文档库 最新最全的文档下载
当前位置:文档库 › 第六章分子动力学方法

第六章分子动力学方法

分子动力学的模拟过程

分子动力学的模拟过程 分子动力学模拟作为一种应用广泛的模拟计算方法有其自身特定的模拟步骤,程序流程也相对固定。本节主要就分子动力学的模拟步骤和计算程序流程做一些简单介绍。 1. 分子动力学模拟步驟 分子动力学模拟是一种在微观尺度上进行的数值模拟方法。这种方法既可以得到一些使用传统方法,热力学分析法等无法获得的微观信息,又能够将实际实验研究中遇到的不利影响因素回避掉,从而达到实验研宄难以实现的控制条件。 分子动力学模拟的步骤为: (1)选取所要研究的系统并建立适当的模拟模型。 (2)设定模拟区域的边界条件,选取粒子间作用势模型。 (3)设定系统所有粒子的初始位置和初始速度。 (4)计算粒子间的相互作用力和势能,以及各个粒子的位置和速度。 (5)待体系达到平衡,统计获得体系的宏观特性。 分子动力学模拟的主要对象就是将实际物理模型抽象后的物理系统模型。因此,物理建模也是分子动力学模拟的一个重要的环节。而对于分子动力学模拟,主要还是势函数的选取,势函数是分子动力学模拟计算的核心。这是因为分子动力学模拟主要是计算分子间作用力,计算粒子的势能、位置及速度都离不开势函数的作用。系统中粒子初始位置的设定最好与实际模拟模型相符,这样可以使系统尽快达到平衡。另外,粒子的初始速度也最好与实际系统中分子的速度相当,这样可以减少计算机的模拟时间。 要想求解粒子的运动状态就必须把运动方程离散化,离散化的方法有经典Verlet算法、蛙跳算法(Leap-frog)、速度Veriet算法、Gear预估-校正法等。这些算法有其各自的优势,选取时可按照计算要求选择最合适的算法。 统计系统各物理量时,便又涉及到系统是选取了什么系综。只有知道了模拟系统采用的系综才能釆用相对应的统计方法更加准确,有效地进行统计计算,减少信息损失。 2. 分子动力学模拟程序流程 具体到分子动力学模拟程序的具体流程,主要包括: (1)设定和模拟相关的参数。 (2)模拟体系初始化。 (3)计算粒子间的作用力。 (4)求解运动方程。 (5)循环计算,待稳定后输出结果。 分子动力学模拟程序流程图如2.3所示。

分子动力学模拟方法概述(精)

《装备制造技术》 2007年第 10期 收稿日期 :2007-08-21 作者简介 :申海兰 , 24岁 , 女 , 河北人 , 在读研究生 , 研究方向为微机电系统。 分子动力学模拟方法概述 申海兰 , 赵靖松 (西安电子科技大学机电工程学院 , 陕西西安 710071 摘要 :介绍了分子动力学模拟的基本原理及常用的原子间相互作用势 , 如Lennard-Jones 势 ; 论述了几种常用的有限差分算法 , 如 Verlet 算法 ; 说明了分子动力学模拟的几种系综及感兴趣的宏观统计量的提取。关键词 :分子动力学模拟 ; 原子间相互作用势 ; 有限差分算法 ; 系综中图分类号 :O3 文献标识码 :A 文章编号 :1672-545X(200710-0029-02 从统计物理学中衍生出来的分子动力学模拟方法 (molec- ular dynamics simulation , M DS , 实践证明是一种描述纳米科技 研究对象的有效方法 , 得到越来越广泛的重视。所谓分子动力学模拟 , 是指对于原子核和电子所构成的多体系统 , 用计算机模拟原子核的运动过程 , 从而计算系统的结构和性质 , 其中每一个原子核被视为在全部其他原子核和电子所提供的经验势场作用下按牛顿定律运动 [1]。它被认为是本世纪以来除理论分析和实验观察之外的第三种科学研究手段 , 称之为“计算机实验” 手段 [2], 在物理学、化学、生物学和材料科学等许多领域中得到广泛地应用。

根据模拟对象的不同 , 将它分为平衡态分子动力学模拟 (EM DS (和非平衡态分子动力学模拟 (NEM DS 。其中 , EM DS 是分子动力学模拟的基础 ; NEM DS 适用于非线性响应系统的模拟 [3]。下面主要介绍 EM DS 。 1分子动力学方法的基本原理 计算中根据以下基本假设 [4]: (1 所有粒子的运动都遵循经典牛顿力学规律。 (2 粒子之间的相互作用满足叠加原理。 显然这两条忽略了量子效应和多体作用 , 与真实物理系统存在一定差别 , 仍然属于近似计算。 假设 N 为模拟系统的原子数 , 第 i 个原子的质量为 m i , 位置坐标向量为 r i , 速度为 v i =r ? i , 加速度为 a i =r ?? i , 受到的作用力为 F i , 原子 i 与原子 j 之间距离为 r ij =r i -r j , 原子 j 对原子 i 的作用力为 f ij , 原子 i 和原子 j 相互作用势能为 ! (r ij , 系统总的势能为 U (r 1, r 2, K r N = N i =1! j ≠ i ! " (r ij , 所有的物理量都是随时 间变化的 , 即 A=A (t , 控制方程如下 : m i r ?? i =F i =j ≠ i

反应动力学基础第二章复习.

