文档库 最新最全的文档下载
当前位置:文档库 › 电磁场与电磁波课后习题及答案8章习题解答

电磁场与电磁波课后习题及答案8章习题解答

电磁场与电磁波课后习题及答案8章习题解答
电磁场与电磁波课后习题及答案8章习题解答

九章习题解答

9.1 设元天线的轴线沿东西方向放置,在远方有一移动接收台停在正南方而收到最大电场强度,当电台沿以元天线为中心的圆周在地面移动时,电场强度渐渐减小,问当电场强度减小到

时,电台的位置偏离正南多少度? 解:元天线(电基本振子)的辐射场为

j k r

θ-=E e 可见其方向性函数为(),sin f θφθ=,当接收台停在正南方向(即090θ=)时,得到最

大电场强度。由

sin θ=

得 045θ=

此时接收台偏离正南方向045±。

9.2 上题中如果接收台不动,将元天线在水平面内绕中心旋转,结果如何?如果接收天线也是元天线,讨论收发两天线的相对方位对测量结果的影响。

解: 如果接收台处于正南方向不动,将天线在水平面内绕中心旋转,当天线的轴线转至沿东西方向时,接收台收到最大电场强度,随着天线地旋转,接收台收到电场强度将逐渐变小,天线的轴线转至沿东南北方向时,接收台收到电场强度为零。如果继续旋转元天线,收台收到电场强度将逐渐由零慢慢增加,直至达到最大,随着元天线地不断旋转,接收台收到电场强度将周而复始地变化。

当接收台也是元天线,只有当两天线轴线平行时接收台收到最大电场强度;当两天线轴线垂直时接收台收到的电场强度为零;当两天线轴线任意位置,接收台收到的电场强介于最大值和零值之间。

9.3 如题9.3图所示一半波天线,其上电流分布为()

1

1cos 2

2m I I kz z ??=-<< ?

?? (1)求证:当0r l >>时,

020

cos cos 22sin jkr

m z I e A kr πθμπθ

-?? ?

??=

?

(2)求远区的磁场和电场;

(3)求坡印廷矢量; (4)已知

220

cos cos 20.609sin d π

πθθθ

?? ???=?

,求辐射电阻; (5)求方向性系数。

题9.3(1)图

解:(1)沿z 方向的电流z I 在空间任意一点()0,P r θ产生的矢量磁位为

()/2

/2

,4l jkr z z l I e A r dz r μθπ

--=?

假设0r l >>,则 1

020cos cos r r z r r z θ

θ

≈-??≈+?

120

111r r r ≈≈ 将以上二式代入()0,z A r θ的表示式得

()()()()()

()()()12000

/2000000/2cos cos /200

00/2cos cos 00

cos cos ,4cos cos 4cos 4l jkr jkr m

z l jk r z jk r z l m l jkr jkz jkz m kz e kz e I

A r dz dz r r kz e

kz e I dz

r r I e kz e e dz r θθθθ

μθπ

μπμπ------+--????????

=+?????????????

???=+?????

?

??=+??????

()()()()(){}()()0

00

/2

000

/200

022000

,2cos cos cos 4cos 1cos cos 1cos 41cos cos cos 1cos cos cos 224sin sin cos 2l jkr m z l jkr m jkr m jkr

m I A r e kz kz dz r I e kz kz dz r I e r I e kr μθθπμθθπππθθθθμπθθπμπ----=????=++-??????????????-+ ? ???????=+?

???

????=

??2cos 2sin θθ

?? ??? 由此得证。

(2)远区的磁场和电场为

002000

001

sin 11sin sin r

r

r r r r A r A r A θφθ

φ

μθμθθφθ=

?????=

???H A

e e e

而 cos sin 0

r z z A A A A A θφθ

θ==-=

()0000001sin cos cos 22sin z

jkr m H r A r r I e j r ?θμπθπθ-?

=

??? ?

??=? 0,0r H H θ==

由麦克斯韦方程 1

j ωε

=??E H

000

cos cos 22sin jkr m E H I e j

r θφ

ηπθηπθ

-=??

???=?

0,0r E E φ==

由远区场的表示式,可得其方向性函数为 ()cos cos 2sin f πθθθ

?? ???=

在极坐标系下E 面和H 面的方向图如题9.3(2)图所示。

E 面方向图 E 面方向图 题9.3(2)图

(3)平均坡印廷矢量为

1Re 2

av *??=???S E H

2

2

2

022201122cos cos 28sin m E H E I r θφθηπθηπθ

=

=?? ???=?S

(2) 由总辐射功率

y

y

22200222

00022002cos cos 2sin 8sin cos cos 24sin 12

m m m r I r d d r I d I R πππθηθθφπθπθηθπθ ???=??? ???==

???

故辐射电阻

2002/2

cos cos 22sin cos cos 222sin r R d d πππθηθπθπθηθπθ

?? ???=??

?

??=

?

?

由题给条件 2/20cos cos 20.609sin d ππθθθ?? ???=?

所以 ()00.60973r R ηπ

=?=Ω (5)方向系数 0P D P

=(最大辐射方向考察点的电场强度相等) 式中0

P 表示理想无方向性天线的辐射功率,P 表示考察天线的辐射功率,于是 02

22max

0000

2

02000

0020442cos cos9012422sin 902jkr m m E

P r r I e r j r I ππηπηπηπηπ

-=?=????? ?????=???????

????

=S

22200222

000

22002/2200

cos cos 2sin 8sin cos cos 24sin cos cos 22sin m m m

I r d d r I d I d πππ

πθηθθ?πθπθηθπθ

πθηθπ

θ

???=??? ???=?? ?

??=

????

2/20

1

1

1.640.609cos cos 2sin P D P

d ππθθθ=

==

=?? ?

???

用分贝表示 ()1010log 1.64 2.15dB D ==

9.4 半波天线的电流振幅为1A ,求离开天线1km 处的最大电场强度。 解:半波天线的电场强度为

00

cos cos 22sin jkr

m I e E r θπθηπθ

-?? ?

??=

?

可见,当090θ=,时电场为最大值。将()03090,110r m θ==?代入上式,得

()30max 3060

6010V/m 210m I E r ηπ-=

==? 9.5 在二元天线阵中,设0,904

d λα==,求阵因子方向图。

解:在如题9.5图中,天线0和天线1为同类天线。其间距为d ,它们到场点P 的距离分别为0r 和1r 。天线0和天线1上的电流关系为10

j I mI e α-=

题9.5图

)

y

当考察点远离天线计算两天线到P 点的距离采用10

r r ≈,计算两天线到P 点的相位差采用10sin cos r r d θ?≈-。

则天线1的辐射场到达P 点时较天线0的辐射场超前相位 s i n c o s kd θ?αψ=- 天线0和天线1在P 点产生的总的辐射场为

()

01

01j me

ψ

=+=+E E E E

其摸为

(

)

()

01

001,j me f θφψ=+=+===E E E E E E E

式中 (

),f θφ=

9.6 两个半波天线平行放置,相距2

λ,它们的电流振幅相等,同相激励。试用方向图乘法草绘出三个主平面的方向图。

:解:由上题结论可知,二元阵的方向性函数为 ()()()0,,,F F f θφθφθ

φ= 其中()0,F θφ为单元天线的方向性函数,(),f

θφ为阵因子,对于半波天线,

0cos cos 2sin F πθθ

??

