(5)1cos sin (02) i θθθπ -+≤≤解:(1)2 cos sin 22 i i i e π ππ =+=

(2 )1-+23 222(cos sin )233 i i e πππ=+= (3)(sin cos )r i θθ+()2 [cos()sin()]22 i r i re π θππ θθ-=-+-= (4)(cos sin )r i θ θ-[cos()sin()]i r i re θθθ-=-+-= (5)2 1cos sin 2sin 2sin cos 222 i i θ θθ θθ-+=+ 2 2sin [cos sin ]2sin 22 22 i i e πθ θπθ πθ θ ---=+= 3. 求下列各式的值: (1 )5)i - (2)100100(1)(1)i i ++- (3 )(1)(cos sin ) (1)(cos sin ) i i i θθθθ-+-- (4) 23(cos5sin 5)(cos3sin 3)i i ????+- (5 (6 解:(1 )5)i -5[2(cos()sin())]66 i ππ =-+- 5 552(cos()sin()))66 i i ππ =-+-=-+ (2)100 100(1) (1)i i ++-50505051(2)(2)2(2)2i i =+-=-=- (3 )(1)(cos sin ) (1)(cos sin )i i i θθθθ-+-- 2[cos()sin()](cos sin ) 33)sin()][cos()sin()]44 i i i i ππ θθππ θθ-+-+= -+--+- )sin()](cos2sin 2)12 12 i i π π θθ=- +- + (2)12 )sin(2)]12 12 i i π θπ π θθ- =- +- =

复变函数习题答案第4章习题详解

第四章习题详解 1. 下列数列{}n a 是否收敛?如果收敛,求出它们的极限: 1) mi ni a n -+= 11; 2) n n i a -?? ? ? ?+=21; 3) ()11++ -=n i a n n ; 4) 2i n n e a π-=; 5) 21i n n e n a π-= 。 2. 证明:??? ????≠==>∞<=∞→1111110a a a a a a n n ,,,,lim 不存在, 3. 判别下列级数的绝对收敛性与收敛性: 1) ∑∞ =1n n n i ; 2) ∑∞ =2n n n i ln ; 3) ()∑∞=+0856n n n i ; 4) ∑∞=0 2n n in cos 。 4. 下列说法是否正确?为什么? 1) 每一个幂级数在它的收敛圆周上处处收敛;

2) 每一个幂级数的和函数在收敛圆内可能有奇点; 3) 每一个在0z 连续的函数一定可以在0z 的邻域内展开成泰勒级数。 5. 幂级数()∑∞ =-02n n n z c 能否在0=z 收敛而在3=z 发散? 6. 求下列幂级数的收敛半径: 1) ∑∞ =1n p n n z (p 为正整数); 2) ()∑∞=12n n n z n n !; 3) ()∑∞=+01n n n z i ; 4) ∑∞=1n n n i z e π; 5) ()∑∞=-??? ??1 1n n z n i ch ; 6) ∑∞=??? ? ?1n n in z ln 。 7. 如果 ∑∞=0n n n z c 的收敛半径为R ,证明()∑∞=0n n n z c Re 的收敛半径R ≥。[提示:()n n n n z c z c

(完整)《复变函数与积分变换》期末考试试卷及答案,推荐文档

2 3 ∞ ?复变函数与积分变换?期末试题(A) 1.1 -i 一.填空题(每小题3 分,共计15 分) 的幅角是();2. Ln(-1 +i) 的主值是(1 );3.f (z) =1 +z 2 , z - sin z f (5)(0) =(); f (z) = 1 , 4.z = 0 是 z 4 的()极点;5.z Re s[f(z),∞]=(); 二.选择题(每小题3 分,共计15 分) 1.解析函数f (z) =u(x, y) +iv(x, y) 的导函数为(); (A)f '(z) =u x +iu y ;(B)f '(z) =u x-iu y; (C) f '(z) =u x +iv y ; (D) f '(z) =u y +iv x. 2.C 是正向圆周z = 3 ,如果函数f (z) =(),则?C f (z)d z = 0 . 3 ;(B)3(z -1) ;(C) 3(z -1) ;(D) 3 . (A) z - 2 z - 2 (z - 2)2 (z - 2)2 3.如果级数∑c n z n 在z = 2 点收敛,则级数在 n=1 (A)z =-2 点条件收敛;(B)z = 2i 点绝对收敛; (C)z = 1 +i 点绝对收敛;(D)z = 1 + 2i 点一定发散.4.下列结论正确的是( ) (A)如果函数f (z) 在z0点可导,则f (z) 在z0点一定解析; 得分