第二章 反应动力学基础 一、化学反应速率的定义 1、均相反应 单位时间内单位体积反应物系中某一组分的反应量。 恒容反应: 连续流动过程: 2、多相反应 单位时间内单位相界面积或单位固体质量反应物系中某一组分的反应量。 二、反应速率方程 1、速率方程(动力学方程):在溶剂及催化剂和压力一定的情况下,定量描述反应速率和温度及浓度的关系。即: 2、反应速率方程的形式主要有两类:双曲函数型和幂级数型。 3、反应级数: ) ,(T f r c =

速率方程中各浓度项上方的指数分别代表反应对组分的反应级数,而这些指数的代数和称为总反应级数。反应级数仅表示反应速率对各组分浓度的敏感程度,不能独立地预示反应速率的大小。 4、反应速率常数: 方程中的k称为速率常数或比反应速率,在数值上等于是各组分浓度为1时的反应速度。它和除反应组分浓度以外的其它因素有关,如温度、压力、催化剂、溶剂等。当催化剂、溶剂等因素固定时,k就仅为反应温度的函数,并遵循阿累尼乌斯 Arrhenius方程: 可分别用分压、浓度和摩尔分率来表示反应物的组成,则相应的反应速率常数分别用k p,k c ,k y来表示;相互之间的关系为: 5、化学平衡常数与反应速率常数之间的关系 三、温度对反应速率的影响 1、不可逆反应 由阿累尼乌斯方程,温度升高,反应速率也升高(例外的极少),而且为非线性关系,即温度稍有变化,反应速率将剧烈改

变。也就是说,反应温度是影响化学反应速率的一个最敏感因素。 2、可逆反应 (1)可逆吸热反应 反应速率将总是随反应温度的升高而增加 (2)可逆放热反应 反应速率在低温时将随反应温度的升高而增加,到达某一极大值后,温度再继续升高,反应速率反而下降。再升高温度,则可能到达平衡点,总反应速率为零。 最优温度与平衡温度关系: 四、复合反应 1、反应组分的转化速率和生成速率 我们把单位之间内单位体积反应混合物中某组分i的反应量叫做该组分的转化速率或生成速率。 2、复合反应包括并列反应、平行反应、连串反应三种基本类型。 3、瞬时选择性 生成目的产物消耗关键组分的速率与关键组分转化速率之比,瞬时选择性将随反应进行而改变。

第六章分子动力学方法

第六章 分子动力学方法 6.1引言 对于一个多粒子体系的实验观测物理量的数值可以由总的平均得到。但是由于实验体系又非常大,我们不可能计算求得所有涉及到的态的物理量数值的总平均。按照产生位形变化的方法,我们有两类方法对有限的一系列态的物理量做统计平均: 第一类是随机模拟方法。它是实现Gibbs的统计力学途径。在此方法中,体系位形的转变是通过马尔科夫(Markov)过程,由随机性的演化引起的。这里的马尔科夫过程相当于是内禀动力学在概率方面的对应物。该方法可以被用到没有任何内禀动力学模型体系的模拟上。随机模拟方法计算的程序简单,占内存少,但是该方法难于处理非平衡态的问题。

另一类为确定性模拟方法,即统计物理中的所谓分子动力学方法(Molecular Dynamics Method)。这种方法广泛地用于研究经典的多粒子体系的研究中。该方法是按该体系内部的内禀动力学规律来计算并确定位形的转变。它首先需要建立一组分子的运动方程,并通过直接对系统中的一个个分子运动方程进行数值求解,得到每个时刻各个分子的坐标与动量,即在相空间的运动轨迹,再利用统计计算方法得到多体系统的静态和动态特性, 从而得到系统的宏观性质。因此,分子动力学模拟方法可以看作是体系在一段时间内的发展过程的模拟。在这样的处理过程中我们可以看出:分子动力学方法中不存在任何随机因素。 系统的动力学机制决定运动方程的形式: 在分子动力学方法处理过程中,方程组的建立是通过对物理体系的微观数学描述给出的。在这个微观的物理体系中,每个分子都各自服从经典的牛顿力学。每个分子运动的内禀动力学是用理论力学上的哈密顿量或者拉格朗日量来描述,也可以直接用牛顿运动方程来描述。这种方法可以处理与时间有关的过程,因而可以处理非平衡态问题。但是使用该方法的程序较复杂,计算量大,占内存也多。

分子动力学方法模拟基本步骤

分子动力学方法模拟基本步骤 1.第一步 即模型的设定,也就是势函数的选取。势函数的研究和物理系统上对物质的描述研究息息相关。最早是硬球势,即小于临界值时无穷大,大于等于临界值时为零。常用的是LJ势函数,还有EAM势函数,不同的物质状态描述用不同的势函数。 模型势函数一旦确定,就可以根据物理学规律求得模拟中的守恒量。 2 第二步 给定初始条件。运动方程的求解需要知道粒子的初始位置和速度,不同的算法要求不同的初始条件。如:verlet算法需要两组坐标来启动计算,一组零时刻的坐标,一组是前进一个时间步的坐标或者一组零时刻的速度值。 一般意思上讲系统的初始条件不可能知道,实际上也不需要精确选择代求系统的初始条件,因为模拟实践足够长时,系统就会忘掉初始条件。当然,合理的初始条件可以加快系统趋于平衡的时间和步伐,获得好的精度。 常用的初始条件可以选择为:令初始位置在差分划分网格的格子上,初始速度则从玻尔兹曼分布随机抽样得到;令初始位置随机的偏离差分划分网格的格子上,初始速度为零;令初始位置随机的偏离差分划分网格的格子上,初始速度也是从玻尔兹曼分布随机抽样得到。 第三步 趋于平衡计算。在边界条件和初始条件给定后就可以解运动方程,进行分子动力学模拟。但这样计算出的系统是不会具有所要求的系统的能量,并且这个状态本身也还不是一个平衡态。 为使得系统平衡,模拟中设计一个趋衡过程,即在这个过程中,我们增加或者从系统中移出能量,直到持续给出确定的能量值。我们称这时的系统已经达到平衡。这段达到平衡的时间成为驰豫时间。 分子动力学中,时间步长的大小选择十分重要,决定了模拟所需要的时间。为了减小误差,步长要小,但小了系统模拟的驰豫时间就长了。因此根据经验选择适当的步长。如,对一个具有几百个氩气Ar分子的体系,lj势函数,发现取h为0.01量级,可以得到很好的相图。这里选择的h是没有量纲的,实际上这样选择的h对应的时间在10-14s的量级呢。如果模拟1000步,系统达到平衡,驰豫时间只有10-11s。 第四步 宏观物理量的计算。实际计算宏观的物理量往往是在模拟的最后揭短进行的。它是沿相空间轨迹求平均来计算得到的(时间平均代替系综平均)

