文档库 最新最全的文档下载
当前位置:文档库 › 成都理工大学过控实验报告(袁礼 3201206050506)

成都理工大学过控实验报告(袁礼 3201206050506)

成都理工大学过控实验报告(袁礼 3201206050506)
成都理工大学过控实验报告(袁礼 3201206050506)

本科生实验报告

实验课程过程控制

学院名称核技术与自动化工程学院

专业名称电气工程及其自动化

学生姓名袁礼

学生学号 3201206050506 指导教师杨小峰

实验地点 6C901 实验成绩

二〇一五年五二〇一五年六月

过程控制实验报告

摘要

“过程控制”是一门与工业生产过程联系十分密切的课程。随着科学技术的飞速发展,过程控制也在日新月异的发展。它不仅在传统工业改造中起到了提高质量,节约原材料和能源,减少环境污染等十分重要的作用,而且正在成为新建的规模大、结构复杂的工业生产过程中不可或缺的组成部分。本次实验便是初步了解过程控制。 关键词:水箱;串级;控制

实验一 单容水箱液位控制实验

单容水箱液位定值(随动)控制实验,定性分析P,PI 、PD 控制器特性。控制逻辑如图1所示:

1水流入量Qi 由调节阀u 控制,流出量Qo 则由用户通过负载阀R 来改变。被调量为水位H 。使用P,PI , PID 控制,看控制效果,进行比较。

2、控制策略

使用PI 、PD 、PID

调节。

3、实验步骤

1) 使用组态软件进行组态。数值定义为0~100。实时曲线时间定义为5~10min 。

图1单容上水箱液位定值(随动)控制实验

2)在A3000-FS上,打开手阀JV206、JV201,调节下水箱闸板具有一定开度,其

余阀门关闭。

3)连线:下水箱液位连接到内给定调节仪输入。内给定调节仪的输出连接到调节

阀的控制端。

4)打开A3000电源,打开电动调节阀开关。

5)在A3000-FS上,启动右边水泵(P102),给下水箱V104注水。

6)LT103→控制器→FV101单回路定值以及数学模型的实验。

7)按所学理论操作调节器,分别进行P、PI、PID设定。

简单设定规则:首先把P设定到30,I关闭(调节仪I>3600关闭),D关闭(调节仪D=0关闭)等水位低于40%,然后打开水泵,开始控制。设定值60%。一般P越大,则残差越大。可以减少P,直到出现振荡。则不出现振荡前的那个最小值就是P。

PI控制首先确认上次的P,我们可以不改变这个P值,也可以增加10%。然后把I设定为1800。关闭水泵,等水位低于40%,然后打开水泵,开始控制。设定值60%。观察控制曲线的趋势,如果出现恢复非常慢,则可以减少I,直到恢复比较快,而没有出现振荡,超调也不是非常大。

最后逐步增加D,使得控制更快速,一般控制系统有PI控制就可以了。

4、实验结果

单容水箱液位控制实验

下闸板顶到铁槽顶距离(开度): 卡尺直接量7mm,使用纸板对齐画线测量6.5mm。

比例控制器控制曲线如图所示。多个P值的控制曲线绘制在同一个图2上:

图2 比例控制器控制曲线

从图可见P=16时,有振荡趋势,P=24比较好。残差大约是8%。

PI控制器控制曲线如图3所示。选择P=24,然后把I从1800逐步减少。

图3 PI控制器控制曲线

如图所示,在这里I的大小对控制速度影响已经不大。从I=5时出现振荡,并且难以稳定了。I的选择很大,8-100都具有比较好的控制特性,这里从临界条件,选择

I=8到20之间。

PID控制器控制曲线如图4所示:

图4 PID控制器控制曲线

P=24,I=20,D=2或4都具有比较好的效果。从控制量来看,P=24,I=8,D=2比较好。

ADAM4000模块控制的结果如图5所示。

图5

从图可见,P=4,I=8000,D=2000控制效果是最好的。

由上图得:P=30, I=4, D=0时液位比较稳定

实验二双容水箱液位控制实验

单容双容水箱液位定值(随动)控制实验全部测量点,算法组态一样,不同的是设定值和结果。

1、实验方案

水流入量Qi由调节阀u控制,流出量Qo则由用户通过负载阀R来改变。被调量为下水位H。使用PID控制,看控制效果。

2、控制策略

使用PID调节。

3、实验步骤

1)使用组态软件进行组态。注意实时曲线时间要设定大些,例如15分钟。因为多容

积导致的延迟比较大。

2)在A3000-FS上,打开手阀JV205、JV201,调节中水箱、下水箱闸板具有一定开

度,其余阀门关闭。

3)连线:下水箱液位连接到内给定调节仪输入。内给定调节仪的输出连接到调节阀

的控制端。

4)打开A3000电源。

5)在A3000-FS上,启动右边水泵(P102),给中水箱V103注水。

6)LT104→控制器→FV101单回路定值以及数学模型的实验。

7)按所学理论操作调节器,进行PID设定。首先还是使用P比例调节,单容实验的

P值可以参考。然后再加I值。参见实验10。

4、参考结果

双容水箱液位控制实验

下闸板顶到铁槽顶距离(开度): 卡尺直接量7 mm,使用纸板对齐画线测量6.5mm.。

中闸板顶到铁槽顶距离(开度): 卡尺直接量11 mm,使用纸板对齐画线测量10mm。

从定性分析,中间水箱的出水口应该比下面的大些,否则可能很难控制。

PI控制器控制曲线如图1所示:

图1 PI控制器控制曲线

PID控制的曲线具有两个波,然后逐步趋于稳定。由于系统延迟很大,这个稳定时

间非常长。比较好的效果是P=24, I=200,D=2。如图2所示:

图2 PID控制曲线

从图可见,增加微分项之后,系统在有10%的扰动下,很快就进入稳定状态。

ADAM模块曲线图:SP=25, P=2, I=200000, D=0

由图得当P=10, I=40, D=0 是系统稳定。

实验三三容水箱液位控制实验与双容水箱液位定值(随动)控制实验全部测量点,算法组态一样,不同的是设定值

和结果。

1、实验方案

水流入量Qi由调节阀u控制,流出量Qo则由用户通过负载阀R来改变。被调量

为下水位H。使用PID控制,看控制效果。

2、控制策略

使用PID调节。

3、实验步骤

1)使用组态软件进行组态。注意实时曲线时间要设定大些,例如15分钟。因为多容

积导致的延迟比较大。

2)在A3000-FS上,打开手动调节阀JV204、JV201,调节上、中、下水箱闸板具有

一定开度,其余阀门关闭。

3)连线:下水箱液位连接到内给定调节仪输入。内给定调节仪的输出连接到调节阀

的控制端。

4)打开A3000电源。打开电动调节阀开关。

5)在A3000-FS上,启动右边水泵(P102),给上水箱V102注水,同时中水箱

V103、下水箱V104分别由上、中水箱注水。

6)LT103→控制器→FV101单回路定值以及数学模型的实验。

7)按所学理论操作调节器,进行PID设定。首先还是使用P比例调节,单容实验的

P值可以参考。然后再加I值。参见实验10。

4、参考结果

三容水箱液位控制实验

下闸板顶到铁槽顶距离(开度): 卡尺直接量7 mm,使用纸板对齐画线测6.5mm。

中闸板顶到铁槽顶距离(开度): 卡尺直接量11 mm,使用纸板对齐画线测量11mm。

上闸板顶到铁槽顶距离(开度): 卡尺直接量11 mm,使用纸板对齐画线测量12mm。

ADAM4000开始,P=2,I=1000秒,D=2秒,PID控制曲线如图1所示。

图1三容控制曲线图

从图上可见,该系统的稳定时间非常长,大约1小时。

由图得 当P=20, I=60, D=0 是系统稳定。

实验四 串级控制实验

串级试验包括液位串级控制和换热器串级控制实验。这里介绍液位串级。液位比温度实验好做得多。

图1 液位串级控制实验

第一个动力支

串级控制系统框图如图2所示。

图2液位串级控制系统框图

各个回路独立调整结束,使得主调节器输出与副调节器给定值相差不是太远。我们利用前面的实验中的PID数据。而副控制器只进行P调节。

副回路对V103液位进行控制,这个反应比较快,副回路的控制目的是很快把流量控制回给定值。可以通过另一个动力支路加入部分液位干扰。

主回路对V104液位进行控制,由于控制经过了V103,时间延迟比较大。可以在V104中加入主回路干扰,要平衡这个干扰,则需要经过流量调整,通过V103来平衡这个变化。

1、实验方案

被调量为调节阀开度,控制目标是水箱V104液位。

首先实现副回路的控制,主要目的获得P参数,通过测量液位,控制调节阀,使得V104保持到给定值。如果已经进行了V103的单容定值实验,则该步可以不做。

然后实现主回路的控制,通过测量V104液位,然后控制调节阀,从而也使得V104液位尽量保持到给定值。

然后进行两个控制回路的连接,把主回路的输出连接到副回路的给定值。从而形成串级控制。注意尽量无扰切换。

2、控制策略

使用两个PID调节。副回路调节器只比例控制。

3、实验步骤:

1)在A3000-FS上,打开手动调节阀JV201、JV205,调节中水箱、下水箱闸板具

有一定开度,其余阀门关闭。

2)按照列表进行连线。或者按如下操作:在A3000-CS上,将中水箱液(LT102)

连到内给定调节仪输入端,输出端连接到电动调节阀(FV101)输入端。

3)在A3000-FS上,启动右边水泵(P102),给中水箱V103注水。

4)首先进行副回路比例调节,获得P值。

5)切换至单主回路控制状态:断开中水箱液位与内给定调节仪的连线,将下水箱

液位连到内给定调节仪输入端。调整主控制回路(调节P、I值即可),对主控制器或调节器进行工作量设定。

6)关闭阀门JV205,当中水箱液位降低2cm高度,打开阀门,观察控制曲线。

7)切换到串级控制状态(此时最好无扰动):将中水箱液位连到外给定调节仪输

入端,内给定调节仪输出端连接到外给定调节仪的外给定端子,外给定调节仪的输出连接到调节阀。重复第6步。改变给定值,记录控制曲线。

4、参考结果

副回路P参数设置:ADAM4000模块P=4

主回路PID参数设置:P=3.5,I=100s。

单主回路加扰动后控制曲线如图3所示。

图3 单主回路加扰动后控制曲线

系统平衡所需要的时间10分钟。

串级控制曲线如图4所示。

图4串级控制曲线

系统平衡所需要的时间不超过3分钟。可见串级控制对于副回路内的扰动,可以快速平衡。

过程控制系统实验报告材料(最新版)

实验一、单容水箱特性的测试 一、实验目的 1. 掌握单容水箱的阶跃响应的测试方法,并记录相应液位的响应曲线。 2. 根据实验得到的液位阶跃响应曲线,用相关的方法确定被测对象的特征参数T和传递函数。 二、实验设备 1. THJ-2型高级过程控制系统实验装置 2. 计算机及相关软件 3. 万用电表一只 三、实验原理 图2-1单容水箱特性测试结构图由图2-1可知,对象的被控制量为水箱的液位H,控制量(输入量)是流入水箱中的流量Q1,手动阀V1和V2的开度都为定值,Q2为水箱中流出的流量。根据物料平衡关系,在平衡状态时 Q1-Q2=0 (1)

动态时,则有 Q1-Q2=dv/dt (2) 式中 V 为水箱的贮水容积,dV/dt为水贮存量的变化率,它与 H 的关系为 dV=Adh ,即dV/dt=Adh/dt (3) A 为水箱的底面积。把式(3)代入式(2)得 Q1-Q2=Adh/dt (4) 基于Q2=h/RS,RS为阀V2的液阻,则上式可改写为 Q1-h/RS=Adh/dt 即 ARsdh/dt+h=KQ1 或写作 H(s)K/Q1(s)=K/(TS+1) (5) 式中T=ARs,它与水箱的底积A和V2的Rs有关:K=Rs。 式(5)就是单容水箱的传递函数。 对上式取拉氏反变换得 (6) 当t—>∞时,h(∞)=KR0 ,因而有K=h(∞)/R0=输出稳态值/阶跃输入当 t=T 时,则有 h(T)=KR0(1-e-1)=0.632KR0=0.632h(∞)

式(6)表示一阶惯性环节的响应曲线是一单调上升的指数函数,如图 2-2 所示。当由实验求得图2-2所示的阶跃响应曲线后,该曲线上升到稳态值的63%所对应的时间,就是水箱的时间常数T。该时间常数 T也可以通过坐标原点对响应曲线作切线,切线与稳态值交点所对应的时间就是时间常数T,由响应曲线求得K和T后,就能求得单容水箱的传递函数。如果对象的阶跃响应曲线为图2-3,则在此曲线的拐点D处作一切线,它与时间轴交于B点,与响应稳态值的渐近线交于A点。图中OB即为对象的滞后时间τ,BC为对象的时间常数T,所得 的传递函数为: 四、实验内容与步骤 1.按图2-1接好实验线路,并把阀V1和V2开至某一开度,且使V1的开度大于V2的开度。 2.接通总电源和相关的仪表电源,并启动磁力驱动泵。