e (B) 如果 f (z ) 在 C 所围成的区域内解析,则 ? C f (z )dz = 0 (C ) 如果 ? C f (z )dz = 0 ,则函数 f (z ) 在 C 所围成的区域内一定解析; (D ) 函数 f (z ) = u (x , y ) + iv (x , y ) 在区域内解析的充分必要条件是 u (x , y ) 、v (x , y ) 在该区域内均为调和函数. 5.下列结论不正确的是( ). (A) ∞为sin 1 的可去奇点 z (B) ∞为sin z 的本性奇点 ∞为 1 的孤立奇点; ∞ 1 (C) sin 1 z (D) 为 的孤立奇点. sin z 三.按要求完成下列各题(每小题 10 分,共计 40 分) (1)设 f (z ) = x 2 + axy + by 2 + i (cx 2 + dxy + y 2 ) 是解析函数,求 a , b , c , d . z (2).计算 ? C z (z - 1)2 d z 其中 C 是正向圆周: z = 2 ; 得分

复变函数论第四版第四五章练习

复变函数 第四、五章 练习 一、 掌握复级数收敛,绝对收敛的判别 1. 判断下列级数是否收敛,是否绝对收敛。 (1)2ln n n i n ∞ =∑ (2)01cos 2n n in ∞=∑ (3)0(1)2n n n n i ∞=+∑ 2.如果级数1n n c ∞=∑收敛,且存在0,,..,|arg |,2n s t c πααα><≤证明级数1n n c ∞ =∑绝对收敛. 二、充分掌握幂级数,及解析函数的泰勒展开式 3. 证明级数11n n n z z ∞ =-∑在||1z ≥上发散;在||1z <内绝对收敛且内闭一致收敛 4. 试证:黎曼函数 11(),(ln 0)z n z n n ζ∞ ==>∑,在点2z =的邻域内可展开为泰勒级数,并求收敛半径。 5.求下列幂级数的收敛半径: (1)0()n n n n a z ∞=+∑ (2)0[3(1)](1)n n n n z ∞=+--∑ (3)(1)0()(1)n n n n i z n ∞ +=-∑ 6.设0n n n a z ∞ =∑的收敛半径为R , 证明:0[Re()]n n n a z ∞=∑的收敛半径大于等于R 。 7.若幂级数∑∞=0n n n z c 在i z 21+=处收敛,试回答该级数在2=z 处的敛散性。 8.设函数z e z cos 的泰勒展开式为∑∞=0n n n z c ,求幂级数∑∞=0 n n n z c 的收敛半径。 9. 将函数31()z f z z -= 在点1z =-展成泰勒级数。 10.证明:若1||,2z ≤则2|ln(1)|||z z z +-≤. (这里ln(1)z +取主值支) 三、充分掌握解析函数零点阶数的求法、具有零点的解析函数的表达 式、零点的孤立性、惟一性定理、最大模原理