第二章反应动力学基础.

2 反应动力学基础 2.1在一体积为4L 的恒容反应器中进行A 的水解反应,反应前 A 的含量为12.23%(重量),混合物的密度为1g/mL ,反应物A 的分子量为88。在等温常压 解:利用反应时间与组分A 的浓度变化数据,作出C A ~t 的关系曲线,用镜面法求得t=3.5h 时该点的切线,即为水解速率。 切线的斜率为 0.760.125/.6.1 α-==-mol l h 由(2.6)式可知反应物的水解速率为 0.125/.-==dC A r mol l h A dt 2.2在一管式反应器中常压300℃等温下进行甲烷化反应: 2423+→+CO H CH H O 催化剂体积为10ml ,原料气中CO 的含量为3%,其余为N 2,H 2气体,改变进口原料气流量Q 0解:是一个流动反应器,其反应速率式可用(2.7)式来表示 00000(1)(1)-= =-=-=-A A R A A A A A A A A dF r dV F F X Q C X dF Q C dX 故反应速率可表示为: 000 0(/)==A A A A A R R dX dX r Q C C dV d V Q 用X A ~V R /Q 0作图,过V R /Q 0=0.20min 的点作切线,即得该条件下的dX A /d(V R /Q 0)值α。 0.650.04 1.79 0.34 α-== 故CO 的转化速率为 40030.10130.03 6.3810/8.31410573--? ===???A A P C mol l RT

430 0 6.3810 1.79 1.1410/.min (/)--==??=?A A A R dX r C mol l d V Q 2.3已知在Fe-Mg 催化剂上水煤气变换反应的正反应动力学方程为: 20.850.4 /-=?w CO CO r k y y kmol kg h 式中y CO 和y CO2为一氧化碳及二氧化碳的瞬间摩尔分率,0.1MPa 压力及700K 时反应速率常数k W 等于0.0535kmol/kg.h 。如催化剂的比表面积为30m 2/g ,堆密度为1.13g/cm 3,试计算: (1) 以反应体积为基准的速率常数k V 。 (2) 以反应相界面积为基准的速率常数k g 。 (3) 以分压表示反应物系组成时的速率常数k g 。 (4) 以摩尔浓度表示反应物系组成时的速率常数k C 。 解:利用(2.10)式及(2.28)式可求得问题的解。注意题中所给比表面的单位换算成m 2/m 3。 33230.450.45 33 0.45(1) 1.13100.053560.46/.6(2) 1.7810/.3010 11(3)()()0.05350.15080.1013..()8.3110700(4)()(0.05350.333(0.1)ρρρρ-==??=-= = =???==?=??==?=v b w b b g w w v b n p w n c w k k kmol m h k k k kmol m h a kmol k k P kg h MPa m RT k k P km 0.45)().kmol ol kg h 2.4在等温下进行液相反应A+B →C+D ,在该条件下的反应速率方程为: 1.50.5 0.8/min =?A A B r C C mol l 若将A 和B 的初始浓度均为3mol/l 的原料混合进行反应,求反应4min 时A 的 转化率。 解:由题中条件知是个等容反应过程,且A 和B 的初始浓度均相等,即为1.5mol/l ,故可把反应速率式简化,得 1.50.5222 00.80.80.8(1)===-A A B A A A r C C C C X 由(2.6)式可知 00 (1)?? ???? --==-=A A A A A A d C X dC dX r C dt dt dt 代入速率方程式 22 00.8(1)=-A A A A dX C C X dt 化简整理得 00.8(1)=-A A A dX C dt X 积分得 00.81= -A A A X C t X 解得X A =82.76%。

2021学年新教材高中生物第三章遗传的分子基础第五节生物体存在表观遗传现象练习2含解析浙科版必修2

第5节生物体存在表观遗传现象 1.可遗传变异是生物的遗传物质发生改变而导致的变异,但是科学家却发现一些特别的变异:虽然DNA的序列没有改变,但是变异却可以遗传给后代,把这种现象称为表观遗传。下列关于基因和性状的关系说法错误的是() A.基因可以通过控制蛋白质的结构直接控制生物体的性状,也可以通过控制酶的合成来控制代谢过程进而控制生物体的性状 B.基因与基因,基因与基因产物,基因和环境之间相互作用,共同调控生物的性状 C.表观遗传中,核内遗传物质在亲子代之间传递不再遵循孟德尔遗传规律 D.表观遗传的一种解释:基因在转录和翻译过程中发生了一些稳定性的改变 【答案】C 【解析】 A、基因可以通过控制蛋白质的结构直接控制生物体的性状,也可以通过控制酶的合成来控制代谢过程进而控制生物体的性状,A正确; B、基因与基因,基因与基因产物,基因和环境之间相互作用共同调控生物的性状,B正确; C、表观遗传中,核内遗传物质在亲子代之间传递仍然遵循孟德尔遗传规律,C错误; D、生物体基因的碱基序列保持不变,但基因表达(转录和翻译)过程中发生变化导致表型发生可遗传变化的现象,叫作表观遗传,D正确。 故选C。 2.下列关于表观遗传的说法不正确的是() A.表观遗传的分子生物学基础是DNA的甲基化等 B.表观遗传现象中,生物表型发生变化是由于基因的碱基序列改变 C.表观遗传现象与外界环境关系密切 D.DNA甲基化的修饰可以遗传给后代,使后代出现同样的表型 【答案】B 【解析】 AB、表观遗传是指生物体基因的碱基序列保持不变,但基因表达和表型发生可遗传变化的现象。这一现象出现的原因是DNA的甲基化、染色体上的组蛋白发生甲基化等,A正确,B错误; C、外界环境会引起细胞中DNA甲基化水平变化,从而引起表观遗传现象的出现,C 正确;