???=

(其方向图由题9.3给出)

阵因子(由上题结论)

(

),f θφ=

当两天线相距2

d λ=

,其上的电流振幅相等,同相激励时有

1,0m α==代入上式,得

(

),sin cos 2cos 2f θφπθφ=??= ?

??

在三个主平面内的单元天线方向性函数和阵因子方向性函数分别为

()2x y π

θ=

平面:01,2cos cos 2F f

πφ??== ???

()0x z φ= 平面:0cos cos 2,2cos sin sin 2F f πθπθθ?? ?

????== ?

??

()2

y z π

φ= 平面:0cos cos 2,2sin F f πθθ

?? ???== 方向图见题9.6图

()2

x y π

θ=

平面

F

()

,f θφ (),F θφ

()0x z φ= 平面

()0

,F θφ (),f θφ (),F θφ

()2

y z π

φ=

平面

()0

,F

θφ (),f θφ (),F θφ

题9.6图

z

y

x

y

y

9.7 均匀直线式天线阵得元间距2

d λ=,如要求它得最大辐射方向在偏离天线阵轴线

060±的方向,问单元之间的相位差应为多少,?

解:均匀直线式天线阵的阵因子为 ()sin

2sin

2

N f ψψ=

ψ 其最大辐射条件可由()0df d ψ=ψ

求得 0ψ=

即 sin cos 0kd θφαψ=-= 式中α为单元天线上电流的相位差

考虑090θ=的平面,当060φ=±时有 0cos600kd α-= 所以 002cos60cos6022

kd πλπ

αλ==

= 9.8 求半波天线的主瓣宽度。

)点之间的夹角

0.52,

θ如题9.8图所示。

题9.8图

半波天线的方向性函数为 ()cos cos 2sin F πθθθ

?? ???=

)时所对应的角度θ可由下列公式求得 (

)cos cos 2sin F πθθθ?? ?

??==

解得 051θ=

于是主瓣宽度为 ()()00000.522902905178θθ=-=-=

9.9 用方向图乘法求图示[题9.9(1)图]的由半波天线组成的四元侧射式天线阵在垂直于半波天线轴线平面内的方向图。

解:四元天线阵如题9.9(1)图其合成波场强为

()()()

0123

23020111j j j j j e e e e e ψψψψψ=+++=+++=++E E E E E E E

式中

sin cos kd θφαψ=-

其方向性函数为 ()()()()123,,,,F F F F θφθ

φθφθφ

= 其中()1,F θφ为半波天线的方向性函数

()1cos cos 2,sin F πθθφθ

??

???=

()2,F θφ为相距/2λ的天线1和天线2(或天线3和天线4)构成的二元天线阵I (或二

元天线阵II )的阵因子方向性函数,设各单元天线上电流同相,则

()2,2cos sin cos 2F πθφθφ??

= ???

()3,F θφ为相距λ的天线阵I 和天线阵II 构成的阵列天线的方向性函数

()()3,2cos sin cos F θφπθφ= 在垂直于半波天线轴线的平面内(2

πθ=)()()()123,,,,,F F F θφθφθφ的方向图如题9.9(2)

图所示。由方向图相乘原理可得该四元阵在2

πθ=

平面内的辐射方向图如题9.9(2)图所示。

1,2F π

φ??

??? 2,2F πφ?? ??? 3,2F πφ?? ??? ,2F πφ?? ???

题9.9(2)图

9.10 求波源频率1MHz f =,线长1l m =的导线的辐射电阻:

(1)设导线是长直的; (2)设导线弯成环形形状。

解:波源的波长 ()8

0631030010

v m f λ?=== 由此可知,导线的线度小于波长,故可将该长直导线视为电偶极子天线,其辐射电阻

()2

2

3808.810r dl R πλ-??

==?Ω ???

对于环形导线可视为磁偶极子天线,其辐射电阻 ()()

4

2424002280266310r a f S R v μππμωππ==? 式中a 为圆环的半径,由21a π=于是 12a π

=

代入上式,得 ()8

2.4410r R -=?Ω

由以上的计算结果可知,环形天线的辐射电阻远远小于长直天线的辐射电阻,即环形天线的

辐射能力远远小于长直天线的辐射能力。

9.11 为了在垂直于赫兹偶极子轴线的方向上,距离偶极子100km 处得到电场强度的有效值大于100/V m μ,赫兹偶极子必须至少辐射多大功率? 解:赫兹偶极子的辐射场为 sin 2jkr Idl k E j e r θ

θλωε

-=

当090θ=,电场强度达到最大值为 090

22Idl k Idl E r r

ηλωελ==

于是 0

902r E Idl λ

η

=

将0

5

4

90

110,10/r m E V m -=?≥代入上式,得

54

21010Idl λη

-?≥

而辐射功率 22

22

803dl Idl P I ππηλλ????== ? ?

??

??

2

3P πη≥??

得 ()2.22P W ≥

(完整版)电磁场与电磁波答案(第四版)谢处方

一章习题解答 1.1 给定三个矢量A 、B 和C 如下: 23x y z =+-A e e e 4y z =-+B e e 52x z =-C e e 求:(1)A a ;(2)-A B ;(3)A B g ; (4)AB θ;(5)A 在B 上的分量;(6)?A C ; (7)()?A B C g 和()?A B C g ;(8)()??A B C 和()??A B C 。 解 (1 )23A x y z +-= ==-e e e A a e e e A (2)-=A B (23)(4)x y z y z +---+=e e e e e 64x y z +-=e e e (3)=A B g (23)x y z +-e e e (4)y z -+=e e g -11 (4)由 cos AB θ ===A B A B g ,得 1cos AB θ- =(135.5=o (5)A 在B 上的分量 B A =A cos AB θ ==A B B g (6)?=A C 1 235 02x y z -=-e e e 41310x y z ---e e e (7)由于?=B C 04 1502x y z -=-e e e 8520x y z ++e e e ?=A B 123041 x y z -=-e e e 1014x y z ---e e e 所以 ()?=A B C g (23)x y z +-e e e g (8520)42x y z ++=-e e e ()?=A B C g (1014)x y z ---e e e g (52)42x z -=-e e (8)()??=A B C 1014502x y z ---=-e e e 2405x y z -+e e e ()??=A B C 1 238 5 20 x y z -=e e e 554411x y z --e e e