复变函数与积分变换课后习题答案详解

… 复变函数与积分变换 (修订版)主编:马柏林 (复旦大学出版社) / ——课后习题答案

习题一 1. 用复数的代数形式a +ib 表示下列复数 π/43513 ; ;(2)(43);711i i e i i i i i -++++ ++. ①解i 4 πππ2222e cos isin i i 44-??????=-+-= +-=- ? ? ? ??? ?? ?? ②解: ()()()() 35i 17i 35i 1613i 7i 1 1+7i 17i 2525 +-+==-++- ③解: ()()2i 43i 834i 6i 510i ++=-++=+ ④解: ()31i 13 35=i i i 1i 222 -+-+=-+ 2.求下列各复数的实部和虚部(z =x +iy ) (z a a z a -∈+); 3 3 31313;;;.n i i z i ???? -+-- ? ? ① :∵设z =x +iy 则 ()()()()()()()22 i i i i i i x a y x a y x y a x a y z a z a x y a x a y x a y -++-????+--+-????===+++++++ ∴ ()222 2 2 Re z a x a y z a x a y ---??= ?+??++, ()22 2Im z a xy z a x a y -?? = ?+??++. ②解: 设z =x +iy ∵ ()()()()() ()()()3 2 3 2 2 222222 3223i i i 2i i 22i 33i z x y x y x y x y xy x y x x y xy y x y x y x xy x y y =+=++=-++??=--+-+??=-+- ∴ ()332 Re 3z x xy =-, ()323Im 3z x y y =-. ③解: ∵ () ()()()(){ }3 3 2 3 2 1i 31i 311313313388-+??-+? ???== --?-?+?-?- ? ?????? ? ?? ?? ()1 80i 18 = += ∴1i 3Re 1?? -+= ? ??? , 1i 3Im 0??-+= ? ???. ④解: ∵ () ()() ()()2 3 3 23 1313 3133i 1i 38 ??--?-?-+?-?- ?? ??-+? ? = ? ??? ()1 80i 18 = += ∴1i 3Re 1??-+= ? ?? ? , 1i 3Im 0??-+= ? ??? . ⑤解: ∵()()1, 2i 211i, k n k n k k n k ?-=?=∈?=+-???. ∴当2n k =时,()()Re i 1k n =-,()Im i 0n =; 当 21n k =+时, ()Re i 0 n =, ()()Im i 1k n =-. 3.求下列复数的模和共轭复数 12;3;(2)(32); .2 i i i i +-+-++ ①解:2i 415-+=+=. 2i 2i -+=-- ②解:33-= 33-=- ③解:()()2i 32i 2i 32i 51365++=++=?=. ()()()()()()2i 32i 2i 32i 2i 32i 47i ++=+?+=-?-=- ④解: 1i 1i 2 22++== ()1i 11i 222i ++-??= = ??? 4、证明:当且仅当z z =时,z 才是实数. 证明:若z z =,设i z x y =+, 则有 i i x y x y +=-,从而有()2i 0y =,即y =0 ∴z =x 为实数. 若z =x ,x ∈,则z x x ==.

复变函数题库(包含好多试卷,后面都有答案)

《复变函数论》试题库 《复变函数》考试试题(一) 一、 判断题(20分): 1.若f(z)在z 0的某个邻域内可导,则函数f(z)在z 0解析. ( ) 2.有界整函数必在整个复平面为常数. ( ) 3.若 } {n z 收敛,则 } {Re n z 与 } {Im n z 都收敛. ( ) 4.若f(z)在区域D 内解析,且 0)('≡z f ,则C z f ≡)((常数). ( ) 5.若函数f(z)在z 0处解析,则它在该点的某个邻域内可以展开为幂级数. ( ) 6.若z 0是)(z f 的m 阶零点,则z 0是1/)(z f 的m 阶极点. ( ) 7.若 ) (lim 0 z f z z →存在且有限,则z 0是函数f(z)的可去奇点. ( ) 8.若函数f(z)在是区域D 内的单叶函数,则)(0)('D z z f ∈?≠. ( ) 9. 若f (z )在区域D 内解析, 则对D 内任一简单闭曲线C 0)(=? C dz z f . ( ) 10.若函数f(z)在区域D 内的某个圆内恒等于常数,则f(z)在区域D 内恒等于常数.( ) 二.填空题(20分) 1、 =-?=-1||0 0)(z z n z z dz __________.(n 为自然数) 2. =+z z 2 2cos sin _________. 3.函数z sin 的周期为___________. 4.设 11 )(2+= z z f ,则)(z f 的孤立奇点有__________. 5.幂级数 n n nz ∞ =∑的收敛半径为__________. 6.若函数f(z)在整个平面上处处解析,则称它是__________. 7.若ξ=∞→n n z lim ,则=+++∞→n z z z n n (i) 21______________. 8.= )0,(Re n z z e s ________,其中n 为自然数.

《复变函数论》试题库及答案

《复变函数论》试题库 《复变函数》考试试题(一) 一、 判断题(20分): 1.若f(z)在z 0的某个邻域内可导,则函数f(z)在z 0解析. ( ) 2.有界整函数必在整个复平面为常数. ( ) 3.若 }{n z 收敛,则} {Re n z 与} {Im n z 都收敛. ( ) 4.若f(z)在区域D 内解析,且 0)('≡z f ,则C z f ≡)((常数). ( ) 5.若函数f(z)在z 0处解析,则它在该点的某个邻域内可以展开为幂级数. ( ) 6.若z 0是)(z f 的m 阶零点,则z 0是1/)(z f 的m 阶极点. ( ) 7.若 ) (lim 0 z f z z →存在且有限,则z 0是函数f(z)的可去奇点. ( ) 8.若函数f(z)在是区域D 内的单叶函数,则)(0)('D z z f ∈?≠. ( ) 9. 若f (z )在区域D 内解析, 则对D 内任一简单闭曲线C 0)(=? C dz z f . ( ) 10.若函数f(z)在区域D 内的某个圆内恒等于常数,则f(z)在区域D 内恒等于常数.( ) 二.填空题(20分) 1、 =-?=-1||0 0)(z z n z z dz __________.(n 为自然数) 2. =+z z 22cos sin _________. 3.函数z sin 的周期为___________. 4.设 11 )(2+= z z f ,则)(z f 的孤立奇点有__________. 5.幂级数 n n nz ∞ =∑的收敛半径为__________. 6.若函数f(z)在整个平面上处处解析,则称它是__________. 7.若ξ=∞→n n z lim ,则=+++∞→n z z z n n (i) 21______________.