过程控制实验报告

过程控制实验 实验报告 班级:自动化1202 姓名:杨益伟 学号:120900321 2015年10月 信息科学与技术学院 实验一过程控制系统建模 作业题目一: 常见得工业过程动态特性得类型有哪几种?通常得模型都有哪些?在Simulink中建立相应模型,并求单位阶跃响应曲线、 答:常见得工业过程动态特性得类型有:无自平衡能力得单容对象特性、有自平衡能力得单容对象特性、有相互影响得多容对象得动态特性、无相互影响得多容对象得动态特性等。通常得模型有一阶惯性模型,二阶模型等、 单容过程模型 1、无自衡单容过程得阶跃响应实例 已知两个无自衡单容过程得模型分别为与,试在Simulink中建立模型,并求单位阶跃响应曲线。 Simulink中建立模型如图所示: 得到得单位阶跃响应曲线如图所示:

2、自衡单容过程得阶跃响应实例 已知两个自衡单容过程得模型分别为与,试在Simulink中建立模型,并求单位阶跃响应曲线。 Simulink中建立模型如图所示: 得到得单位阶跃响应曲线如图所示:

多容过程模型 3、有相互影响得多容过程得阶跃响应实例 已知有相互影响得多容过程得模型为,当参数, 时,试在Simulink中建立模型,并求单位阶跃响应曲线在Simulink中建立模型如图所示:得到得单位阶跃响应曲线如图所示:

4、无相互影响得多容过程得阶跃响应实例 已知两个无相互影响得多容过程得模型为(多容有自衡能力得对象)与(多容无自衡能力得对象),试在Simulink中建立模型,并求单位阶跃响应曲线。 在Simulink中建立模型如图所示: 得到得单位阶跃响应曲线如图所示:

过程控制仪表实验报告

成绩________ 过程控制仪表及装置实验报告 班级:_______________________________________ 姓名:________________________________________ 学号:________________________________________ 指导老师:_____________________________________ 实验日期:_____________________________________

目录 实验一电容式差压变送器的校验 (2) 实验二热电阻温度变送器的校验 (5) 实验三模拟调节器开环校验 (8) 实验四模拟调节器闭环校验 (12) 实验五SLPC可编程调节器的编程设计与操作 (14) 实验六SLPC可编程调节器PID控制参数整定 (19) 1 实验一电容式差压变送器的校验 一、实验目的 1.了解并熟悉电容式差压变送器整体结构及各种部件的作用。 2.掌握电容式差压变送器的工作原理。 3.掌握电容式差压变送器的起点及终点调整、精度校验、迁移的调整方法。 二、实验项目 1.掌握气动定值器、标准电流表、标准压力表、标准电阻箱的使用方法。2.了解电容式差压变送器整体结构,熟悉各调节螺钉的位置和用途。 3.按照实验步骤进行仪表的起点、终点调整,进行精度、迁移校验。 三、实验设备与仪器 1.电容式差压变送器1台 2.标准电阻箱1个 3.气动定值器1个 4.标准电流表1台 5.标准压力表1个 6.大、小螺丝刀各1把 7.连接导线、气压导管若干 四、实验原理 实验接线如图2-1所示。

计算机过程控制实验报告

计算机过程控制实验报告

实验1 单容水箱液位数学模型的测定实验 1、试验方案: 水流入量Qi 由调节阀u 控制,流出量Qo 则由用户通过负载阀R 来改变。被调量为水位H 。分析水位在调节阀开度扰动下的动态特性。 直接在调节阀上加定值电流,从而使得调节阀具有固定的开度。(可以通过智能调节仪手动给定,或者AO 模块直接输出电流。) 调整水箱出口到一定的开度。 突然加大调节阀上所加的定值电流观察液位随时间的变化,从而可以获得液位数学模型。 通过物料平衡推导出的公式: μμk Q H k Q i O ==, 那么 )(1 H k k F dt dH -=μμ, 其中,F 是水槽横截面积。在一定液位下,考虑稳态起算点,公式可以转换成 μμR k H dt dH RC =+。 公式等价于一个RC 电路的响应函数,C=F 就是水容,k H R 0 2= 就是水阻。 如果通过对纯延迟惯性系统进行分析,则单容水箱液位数学模型可以使用以下S 函数表示: ) 1()(0 += TS S KR S G 。 相关理论计算可以参考清华大学出版社1993年出版的《过程控制》,金以慧编著。 2、实验步骤: 1) 在现场系统A3000-FS 上,将手动调节阀JV201、JV206完全打开,使下水箱闸板具有 一定开度,其余阀门关闭。 2) 在控制系统A3000-CS 上,将下水箱液位(LT103)连到内给定调节仪输入端,调节仪 输出端连到电动调节阀(FV101)控制信号端。 3) 打开A3000-CS 电源,调节阀通电。打开A3000-FS 电源。 4) 在A3000-FS 上,启动右边水泵(即P102),给下水箱(V104)注水。 给定值 图1 单容水箱液位数学模型的测定实验

过程控制系统实验报告

实验一过程控制系统的组成认识实验 过程控制及检测装置硬件结构组成认识,控制方案的组成及控制系统连接 一、过程控制实验装置简介 过程控制是指自动控制系统中被控量为温度、压力、流量、液位等变量在工业生产过程中的自动化控制。本系统设计本着培养工程化、参数化、现代化、开放性、综合性人才为出发点。实验对象采用当今工业现场常用的对象,如水箱、锅炉等。仪表采用具有人工智能算法及通讯接口的智能调节仪,上位机监控软件采用MCGS工控组态软件。对象系统还留有扩展连接口,扩展信号接口便于控制系统二次开发,如PLC控制、DCS控制开发等。学生通过对该系统的了解和使用,进入企业后能很快地适应环境并进入角色。同时该系统也为教师和研究生提供一个高水平的学习和研究开发的平台。 二、过程控制实验装置组成 本实验装置由过程控制实验对象、智能仪表控制台及上位机PC三部分组成。 1、被控对象 由上、下二个有机玻璃水箱和不锈钢储水箱串接,4.5千瓦电加热锅炉(由不锈钢锅炉内胆加温筒和封闭外循环不锈钢锅炉夹套构成),压力容器组成。 水箱:包括上、下水箱和储水箱。上、下水箱采用透明长方体有机玻璃,坚实耐用,透明度高,有利于学生直接观察液位的变化和记录结果。水箱结构新颖,内有三个槽,分别是缓冲槽、工作槽、出水槽,还设有溢流口。二个水箱可以组成一阶、二阶单回路液位控制实验和双闭环液位定值控制等实验。 模拟锅炉:锅炉采用不锈钢精致而成,由两层组成:加热层(内胆)和冷却层(夹套)。做温度定值实验时,可用冷却循环水帮助散热。加热层和冷却层都有温度传感器检测其温度,可做温度串级控制、前馈-反馈控制、比值控制、解耦控制等实验。 压力容器:采用不锈钢做成,一大一小两个连通的容器,可以组成一阶、二阶单回路压力控制实验和双闭环串级定值控制等实验。 管道:整个系统管道采用不锈钢管连接而成,彻底避免了管道生锈的可能性。为了提高实验装置的使用年限,储水箱换水可用箱底的出水阀进行。 2、检测装置 (液位)差压变送器:检测上、下二个水箱的液位。其型号:FB0803BAEIR,测量范围:0~1.6KPa,精度:0.5。输出信号:4~20mA DC。 涡轮流量传感器:测量电动调节阀支路的水流量。其型号:LWGY-6A,公称压力:6.3MPa,精度:1.0%,输出信号:4~20mA DC 温度传感器:本装置采用了两个铜电阻温度传感器,分别测量锅炉内胆、锅炉夹套的温度。经过温度传感器,可将温度信号转换为4~20mA DC电流信号。 (气体)扩散硅压力变送器:用来检测压力容器内气体的压力大小。其型号:DBYG-4000A/ST2X1,测量范围:0.6~3.5Mpa连续可调,精度:0.2,输出信号为4~20mA DC。 3、执行机构 电气转换器:型号为QZD-1000,输入信号为4~20mA DC,输出信号:20~100Ka气压信号,输出用来驱动气动调节阀。 气动薄膜小流量调节阀:用来控制压力回路流量的调节。型号为ZMAP-100,输入信号为4~20mA DC或0~5V DC,反馈信号为4~20mA DC。气源信号 压力:20~100Kpa,流通能力:0.0032。阀门控制精度:0.1%~0.3%,环境温度:-4~+200℃。 SCR移相调压模块:采用可控硅移相触发装置,输入控制信号0~5V DC或4~20mA DC 或10K电位器,输出电压变化范围:0~220V AC,用来控制电加热管加热。 水泵:型号为UPA90,流量为30升/分,扬程为8米,功率为180W。