哈工大电磁场与电磁波实验报告

电磁场与电磁波实验报告 班级: 学号: 姓名: 同组人:

实验一电磁波的反射实验 1.实验目的: 任何波动现象(无论是机械波、光波、无线电波),在波前进的过程中如遇到障碍物,波就要发生反射。本实验就是要研究微波在金属平板上发生反射时所遵守的波的反射定律。 2.实验原理: 电磁波从某一入射角i射到两种不同介质的分界面上时,其反射波总是按照反射角等于入射角的规律反射回来。 如图(1-2)所示,微波由发射喇叭发出,以入射角i设到金属板M M',在反射方向的位置上,置一接收喇叭B,只有当B处在反射角i'约等于入射角i时,接收到的微波功率最大,这就证明了反射定律的正确性。 3.实验仪器: 本实验仪器包括三厘米固态信号发生器,微波分度计,反射金属铝制平板,微安表头。 4.实验步骤: 1)将发射喇叭的衰减器沿顺时针方向旋转,使它处于最大衰减位置; 2)打开信号源的开关,工作状态置于“等幅”旋转衰减器看微安表是否有显示,若有显示,则有微波发射; 3)将金属反射板置于分度计的水平台上,开始它的平面是与两喇叭的平面平行。 4)旋转分度计上的小平台,使金属反射板的法线方向与发射喇叭成任意角度i,然后将接收喇叭转到反射角等于入射角的位置,缓慢的调节衰减器,使微 μ)。 安表显示有足够大的示数(50A

5)熟悉入射角与反射角的读取方法,然后分别以入射角等于30、40、50、60、70度,测得相应的反射角的大小。 6)在反射板的另一侧,测出相应的反射角。 5.数据的记录预处理 记下相应的反射角,并取平均值,平均值为最后的结果。 5.实验结论:?的平均值与入射角0?大致相等,入射角等于反射角,验证了波的反射定律的成立。 6.问题讨论: 1.为什么要在反射板的左右两侧进行测量然后用其相应的反射角来求平均值? 答:主要是为了消除离轴误差,圆盘上有360°的刻度,且外部包围圆盘的基座上相隔180°的两处有两个游标。,不可能使圆盘和基座严格同轴。 在两者略有不同轴的情况下,只读取一个游标的读数,应该引入离轴误差加以考虑——不同轴的时候,读取的角度差不完全等于实际角度差,圆盘半径偏小

电磁场与电磁波波试卷3套含答案

《电磁场与电磁波》试卷1 一. 填空题(每空2分,共40分) 1.矢量场的环流量有两种特性:一是环流量为0,表明这个矢量场 无漩涡流动 。另一个是环流量不为0,表明矢量场的 流体沿着闭合回做漩涡流动 。 2.带电导体内静电场值为 0 ,从电位的角度来说,导体是一个 等电位体 ,电荷分布在导体的 表面 。 3.分离变量法是一种重要的求解微分方程的方法,这种方法要求待求的偏微分方程的解可以表示为 3个 函数的乘积,而且每个函数仅是 一个 坐标的函数,这样可以把偏微分方程化为 常微分方程 来求解。 4.求解边值问题时的边界条件分为3类,第一类为 整个边界上的电位函数为已知 ,这种条件成为狄利克莱条件。第二类为已知 整个边界上的电位法向导数 ,成为诺伊曼条件。第三类条件为 部分边界上的电位为已知,另一部分边界上电位法向导数已知 ,称为混合边界条件。在每种边界条件下,方程的解是 唯一的 。 5.无界的介质空间中场的基本变量B 和H 是 连续可导的 ,当遇到不同介质的分 界面时,B 和H 经过分解面时要发生 突变 ,用公式表示就是 12()0n B B ?-=,12()s n H H J ?-=。 6.亥姆霍兹定理可以对Maxwell 方程做一个简单的解释:矢量场的 旋度 ,和 散度 都表示矢量场的源,Maxwell 方程表明了 电磁场 和它们的 源 之间的关系。 二.简述和计算题(60分) 1.简述均匀导波系统上传播的电磁波的模式。(10分) 答:(1)在电磁波传播方向上没有电场和磁场分量,即电场和磁场完全在横平面内,这种模式的电磁波称为横电磁波,简称TEM 波。 (2)在电磁波传播方向上有电场和但没有磁场分量,即磁场在横平面内,这种模式的电磁波称为横磁波,简称TM 波。因为它只有纵向电场分量,又成为电波或E 波。 (3)在电磁波传播方向上有磁场但没有电场分量,即电场在横平面内,这种模式的电磁波称为横电波,简称TE 波。因为它只有纵向磁场分量,又成为磁波或M 波。 从Maxwell 方程和边界条件求解得到的场型分布都可以用一个或几个上述模式的适当幅相组合来表征。 2.写出时变电磁场的几种场参量的边界条件。(12分) 解:H 的边界条件 12()s n H H J ?-= E 的边界条件

电磁场与电磁波理论 概念归纳

A.电磁场理论B基本概念 1.什么是等值面?什么是矢量线? 等值面——所有具有相同数值的点组成的面 ★空间中所有的点均有等值面通过; ★所有的等值面均互不相交; ★同一个常数值可以有多个互不相交的等值面。 矢量线(通量线)---- 一系列有方向的曲线。 线上每一点的切线方向代表该点矢量场方向, 而横向的矢量线密度代表该点矢量场大小。 例如,电场中的电力线、磁场中的磁力线。 2.什么是右手法则或右手螺旋法则?本课程中的应用有哪些?(图) 右手定则是指当食指指向矢量A的方向,中指指向矢量B的方向,则大拇指的指向就是矢量积C=A*B的方向。 右手法则又叫右手螺旋法则,即矢量积C=A*B的方向就是在右手螺旋从矢量A转到矢量B的前进方向。 本课程中的应用: ★无限长直的恒定线电流的方向与其所产生的磁场的方向。 ★平面电磁波的电场方向、磁场方向和传播方向。 3.什么是电偶极子?电偶极矩矢量是如何定义的?电偶极子的电磁场分布是怎样的? 电偶极子——电介质中的分子在电场的作用下所形成的一对等值异号的点电荷。 电偶极矩矢量——大小等于点电荷的电量和间距的乘积,方向由负电荷指向正电荷。

4.麦克斯韦积分和微分方程组的瞬时形式和复数形式; 积分形式: 微分方式: (1)安培环路定律 (2)电磁感应定律 (3)磁通连续性定律 (4)高斯定律 5.结构方程