复变函数课后习题答案全

. .. . . 资料. 习题一答案 1. 求下列复数的实部、虚部、模、幅角主值及共轭复数: (1)1 32i +(2)(1)(2)i i i -- (3)131i i i --(4)821 4i i i -+- 解:(1)1323213i z i -== +, 因此:32 Re , Im 1313z z ==-, (2)3(1)(2)1310 i i i z i i i -+=== ---, 因此,31 Re , Im 1010z z =-=, (3)133335122 i i i z i i i --=-=-+= -, 因此,35 Re , Im 32z z ==-, (4)821 41413z i i i i i i =-+-=-+-=-+ 因此,Re 1, Im 3z z =-=, 2. 将下列复数化为三角表达式和指数表达式: (1)i (2 )1-+(3)(sin cos )r i θθ+ (4)(cos sin )r i θθ-(5)1cos sin (02)i θθθπ-+≤≤ 解:(1)2 cos sin 2 2 i i i e π π π =+= (2 )1-+23 222(cos sin )233 i i e πππ=+= (3)(sin cos )r i θθ+()2 [cos()sin()]22i r i re π θππ θθ-=-+-= (4)(cos sin )r i θ θ-[cos()sin()]i r i re θθθ-=-+-= (5)2 1cos sin 2sin 2sin cos 222 i i θ θθ θθ-+=+

.. .. 3. 求下列各式的值: (1 )5)i -(2)100100(1)(1)i i ++- (3 )(1)(cos sin ) (1)(cos sin ) i i i θθθθ-+--(4) 23(cos5sin 5)(cos3sin 3)i i ????+- (5 6 解:(1 )5)i -5[2(cos()sin())]66 i ππ =-+- (2)100 100(1) (1)i i ++-50505051(2)(2)2(2)2i i =+-=-=- (3 )(1)(cos sin ) (1)(cos sin )i i i θθθθ-+-- (4)2 3 (cos5sin 5)(cos3sin 3) i i ????+- (5 = (6 ) =4. 设12 ,z z i = =-试用三角形式表示12z z 与12z z 解:1 2cos sin , 2[cos()sin()]4 466 z i z i π π ππ =+=-+-,所以 12z z 2[cos()sin()]2(cos sin )46461212 i i ππππππ =-+-=+, 5. 解下列方程: (1)5 () 1z i +=(2)440 (0)z a a +=> 解:(1 )z i +=由此 25 k i z i e i π=-=-,(0,1,2,3,4)k = (2 )z ==

《复变函数》考试试题与答案各种总结

《复变函数》考试试题(一) 一、 判断题(20分): 1.若f(z)在z 0的某个邻域内可导,则函数f(z)在z 0解析. ( ) 2.有界整函数必在整个复平面为常数. ( ) 3.若 } {n z 收敛,则 } {Re n z 与 } {Im n z 都收敛. ( ) 4.若f(z)在区域D 内解析,且 0)('≡z f ,则C z f ≡)((常数). ( ) 5.若函数f(z)在z 0处解析,则它在该点的某个邻域内可以展开为幂级数. ( ) 6.若z 0是)(z f 的m 阶零点,则z 0是1/)(z f 的m 阶极点. ( ) 7.若 ) (lim 0 z f z z →存在且有限,则z 0是函数f(z)的可去奇点. ( ) 8.若函数f(z)在是区域D 内的单叶函数,则)(0)('D z z f ∈?≠. ( ) 9. 若f (z )在区域D 内解析, 则对D 内任一简单闭曲线C 0)(=? C dz z f . ( ) 10.若函数f(z)在区域D 内的某个圆内恒等于常数,则f(z)在区域D 内恒等于常数.( ) 二.填空题(20分) 1、 =-?=-1||0 0)(z z n z z dz __________.(n 为自然数) 2. =+z z 22cos sin _________. 3.函数z sin 的周期为___________. 4.设 11 )(2+= z z f ,则)(z f 的孤立奇点有__________. 5.幂级数 n n nz ∞ =∑的收敛半径为__________. 6.若函数f(z)在整个平面上处处解析,则称它是__________. 7.若ξ =∞ →n n z lim ,则= +++∞→n z z z n n (i) 21______________. 8.= )0,(Re n z z e s ________,其中n 为自然数.