分子动力学模拟

分子动力学模拟 分子动力学就是一门结合物理,数学与化学的综合技术。分子动力学就是一套分子模拟方法,该方法主要就是依靠牛顿力学来模拟分子体系的运动,以在由分子体系的不同状态构成的系统中抽取样本,从而计算体系的构型积分,并以构型积分的结果为基础进一步计算体系的热力学量与其她宏观性质。 这门技术的发展进程就是: 1980年:恒压条件下的动力学方法(Andersenの方法、Parrinello-Rahman法) 1983年:非平衡态动力学方法(Gillan and Dixon) 1984年:恒温条件下的动力学方法(能势‐フーバーの方法) 1985年:第一原理分子动力学法(→カー?パリネロ法) 1991年:巨正则系综的分子动力学方法(Cagin and Pettit)、 最新的巨正则系综,即为组成系综的系统与一温度为T、化学势为μ的很大的热源、粒子源相接触,此时系统不仅同热源有能量交换,而且可以同粒子源有粒子的交换,最后达到平衡,这种系综称巨正则系综。 进行分子动力学模拟的第一步就是确定起始构型,一个能量较低的起始构型就是进行分子模拟的基础,一般分子的其实构型主要就是来自实验数据或量子化学计算。在确定起始构型之后要赋予构成分子的各个原子速度,这一速度就是根据玻尔兹曼分布随机生成,由于速度的分布符合玻尔兹曼统计,因此在这个阶段,体系的温度就是恒定的。另外,在随机生成各个原子的运动速度之后须进行调整,使得体系总体在各个方向上的动量之与为零,即保证体系没有平动位移。 由上一步确定的分子组建平衡相,在构建平衡相的时候会对构型、温度等参数加以监控。 进入生产相之后体系中的分子与分子中的原子开始根据初始速度运动,可以想象其间会发生吸引、排斥乃至碰撞,这时就根据牛顿力学与预先给定的粒子间相互作用势来对各个例子的运动轨迹进行计算,在这个过程中,体系总能量不变,但分子内部势能与动能不断相互转化,从而体系的温度也不断变化,在整个过程中,体系会遍历势能面上的各个点,计算的样本正就是在这个过程中抽取的。 用抽样所得体系的各个状态计算当时体系的势能,进而计算构型积分。 作用势的选择与动力学计算的关系极为密切,选择不同的作用势,体系的势能面会有不同的形状,动力学计算所得的分子运动与分子内部运动的轨迹也会不同,进而影响到抽样的结果与抽样结果的势能计算,在计算宏观体积与微观成分关系的时候主要采用刚球模型的二体势,计算系统能量,熵等关系时早期多采用Lennard-Jones、morse势等双体势模型,对于金属计算,主要采用morse势,但就是由于通过实验拟合的对势容易导致柯西关系,与实验不符,因此在后来的模拟中有人提出采用EAM等多体势模型,或者采用第一性原理计算结果通过一定的物理方法来拟合二体势函数。但就是对于二体势模型,多体势往往缺乏明确的表达式,参量很多,模拟收敛速度很慢,给应用带来很大困难,因此在一般应用中,通过第一性原理计算结果拟合势函数的L-J,morse等势模型的应用仍非常广泛。 分子动力学计算的基本思想就是赋予分子体系初始运动状态之后,利用分子的自然运动在相空间中抽取样本进行统计计算,时间步长就就是抽样的间隔,因而时间步长的选取对动力学模拟非常重要。太长的时间步长会造成分子间的激烈碰撞,体系数据溢出;太短的时间步长会降低模拟过程搜索相空间的能力,因此一般选取的时间步长为体系各个自由度中最短运动周期的十分之一。但就是通常情况下,体系各自由度中运动周期最短的就是各个化学键的振动,而这种运动对计算某些宏观性质并不产生影响,因此就产生了屏蔽分子内部振动或其她无关运动的约束动力学,约束动力学可以有效地增长分子动力学模拟时间步长,提高搜索相空间的能

