文档库 最新最全的文档下载
当前位置:文档库 › 基于PLC的直流电机调速系统设计毕业设计

基于PLC的直流电机调速系统设计毕业设计

基于PLC的直流电机调速系统设计毕业设计
基于PLC的直流电机调速系统设计毕业设计

基于PLC的直流电机调速系统设计毕业设计

目录

1.1 直流调速系统的发展史概述 (2)

1.2 可编程控制器PLC (3)

1.2.1 PLC的发展概述 (3)

1.2.2 PLC的特点 (4)

1.3 选题背景及论文主要内容 (5)

1.3.1 选题背景 (5)

1.3.2 论文的主要内容 (6)

第 2 章直流调速系统 (7)

2.1 调速系统的性能指标 (7)

2.1.1 稳态性能指标 (8)

2.1.2 动态指标 (9)

2.2 PWM直流调速系统 (11)

2.2.1 直流电动机的PWM控制原理 (11)

2.2.2 PWM直流调速系统的组成 (12)

2.2.3 PWM调速系统的主要参数 (18)

2.3 双闭环直流脉宽调速系统 (20)

2.3.1 电流、转速反馈环节 (20)

2.3.2 设计中的调节器计算 (22)

2.3.3 双闭环脉宽调速系统的起动过程 (26)

第 3 章现代PLC控制技术 (28)

3.1 PLC的组成和分类 (28)

3.2 PLC的工作原理 (28)

3.3 PLC电机控制系统设计的基本内容和步骤 (30)

3.3.1 PLC的硬件设计的一般步骤 (30)

3.3.2 PLC软件设计的一般步骤 (31)

3.3.3 设计中用到的模块 (32)

第 4 章基于PLC的直流电机调速系统设计 (34)

4.1 设计任务 (34)

4.2 脉宽调制系统特有部分设计 (34)

4.3 PLC硬件设计 (35)

4.4 PLC 软件设计 (37)

结束语 (40)

致谢 (41)

参考文献(主要及公开发表的文献) (2)

附录 (4)

第 1 章引言

传统直流电动机双闭环调速系统采用的是继电器控制,加PI 调节器及校正装置,实现控制系统稳定运行。但由于继电器,集成运算放大器,电气元件的老化易出故障而损坏,而且结线复杂,使其工作可靠性较差。采用 PLC 设计的直流电动机双闭环调速系统能有效地克服上述缺点,并且具有结构简单,调试修改参数方便,工作可靠,性能价格比较高的优点。同时,PLC 控制的直流电动机双闭环调速系统实现了数字化控制[13][14]。

1.1 直流调速系统的发展史概述

电机调速的发展与电力电子技术的发展是不可分离的,电机调速和电力电子技术相互结合,相互促进,实现了现代的电气传动控制:一弱点检测、判断并发出控制信息,用强电来执行控制的使命。从这个角度上看,可以说,现代电气控制技术是强电与弱点相结合的技术。

早期的电机控制只是利用电器来控制电动机的启动、制动、正反转和分级调速。随着技术的进步,生产工艺对电机控制提出了越来越高的要求,诸如精确稳定的运行速度、无极调速、快速反向、准确定位等等。直流电机变压和弱磁调速可以比较好的满足这些要求,于是诞生了旋转变流机组供电的直流调速系(Ward-Leonard系统),简称G-M系统。对调速性能要求再高时,则引入电机型放大器、磁放大器、电子放大器等放大装置进行反馈控制。到上世纪五十年代,机组供电直流调速系统的控制技术发展到了巅峰的阶段,也正是它的缺点暴露的最充分的时候:它的设备多、体积大、费用高、效率低、安装须地基、运行有噪音、

维修不方便等等日益称为生产上的负担。为了解决这些矛盾,人们开始采用水银整流器和闸流管等静止变流装置来代替旋转变流机组,形成所谓的离子传动控制系统。1957年,可控的半导体器件-晶闸管问世,由它组成的静止式可控整流装置无论在运行性能上还是在可靠性上都具有明显的优势,60年代成了晶闸管的时代,这种静止式变流装置供电的直流调速系统称为晶闸管-电动机调速系统(简称V-M系统)。70年代以来,国际上电力电子技术突飞猛进,推出了新一代的开和关都能控制的“全控式”电力电子器件,如门极可关断晶闸管(GTO)、大功率晶体管(GTR)、场效应晶闸管(P-MOSFET)等,自从全控型电力电子器件问世以后,就出现了采用脉冲宽度调制的高频开关控制方式,形成了脉宽调制变换器-直流电动机调速系统,简称直流脉宽调速系统,或直流PWM调速系统[1][3][5][10]。