过程控制实验报告

东南大学自动化学院 实验报告 课程名称:过程控制实验 实验名称:水箱液位控制系统 院(系):自动化专业:自动化姓名:学号: 实验室:实验组别: 同组人员: 实验时间: 评定成绩:审阅教师:

目录 一、系统概论 (3) 二、对象的认识 (4) 三、执行机构 (14) 四、单回路调节系统 (15) 五、串级调节系统Ⅰ (18) 六、串级调节系统Ⅱ (19) 七、前馈控制 (21) 八、软件平台的开发 (21)

一、系统概论 1.1实验设备 图1.1 实验设备正面图图1.2 实验设备背面图 本实验设备包含水箱、加热器、变频器、泵、电动阀、电磁阀、进水阀、出水阀、增压器、流量计、压力传感器、温度传感器、操作面板等。 1.1.2 铭牌 ·加热控制器: 功率1500w,电源220V(单相输入) ·泵: Q40-150L/min,H2.5-7m,Hmax2.5m,380V,VL450V, IP44,50Hz,2550rpm,1.1kw,HP1.5,In2.8A,ICL B ·全自动微型家用增压器: 型号15WZ-10,单相电容运转马达 最高扬程10m,最大流量20L/min,级数2,转速2800rmp,电压220V, 电流0.36A,频率50Hz,电容3.5μF,功率80w,绝缘等级 E ·LWY-C型涡轮流量计: 口径4-200mm,介质温度-20—+100℃,环境温度-20—+45℃,供电电源+24V, 标准信号输出4-20mA,负载0-750Ω,精确度±0.5%Fs ±1.0%Fs,外壳防护等级 IP65 ·压力传感器 YMC303P-1-A-3 RANGE 0-6kPa,OUT 4-20mADC,SUPPLY 24VDC,IP67,RED SUP+,BLUE OUT+/V- ·SBWZ温度传感器 PT100 量程0-100℃,精度0.5%Fs,输出4-20mADC,电源24VDC

《过程控制系统》实验报告

《过程控制系统》实验报告 学院:电气学院 专业:自动化 班级:1505 姓名及学号:任杰311508070822 日期:2018.6.3

实验一、单容水箱特性测试 一、 实验目的 1. 掌握单容水箱阶跃响应测试方法,并记录相应液位的响应曲线。 2. 根据实验得到的液位阶跃响应曲线,用相关的方法确定被测对象的特征参数T 和传递函数。 二、 实验设备 1. THJ-FCS 型高级过程控制系统实验装置。 2. 计算机及相关软件。 3. 万用电表一只。 三、 实验原理 图1 单容水箱特性测试结构图 由图 2-1 可知,对象的被控制量为水箱的液位 h ,控制量(输入量)是流入水箱中的流量 Q 1,手动阀 V 1 和 V 2 的开度都为定值,Q 2 为水箱中流出的流量。根据物料平衡关系,在平衡状态时02010=-Q Q (式2-1),动态时,则有dt dV Q Q = -21,(式2-2)式中 V 为水箱的贮水容积,dt dV 为水贮存量的变化率,它与 h 的关

系为Adh dV =,即dt dh A dt dV =(式2-3),A 为水箱的底面积。把式(2-3)代入式(2-2)得dt dh A Q Q =-21(式2-4)基于S R h Q =2,S R 为阀2V 的液阻,(式2-4)可改写为dt dh A R h Q S =-1,1KQ h dt dh AR S =+或()()1s 1+=Ts K s Q H (式2-5)式中s AR T =它与水箱的底面积A 和2V 的S R 有关,(式2-5)为单容水箱的传递函数。若令()S R S Q 01=,常数=0R ,则式2-5可表示为()T S KR S R K S R T S T K S H 11/000+-=?+= 对上式取拉氏反变换得()()T t e KR t h /01--=(式2-6),当∞→t 时()0KR h =∞,因而有()0/R h K ∞==输出稳态值/阶跃输入,当T t =时,()() ()∞==-=-h KR e KR T h 632.0632.01010,式2-6表示一阶惯性响应曲线是一单调上升的指数函数如下图2-2所示 当由实验求得图 2-2 所示的阶跃响应曲线后,该曲线上升到稳态值的 63%所对应的时间,就是水箱的时间常数 T 。该时间常数 T 也可以通过 坐标原点对响应曲线作切线,切线与稳态值交点所对应的时间就是 时间常数 T ,由响应曲线求得 K 和 T 后,就能求得单容水箱的传递函 数如式(2-5)所示。 如果对象的阶跃响应曲线为图 2-3,则在此曲线的拐点 D 处作一切线,它与时间轴交于 B 点,与响应稳态值的渐近线交于 A 点。图中OB 即为对象的滞后时间