6.什么是电磁场边界条件?它们是如何得到的?(图) 边界条件——由麦克斯韦方程组的积分形式出发,得到的到场量在不同媒质交界面上应满足的关系式(近似式)。 边界条件是在无限大平面的情况得到的,但是它们适用于曲率半径足够大的光滑曲面。 7.不同媒质分界面上以及理想导体表面上电磁场边界条件及其物理意义; (1)导电媒质分界面的边界条件 ★ 导电媒质分界面上不存在传导面电流,但可以有面电荷。 在不同媒质分界面上,电场强度的切向分量、磁场强度的切向分量和磁感应强度的法向分量永远是连续的 (2)理想导体表面的边界条件 ★ 理想导体内部,时变电磁场处处为零。导体表面可以存在时变的面电流和面电荷。

电磁场与电磁波课后习题及答案六章习题解答

第六章 时变电磁场 6.1 有一导体滑片在两根平行的轨道上滑动,整个装置位于正弦时变磁场 5cos mT z e t ω=B 之中,如题6.1图所示。滑片的位置由0.35(1cos )m x t ω=-确定,轨道终端接有电阻0.2R =Ω,试求电流i. 解 穿过导体回路abcda 的磁通为 5cos 0.2(0.7) cos [0.70.35(1cos )]0.35cos (1cos )z z d B ad ab t x t t t t ωωωωωΦ==?=?-=--=+? B S e e 故感应电流为 11 0.35sin (12cos ) 1.75sin (12cos )mA in d i R R dt t t t t R ωωωωωωΦ = =-=-+-+E 6.2 一根半径为a 的长圆柱形介质棒放入均匀磁场0z B =B e 中与z 轴平行。设棒以角 速度ω绕轴作等速旋转,求介质内的极化强度、体积内和表面上单位长度的极化电荷。 解 介质棒内距轴线距离为r 处的感应电场为 00z r r r B φωω=?=?=E v B e e B e 故介质棒内的极化强度为 00000(1)()e r r r r B r B εεεωεεω==-=-P E e e X 极化电荷体密度为 200 00 11()()2()P rP r B r r r r B ρεεωεεω?? =-??=- =--??=--P 极化电荷面密度为 0000()()P r r r a e r a B σεεωεεω==?=-?=-P n B e 则介质体积内和表面上同单位长度的极化电荷分别为 220020012()212()P P PS P Q a a B Q a a B πρπεεωπσπεεω=??=--=??=- 6.3 平行双线传输线与一矩形回路共面,如题6.3图所示。设0.2a m =、0.1m b c d ===、7 1.0cos(210)A i t π=?,求回路中的感应电动势。

浙江大学-电磁场与电磁波实验(第二次).doc

本科实验报告 课程名称:电磁场与微波实验 姓名:wzh 学院:信息与电子工程学院 专业:信息工程 学号:xxxxxxxx 指导教师:王子立 选课时间:星期二9-10节 2017年 6月 17日 Copyright As one member of Information Science and Electronic Engineering Institute of Zhejiang University, I sincerely hope this will enable you to acquire more time to do whatever you like instead of struggling on useless homework. All the content you can use as you like. I wish you will have a meaningful journey on your college life. ——W z h 实验报告 课程名称:电磁场与微波实验指导老师:王子立成绩:__________________ 实验名称: CST仿真、喇叭天线辐射特性测量实验类型:仿真和测量 同组学生姓名: 矩形波导馈电角锥喇叭天线CST仿真 一、实验目的和要求 1. 了解矩形波导馈电角锥喇叭天线理论分析与增益理论值基本原理。 2.熟悉 CST 软件的基本使用方法。 3.利用 CST 软件进行矩形波导馈电角锥喇叭天线设计和仿真。 二、实验内容和原理 1. 喇叭天线概述 喇叭天线是一种应用广泛的微波天线,其优点是结构简单、频带宽、功率容量大、调整与使用方便。合理的选择喇叭尺寸,可以取得良好的辐射特性:相当尖锐的主瓣,较小副瓣和较高的增益。因此喇叭天线在军事和民用上应用都非常广泛,是一种常见的测试用天线。喇叭天线的基本形式是把矩形波导和圆波导的开口面逐渐扩展而形成的,由于是波导开口面的逐渐扩大,改善了波导与自由空间的匹配,使得波导中的反射系数小,即波导中传输的绝大部分能量由喇叭辐射出去,反

电磁场与电磁波试题及答案

1.麦克斯韦的物理意义:根据亥姆霍兹定理,矢量场的旋度和散度都表示矢量场的源。麦克斯韦方程表明了电磁场和它们的源之间的全部关系:除了真实电流外,变化的电场(位移电流)也是磁场的源;除电荷外,变化的磁场也是电场的源。 1. 写出非限定情况下麦克斯韦方程组的微分形式,并简要说明其物理意义。 2.答非限定情况下麦克斯韦方程组的微分形式为,,0,D B H J E B D t t ρ????=+ ??=-??=??=??,(3分)(表明了电磁场和它们的源之间的全部关系除了真实电流外,变化的电场(位移电流)也是磁场的源;除电荷外,变化的磁 场也是电场的源。 1.简述集总参数电路和分布参数电路的区别: 2.答:总参数电路和分布参数电路的区别主要有二:(1)集总参数电路上传输的信号的波长远大于传输线的几何尺寸;而分布参数电路上传输的信号的波长和传输线的几何尺寸可以比拟。(2)集总参数电路的传输线上各点电压(或电流)的大小与相位可近似认为相同,无分布参数效应;而分布参数电路的传输线上各点电压(或电流)的大小与相位均不相同,呈现出电路参数的分布效应。 1.写出求解静电场边值问题常用的三类边界条件。 2.答:实际边值问题的边界条件可以分为三类:第一类是整个边界上的电位已知,称为“狄利克莱”边界条件;第二类是已知边界上的电位法向导数,称为“诺依曼”边界条件;第三类是一部分边界上电位已知,而另一部分上的电位法向导数已知,称为混合边界条件。 1.简述色散效应和趋肤效应。 2.答:在导电媒质中,电磁波的传播速度(相速)随频率改变的现象,称为色散效应。在良导体中电磁波只存在于导体表面的现象称为趋肤效应。 1.在无界的理想媒质中传播的均匀平面波有何特性?在导电媒质中传播的均匀平面波有何特性? 2. 在无界的理想媒质中传播的均匀平面波的特点如下:电场、磁场的振幅不随传播距离增加而衰减,幅度相差一个实数因子η(理想媒质的本征阻抗);时间相位相同;在空间相互垂直,与传播方向呈右手螺旋关系,为TEM 波。 在导电媒质中传播的均匀平面波的特点如下:电磁场的振幅随传播距离增加而呈指数规律衰减;电、磁场不同相,电场相位超前于磁场相位;在空间相互垂直,与传播方向呈右手螺旋关系,为色散的TEM 啵。 1. 写出时变电磁场在1为理想导体与2为理想介质分界面时的边界条件。 2. 时变场的一般边界条件 2n D σ=、20t E =、2t s H J =、20n B =。 (或矢量式2n D σ=、20n E ?=、 2s n H J ?=、20n B =) 1. 写出矢量位、动态矢量位与动态标量位的表达式,并简要说明库仑规范与洛仑兹规范的意义。 2. 答矢量位,0B A A =????=;动态矢量位A E t ??=-?- ?或A E t ??+=-??。库仑规范与洛仑兹规范的作用都 是限制A 的散度,从而使A 的取值具有唯一性;库仑规范用在静态场,洛仑兹规范用在时变场。 1. 简述穿过闭合曲面的通量及其物理定义 2. s A ds φ=??? 是矢量A 穿过闭合曲面S 的通量或发散量。若Ф> 0,流出S 面的通量大于流入的通量,即通 量由S 面内向外扩散,说明S 面内有正源若Ф< 0,则流入S 面的通量大于流出的通量,即通量向S 面内汇集,说明S 面内有负源。若Ф=0,则流入S 面的通量等于流出的通量,说明S 面内无源。 1. 证明位置矢量 x y z r e x e y e z =++ 的散度,并由此说明矢量场的散度与坐标的选择无关。 2. 证明在直角坐标系里计算 ,则有 ()()x y z x y z r r e e e e x e y e z x y z ? ? ?????=++?++ ?????? 3x y z x y z ???= ++=??? 若在球坐标系里计算,则 23 22 11()()()3r r r r r r r r r ????===??由此说明了矢量场的散度与坐标的选择无关。 1. 在直角坐标系证明0A ????= 2.