1.2 可编程控制器PLC

可编程序控制器的英文为Programmable Controller,在二十实际七十至八十年代一直简称为PC。由于到90年代,个人计算机发展起来,也简称为PC;加之可编程序的概念所涵盖的范围太大,所以美国AB公司首次将可编程序控制器定名为可编程序逻辑控制器(PLC,Programmable Logic Controller),为了方便,仍简称PLC为可编程序控制器[6][15]。

1.2.1 PLC的发展概述

1968年美国GM(通用汽车)公司提出取代继电器控制装置的要求,第二年美国数字公司研制出了第一土改可编程序控制器,满足了GM公司装配线的要求。随着集成电路技术和计算机技术的发展,现在已有第五代PLC产品了。在八十年代至九十年代中期,是PLC发展最快的时期,年增长率一直保持为30~40%。由于PLC人机联系处理模拟能力和网络方面功能的进步,挤占了一部分DCS的市场(过程控制)并逐渐垄断了污水处理等行业,但是由于工业PC(IPC)的出现,特别是近年来现场总线技术的发展,IPC和FCS也挤占了一部分PLC市场,所以近年来PLC增长速度总的说是渐缓。目前全世界有200多厂家生产 300多品种PLC产品,主要应用在汽车(23%)、粮食加工(16.4%)、化学/制药(14.6%)、金属/矿山(11.5%)、纸浆/造纸(11.3%)等行业。我国市场上流行的有如下几家PLC

产品:

施耐德公司,包括早期天津仪表厂引进莫迪康公司的产品,目前有Quantum、Premium、Momentum等产品;

罗克韦尔公司(包括AB公司)PLC产品,目前有SLC、Micro Logix、Control Logix等产品;

西门子公司的产品,目前有SIMATIC S7-400/300/200系列产品;

GE公司的产品;日本欧姆龙、三菱、富士、松下等公司产品[6]。

1.2.2 PLC的特点

1. 编程方法简单易学

梯形图是使用最多的PLC编程语言,其电路符号和表达方式与继电器电路原理图相似,梯形图语言形象可观,易学易懂,熟悉继电器电路图的电气技术人员只要花几天时间就可以熟悉梯形图语言,并用来编制用户程序[6][17]。

2. 可靠性高,抗干扰能力强

高可靠性是电气控制设备的关键性能。PLC由于采用现代大规模集成电路技术,采用严格的生产工艺制造,内部电路采取了先进的抗干扰技术,具有很高的可靠性。例如三菱公司生产的F系列PLC平均无故障时间高达30万小时。一些使用冗余CPU的PLC的平均无故障工作时间则更长。从PLC的机外电路来说,使用PLC构成控制系统,和同等规模的继电接触器系统相比,电气接线及开关接点已减少到数百甚至数千分之一,故障也就大大降低。此外,PLC带有硬件故障自我检测功能,出现故障时可及时发出警报信息。在应用软件中,应用者还可以编入外围器件的故障自诊断程序,使系统中除PLC以外的电路及设备也获得故障自诊断保护。这样,整个系统具有极高的可靠性也就不奇怪了。

3. 配套齐全,功能完善,适用性强

PLC发展到今天,已经形成了大、中、小各种规模的系列化产品。可以用于各种规模的工业控制场合。除了逻辑处理功能以外,现代PLC大多具有完善的数据运算能力,可用于各种数字控制领域。近年来PLC的功能单元大量涌现,

使PLC渗透到了位置控制、温度控制、CNC等各种工业控制中。加上PLC通信能力的增强及人机界面技术的发展,使用PLC组成各种控制系统变得非常容易。

4. 易学易用,深受工程技术人员欢迎

PLC作为通用工业控制计算机,是面向工矿企业的工控设备。它接口容易,编程语言易于为工程技术人员接受。梯形图语言的图形符号与表达方式和继电器电路图相当接近,只用PLC的少量开关量逻辑控制指令就可以方便地实现继电器电路的功能。为不熟悉电子电路、不懂计算机原理和汇编语言的人使用计算机从事工业控制打开了方便之门。

5. 系统的设计、建造工作量小,维护方便,容易改造

PLC用存储逻辑代替接线逻辑,大大减少了控制设备外部的接线,使控制系统设计及建造的周期大为缩短,同时维护也变得容易起来。更重要的是使同一设备经过改变程序改变生产过程成为可能。这很适合多品种、小批量的生产场合。