分子动力学模拟-经验谈

分子动力学攻略 此文为dddc_redsnow发表于biolover上的关于分子动力学的系列原创文章,相当经典与精彩,特此将系列文章整合,一起转载,望学习动力学的新手们共同学习,提高进步,在此特向dddc_redsnow本人表示感谢。 动力学系列之一(gromacs,重发) 在老何的鼓励下,发一下我的gromacs上手手册(我带人时用的,基本半天可以学会gromcas) ###################################################### # Process protein files step by step # ###################################################### pdb2gmx -f 2th_cap.pdb -o 2th_cap.gro -p 2th_cap.top -ignh -ter nedit 2th_cap.top editconf -f 2th_cap.gro -o 2th_cap_box.gro -d 1.5 genbox -cp 2th_cap_box.gro -cs -p 2th_cap.top -o 2th_cap_water.gro make_ndx -f 2th_cap_water.gro -o 2th_cap.ndx genpr -f 2th_cap_water.gro -n 2th_cap.ndx -o 2th_cap_All.itp genpr -f 2th_cap_water.gro -n 2th_cap.ndx -o 2th_cap_M.itp genpr -f 2th_cap_water.gro -n 2th_cap.ndx -o 2th_cap_C.itp nedit Flavo.itp grompp -f em.mdp -c 2th_cap_water.gro -p 2th_cap.top -o prepare.tpr genion -s prepare.tpr -o 2th_cap_water_ion.gro -np 1 -pq 1 ##################################################### # Minimize step by step # # 1. minimization fixing whole protein # # 2. minimization fixing maincharin of protein # # 3. minimization fixing Ca of protein # # 4. minimization without fix # ##################################################### grompp -np 4 -f em.mdp -c 2th_cap_water_ion.gro -p 2th_cap.top -o minimize_water.tpr mpirun -np 4 mdrun -nice 0 -s minimize_water.tpr -o minimize_water.trr -c minimize_water.gro -e minimize_water.edr -g minimize_water.log & grompp -np 4 -f em.mdp -c minimize_water.gro -p 2th_cap.top -o minimize_sidechain.tpr mpirun -np 4 mdrun -nice 0 -s minimize_sidechain.tpr -o minimize_sidechain.trr -c minimize_sidechain.gro -e minimize_sidechain.edr -g minimize_sidechain.log & grompp -np 4 -f em.mdp -c minimize_sidechain.gro -p 2th_cap.top -o minimize_sidechain_ex.tpr mpirun -np 4 mdrun -nice 0 -s minimize_sidechain_ex.tpr -o minimize_sidechain_ex.trr -c minimize_sidechain_ex.gro -e minimize_sidechain_ex.edr minimize_sidechain_ex.log & grompp -np 4 -f em.mdp -c minimize_sidechain_ex.gro -p 2th_cap.top -o minimize_all.tpr mpirun -np 4 mdrun -nice 0 -s minimize_all.tpr -o minimize_all.trr -c minimize_all.gro -e minimize_allx.edr -g minimize_all.log&

vasp做分子动力学

vasp做分子动力学的好处,由于vasp是近些年开发的比较成熟的软件,在做电子scf速度方面有较好的优势。 缺点:可选系综太少。 尽管如此,对于大多数有关分子动力学的任务还是可以胜任的。 主要使用的系综是NVT和NVE。 下面我将对主要参数进行介绍! 一般做分子动力学的时候都需要较多原子,一般都超过100个。 当原子数多的时候,k点实际就需要较少了。有的时候用一个k点就行,不过这都需要严格的测试。通常超过200个原子的时候,用一个k点,即Gamma点就可以了。 INCAR: EDIFF 一般来说,用1E-4或者1E-5都可以,这个参数只是对第一个离子步的自洽影响大一些,对于长时间的分子动力学的模拟,精度小一点也无所谓,但不能太小。 IBRION=0 分子动力学模拟 IALGO=48 一般用48,对于原子数较多,这个优化方式较好。 NSW=1000 多少个时间步长。 POTIM=3 时间步长,单位fs,通常1到3. ISIF=2 计算外界的压力. NBLOCK= 1 多少个时间步长,写一次CONTCAR,CHG和CHGCAR,PCDAT. KBLOCK=50 NBLOCK*KBLOCK个步长写一次XDATCAR. ISMEAR=-1 费米迪拉克分布. SIGMA =0.05 单位:电子伏 NELMIN=8 一般用6到8,最小的电子scf数.太少的话,收敛的不好. LREAL=A APACO=10 径向分布函数距离,单位是埃. NPACO=200 径向分布函数插的点数. LCHARG=F 尽量不写电荷密度,否则CHG文件太大. TEBEG=300 初始温度. TEEND=300 终态温度。不设的话,等于TEBEG. SMASS -3 NVE ensemble;-1 用来做模拟退火;大于0 NVT 系综。 ///////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////// 1)收敛判据的选择 结构弛豫的判据一般有两种选择:能量和力。这两者是相关的,理想情况下,能量收敛到基态,力也应该是收敛到平衡态的。但是数值计算过程上的差异导致以二者为判据的收敛速度差异很大,力收敛速度绝大部分情况下都慢于能量收敛速度。这是因为力的计算是在能量的基础上进行的,能量对坐标的一阶导数得到力。计算量的增大和误差的传递导致力收敛慢。 到底是以能量为收敛判据,还是以力为收敛判据呢?关心能量的人,觉得以能量