电磁场与电磁波理论基础自学指导书

电磁场与电磁波理论基础自学指导书 课程简介:电磁场理论是通信技术的理论基础,是通信专业本科学生必须具备的知识结构的重要组成部分之一。使学生掌握电磁场的有关定理、定律、麦克斯韦方程等的物理意义及数学表达式。使学生熟悉一些重要的电磁场问题的数学模型(如波动方程、拉氏方程等)的建立过程以及分析方法。培养学生正确的思维方法和分析问题的能力,使学生对"场"与"路"这两种既密切相关又相距甚远的理论有深刻的认识,并学会用"场"的观点去观察、分析和计算一些简单、典型的场的问题。为以后的学习和工作打下坚实的理论基础。 第一章矢量分析场论初步 1主要内容 本章从矢量分析入手,介绍了标量场和矢量场的基本概念,学习了矢量的通量、散度以及散度定理,矢量的环流、旋度以及斯托克斯定理,标量的梯度,以及上述的物理量在圆柱和球坐标系下的表达形式,最后介绍了亥姆霍兹定理,该定理说明了研究一个矢量场从它的散度和旋度两方面入手。通过本章的学习,使学生掌握场矢量的散度、旋度和标量的梯度的概念和数学计算为以后的电磁场分析打下基础。 2学习要求 深刻理解标量场和矢量场的概念;深刻理解散度、旋度和梯度的概念、物理意义及相关定理; 熟练使用直角坐标、圆柱坐标和球坐标进行矢量的微积分运算; 了解亥姆霍兹定理的内容。 3重点及难点 重点:在直角坐标、圆柱坐标和球坐标中计算矢量场的散度和旋度、标量场的梯度以及矢量的线积分、面积分和体积分。 难点:正确理解和掌握散度、旋度和梯度的概念及定理,可以借助流体的流量和涡旋等自然界中比较具体而形象的相似问题来理解。 4思考题合作业 1.4, 1.8, 1.9, 1.11, 1.14, 1.16, 1.24 第二章静电场 1主要内容 本章我们从点电荷的库仑定律发,推导出静电场的基本方程(微分表达及积分表达),该基本方程第一组与静电场的散度和通量有关(高斯定律),第二组有关静电场的环量和旋度,推导的过程运用了叠加原理。由静电场的基本方程中的环量和旋度的基本方程,我们引入了电位的概念,并给出了电场强度与电位之间的关系以及电位的计算公式。运用静电场的基本方程及电位可以解决静电场中的场源互求问题(已知源求场或已知场求源)。然后介绍了电偶极子的概念,推导了电偶极子的电场强度与电位的表达式。接着介绍了介质的极化,被极化的分子可等效为电偶极子,所以介质极化产生的电位就可以借用电偶极子的相关结论。由极化介质的电位公式我们推导了介质中的高斯定律,在该定律中引入了一个新的量—

电磁场与电磁波答案(无填空答案).

电磁场与电磁波复习材料 简答 1. 简述恒定磁场的性质,并写出其两个基本方程。 2. 试写出在理想导体表面电位所满足的边界条件。 3. 试简述静电平衡状态下带电导体的性质。 答:静电平衡状态下,带电导体是等位体,导体表面为等位面;(2分) 导体内部电场强度等于零,在导体表面只有电场的法向分量。(3分) 4. 什么是色散?色散将对信号产生什么影响? 答:在导电媒质中,电磁波的传播速度随频率变化的现象称为色散。 (3分) 色散将使信号产生失真,从而影响通信质量。 (2分) 5.已知麦克斯韦第二方程为t B E ??- =?? ,试说明其物理意义,并写出方程的积分形式。 6.试简述唯一性定理,并说明其意义。 7.什么是群速?试写出群速与相速之间的关系式。

8.写出位移电流的表达式,它的提出有何意义? 9.简述亥姆霍兹定理,并说明其意义。 答:当一个矢量场的两类源(标量源和矢量源)在空间的分布确定时,该矢量场就唯一地确定了,这一规律称为亥姆霍兹定理。 (3分) 亥姆霍兹定理告诉我们,研究任意一个矢量场(如电场、磁场等),需要从散度和旋度两个方面去研究,或者是从矢量场的通量和环量两个方面去研究 10.已知麦克斯韦第二方程为S d t B l d E S C ???-=???,试说明其物理意义,并写出方程的微 分形式。 答:其物理意义:随时间变化的磁场可以产生电场。 (3分) 方程的微分形式: 11.什么是电磁波的极化?极化分为哪三种? 答:电磁波的电场强度矢量的方向随时间变化所描绘的轨迹称为极化。(2分) 极化可以分为:线极化、圆极化、椭圆极化。 12.已知麦克斯韦第一方程为 t D J H ??+ =?? ,试说明其物理意义,并写出方程的积分形式。