6. 体积小,重量轻,能耗低

以超小型PLC为例,新近出产的品种底部尺寸小于100mm,重量小于150g,功耗仅数瓦。由于体积小很容易装入机械内部,是实现机电一体化的理想控制设备。

1.3 选题背景及论文主要内容

1.3.1 选题背景

在现代工业中,为了实现各种生产工艺过程的要求,需要采用各种各样的生产机械,这些生产机械大多采用电动机拖动。多数生产机械的任务是将电能转换为机械能,以机械运动的形式来完成各种工艺要求。随着工业技术的不断发展,各种生产机械根据其工艺特点,对生产机械和拖动的电动机也不断提出各种不同的要求,有的要求电动机能迅速启动、制动和反转;有的要求多台电动机之间的转速按一定得比例协调运动;有的要求电动机达到极慢的稳速运动;有的要求电动机启、制动平稳,并能准确地停止在给定的位置。上述这些不通的工业要求,都是靠电动机及其控制系统和机械传动装置实现的。可见各种拖动系统都是通过

控制转速来实现的,因直流电动机具有良好的起、制动性能,宜于在大范围内平滑调速的特点,故被广泛的应用在需要调速或快速正方向的电力拖动领域中[1]。

鉴于以上原因,本文对直流拖动控制系统进行研究,并对系统进行改造和升级。从直流调速系统的动态性能来讲,具有一定得意义。

1.3.2 论文的主要内容

本文是设计一个基于PLC的控制电路为电流、转速双闭环、主电路为双极性可逆H形直流脉宽调速的可逆直流调速系统。采用专用集成驱动电路,本设计选用汤姆森公司的UAA4002型产品。对直流电机调速系统进行了研究和设计,具体做了以下的工作:

1.对双闭环控制的PWM直流调速系统进行了理论研究。

2.对现代PLC控制技术进行了研究。

3.采用visio 2003 软件对相关电路进行设计、绘制。

4.对调速系统的PLC控制部分进行设计。

第 2 章 直流调速系统 人为机械特性方程式为:

n n T K K R R K U n N

f e a ad N e N ?-=Φ+-Φ=02

式中,U N 、φN ——额定电枢电压、额定磁通量;

K e 、K t ——与电机有关的常数;

R ad 、R a ——电枢外加电阻、电枢内电阻;

n 0、Δn 载转速、转速降;

T —周期。

可得,当分别改变U N 、ΦN 和R ad 时,可以得到不同的转速!,从而实现对速度

的调节。由于Φ=F(I f ),当改变励磁电流I f 时,可以改变磁通量Φ的大小,从而达

到改变磁通调速的目的。但由于励磁线圈发热和电动机磁饱和的限制,电动机的励磁电流I f 和磁通量Φ只能在低于其额定值的范围内调节,故只能弱磁调速。而

对于调节电枢外加电阻R ad 时,会使机械特性变软,导致电机带负载能力减弱。

特性,通过改变电枢电压调节直流电机速度的方法被广泛采用。改变电枢电压可通过多种途径实现,如利用晶闸管供电速度控制系统、大功率晶体管速度控制系统、直流发电机供电速度控制系统及晶体管直流脉宽调速系统等[1][3]。

2.1 调速系统的性能指标

一台需要转速控制的设备,其生产工艺对控制性能都有一定的要求,例如本文设计的调试系统要求稳态无静差,动态过渡过程时间t s ≤0.1s,电流超调量

i σ%≤5%,空载起动到额定转速时的转速超调量n σ%≤10%。所有这些要求,都可以转化成运动控制系统的稳态和动态指标,作为设计系统时的依据。

各种生产机械对调速系统提出了不同的转速控制要求,归纳起来有以下三个方面[1][3]:

(1)调速。在一定的最高转速和最低转速范围内,分档(有级)地或者平

滑(无级)地调节转速。

(2)稳速。以一定的精度在所需转速上稳定地运行,不因各种可能的外来干扰(如负载变化、电网电压波动等)而产生过大的转速波动,以确保产品质量。

(3)加、减速控制。对频繁起、制动的设备要求尽快地加、减速,缩短起、制动时间,以提高生产率;对不宜经受剧烈速度变化的生产机械,则要求起、制动尽量平稳。

以上三个方面有时都须具备,有时只要求其中一项或两项,其中有些方面之间可能还是相互矛盾的。为了定量地分析问题,一般规定几种性能指标,以便衡量一个调速系统的性能。

2.1.1 稳态性能指标

运动控制系统稳定运行时的性能指标称为稳态指标,又称静态指标。例如,调速系统稳态运行时调速范围和静差率,位置随动系统的定位精度和速度跟踪精度,张力控制系统的稳态张力误差等等。下面我们具体分析调速系统的稳态指标[1][3][5]。