《复变函数与积分变换》期末考试试卷及答案[1]

一.填空题(每小题3分,共计15分) 1. 2 31i -的幅角是( 2,1,0,23 ±±=+- k k ππ ) ; 2.)1(i Ln +-的主值是( i 4 32ln 21π + ); 3. 2 11)(z z f +=,=)0()5(f ( 0 ), 4.0=z 是 4 sin z z z -的( 一级 )极点; 5. z z f 1 )(=,=∞]),([Re z f s (-1 ); 二.选择题(每题4分,共24分) 1.解析函数 ),(),()(y x iv y x u z f +=的导函数为(B ) ; (A ) y x iu u z f +=')(; (B )y x iu u z f -=')(; (C ) y x iv u z f +=')(; (D )x y iv u z f +=')(. 2.C 是正向圆周 3=z ,如果函数=)(z f ( D ) ,则0d )(=?C z z f . (A ) 23-z ; (B )2 ) 1(3--z z ; (C ) 2)2()1(3--z z ; (D ) 2 )2(3 -z . 3.如果级数∑∞ =1 n n n z c 在 2=z 点收敛,则级数在(C ) (A )2-=z 点条件收敛 ; (B )i z 2=点绝对收敛; (C ) i z +=1点绝对收敛; (D )i z 21+=点一定发散. 4.下列结论正确的是( B ) (A )如果函数 )(z f 在0z 点可导,则)(z f 在0z 点一定解析; (B) 如果 )(z f 在C 所围成的区域内解析,则 0)(=? C dz z f (C )如果0)(=? C dz z f ,则函数)(z f 在C 所围成的区域内一定解析; (D )函数 ),(),()(y x iv y x u z f +=在区域内解析的充分必要条件是),(y x u 、) ,(y x v

复变函数论第四版答案钟玉泉

复变函数论第四版答案钟玉泉 复数的概念起源于求方程的根,在二次、三次代数方程的求根中就出现了负数开平方的情况。在很长时间里,人们对这类数不能理解。但随着数学的发展,这类数的重要性就日益显现出来。复数的一般形式是:a+bi,其中i是虚数单位。 以复数作为自变量的函数就叫做复变函数,而与之相关的理论就是复变函数论。解析函数是复变函数中一类具有解析性质的函数,复变函数论主要就研究复数域上的解析函数,因此通常也称复变函数论为解析函数论。 复变函数论的发展简况 复变函数论产生于十八世纪。1774年,欧拉在他的一篇论文中考虑了由复变函数的积分导出的两个方程。而比他更早时,法国数学家达朗贝尔在他的关于流体力学的论文中,就已经得到了它们。因此,后来人们提到这两个方程,把它们叫做“达朗贝尔-欧拉方程”。到了十九世纪,上述两个方程在柯西和黎曼研究流体力学时,作了更详细的研究,所以这两个方程也被叫做“柯西-黎曼条件”。 复变函数论的全面发展是在十九世纪,就像微积分的直接扩展统

治了十八世纪的数学那样,复变函数这个新的分支统治了十九世纪的数学。当时的数学家公认复变函数论是最丰饶的数学分支,并且称为这个世纪的数学享受,也有人称赞它是抽象科学中最和谐的理论之一。 为复变函数论的创建做了最早期工作的是欧拉、达朗贝尔,法国的拉普拉斯也随后研究过复变函数的积分,他们都是创建这门学科的先驱。 后来为这门学科的发展作了大量奠基工作的要算是柯西、黎曼和德国数学家维尔斯特拉斯。二十世纪初,复变函数论又有了很大的进展,维尔斯特拉斯的学生,瑞典数学家列夫勒、法国数学家彭加勒、阿达玛等都作了大量的研究工作,开拓了复变函数论更广阔的研究领域,为这门学科的发展做出了贡献。 复变函数论在应用方面,涉及的面很广,有很多复杂的计算都是用它来解决的。比如物理学上有很多不同的稳定平面场,所谓场就是每点对应有物理量的一个区域,对它们的计算就是通过复变函数来解决的。 比如俄国的茹柯夫斯基在设计飞机的时候,就用复变函数论解决了飞机机翼的结构问题,他在运用复变函数论解决流体力学和航空力学方面的问题上也做出了贡献。

相关文档
相关文档 最新文档