过程控制工程实验报告

成绩________ 过程控制工程 实验报告 班级:自动化10-2 姓名: 曾鑫 学号:10034080239 指导老师:康珏

实验一液位对象特性测试(计算机控制)实验 一、实验目的 通过实验掌握对象特性的曲线的测量的方法,测量时应注意的问题,对象模型参数的求取方法。 二、实验项目 1.认识实验系统,了解本实验系统中的各个对象。 2.测试上水箱的对象特性。 三、实验设备与仪器 1.水泵Ⅰ 2.变频器 3.压力变送器 4.主回路调节阀

m in y ?——被测量的变化量 m ax y ——被测量的上限值 m in y ——被测量的下限值 2) 一阶对象传递函数 s e s T K G τ-+= 1 00 K ——广义对象放大倍数(用前面公式求得) 0T ——广义对象时间常数(为阶跃响应变化到新稳态值的63.2%所需要的时间) τ——广义对象时滞时间(即响应的纯滞后,直接从图测量出) 五、注意事项 1. 测量前要使系统处于平衡状态下,反应曲线的初始点应是输入信号的开始作阶跃信号的 瞬间,这一段时间必须在记录纸上标出,以便推算出纯滞后时间τ。测量与记录工作必须 2. 所加扰动应是额定值的10%左右。 六、实验说明及操作步骤

1.了解本实验系统中各仪表的名称、基本原理以及功能,掌握其正确的接线与使用方法,以便于在实验中正确、熟练地操作仪表读取数据。熟悉实验装置面板图,做到根据面板上仪表的图形、文字符号找到该仪表。熟悉系统构成和管道的结构,认清电磁阀和手动阀的位置及其作用。 2.将上水箱特性测试(计算机控制)所用实验设备,参照流程图和系统框图接好实验线路。 3.确认接线无误后,接通电源。 4.运行组态王,在工程管理器中启动“上水箱液位测试实验” 阶液位对象。 按钮观察输出曲线。 6.在 会影响系统稳定所需的时间)。 7.改变u(k)输出,给系统输入幅值适宜的正向阶跃信号(阶跃信号在5%-15%之间),使系统的输出信号产生变化,上水箱液位将上升到较高的位置逐渐进入稳态。 8.观察计算机中上水箱液位的正向阶跃响应曲线,直至达到新的平衡为止。 9.改变u(k)输出,给系统输入幅值与正向阶跃相等的一个反向阶跃信号,使系统的输出信号产生变化,上水箱液将下降至较低的位置逐渐进入稳态。 10. 为止。 11.曲线的分析处理,对实验的记录曲线分别进行分析和处理,处理结果记录于表格2-1。 七、实验报告

过程控制系统实验报告

《过程控制系统实验报告》 院-系: 专业: 年级: 学生姓名: 学号: 指导教师: 2015 年6 月

过程控制系统实验报告 部门:工学院电气工程实验教学中心实验日期:年月日 姓名学号班级成绩 实验名称实验一单容水箱液位定值控制实验学时 课程名称过程控制系统实验及课程设计教材过程控制系统 一、实验仪器与设备 A3000现场系统,任何一个控制系统,万用表 二、实验要求 1、使用比例控制进行单溶液位进行控制,要求能够得到稳定曲线,以及震荡曲线。 2、使用比例积分控制进行流量控制,能够得到稳定曲线。设定不同的积分参数,进行 比较。 3、使用比例积分微分控制进行流量控制,要求能够得到稳定曲线。设定不同的积分参数,进行比较。 三、实验原理 (1)控制系统结构 单容水箱液位定值(随动)控制实验,定性分析P, PI,PD控制器特性。 水流入量Qi由调节阀u控制,流出量Qo则由用户通过负载阀R来改变。被调量为水位H。使用P,PI , PID控制,看控制效果,进行比较。 控制策略使用PI、PD、PID调节。 (2)控制系统接线表 使用ADAM端口测量或控制量测量或控制量标号使用PLC端 口 锅炉液位LT101 AI0 AI0 调节阀FV101 AO0 AO0 四、实验内容与步骤 1、编写控制器算法程序,下装调试;编写测试组态工程,连接控制器,进行联合调试。这些步骤不详细介绍。

2、在现场系统上,打开手阀QV-115、QV-106,电磁阀XV101(直接加24V到DOCOM,GND到XV102控制端),调节QV-116闸板开度(可以稍微大一些),其余阀门关闭。 3、在控制系统上,将液位变送器LT-103输出连接到AI0,AO0输出连到变频器U-101控制端上。 注意:具体哪个通道连接指定的传感器和执行器依赖于控制器编程。对于全连好线的系统,例如DCS,则必须安装已经接线的通道来编程。 4、打开设备电源。包括变频器电源,设置变频器4-20mA的工作模式,变频器直接驱动水泵P101。 5、连接好控制系统和监控计算机之间的通讯电缆,启动控制系统。 6、启动计算机,启动组态软件,进入测试项目界面。启动调节器,设置各项参数,将调节器的手动控制切换到自动控制。 7、设置PID控制器参数,可以使用各种经验法来整定参数。这里不限制使用的方法。 五、实验结果记录及处理 六、实验心得体会: 比例控制特性:能较快克服扰动的影响,使系统稳定下来,但有余差。 比例积分特性:能消除余差,它能适用于控制通道时滞较小、负荷变化不大、被控量不允许由余差的场合。 比例微分特性:对于改善系统的动态性能指标,有显著的效果。

过程控制仪表实验报告解析

成绩________ 过程控制仪表及装置 实验报告 班级:_______________________________________ 姓名:________________________________________ 学号:________________________________________ 指导老师:_____________________________________ 实验日期:_____________________________________

目录 实验一电容式差压变送器的校验 (2) 实验二热电阻温度变送器的校验 (5) 实验三模拟调节器开环校验 (8) 实验四模拟调节器闭环校验 (12) 实验五SLPC可编程调节器的编程设计与操作 (14) 实验六SLPC可编程调节器PID控制参数整定 (19)

实验一电容式差压变送器的校验 一、实验目的 1.了解并熟悉电容式差压变送器整体结构及各种部件的作用。 2.掌握电容式差压变送器的工作原理。 3.掌握电容式差压变送器的起点及终点调整、精度校验、迁移的调整方法。 二、实验项目 1.掌握气动定值器、标准电流表、标准压力表、标准电阻箱的使用方法。2.了解电容式差压变送器整体结构,熟悉各调节螺钉的位置和用途。 3.按照实验步骤进行仪表的起点、终点调整,进行精度、迁移校验。 三、实验设备与仪器 1.电容式差压变送器1台 2.标准电阻箱1个 3.气动定值器1个 4.标准电流表1台 5.标准压力表1个 6.大、小螺丝刀各1把 7.连接导线、气压导管若干 四、实验原理 实验接线如图2-1所示。 图2-1 电容式差压变送器校验接线图 五、实验说明及操作步骤

过程控制控实验报告

实验一 单容自衡水箱特性的测试 一、实验目的 1. a 根据实验得到的液位阶跃响应曲线,用相应的方法确定被测对象的特征参数K 、T 和传递函数。 二、实验设备 1. A3000高级过程控制实验系统 2. 计算机及相关软件 三、实验原理 由图2.1可知,对象的被控制量为水箱的液位h ,控制量(输入量)是流入水箱中的流量Q 1,Q 2为流出水箱的流量。手动阀QV105和闸板QV116的开度(5~10毫米)都为定值。根据物料平衡关系,在平衡状态时: 0Q Q 2010=- (1) 动态时则有: dt dV Q Q 21=- (2) 式中V 为水箱的贮水容积,dt dV 为水贮存量的变化率,它与h 的关系为Adh dV =,即: dt dh A dt dV = (3) A 为水箱的底面积。把式(3)代入式(2)得: QV116 V104 V103 h ?h QV105 QV102 P102 LT103 LICA 103 FV101 M Q 1 Q 2 图2.1单容水箱特性测试结构图