电磁场与电磁波点电荷模拟实验报告

重庆大学 电磁场与电磁波课程实践报告 题目:点电荷电场模拟实验 日期:2013 年12 月7 日 N=28

《电磁场与电磁波》课程实践 点电荷电场模拟实验 1.实验背景 电磁场与电磁波课程内容理论性强,概念抽象,较难理解。在电磁场教学中,各种点电荷的电场线成平面分布,等势面通常用等势线来表示。MATLAB 是一种广泛应用于工程、科研等计算和数值分析领域的高级计算机语言,以矩阵作为数据操作的基本单位,提供十分丰富的数值计算函数、符号计算功能和强大的绘图能力。为了更好地理解电场强度的概念,更直观更形象地理解电力线和等势线的物理意义,本实验将应用MATLAB 对点电荷的电场线和等势线进行模拟实验。 2.实验目的 应用MATLAB 模拟点电荷的电场线和等势线 3.实验原理 根据电磁场理论,若电荷在空间激发的电势分布为V ,则电场强度等于电势梯度的负值,即: E V =-? 真空中若以无穷远为电势零点,则在两个点电荷的电场中,空间的电势分布为: 1 212010244q q V V V R R πεπε=+=+ 本实验中,为便于数值计算,电势可取为

1212 q q V R R =+ 4.实验内容 应用MATLAB 计算并绘出以下电场线和等势线,其中q 1位于(-1,0,0),q 2位于(1,0,0),n 为个人在班级里的序号: (1) 电偶极子的电场线和等势线(等量异号点电荷对q 2:q 1 = 1,q 2为负电荷); (2) 两个不等量异号电荷的电场线和等势线(q 2:q 1 = 1 + n /2,q 2为负电荷); (3) 两个等量同号电荷的电场线和等势线; (4) 两个不等量同号电荷的电场线和等势线(q 2:q 1 = 1 + n /2); (5) 三个电荷,q 1、q 2为(1)中的电偶极子,q 3为位于(0,0,0)的单位正电荷。、 n=28 (1) 电偶极子的电场线和等势线(等量异号点电荷对q 2:q 1 = 1,q 2为负电荷); 程序1: clear all q=1; xm=2.5; ym=2; x=linspace(-xm,xm); y=linspace(-ym,ym); [X,Y]=meshgrid(x,y); R1=sqrt((X+1).^2+Y.^2); R2=sqrt((X-1).^2+Y.^2); U=1./R1-q./R2; u=-4:0.5:4; figure contour(X,Y,U,u,'--'); hold on plot(-1,0,'o','MarkerSize',12); plot(1,0,'o','MarkerSize',12); [Ex,Ey]=gradient(-U,x(2)-x(1),y(2)-y(1));

电磁场与电磁波试题

?电磁场?试卷1 一、单项选择题 1. 静电场是( ) A. 无散场 B. 旋涡场 C.无旋场 D. 既是有散场又是旋涡场 2. 已知(23)()(22)x y z D x y e x y e y x e =-+-+-,如已知电介质的介电常数为0ε,则自由电荷密度ρ为( ) A. B. 1/ C. 1 D. 0 3. 磁场的标量位函数的单位是( ) A. V/m B. A C. A/m D. Wb 4. 导体在静电平衡下,其内部电场强度( ) A.为零 B.为常数 C.不为零 D.不确定 5. 磁介质在外部磁场作用下,磁化介质出现( ) A. 自由电流 B. 磁化电流 C. 传导电流 D. 磁偶极子 6. 磁感应强度与磁场强度的一般关系为( ) A.H B μ= B.0H B μ= C.B H μ= D.0B H μ= 7. 极化强度与电场强度成正比的电介质称为( )介质。 A.各向同性 B. 均匀 C.线性 D.可极化 8. 均匀导电媒质的电导率不随( )变化。 A.电流密度 B.空间位置 C.时间 D.温度 9. 磁场能量密度等于( ) A. E D B. B H C. 21E D D. 2 1B H 10. 镜像法中的镜像电荷是( )的等效电荷。 A.感应电荷 B.原电荷 C. 原电荷和感应电荷 D. 不确定 二、填空题(每空2分,共20分) 1. 电场强度可表示为_______的负梯度。 2. 体分布电荷在场点r 处产生的电位为_______。 3. 一个回路的自感为回路的_______与回路电流之比。 4. 空气中的电场强度5sin(2)x E e t z πβ=-V/m ,则位移电流密度d J = 。 5. 安培环路定律的微分形式是 ,它说明磁场的旋涡源是 。 6. 麦克斯韦方程组的微分形式是 , , , 。 三、简答题(本大题共2小题,每小题5分,共10分) 1.写出电荷守恒定律的数学表达式,说明它揭示的物理意义。 2.写出坡印廷定理的微分形式,说明它揭示的物理意义。 四、计算题(本大题) 1.假设在半径为a 的球体内均匀分布着密度为0ρ的电荷,试求任意点的电场强度。 2.一个同心球电容器的内、外半径为a 、b ,其间媒质的电导率为σ,求该电容器的漏电电导。 3.已知空气媒质的无源区域中,电场强度100cos()z x E e e t z αωβ-=-,其中βα,为常数,求磁场强度。 0ε0ε

电磁场与电磁波(第三版)课后答案第1章

第一章习题解答 1.1 给定三个矢量A 、B 和C 如下: 23x y z =+-A e e e 4y z =-+B e e 52x z =-C e e 求:(1)A a ;(2)-A B ;(3)A B ;(4)A B θ;(5)A 在B 上的分量;(6)?A C ; (7)()?A B C 和()?A B C ;(8)()??A B C 和()??A B C 。 解 (1 )23A x y z +-= = =e e e A a e e e A (2)-=A B (23)(4)x y z y z +---+=e e e e e 64x y z +-=e e e (3)=A B (23)x y z +-e e e (4)y z -+=e e -11 ( 4 ) 由 c o s AB θ =1 1 2 3 8 = A B A B , 得 1 c o s A B θ- =(135.5- = (5)A 在B 上的分量 B A =A c o s AB θ = =- A B B (6)?=A C 1 235 02x y z -=-e e e 41310x y z ---e e e (7)由于?=B C 04 1502x y z -=-e e e 8520x y z ++e e e ?=A B 1 230 4 1 x y z -=-e e e 1014x y z ---e e e 所以 ()?=A B C (23)x y z +-e e e (8520)42x y z ++=-e e e ()?=A B C (1014)x y z ---e e e (52)42x z -=-e e (8)()??=A B C 1014502 x y z ---=-e e e 2405x y z -+e e e ()??=A B C 1 238 5 20 x y z -=e e e 554411x y z --e e e 1.2 三角形的三个顶点为1(0,1,2)P -、2(4,1,3)P -和3(6,2,5)P 。 (1)判断123P P P ?是否为一直角三角形; (2)求三角形的面积。