2018年高中生物第三章遗传的分子基础第二节DNA的分子结构和特点学案浙科版必修2

第二节DNA 的分子结构和特点 1.DNA 是由四种不同的(A 、G 、C 、T)脱氧核苷酸聚合而成 的高分子化合物。 2.DNA 分子的双螺旋结构:①脱氧核糖与磷酸相间排列在外侧, 形成两条脱氧核苷酸链(反向平行),构成DNA 的基本骨架;② 两条脱氧核苷酸链之间是碱基对,排列在内侧。 3.DNA 分子中碱基之间一一对应,遵循卡伽夫法则 (碱基互补配 对):A 一定与T 配对,A 和T 的分子数相等;G 一定与C 配对, G 和C 的分子数相等;但A +T 的量不一定等于G +C 的量。依 据卡伽夫法则可以确定是双链DNA 还是单链DNA 。 4.不同生物的DNA 碱基对的数目可能相同,但碱基对的排列顺序 肯定不同。 5.基因是有遗传效应的DNA 片段,基因中脱氧核苷酸的排列顺序 代表了遗传信息。 错误! 1.DNA 的化学组成 (1)基本组成元素:C 、H 、O 、N 、P 五种元素。 (2)基本单元:脱氧核苷酸。 (3)脱氧核苷酸分子组成: 脱氧核苷酸 ??? 脱氧核苷????? 脱氧核糖碱基、T 、G 、磷酸 (4)脱氧核苷酸的种类: ①碱基组成:腺嘌呤(A)、鸟嘌呤(G)、胞嘧啶(C)、胸腺嘧啶(T)。 ②种类:腺嘌呤脱氧核苷酸;鸟嘌呤脱氧核苷酸;胞嘧啶脱氧核苷酸;胸腺嘧啶脱氧核苷酸。 2.DNA 分子的结构特点

[巧学妙记 ] DNA 结构的“五、四、三、二、一” 五种元素:C 、H 、O 、N 、P ; 四种碱基:A 、G 、C 、T ,相应的有四种脱氧核苷酸; 三种物质:磷酸、脱氧核糖、含氮碱基; 两条长链:两条反向平行的脱氧核苷酸链; 一种螺旋:规则的双螺旋结构。 1.DNA 分子主要存在于细胞的什么部位? 提示:DNA 分子主要存在于细胞核中的染色体上,在线粒体和叶绿体中有少量分布。 2.双链DNA 分子中,嘌呤碱基数与嘧啶碱基数有什么关系? 提示:嘌呤碱基数=嘧啶碱基数。 3.每个DNA 片段中,游离的磷酸基团数是多少?磷酸数∶脱氧核糖数∶含氮碱基数的比例是多少? 提示:(1)2个;(2)1∶1∶1。 4.两个长度相同的双链DNA 分子,其结构差异主要体现在哪里? 提示:主要体现在碱基对的排列顺序不同。 1.DNA 分子的结构 (1)基本单位——脱氧核苷酸,如图所示: 其中,○表示磷酸基团; 表示脱氧核糖(O 表示氧原子,数字表示碳原子编 号);□表示含氮碱基,构成DNA 分子的含氮碱基共有4种,即A(腺嘌呤)、T(胸 腺嘧啶)、G(鸟嘌呤)、C(胞嘧啶)。 (2)一条脱氧核苷酸单链中,相邻脱氧核苷酸之间的连接如图所示:

2020学年高中生物 第三章 遗传的分子基础 第一节 核酸是遗传物质的证据学案 浙科版必修2

第一节核酸是遗传物质的证据 1.通过“活动:资料分析——噬菌体侵染细菌的实验”,概述噬菌体侵染细菌的过程,体会实验方法与技术的多样性。 2.概述肺炎双球菌的转化实验,感悟实验的严密性和逻辑的严谨性。 3.简述烟草花叶病毒的感染和重建实验,认同使用模型是进行科学研究的重要方法。 [学生用书P39] 一、染色体结构与功能 1.结构:由DNA、RNA和蛋白质组成,其中蛋白质又分为组蛋白和非组蛋白。 2.功能:是遗传物质的载体。 二、DNA是遗传物质的直接证据 1.噬菌体侵染细菌的实验 (1)实验过程(同位素标记法) 用放射性同位素35S标记了一部分噬菌体的蛋白质,用放射性同位素32P标记另一部分噬菌体的DNA。然后,用两种被标记的T2噬菌体分别去侵染细菌。当T2噬菌体在细菌体内大量繁殖后,对标记物质进行检测。结果表明,大多数35S标记的噬菌体在感染细菌时,放射性蛋白质附着在宿主细胞的外面;32P标记的噬菌体感染细菌时,放射性同位素主要进入宿主细胞内,并且能在子代噬菌体中检测到32P。 (2)实验结论:DNA是噬菌体的遗传物质。 2.肺炎双球菌的转化实验 (1)活体细菌转化实验 ①过程及现象:把加热杀死的S型菌和活的无毒R型菌混合后一起注射到小鼠体内,发现很多小鼠患败血症致死。从患病致死的小鼠血液中分离出活的S型菌。无论是活的R型菌还是死的S型菌,分别注射到小鼠体内都不能使小鼠患败血症。由此可见,加热杀死的S 型菌中的“转化因子”进入R型菌体内,引起R型菌稳定的遗传变异。 ②结论:加热杀死的S型菌中含有转化因子,能将R型菌转化为活的S型菌。 (2)离体细菌转化实验 ①过程及现象:从活的S型菌中抽提DNA、蛋白质和荚膜物质,分别与活的R型菌混合培养。只有加入DNA时,R型菌才能转化为S型菌,若用DNA酶处理DNA样品,就不能使R 型菌发生转化,并且DNA纯度越高,转化效率就越高。 ②结论:DNA是遗传物质。