(1)调速范围D

生产机械要求电动机能达到的最高转速n

max 和最低转速n

min

之比称为调速范

围,用字母D表示,即

其中nmax和nmin一般指额定负载时的转速,对于少数负载很轻的机械,例

如精密磨床,也可以用实际负载的转速。在设计调速系统时,通常视n

max

为电动

机的额定转速n

nom

(2)静差率S

当系统在某一转速下运行时,负载由理想空载变到额定负载时所对应的转速

降落Δn

nom 与理想空载转速n

称为静差率S,即

显然,静差率表示调速系统在负载变化下转速的稳定程度,它和机械特性的硬度有关,特性越硬,静差率越小,转速的稳定程度就越高。

由此可见,调速范围和静差率这两项指标并不是孤立的,必须同时提高才有意义。

2.1.2 动态指标

运动控制系统在过渡过程中的性能指标称为动态指标,动态指标包括跟随性能指标和抗扰性能指标两类[1][3]。

(1)跟随性能指标

在给定信号(或称参考输入信号)R(t)的作用下,系统输出量C(t)的变化情况用跟随性能指标来描述。对于不同变化方式的给定信号,其输出响应不一样。通常,跟随性能指标是在初始条件为零的情况下,以系统对单位阶跃输入信号的输出响应(称为单位阶跃响应)为依据提出的,如图2-1所示。具体的跟随性指标有下述几项:

图 2-1 随性能指标的单位阶跃响应曲线

1.上升时间t

r

单位阶跃响应曲线从零起第一次上升到稳态值所需的时间称为上升时间,它表示动态响应的快速性。

2.超调量

动态过程中,输出量超过输出稳态值的最大偏差与稳态值之比,用百分数表示,叫做超调量,即

超调量用来说明系统的相对稳定性,超调量越小,说明系统的相对稳定性越好,即动态响应比较平稳。

3.调节时间t

s

调节时间又称过渡过程时间,它衡量系统整个动态响应过程的快慢。原则上它应该是系统从给定信号阶跃变化起,到输出量完全稳定下来为止的时间,对于线性控制系统,理论上要到才真正稳定。实际应用中,一般将单位阶跃响应曲线衰减到与稳态值的误差进入并且不再超出允许误差带(通常取稳态值的±5%或±2%)所需的最小时间定义为调节时间。

(2)抗扰性能指标

图 2-2 突加扰动的动态过程和抗扰性能指标

1.动态降落△C

max

%

系统稳定运行时,突加一个约定的标准的负扰动量,在过渡过程中所引起的

输出量最大降落值△C

max 叫做动态降落,用输出量原稳态值C

∞1

的百分数来表示。

输出量在动态降落后逐渐恢复,达到新的稳态值C ∞2(C ∞1- C ∞2)是系统在该扰动

作用下的稳态降落。

2.恢复时间t v

从阶跃扰动作用开始,到输出量基本上恢复稳态,距新稳态值C ∞2之差进入

某基准量Cb 的±5%(或±2%)范围之内所需的时间,定义为恢复时间t v ,其中Cb 称为抗扰指标中输出量的基准值。

调速系统的动态指标以抗扰性能为主,而随动系统指标则以跟随性能为主。

2.2 PWM 直流调速系统

2.2.1 直流电动机的PWM 控制原理

制调速系统的主电路采用脉宽调制式变换器,简称PWM 变换器。图2-3是脉宽调制型调速系统原理图和波形图。开关VT 表示脉宽调制器,调速系统的外加电源Us ,为固定的直流电压,当开关VT 闭合时,直流电流经过VT 给电动机M 供电;开关VT 断开时,直流电源供给M 的电流被切断,M 的储能经二极管VD 续流,电枢两端电压接近为零。如果开关VT 按照某固定频率开闭而改变周期内的接通时间时,控制脉冲宽度相应改变,从而改变了电动机两端平均电压,达到调速目的[1][2][12]。 T +

_+_

VT VD U d M __----+U s

u

t

t on

U d 控制电路

图 2-3(a) 原理图 (b) 波形图

2.2.2 PWM 直流调速系统的组成

由GTR 构成的脉宽调速系统的组成如下图2-4[1][2][12],其中GM 为三角波振荡器,UPW 为脉宽调制器, GD 为基极驱动器, PWM 为脉宽调制变换器,FA 为瞬时动作的限流保护环节。电动机M 的转速n 由测速収电机TG 测量,速度反馈信号U n 与速度给定电压U m * 同时加在速度调节器ASR 的输入端,构成调速系统的速度外环。电动机的电枢电流I a 由电流传感器TA 检测,其输出电压U i 与速度调节器输出电压U i *同时加到电流调节器ACR 的输入端,构成调速系统的电流内环。 M __---