图2.2 单容水箱的单调上升指数曲线 dt dh A =-21Q Q (4) 基于S 2R h Q =,R S 为闸板QV116的液阻,则上式可改写为dt dh A R h Q S =-1,即: 或写作: 1 )()(1+=TS K s Q s H (5) 式中T=AR S ,它与水箱的底积A 和V 2的R S 有关;K=R S 。式(5)就是单容水箱的传递函数。 若令S R s Q 01)(=,R 0=常数,则式(5)可改为: T S KR S R K S R T S T K s H 0011/)(0+-=?+= 对上式取拉氏反变换得: )e -(1KR h(t)t/T 0-= (6) 当∞→t 时0KR )h(=∞,因而有=∞=0R )h(K 阶跃输入 输出稳态值。当t=T 时,则)h(KR )e -(1KR h(T) 001∞===-0.6320.632。式(6)表示一阶惯性环节的响应曲线是一单调上升的指数函数,如图2.2所示。 当由实验求得图2.2所示的阶跃响应曲线后,该曲线上升到稳态值的63%所对应的时间,就是水箱的时间常数T 。该时间常数T 也可以通过坐标原点对响应曲线作切线,切线与稳态值交点所对应的时间就是时间常数T ,由响应曲线求得K 和T 后,就能求得单容水箱的传递函数。 1KQ h dt dh AR S =+

浙工大过程控制实验报告

浙工大过程控制实验报告 202103120423徐天宇过程控制系统实验报告 实验一:系统认识及对象特性测试 一实验目的 1了解实验装置结构和组成及组态软件的组成使用。 2 熟悉智能仪表的使用及实验装置和软件的操作。 3熟悉单容液位过程的数学模型及阶跃响应曲线的实验方法。 4学会有实际测的得单容液位过程的阶跃响应曲线,用相关的方法分别确定它们的参数,辨识过程的数学模型。二实验内容 1 熟悉用MCGS组态的智能仪表过程控制系统。 2 用阶跃响应曲线测定单容液位过程的数学模型。三实验设备 1 AE2000B型过程控制实验装置。 2 计算机,万用表各一台。 3 RS232-485转换器1只,串口线1根,实验连接线若干。四实验原理 如图1-1所示,设水箱的进水量为Q1,出水量为Q2,水箱的液面高度为h,出水阀V2固定于某一开度值。根据物料动态平衡的关系,求得: 在零初始条件下,对上式求拉氏变换,得:

式中,T为水箱的时间常数(注意:阀V2的开度大小会影响到水箱的时间常数),T=R2*C,K=R2为单容对象的放大倍数, R1、R2分别为V1、V2阀的液阻,C 为水箱的容量系数。 阶跃响应曲线法是指通过调节过程的调节阀,使过程的控制输入产生一个阶跃变化,将被控量随时间变化的阶跃响应曲线记录下来,再根据测试记录的响应曲线求取输入输出之间的数学模型。本实验中输入为电动调节阀的开度给定值OP,通过改变电动调节阀的开度给定单容过程以阶跃变化的信号,输出为上水箱的液位高度h。电动调节阀的开度op通过组态软件界面有计算机传给智能仪表,有智能仪表输出范围为:0~100%。水箱液位高度有由传感变送器检测转换为4~20mA的标准信号,在经过智能仪表将该信号上传到计算机的组态中,由组态直接换算成高度值,在计算机窗口中显示。因此,单容液位被控对象的传递函数,是包含了由执行结构到检测装置的所有液位单回路物理关系模型有上述机理建模可知,单容液位过程是带有时滞性的一阶惯性环节,电动调节阀的开度op,近似看成与流量Q1成正比,当电动调节阀的开度op为一常量作为阶跃信号时,该单容液位过程的阶跃响应为 需要说明的是表达式(2-3)是初始量为零的情况,如果是在一个稳定的过程下进行的阶跃响应,即输入量是在原来的基础上叠加上op的变化,则输出表达式是对应原来输出值得基础上的增

过程控制实验报告8

实验报告 课程名称:过程控制 实验名称:单回路控制系统的参数整定专业:自动化专业 姓名: 学号: 2013 /2014 学年第 2 学期

实验一单回路控制系统的参数整定 2014年4月28日 一、实验要求 1、了解调节器特性的实验测试方法; 2、掌握依据飞升特性曲线求取对象动态特性参数和调节器参数的方法; 3、熟悉单回路控制系统的工程整定方法。 二、实验内容 测得某工业过程的单位阶跃响应数据,如附表所示;单位阶跃响应曲线,如图1所示: 0.2 0.4 0.6 0.8 1 1.2 t/s y ( t ) 0.2 0.4 0.6 0.8 1 1.2 t/s y ( t ) 图1 单位阶跃响应曲线 1、试用高阶传递函数描述该过程的动态特性; G(s)=K/(Ts+1) 2=1.25/(25.9s+1) 2*e^-10s 2、在Simulink中搭建解算出的被控对象单回路控制系统; 3、采用稳定边界法整定调节器参数,并给出P、PI、PID三种调节器的控制曲线; Kp=5,Pm=1/Kp=0.2时,等幅振荡,Tm80。

P: 2Pm=0.4 PI: 2.2Pm=0.44 0.85Tm=68 PID: 1.7Pm=0.34 0.5Tm=40 0.125Tm=10 三种调节器的控制曲线:

4、比较、分析实验结果 P调节器稳态产生了静差;PI调节器相对P调节器稳态无静差,但是调节时间延长;PID 调节器相对前两者无论上升时间还是调节时间都变短了,稳态也无静差。

实验报告 课程名称:过程控制 实验名称:串级控制系统专业:自动化专业 姓名: 学号: 2013 /2014 学年第 2 学期

过程控制实验报告

过程控制实验实验报告 班级:自动化1202 :益伟 学号:120900321

2015年10月 信息科学与技术学院 实验一 过程控制系统建模 作业题目一: 常见的工业过程动态特性的类型有哪几种?通常的模型都有哪些?在Simulink 中建立相应模型,并求单位阶跃响应曲线。 答:常见的工业过程动态特性的类型有:无自平衡能力的单容对象特性、有自平衡能力的单容对象特性、有相互影响的多容对象的动态特性、无相互影响的多容对象的动态特性等。通常的模型有一阶惯性模型,二阶模型等。 单容过程模型 1、无自衡单容过程的阶跃响应实例 已知两个无自衡单容过程的模型分别为s s G 5.01)(=和s e s s G 55.01)(-=,试在Simulink 中 建立模型,并求单位阶跃响应曲线。 Simulink 中建立模型如图所示: 得到的单位阶跃响应曲线如图所示: 2、自衡单容过程的阶跃响应实例 已知两个自衡单容过程的模型分别为122)(+=s s G 和s e s s G 51 22 )(-+= ,试在Simulink 中建立模型,并求单位阶跃响应曲线。 Simulink 中建立模型如图所示: 得到的单位阶跃响应曲线如图所示:

多容过程模型 3、有相互影响的多容过程的阶跃响应实例 已知有相互影响的多容过程的模型为1 21 ) (2 2++= Ts s T s G ξ,当参数1=T , 2.1 ,1 ,3.0 ,0=ξ时,试在Simulink 中建立模型,并求单位阶跃响应曲线 在Simulink 中建立模型如图所示: 得到的单位阶跃响应曲线如图所示: 4、无相互影响的多容过程的阶跃响应实例 已知两个无相互影响的多容过程的模型为) 1)(12(1 ) (++= s s s G (多容有自衡能力的对象)和 ) 12(1 )(+= s s s G (多容无自衡能力的对象),试在Simulink 中建立模型,并求单位阶跃响应曲线。 在Simulink 中建立模型如图所示: 得到的单位阶跃响应曲线如图所示:

过程控制实验报告

《过程控制实验》 实验报告

第一章、过程控制实验装置的认识 一、过程控制实验的基本内容及概述 本次过程控制实验主要是对实验室的水箱水位进行控制。水箱液位控制系统是一个简单控制系统,所谓简单液位控制系统通常是指由一个被控对象、一个检测变送单元(检测元件及变送器)、以个控制器和一个执行器(控制阀)所组成的单闭环负反馈控制系统,也称为单回路控制系统。 简单控制系统有着共同的特征,它们均有四个基本环节组成,即被控对象、测量变送装置、控制器和执行器。 图1-1 水箱液位控制系统的原理框图 这是单回路水箱液位控制系统,单回路调节系统一般指在一个调节对象上用一个调节器来保持一个参数的恒定,而调节器只接受一个测量信号,其输出也只控制一个执行机构。本系统所要保持的恒定参数是液位的给定高度,即控制的任务是控制水箱液位等于给定值所要求的高度。 二、主要设备 1)水路装置的认识 过程控制实验用的水路装置图如下

图1-2 水路图 由水路装置图我们看到,装置主要有水箱,交流电动泵,热炉,管道,电动阀,电磁阀,流量计,液位传感器,温度传感器组成,可以构成一个完整的过程控制实验平台。从上图我们可以看出,装置主要分为两大部分,第一水路,管道,热炉,水箱等等物理对象,第二是传感器,执行机构等等的控制部分的装置。 实验装置具体介绍如下:

b)电气连接图 由电气装置的图我们可以看到,所有的电器连接都在这里,主要是一些传感器信号,电动驱动信号,用于电动装置的驱动。 见附件 c)操作面板图: 从操作面板上我们可以看到主要是由四个表,由P909构成,用于测量控制压力、流量、液位、温度的测量以及控制,PV代表反馈测量,外给定可以用于串级控制,OUT用于输出信号,以上接口均使用4-20mA标准 见附件 第二、三章、实验系统的认知(包括力控软件,P909,实验装置) a)力控软件的安装 首先使用光盘里的Setup.exe安装力控软件的主题部分,然后将IO Servers文件夹拷到力控软件的安装目录下,安装IO Servers驱动 然后打开力控软件,寻找到力控软件的目录,点击开发模式,然后找到COM设置的部分,如图

过程控制系统实验报告

过程控制系统实验报告 课程名称:过程控制系统 指导老师:何王勇 姓名:林博王鹏飞罗天龙 班级:073101

2013/04/22 实验名称串级控制系统仿真实验——水 箱液位控制系统 实验地点教二楼二楼过程控制实验室 所用器件力控Forcecontrol 6.1软件及 配套试验箱、电脑、若干导线、 AI人工智能工业调节器使用说 明书 成绩评定 实验目的与内容实验目的:了解并熟练使用力控组态软件,掌握利用组态软件进行仿真过程控制系统的方法和步骤,复习并掌握串级控制系统的设计方法以及参数整定的方法,能够通过实验数据曲线判断P、I、D三个参数的强弱,并能进行调节。 实验内容:设计一个水箱液位的串级控制系统,要求水箱中液位高度恒定。当水箱中液位高度小于设定高度时,通过控制器将调节阀的开度增加,反之,则通过控制器将调节阀的开度减小。通过力控软件及配套试验箱模拟仿真上述过程,并确定各个参数的值,绘出稳定时的液位曲线。 (1)根据实验要求确定本实验的主控制量为水箱的液位高度,副控制量为调节阀处的水流流量。画出系统的框图为: L1r L2r - - (2)根据上面画好的系统框图在实验箱上正确连导线(注意连接导线时试验箱应处于断电状态),构成一个仿真的控制系统。单击打开电脑中的力控软件,并点击运行。看到主界面的控制系统后,将副控制器状态改为“外控”状态。 (3)检查正确连接且软件运行正常后,打开试验箱的电源。设定主控量,即液位的值(我们这一组设为10),并将仪表的Ctrl值设为2,使其开始自整定状态,此时在电脑屏幕上观察液位曲线的变化情况。待仪表自整定完成后,观察液位的输出曲线,若达不到要求,应手动调节P、t、Ctl的值,使输出的液位曲线达到稳定。 L1C L2C 调节阀管道水箱 L2T L1T F1

过控实验报告1

过程控制工程实验报告

实验一单回路控制系统 一、实验目的 1、掌握A3000过程试验装置的结构和管路流程,掌握SUPCON DCS的操作使用方法。 2、掌握对象特性测试方法。 2、了解单回路控制的特点和调节品质,掌握PID参数对控制性能的影响。 3、学会分析执行器风开风关特性的选择及调节器正反作用的确定。 4、初步掌握单回路控制系统的投运步骤以及单回路控制器参数调整方法。 二、实验设备 A3000过程对象的下水箱V103,SUPCON DCS,支路系统1,支路系统2。 三、实验原理和流程 (一)实验原理 1.单容自衡对象动态特性测试 所谓单容指只有一个贮蓄容器。自衡是指对象在扰动作用下,其平衡位置被破坏后,不需要操作人员或仪表等干预,依靠其自身重新恢复平衡的过程。如图1.1,水流入量Qi由调节阀u控制,流出量Qo则由用户通过闸板开度来改变。被调量为水位H。 图1.1单容水箱液位数学模型的测定 通过物料平衡推导出的公式:

u k Q H k Q u i O ==,,则 )(1H u k A dt dH u α-=,其中,A 是水槽横截面积,u k 是 调节阀系数,α为流量系数,在工作点处进行线性化和增量化,得: u R k H dt H d RA u ?=?+?,其中, α02H R =就是水阻。 进行拉普拉斯变换,得该系统的传递函数数学模型为: 1 )()()(+=??=TS K s U s H S G 如果对象具有滞后特性时,传递函数为: s e TS K s U s H S G τ-+=??=1 )()()( 模型中τ、、T K 分别为对象增益、时间常数、纯滞后时间,这三个参数可以根据对象的阶跃相应曲线进行求取,如图1.2,一阶惯性环节的响应曲线是一单调上升的指数函数,曲线上升到稳态值的63%所对应的时间,就是水箱的时间常数T ,也可由坐标原点对响应曲线作切线OA ,切线与稳态值交点A 所对应的时间就是该时间常数T 。如果对象具有滞后特性时,在此曲线的拐点D 处作一切线,它与时间轴交于B 点,与响应稳态值的渐近线交于A 点。图中OB 即为对象的滞后时间τ,BC 为对象的时间常数T 。 图1.2 利用响应曲线求模型参数

过程控制实验报告.doc

实验报告 专业:自动化姓名: 学号:

实验一、计算机控制系统实验 一、实验目的 1、了解计算机控制系统的基本构成。 2、掌握本装置计算机实时监控软件的使用 3、熟悉计算机控制算法。 4、掌握计算机控制的参数整定方法。 二、实验设备 1、THKGK-1过程控制实验装置: GK-02 GK-03 GK-07 2、计算机及上位机监控软件 三、实验原理 与常规仪表控制系统相比,计算机控制系统的最大区别就是用微型机和A/D、D/A转换卡来代替常规的调节器。基本构成框图如下: 计算机根据测量值与设定值的偏差,按程序设定的算法进行运算,并将结果经D/A转换器输出。控制算法有位置式,增量式和速度式。为了使采样时间间隔内,输出保持在相应的数值,在D/A卡上设有零阶保持器。 四、实验步骤 (一)、监控软件的使用及安装说明: 1、计算机硬件要求: CPU:486以上。 内存:32MB或更多。 硬盘:1GB。 操作系统:Windows98/2000/XP。 显示器:1024×768。 串行口:COM1 2、软件安装安装过程已经在上位机光盘里面。 (二)、登录后选择PID算法对上水箱液位进行控制 1、将计算机与单片机控制屏结合使用,对上水箱液位进行直接数字DDC控制实验。系统连接图自拟。(单片机控制屏仅起A/D、D/A转换的作用) 2、设置适当的作图时间间隔和给定值,调整PID参数K、、Ti、Td、直到得到较好的过程控制实时曲线。 3、对不同PID参数下的实时控制曲线进行比较,分析各参数变化对控制质量的影响。 4、自行选择其他控制算法进行实验,了解不同算法的控制质量。

五、实验小结 1、将上述实验结果整理好,写出参数整定的具体步骤及整定数值,整理出系统的结构图。 Kp=2 Ki=6 K=5 阀门开度为60% 2、简述PID参数对系统性能的影响。 PID调节器分别对应比例、积分和微分作用 1、比例参数KP的作用是加快系统的响应速度,提高系统的调节精度。随着KP的增大系统的响应速度越快,系统的调节精度越高,但是系统易产生超调,系统的稳定性变差,甚至会导致系统不稳定。KP取值过小,调节精度降低,响应速度变慢,调节时间加长,使系统的动静态性能变坏。 2、积分作用参数Ti的一个最主要作用是消除系统的稳态误差。Ti越大系统的稳态误差消除的越快,但Ti也不能过大,否则在响应过程的初期会产生积分饱和现象。若Ti过小,系统的稳态误差将难以消除,影响系统的调节精度。另外在控制系统的前向通道中只要有积分环节总能做到稳态无静差。从相位的角度来看一个积分环节就有900 的相位延迟,也许会破坏系统的稳定性。 3、微分作用参数Td的作用是改善系统的动态性能,其主要作用是在响应过程中抑制偏差向任何方向的变化,对偏差变化进行提前预报。但Ti不能过大,否则会使响应过程提前制动,延长调节时间,并且会降低系统的抗干扰性能。

过程控制设计实验报告压力控制

过程控制设计实验报告 压力控制 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

目录 第一章过程控制仪表课程设计的目的 (1) 设计目的 (1) 课程在教学计划中的地位和作用 (1) 第二章液位控制系统(实验部分) (2) 控制系统工艺流程 (2) 控制系统的控制要求 (4) 系统的实验调试 (5) 第三章水箱压力控制系统设计 (7) 引言 (12) 系统总体设计 (13) 系统软件部分设计 (16) 总结 (19) 第四章收获、体会 (24) 参考文献 (25) 第一章过程控制仪表课程设计的目的意义 设计目的 本课程设计主要是通过对典型工业生产过程中常见的典型工艺参数的测量方法、信号处理技术和控制系统的设计,掌握测控对象参数检测方法、变送器的功能、测控通道技术、执行器和调节阀的功能、过程控制仪表的PID控制参数整定方法,进一步加强对课堂理论知识的理解与综合应用能力,进而提高学生解决实际工程问题的能力。基本要求如下:

1. 掌握变送器功能原理,能选择合理的变送器类型型号; 2. 掌握执行器、调节阀的功能原理,能选择合理的器件类型型号; 3. 掌握PID调节器的功能原理,完成相应的压力、流量、液位及温度控制系统的总体设计,并画出控制系统的原理图和系统主要程序框图。 4.通过对一个典型工业生产过程(如煤气脱硫工艺过程)进行分析,并对其中的一个参数(如温度、压力、流量、液位)设计其控制系统。 课程设计的基本要求 本课程设计是为《过程控制仪表》课程而开设的综合实践教学环节,是对《现代检测技术》、《自动控制理论》、《过程控制仪表》、《计算机控制技术》等前期课堂学习内容的综合应用。其目的在于培养学生综合运用理论知识来分析和解决实际问题的能力,使学生通过自己动手对一个工业过程控制对象进行仪表设计与选型,促进学生对仪表及其理论与设计的进一步认识。课程设计的主要任务是设计工业生产过程经常遇到的压力、流量、液位及温度控制系统,使学生将理论与实践有机地结合起来,有效的巩固与提高理论教学效果。 课程设计主要是通过对典型工业生产过程中常见的典型工艺参数的测量方法、信号处理技术和控制系统的设计,掌握测控对象参数检测方法、变送器的功能、测控通道技术、执行器和调节阀的功能、过程控制仪表的PID控制参数整定方法,进一步加强对课堂理论知识的理解与综合应用能力,进而提高学生解决实际工程问题的能力。基本要求如下: 1. 掌握变送器功能原理,能选择合理的变送器类型型号; 2. 掌握执行器、调节阀的功能原理,能选择合理的器件类型型号;

相关文档