2019_2020学年高中生物第三章遗传的分子基础章末过关检测(三)浙科版必修2

章末过关检测(三) [学生用书P119(单独成册)] (时间:45分钟,满分:100分) 一、选择题(本题包括10小题,每小题6分,共60分) 1.根据碱基互补配对原则,以下碱基间不能配对的是( ) A.A与T B.A与U C.G与C D.G与T 解析:选D。根据碱基互补配对原则,DNA分子中A与T配对、G与C配对,RNA分子中A与U配对、G与C配对。 2.下列关于核酸的叙述中,正确的是( ) A.DNA和RNA中的五碳糖相同 B.组成DNA和ATP的元素种类不同 C.T2噬菌体的遗传信息贮存在RNA中 D.双链DNA分子中嘌呤数等于嘧啶数 解析:选D。DNA含的五碳糖是脱氧核糖,RNA含的五碳糖是核糖,A错误;组成DNA 和ATP的元素种类都是C、H、O、N、P,B错误;T2噬菌体的遗传信息贮存在DNA中,C错误;DNA中A与T配对、G与C配对,故双链DNA分子中嘌呤数等于嘧啶数,D正确。 3.下面是4位同学拼制的DNA分子部分平面结构模型,正确的是( ) 解析:选C。根据DNA分子的结构特点可知,每条链都是由脱氧核糖和磷酸基团结合形成基本骨架,碱基位于主链内侧,所以A、B两项错误。由DNA结构可知,两个磷酸应结合在五碳糖的不同部位,所以D错误,选项C正确。 4.科学家们通过实验研究控制生物遗传的物质基础。下面有关分析正确的是( ) A.R型活菌注射到小鼠体内,小鼠正常;将S型活菌注射到小鼠体内,小鼠死亡。实验结论:S型细菌的荚膜有毒 B.将杀死后的S型菌与活的R型菌混合后,注射到小鼠体内,小鼠死亡。实验结论:R 型细菌有毒 C.从S型细菌中提取蛋白质、多糖和DNA,分别与R型活菌混合培养。从实验结果可以得出:DNA是遗传物质 D.用15N和32P这两种同位素标记烟草花叶病毒,然后侵染烟草叶片。通过示踪观察可以得出:RNA是烟草花叶病毒的遗传物质,而蛋白质不是 解析:选C。A项中只能说明S型细菌体内存在有毒的物质;B项杀死的S型菌其DNA

高二生物遗传的分子基础单元练习题及答案

第三章遗传的分子基础单元练习 一、选择题 1、如果用32P和35S分别标记噬菌体的DNA和蛋白质外壳,当它侵染到细菌体内后,经多次复制,所释放出来的子代噬菌体() A.不含32P B.含少量32P C.含大量32P D.含少量35S 2、噬菌体侵染大肠杆菌实验不能说明的是() A.DNA能主要的遗传物质B.DNA能自我复制 C.DNA是遗传物质D.DNA能控制蛋白质合成 3、肺炎双球菌最初的转化实验结果说明() A.加热杀死的S型细菌中的转化因子是DNA B.加热杀死的S型细菌中必然含有某种促进转化的转化因子 C.加热杀死的S型细菌中的转化因子是蛋白质 D.DNA是遗传物质,蛋白质不是遗传物质 4、肺炎双球菌中的S型具有多糖类荚膜,R型则不具有。下列叙述错误的是() A.培养R型活细菌时加S型细菌的DNA,能产生具有荚膜的细菌 B.培养R型活细菌时加S型细菌的蛋白质,不能产生具有荚膜的细菌 C.培养R型活细菌时加S型细菌的多糖类物质,能产生一些具有荚膜的细菌 D.培养R型活细菌时加S型细菌DNA的完全水解产物,不能产生具有荚膜的细菌 5、下列有关DNA是双螺旋结构主链特征的表述中,哪一项是错误的() A.两条主链方向相同且保持平行B.由脱氧核糖与磷酸交互排列而成 C.两条主链排在外侧且极为稳定D.两条主链按一定的规则盘绕成双螺旋 6、双链DNA分子的一个片段中,含有腺嘌呤520个,占碱基总数20%,则这个片段中含胞嘧啶() A.350个B.420个C.520个D.780个 7、在一个DNA分子中,腺嘌呤和胸腺嘧啶之和占全部碱基数的42%,若其中一条链中的胞嘧啶占该链碱基总数的24%,胸腺嘧啶占30%,则在其互补链上,胞嘧啶和胸腺嘧啶分别占() A.12%和34% B.21%和24% C.34%和12% D.58%和30% 8、在下列四种化合物的化学组成中,“○”中所对应的含义最接近的是() A.①和②B.②和③C.③和④D.①和④ 9、骨骼肌细胞中合成mRNA及多肽链的场所分别是() A.细胞质和细胞核B.细胞核和线粒体 C.内质网与核糖体D.细胞核与核糖体 10、在胰蛋白质酶的合成过程中,决定它性质的根本因素是() A.mRNA B.tRNA C.DNA D.核糖体 11、一段信使RNA上有30个碱基,其中A和G有12个,转录出该信使RNA的一段DNA中的C和T的个数以及翻译合成多肽时脱去的水分子数分别是()A.30、10 B.30、9 C.18、9 D.12、10

分子动力学作业概要

分子动力学(MD) 1 分子动力学(MD)基础 1.1 MD分类 1.2 MD简介 1.3 MD适用范围 2 分子动力学运动方程数值求解 2.1 基础知识 2.1.1 运动方程 2.1.2 空间描述 2.1.3 最小作用量原理 2.1.4 拉格朗日(Lagrange)方程 2.1.5 哈密顿(Hamilton)方程 2.2 粒子运动方程的数值解法 2.2.1 Verlet算法 2.2.2 欧拉(Euler)预测—矫正公式 2.2.3 Gear预测—矫正方法 3 分子动力学原胞与边界条件 3.1 分子动力学原胞 3.2 边界条件 3.2.1 自由表面边界 3.2.2 固定边界 3.2.3 柔性边界 3.2.4 周期性边界 4 势函数与分子力场 4.1 势函数 4.1.1 两体势 4.1.2 多体势 4.2 分子力场 4.2.1 分子力场函数的构成