TG __---

FA

PWM GD DLD UPW GM

ACR ASR

U s

U d TA U c U i U i *__U n U n *

++

图 2-4 双闭环控制的脉宽调速系统原理框图

(一)锯齿波发生器,如图2-5,它是由两个运算放大器组成,它们形成自激震荡,A 1输出正负对称的方波脉冲,A 2输出锯齿波。这种锯齿波发生器线性度好,调整简便,在工程中应用广泛,其震荡频率为[4]

)

2(4)(5414542R R CR R R R R f X ++=α (2-1) 式中,X α为电位器R P 的分压系数。

+

-

+A 1-+A 2R bal4R bal3R 1R 2R 3R 4R 5C

VZ 1

VZ 2R P αX U o2

图2-5 锯齿波发生器

(二)脉宽调制器[4]

这是最关键的部件,它是将输入直流控制信号转换成为与之成比例的方波电压信号,以便对电力晶体管进行控制,从而得到希望的方波输出电压。实现上述电压—脉宽变换功能的环节称为脉冲宽度调制器,简称脉宽调制器。

-+

A 3

U PWM R 0

R 0

R 0R b U sa U b U c

图2-6 脉宽调制器

图2-6为脉宽调制器的原理图,它是一个电压-脉宽变换电路,由ACR 输出的控制电压U c 进行控制,其输出电压的脉冲宽度与U c 成正比。运算放大器A3工作在开环状态,它能输出正、负的饱和电压。它的输入端有三个信号,除U c 外,还有调制信号U a (也就是图2-5的U o2)和偏移电压U b 。

控制电压U c 的极性与幅值随时可变,与U o2相减,从而在运算放大器A 3的输出端得到周期不变、脉冲宽度可变的调制输出电压U pwm 。为了在U c =0时电压比较器的输出端得到正、负半周期脉冲宽度相等的调制输出电压U pwm ;另一个输入信号端是加一负的偏移电压U b ,其值为

max 2

1sa b U U -= 这时U pwm 如图2-7a 所示。

当U c >0时,使输入端合成电压为正的宽度增大,即锯齿波过零的时间提前,经比较器倒相后,在输出端得到正半波比负半波窄的调制输出电压(图2-7b )。

当U c <0时,输入端合成电压被降低,正的宽度减小,锯齿波过零时间后移,

经倒相,得到正半波比负半波宽的输出信号(图2-7c )。

u sa u pwm c) u c <0

t t t t t t t t t u sa

u sa o o o o o o

o

o

o u sa +u c +u b

u sa +u c +u b a) u c =0b )u c >0u sa +u c +u b u pwm u pwm

图 2-7 锯齿波脉宽调制波形图

(二)基极驱动电路[4][2][11]

脉宽调制器输出的脉冲信号经过信号分配和逻辑延时后,送给基极驱动电路作功率放大,以驱动主电路的电力晶体管,每个晶体管应有独立的基极驱动电路。为了确保晶体管在开通时能迅速达到饱和导通,关断时能迅速截止,正确设计基极驱动电路时非常重要的。基极驱动电路有多种,下面介绍一种集成电路,它可以使电力晶体管具有多种自保护功能,且保证电力晶体管运行于参数最优的条件下。

大规模集成电路UAA4002是为一塑封16引线双列直插式集成电路,是由法国汤姆森半导体公司研制和生产。其端子排列与原理图如图2-8所示。

R T

I NH

1234567816151413121110

9U A A 4002I B1U U CC U CE I C R SD R D

GND I B2

E

C T R -

U -

SH

程序流程图PLC 的型号选择PLC 模块选择I/O 分配,设置和安装

系统联机调试

系统投入运行软件设置编辑应用程序程序的修改和调试

确定控制对象及控制范围

软件设计硬件设计

图 2-8 UAA4002模块

14脚:接正电源;2脚:接负电源;9脚:接零,提供参考的电位;5脚:输入端;3脚:封锁端,高电位时完全封锁输出信号,零电位时选择电位输入;16脚:经一小电阻RB 接被驱动功率晶体管基极,输出正向驱动电流I B1;1脚:经一

小电感L 接驱动功率晶体管基极,输出反向基极关断电流I B2;15脚(V+):是UAA4002

输出级电源输入端,经一外接电阻接到正电源V CC ;7脚:最小导通时间整定值。

它经一电阻RT 接零,从而整定t onmin ,在1~12μs间调节。

为了使开关辅助网络中的电容充分放电,逻辑处理器的输出脉冲有一最小的宽度,这个最小导通时间必须至少是RCD 网络时间常数的四倍。

t onmin 保护是最高优先保护,在t onmin 内无任何其它保护能中止导通t onmin 保护功

能不能舍弃不用。8脚:最大导通时间整定端。它经一电容C T 接地。t onmax 保是一重

要保护。11脚:退饱和保护阐值整定端。它经一电阻RSD 接零,从而整定退饱和保护阂值;12脚:功率晶体管集电极电流限制端。电流信号输入为负,绝对值>0. 2V 时,过流保护动作。若封锁该功能,12脚直接接地;13脚:通过抗饱和二极管接被驱动晶体管的集电极。起到抗饱和作用。