电磁场与电磁波实验实验六布拉格衍射实验

邮电大学 电磁场与微波测量实验报告

实验六布拉格衍射实验 一、实验目的 1、观察微波通过晶体模型的衍射现象。 2、验证电磁波的布拉格方程。 二、实验设备与仪器 DH926B型微波分光仪,喇叭天线,DH1121B型三厘米固态信号源,计算机 三、实验原理 1、晶体结构与密勒指数 固体物质可分成晶体和非晶体两类。任何的真实晶体,都具有自然外形和各向异性的性质,这和晶体的离子、原子或分子在空间按一定的几何规律排列密切相关。 晶体的离子、原子或分子占据着点阵的结构,两相邻结点的距离叫晶体的晶 10m,与X射线的波长数量级相当。因此,格常数。晶体格点距离的数量级是-8 对X射线来说,晶体实际上是起着衍射光栅的作用,因此可以利用X射线在晶体点阵上的衍射现象来研究晶体点阵的间距和相互位置的排列,以达到对晶体结构的了解。 图4.1 立方晶格最简单的晶格是立方体结构。 如图6.1这种晶格只要用一个边长为a的正立方体沿3个直角坐标轴方向重复即可得到整个空间点阵,a就称做点阵常数。通过任一格点,可以画出全同的晶面和某一晶面平行,构成一组晶面,所有的格点都在一族平行的晶面上而无遗漏。这样一族晶面不仅平行,而且等距,各晶面上格点分布情况相同。

为了区分晶体中无限多族的平行晶面的方位,人们采用密勒指数标记法。先找出晶面在x、y、z3个坐标轴上以点阵常量为单位的截距值,再取3截距值的倒数比化为最小整数比(h∶k∶l),这个晶面的密勒指数就是(hkl)。当然与该面平行的平面密勒指数也是(hkl)。利用密勒指数可以很方便地求出一族平行晶面的间距。对于立方晶格,密勒指数为(hkl)的晶面族,其面 间距 hkl d可按下式计算:2 2 2l k h a d hkl + + = 图6.2立方晶格在x—y平面上的投影 如图6.2,实线表示(100)面与x—y平面的交线,虚线与点画线分别表示(110)面和(120)面与x—y平面的交线。由图不难看出 2、微波布拉格衍射 根据用X射线在晶体原子平面族的反射来解释X射线衍射效应的理论,如有一单色平行于X射线束以掠射角θ入射于晶格点阵中的某平面族,例如图4.2所示之(100)晶面族产生反射,相邻平面间的波程差为 θ sin 2 100 d QR PQ= +(6.1) 式(6.1)中 100 d是(100)平面族的面间距。若程差是波长的整数倍,则二反射波有相长干涉,即因满足

电磁场与电磁波试题及答案

1. 写出非限定情况下麦克斯韦方程组的微分形式,并简要说明其物理意义。 2.答非限定情况下麦克斯韦方程组的微分形式为 ,,0,D B H J E B D t t ρ????=+??=-??=??=??v v v v v v v ,(3分)(表明了电磁场和它们的源之 间的全部关系除了真实电流外,变化的电场(位移电流)也是磁场的源;除电荷外,变化的磁场也是电场的源。 1. 写出时变电磁场在1为理想导体与2为理想介质分界面时的边界条件。 2. 时变场的一般边界条件 2n D σ=、20t E =、2t s H J =、20n B =。 (或矢量式2n D σ=v v g 、20n E ?=v v 、2s n H J ?=v v v 、20n B =v v g ) 1. 写出矢量位、动态矢量位与动态标量位的表达式,并简要说明库仑规范与洛仑兹规范的意义。 2. 答矢量位,0B A A =????=v v v ;动态矢量位A E t ??=-?-?v v 或A E t ??+=-??v v 。库仑规范 与洛仑兹规范的作用都是限制A v 的散度,从而使A v 的取值具有唯一性;库仑规范用在静态场,洛仑兹规范用在时变场。 1. 简述穿过闭合曲面的通量及其物理定义 2. s A ds φ=???v v ò 是矢量A 穿过闭合曲面S 的通量或发散量。若Ф> 0,流出S 面的通量大于流入的通量,即通量由S 面内向外扩散,说明S 面内有正源若Ф< 0,则流入S 面的通量大于流出的通量,即通量向S 面内汇集,说明S 面内有负源。若Ф=0,则流入S 面的通量等于流出的通量,说明S 面内无源。 1. 证明位置矢量x y z r e x e y e z =++r r r r 的散度,并由此说明矢量场的散度与坐标的选择

电磁场与电磁波实验报告电磁波反射和折射实验

电磁场与微波测量实验报告 学院: 班级: 组员: 撰写人: 学号: 序号:

实验一电磁波反射和折射实验 一、实验目的 1、熟悉S426型分光仪的使用方法 2、掌握分光仪验证电磁波反射定律的方法 3、掌握分光仪验证电磁波折射定律的方法 二、实验设备与仪器 S426型分光仪 三、实验原理 电磁波在传播过程中如遇到障碍物,必定要发生反射,本处以一块大的金属板作为障碍物来研究当电磁波以某一入射角投射到此金属板上所遵循的反射定律,即反射线在入射线和通过入射点的法线所决定的平面上,反射线和入射线分居在法线两侧,反射角等于入射角。 四、实验内容与步骤 1、熟悉分光仪的结构和调整方法。 2、连接仪器,调整系统。 仪器连接时,两喇叭口面应相互正对,它们各自的轴线应在一条直线上,指示 两喇叭的位置的指针分别指于工作平台的90刻度处,将支座放在工作平台上, 并利用平台上的定位销和刻线对正支座,拉起平台上的四个压紧螺钉旋转一个 角度后放下,即可压紧支座。 3、测量入射角和反射角 反射金属板放到支座上时,应使金属板平面与支座下面的小圆盘上的某一对刻 线一致。而把带支座的金属反射板放到小平台上时,应使圆盘上的这对与金属 板平面一致的刻线与小平台上相应90度的一对刻线一致。这是小平台上的0刻 度就与金属板的法线方向一致。 转动小平台,使固定臂指针指在某一角度处,这角度读书就是入射角, 五、实验结果及分析 记录实验测得数据,验证电磁波的反射定律 表格分析: (1)、从总体上看,入射角与反射角相差较小,可以近似认为相等,验证了电磁波的反射定律。 (2)、由于仪器产生的系统误差无法避免,并且在测量的时候产生的随机误差,所以入射角