4.2.2 常用力场函数和分类 5 分子动力学模拟的基本步骤 5.1 设定模拟所采用的模型 5.2 给定初始条件 5.3 趋于平衡计算 5.4 宏观物理量的计算 6 平衡态分子动力学模拟 6.1 系综 6.2 微正则系综的分子动力学模拟6.3 正则系综的分子动力学模拟

1 分子动力学(MD)基础 1.1MD分类 微正则系综(VNE) 正则系综(VNP) 平衡态MD 等温等压系综(NPT) 经典MD 等焓等压系综(NPH) 巨正则系综(VTμ) 非平衡态MD 量子MD 1.2分子动力学(MD)简介 分子动力学是在原子、分子水平上求解多体问题的重要的计算机模拟方法。分子动力学方法为确定性模拟方法,广泛地用于研究经典的多粒子体系的研究中,是按该体系内部的内禀动力学规律来计算并确定位形的转变。 分子动力学方法是通过建立一组分子的运动方程,并通过直接对系统中的一个个分子运动方程进行数值求解,得到每个时刻各个分子的坐标与动量,即在相空间的运动轨迹,再利用统计计算方法得到多体系统的静态和动态特性, 从而得到系统的宏观性质。 在分子动力学中,粒子的运动行为是通过经典的Newton运动方程所描述。系统的所有粒子服从经典力学的运动规律,它的动力学方程就是从经典力学的运动方程——拉格朗日(lagrange)方程和哈密顿(Hamilton)方程导出。 1.3适用范围 原则上,分子动力学方法所适用的微观物理体系并无什么限制。这个方法适用的体系既可以是少体系统,也可以是多体系统;既可以是点粒子体系,也可以是具有内部结构的体系;处理的微观客体既可以是分子,也可以是其它的微观粒子。 实际上,分子动力学模拟方法和随机模拟方法一样都面临着两个基本限制:

分子动力学模拟

分子动力学模拟 The Standardization Office was revised on the afternoon of December 13, 2020

分子动力学模拟 分子动力学是一门结合物理,数学和化学的综合技术。分子动力学是一套分子模拟方法,该方法主要是依靠牛顿力学来模拟分子体系的运动,以在由分子体系的不同状态构成的系统中抽取样本,从而计算体系的构型积分,并以构型积分的结果为基础进一步计算体系的热力学量和其他宏观性质。 这门技术的发展进程是: 1980年:恒压条件下的动力学方法(Andersenの方法、Parrinello-Rahman法)1983年:非平衡态动力学方法(Gillan and Dixon) 1984年:恒温条件下的动力学方法(能势‐フーバーの方法) 1985年:第一原理分子动力学法(→カー?パリネロ法) 1991年:巨正则系综的分子动力学方法(Cagin and Pettit). 最新的巨正则系综,即为组成系综的系统与一温度为T、化学势为μ的很大的热源、粒子源相接触,此时系统不仅同热源有能量交换,而且可以同粒子源有粒子的交换,最后达到平衡,这种系综称巨正则系综。 进行分子动力学模拟的第一步是确定起始构型,一个能量较低的起始构型是进行分子模拟的基础,一般分子的其实构型主要是来自实验数据或量子化学计算。在确定起始构型之后要赋予构成分子的各个原子速度,这一速度是根据玻尔兹曼分布随机生成,由于速度的分布符合玻尔兹曼统计,因此在这个阶段,体系的温度是恒定的。另外,在随机生成各个原子的运动速度之后须进行调整,使得体系总体在各个方向上的动量之和为零,即保证体系没有平动位移。由上一步确定的分子组建平衡相,在构建平衡相的时候会对构型、温度等参数加以监控。

高中生物第三章遗传的分子基础第一节核酸是遗传物质练习3含解析浙科版必修2

第1节核酸是遗传物质(一) 1.下列关于肺炎双球菌转化实验的分析,错误的是() A.在体外转化实验中,DNA纯度越高转化越有效 B.体内转化实验证明了DNA是遗传物质 C.S型细菌的DNA使R型细菌转化为S型细菌 D.死亡的小鼠中R型菌多于S型菌 【答案】B 【解析】转化率与所提取的S型细菌的DNA纯度有关,DNA纯度越高转化的效率也越高,A 正确;格里菲思依据在“肺炎双球菌的转化实验”中观察到的现象做出的推论是:加热杀死的S型细菌中含有促成“R型活细菌转化成S型活细菌”的转化因子,但他并没有证明DNA 是遗传物质,B错误;S型细菌的DNA使R型细菌转化为S型细菌,从而导致小鼠死亡,C 正确;转化的很少,主要是R型菌,D正确。 2.下列关于活体肺炎双球菌转化实验的分析叙述错误的是() A.第3组中“加热杀死”是使S型菌的蛋白质及其细胞器变性而失去了致病能力 B.由于DNA变性温度高于蛋白质的变性温度,所以第3组中DNA没有受到损害 C.第4组中,S型菌细胞内的核糖体借助R型菌细胞提供的氨基酸合成了蛋白质 D.若将第1组中S型菌的蛋白质用有机试剂除去,重复第4组实验,结果不会改变 【答案】C 【解析】第3组中“加热杀死”是使S型菌的蛋白质及其细胞器变性,导致细菌失去活性,从而失去了致病能力,A正确;由于DNA变性温度高于蛋白质的变性温度,即热稳定性高,所以第3组中蛋白质失活而DNA没有受到损害,B正确;第4组中,S型菌细胞内的核糖体已变性,S型菌的DNA借助R型菌细胞提供的核糖体和氨基酸合成了蛋白质,C错误;若将第1组中S型菌的蛋白质用有机试剂除去,重复第4组实验,S型菌的DNA能使R型菌发生转化,导致小鼠患败血症死亡,D正确。

相关文档