(三)脉宽调制变换器[1][3][4][5][10]

可逆PWM 变换器主电路的结构有H 型,T 型等类型,本论文主要讨论的是常用的H 型变换器,它是由4个电力晶体管和4个续流二极管组成的桥式电路。H 型变频器在控制方式上分双极式、单极式和受限单级式三种。这里着重分析双极式H 型PWM 变换器。

u b3Us

u b1

VT1VT2

VD1VD2

M__

A B

u b2

u b4

VT4

VT3VD3VD4

i a

1

24

3

图 2-9 H 型双极性可逆PWM变换器

H型PWM变换器的开关器件分为VT1,VT4和VT2,VT3两组进行通、断控制。组内两器件VTl,VT4同时导通或关断,两组间的器件VTI,VT4和VT2,

VT3则是交替的导通和关断,其栅极驱动信号规律为u b1=u b4,u b2=u b3=-u b1。工作状态与波形如下:

(a) 正向运行,如图2-10所示

第1阶段,当电机工作在轻载情况下,在0≤t

第2阶段,在t on≤t < T期间,u bl、u b4为负,VTI和VT4截止;u b2、u b3为正,在电枢电感L a的作用下,电枢电流沿回路2(经VD2和VD3 )流通,电动机两端电压U AB= -U S。

(b) 反向运行,如图2-11所示

第1阶段,在0≤t

d

沿回路4(经VD4和VD1)流通,电动机两端电压U AB = +U S。

第2阶段,在t on≤t < T期间,u b2 、u b3为正,VT2和VT3导通,u bl、u b4为负,使VTl和VT4保持截止。电枢电流-i d沿回路3(经VT2和VT3)流通,

电动机两端电压U AB = +U S t

-U S

U d

E

i d

T t on +U S

o U S /i

图 2-10 正向电动运行时电压、电流波形 U S /i +U S

t on T

o t

i d

E

U d -U S

图 2-11 反向电动运行时电压、电流波形

双极式控制方式是指在一个PWM 周期里,电机电枢的电压极性呈正负变化。因此其平均电压U d 计算公式为:

s s on s on on d U U T

t U T t T T t U )12()12()(-=-=--=α 式中a 一t on /T 为PWM 波形的占空比;

由上式可知,电枢绕组所受的平均电压取决于占空比α的大小,当α=0时,U d =Us ,电动机反行,且速度最大;当α=1时,U d =Us ,电动机正行,且速度最

大;当a=1/2时,U d = 0,电动机不动。但电枢两端的瞬时电压和流过电枢的瞬时

电流都不为零,而是交变的。这个交变电流的平均值为零,不产生平均转矩,徒然增加了电动机的损耗,当然是不利的。但是这个交变电流使电动机产生高频微振,可以消除电动机正、反向切换时的静摩擦死区,起着所谓“动力润滑”的作用,有利于快速切换。

双极式可逆PWM 变换器的优点是:电流一定连续,可以使电动机实现四 象限动行;电动机停止时的微振交变电流可以消除静摩擦死区;低速时由于每个电力电子器件的驱动脉冲仍较宽而有利于保证器件的可靠导通;低速平稳性好,可达到很宽的调速范围。双极式可逆PWM 变换器存在如下缺点:在工作过程中,四个电力电子器件可能都处于开关状态,开关损耗大,而且容易发生上、下两只电力电子器件直通的事故,为了防止直通,在上下桥臂的驱动脉冲之间,应设置逻辑延时。

2.2.3 PWM 调速系统的主要参数

采用电力晶体管的PWM 调速系统不同于其它直流调速系统的特殊问题主要有:1.电流与转速的脉动量计算;2.UPW 和PWM 变换器的传递函数;3.电力晶体管的安全区与缓冲电路;4.电力晶体管的开关过程,开关损耗及最佳开关频率;

5.泵升电压限制等。针对上面的问题就涉及到以下的参数[2]。

1.对不可逆和单极式可逆PWM 调速系统在电流连续情况下的电流脉动与转速脉动进行分析,得到

s l d I T T

i )1(ρρ-≈? (2-2) os l m T T T ωρρω812)(-≈

? (2-3)