电磁场与电磁波试题及参考答案

2010-2011-2学期《电磁场与电磁波》课程 彳片?k 8.复数场矢量E = E -e^ je y e Jz,则其极化方式为(A )。 考试试卷参考答案及评分标准命题教师:李学军审题教师:米燕 一、判断题(10分)(每题1分) 1?旋度就是任意方向的环量密度 2.某一方向的的方向导数是描述标量场沿该方向的变化情况 3?点电荷仅仅指直径非常小的带电体 4. 静电场中介质的相对介电常数总是大于1 5. 静电场的电场力只能通过库仑定律进行计算 6. 理想介质和导电媒质都是色散媒质 7. 均匀平面电磁波在无耗媒质里电场强度和磁场强度保持同相位 8. 复坡印廷矢量的模值是通过单位面积上的电磁功率 9. 在真空中电磁波的群速与相速的大小总是相同的 10趋肤深度是电磁波进入导体后能量衰减为零所能够达到的深度 二、选择填空(10分). 4 1.已知标量场u的梯度为G,则勺沿l方向的方向导数为( A. G l B. G l ° C. G l A.左旋圆极化 B.右旋圆极化 C.线极化 9.理想媒质的群速与相速比总是(C)。 A.比相速大 B.比相速小 C.与相速相同 10.导体达到静电平衡时,导体外部表面的场Dn可简化为(B) (: X) (V) (X) (V) (X) (X) (V) (X) (V) (X) B )。 A. Dn=0 B. D n C. D n = q 三、简述题(共10分)(每题5分) 1.给出亥姆霍兹定理的简单表述、说明定理的物理意义是什么(5分) 答:若矢量场F在无限空间中处处单值,且其导数连续有界,而源分布在有限空间区域中, 则矢量场由其散度、旋度和边界条件唯一确定,并且可以表示为一个标量函数的梯度和一个矢量 函数的旋度之和;(3分) 物理意义:分析矢量场时,应从研究它的散度和旋度入手,旋度方程和散度方程构成了矢 量场的基本方 程。 (2 分) 2.写出麦克斯韦方程组中的全电流(即推广的安培环路)定律的积分表达式,并说明其物 2.半径为a导体球,带电量为Q,球外套有外半径为b,介电常数为S的同心介质球壳, 壳外是空气,则介质球壳内的电场强度E等于( C )。理意义。(5分). 答:全电流定律的积分表达式为:J|H d 7 = s(: 工)d S。(3分)全电流定律的物理意义是:表明传导电流和变化的电场都能产生磁场。(2分) 四、一同轴线内导体的半径为a,外导体的内半径为b,内、外导体之间填充两种绝缘材 料,a

电磁场与电磁波理论(第二版)(徐立勤,曹伟)第2章习题解答

第2章习题解答 2.2已知半径为a 、长为l 的圆柱体内分布着轴对称的体电荷,已知其电荷密度()0V a ρρρρ =, ()0a ρ≤≤。试求总电量Q 。 解:2π20000 2d d d d π3 l a V V Q V z la a ρρ ρρρ?ρ= ==? ? ?? 2.3 半径为0R 的球面上均匀分布着电荷,总电量为Q 。当球以角速度ω绕某一直径(z 轴)旋转时,试求 其表面上的面电流密度。 解:面电荷密度为 2 04πS Q R ρ= 面电流密度为 002 00 sin sin sin 4π4πS S S Q Q J v R R R R ωθ ρρωθωθ=?== = 2.4 均匀密绕的螺旋管可等效为圆柱形面电流0S S J e J ?=。已知导线的直径为d ,导线中的电流为0I ,试 求0S J 。 解:每根导线的体电流密度为 00 22 4π(/2)πI I J d d = = 由于导线是均匀密绕,则根据定义面电流密度为 04πS I J Jd d == 因此,等效面电流密度为 04πS I J e d ?= 2.6 两个带电量分别为0q 和02q 的点电荷相距为d ,另有一带电量为0q 的点电荷位于其间。为使中间的 点电荷处于平衡状态,试求其位置。当中间的点电荷带电量为-0q 时,结果又如何? 解:设实验电荷0q 离02q 为x ,那么离0q 为x d -。由库仑定律,实验电荷受02q 的排斥力为 12 214πq F x ε= 实验电荷受0q 的排斥力为 022 1 4π()q F d x ε= - 要使实验电荷保持平衡,即21F F =,那么由0022 211 4π4π() q q x d x εε=-,可以解得 d d x 585.01 22=+= 如果实验电荷为0q -,那么平衡位置仍然为d d x 585.01 22=+=。只是这时实验电荷与0q 和02q 不 是排斥力,而是吸引力。 2.7 边长为a 的正方形的三个顶点上各放置带电量为0q 的点电荷,试求第四个顶点上的电场强度E 。 解:设点电荷的位置分别为()00,0,0q ,()0,0,0q a 和()00,,0q a ,由库仑定律可得点(),,0P a a 处的电 场为 ( ) ( 00 2 22 00001114π4π4π221x y y x x y q q q E e e e e a a q e e εεε? =+++ ?+=+

电磁场与电磁波试题答案

《电磁场与电磁波》试题1 一、填空题(每小题1分,共10分) 1.在均匀各向同性线性媒质中,设媒质的导磁率为,则磁感应强度和磁场满足的方程为:。 2.设线性各向同性的均匀媒质中,称为方程。 3.时变电磁场中,数学表达式称为。 4.在理想导体的表面,的切向分量等于零。 5.矢量场穿过闭合曲面S的通量的表达式为:。 6.电磁波从一种媒质入射到理想表面时,电磁波将发生全反射。 7.静电场是无旋场,故电场强度沿任一条闭合路径的积分等于。 8.如果两个不等于零的矢量的等于零,则此两个矢量必然相互垂直。 9.对平面电磁波而言,其电场、磁场和波的传播方向三者符合关系。 10.由恒定电流产生的磁场称为恒定磁场,恒定磁场是无散场,因此,它可用函数的旋度来表示。 二、简述题(每小题5分,共20分) 11.已知麦克斯韦第二方程为,试说明其物理意义,并写出方程的积分形式。 12.试简述唯一性定理,并说明其意义。 13.什么是群速?试写出群速与相速之间的关系式。 14.写出位移电流的表达式,它的提出有何意义? 三、计算题(每小题10分,共30分) 15.按要求完成下列题目 (1)判断矢量函数是否是某区域的磁通量密度? (2)如果是,求相应的电流分布。

16.矢量,,求 (1) (2) 17.在无源的自由空间中,电场强度复矢量的表达式为 (1)试写出其时间表达式; (2)说明电磁波的传播方向; 四、应用题(每小题10分,共30分) 18.均匀带电导体球,半径为,带电量为。试求 (1)球内任一点的电场强度 (2)球外任一点的电位移矢量。 19.设无限长直导线与矩形回路共面,(如图1所示), (1)判断通过矩形回路中的磁感应强度的方向(在图中标出);(2)设矩形回路的法向为穿出纸面,求通过矩形回路中的磁通量。 20.如图2所示的导体槽,底部保持电位为,其余两面电位为零,(1)写出电位满足的方程; (2)求槽内的电位分布

相关文档
相关文档 最新文档