当ρ=0.5时,脉动量达最大 s l

d I T T i 4max =? (2-4)

l

m os T T T 322max ωω=? (2-5) 对双极式可逆PWM 调速系统在电流连续情况下的电流脉动与转速脉动进行分析,得到 s l

d I T T i 2)1(2ρ-≈? (2-6) l m os T T T 162

max ωω=? (2-7) s l

d I T T i 2max =? (2-8) 2.脉宽调制器和PWM 变换器合起来可以看成是一个滞后环节,其传递函数在满足T c 31≤ω时,可近似为 1

)(+=Ts K s W PWM PWM (2-9) 求出脉宽调制变换器的传递函数后,便可画出双闭环脉宽调速系统的动态结构图

[8]。如图2-12所示。 U n *(s)+

+

__U i *(s)ASR ACR U ct (s)U d (s)E(s)

I d (s)I L (s)+n(s)

11

+s T on 11+s T oi 1+s T K pwm pwm 11+s T R l s T R

m e C 11

+s T oi β

1

+s T on α

图 2-12 双闭环脉宽调速系统的动态结构图

3.分析PWM 变换器中电力晶体管的开关过程,并对各种负载下的开关损耗进行计算,从而得出总损耗最小的最佳开关频率。对单级式变换器有

3

2)(26.0f r l s op t t T f +=α (2-9)

对双极式有

3

2)(332.0f r l s op t t T f +=α (2-10) 两式中nom s

s I I =α

2.3 双闭环直流脉宽调速系统

一般地, 静态性能较好的调速系统都采用转速、电流双闭环控制方案, 脉宽调速系统也不例外。脉宽调制变换器-直流电动机调速系统,简称直流脉宽调速系统,或直流PWM 调速系统,PWM 在很多方面有较大优越性[1][3]:

(1)主电路线路简单,需用的功率器件少。

(2)开关频率高,电流容易连续,谐波少,电机损耗及发热都较小。

(3)低速性能好,稳速精度高,调速范围宽,可达1:10000左右。

(4)若与快速响应的电动机配合,则系统频带宽,动态响应快,动态抗绕能力强。

(5)功率开关器件工作在开关状态,导通损耗小,当开关频率适当时,开关损耗也不大,因而装置效率高。

(6)直流电源采用不控整流时,电网功率因素比相控整流器高。

2.3.1 电流、转速反馈环节

根据自动控制原理,转速反馈控制的闭环系统是按被调量的偏差进行控制的系统,只要被调量出现偏差,它就会自动产生纠正偏差的作用。转速降落整是由负载引起的转速偏差,因此,闭环调速系统应该减少转速降落[1][3][7]。

直流电动机全电压启动时,如果没有限流措施,会产生很大的冲击电流,这不仅对电动机不利,对过载能力低的电力电子器件来说也不利。采用转速负反馈的闭环调速系统突然加上负载电压时,由于惯性,转速不可能立即建立起来,反馈电压仍为零。而且有些生产机械的电动机可能会出现堵转情况,由于闭环系统的静特性很硬,若无限流环节,电流将远远超过允许值。如果只依靠过流继电器或熔断器保护,一过载就跳闸,也会给工作带来不便。所以系统中必须有自动限

直流电动机调速课程设计

《电力拖动技术课程设计》报告书 直流电动机调速设计 专业:电气自动化 学生姓名: 班级: 09电气自动化大专 指导老师: 提交日期: 2012 年 3 月

前言 在电机的发展史上,直流电动机有着光辉的历史和经历,皮克西、西门子、格拉姆、爱迪生、戈登等世界上著名的科学家都为直流电机的发展和生存作出了极其巨大的贡献,这些直流电机的鼻祖中尤其是以发明擅长的发明大王爱迪生却只对直流电机感兴趣,现而今直流电机仍然成为人类生存和发展极其重要的一部分,因而有必要说明对直流电机的研究很有必要。 早期直流电动机的控制均以模拟电路为基础,采用运算放大器、非线性集成电路以及少量的数字电路组成,控制系统的硬件部分非常复杂,功能单一,而且系统非常不灵活、调试困难,阻碍了直流电动机控制技术的发展和应用范围的推广。随着单片机技术的日新月异,使得许多控制功能及算法可以采用软件技术来完成,为直流电动机的控制提供了更大的灵活性,并使系统能达到更高的性能。采用单片机构成控制系统,可以节约人力资源和降低系统成本,从而有效的提高工作效率。 直流电动机具有良好的起动、制动性能,宜于在大范围内平滑调速,在许多需要调速或快速正反向的电力拖动领域中得到了广泛的应用。从控制的角度来看,直流调速还是交流拖动系统的基础。早期直流电动机的控制均以模拟电路为基础,采用运算放大器、非线性集成电路以及少量的数字电路组成,控制系统的硬件部分非常复杂,功能单一,而且系统非常不灵活、调试困难,阻碍了直流电动机控制技术的发展和应用范围的推广。随着单片机技术的日新月异,使得许多控制功能及算法可以采用软件技术来完成,为直流电动机的控制提供了更大的灵活性,并使系统能达到更高的性能。采用单片机构成控制系统,可以节约人力资源和降低系统成本,从而有效的提高工效率。

关于matlab的直流电机调速系统仿真设计开题报告

重庆理工大学 毕业设计(论文)开题报告 题目直流电机调速系统仿真设计 1、本课题国内外的研究现状分析 直流调速系统凭借优良的调速特性,调速平滑、范围宽、精度高、过载能力大、动态性能好、易于控制以及良好的起、制动性能等优点,能满足生产过程自动化系统中各种不同的特殊运行要求,所以在电气传动中获得了广泛应用。为了提高直流调速系统的动静态性能指标,通常采用闭环控制系统(包括单闭环系统和多闭环系统)。对调速指标要求不高的场合,采用单闭环系统,而对调速指标较高的则采用多闭环系统。直流调速系统在理论上和实践上都比较成热,从控制技术的角度来看,它又是交流调速系统的基础,因此,直流调速系统的应用研究有实际意义。 自从MATLAB的Simulink推出以后,动态系统的仿真就变得非常容易了。因其含有极为丰富的专用于控制工程与系统分析的函数,具有强大的数学计算功能,且提供方便的图形绘制功能,只要在Simulink中画出系统的动态结构图模型,编写极简单的程序,即可对该系统进行仿真,效率极高,环境友好,从而给系统的设计和校正带来很大的方便。MATLAB在学术和许多实际领域都得到广泛应用,已成为国际控制界应用最广的语言和工具。

2、本人对课题任务书提出的任务要求及实现目标的可行性分析(只限工科类) 本课题要求完成直流电机双闭环调速系统的工程设计并利用MATLAB实现仿真,通过选择及设计各个模块的系统以及对参数的选择,最终得到预期的仿真结果。 任务要求如下: (1)直流电机调速原理分析 (2)双闭环调速系统特性分析 (3)系统总体方案设计 (4)系统仿真设计 可行性分析: 本课题是针对直流电动机设计的双闭环调速系统,通过MATLAB软件对所设计的系统进行仿真验证。通过学习《电机与拖动》、《电力电子技术》、《电力拖动自动控制系统》等相关课程基本掌握了电机调速的一些知识,并对直流电机调速系统有了一定的了解。同时,通过自学《电机与拖动基础及MATLAB仿真》以及《交直流调速系统与MATLAB仿真》使我对MATLAB软件有了一定的了解,并能通过软件对本课题实现仿真,以上所述便能基本完成本课题的任务要求。

毕业设计基于单片机的直流电机调速系统设计

河南科技大学 2009 届本科毕业论文 论文题目:基于单片机的直流电机调速系统设计 学生姓名: 所在院系:信息工程学院 所学专业:计算机科学与技术 导师姓名: 完成时间:2009-05-22

摘要 本文主要研究了利用MCS-51系列单片机控制PWM信号从而实现对直流电机转速进行控制的方法。文章中采用了专门的芯片组成了PWM信号的发生系统,并且对PWM信号的原理、产生方法以及如何通过软件编程对PWM信号占空比进行调节,从而控制其输入信号波形等均作了详细的阐述。此外,本文中还采用了芯片IR2110作为直流电机正转调速功率放大电路的驱动模块,并且把它与延时电路相结合完成了在主电路中对直流电机的控制。另外,本系统中使用了测速发电机对直流电机的转速进行测量,经过滤波电路后,将测量值送到A/D 转换器,并且最终作为反馈值输入到单片机进行PI运算,从而实现了对直流电机速度的控制。在软件方面,文章中详细介绍了PI运算程序,初始化程序等的编写思路和具体的程序实现。 关键词:PWM信号,测速发电机,PI运算 1

The Design of Direct Current Motor speed Regulation System Based On SCM Chenli School of Information and Engineering Abstract This article mainly introduces the method to generate the PWM signal by using MCS-51 single-chip computer to control the speed of a D.C. motor. It also clarifies the principles of PWM and the way to adjust the duty cycle of PWM signal. In addition, IR2110 has been used as an actuating device of the power amplifier circuit which controls the speed of rotation o f D.C. motor. What’s more, tachogenerator is used in this system to measure the speed of D.C. motor. The result of the measurement is sent to A/D converter after passing the filtering circuit, and finally the feedback single is stored in the single-chip computer and participates in a PI calculation. As for the software, this article introduces in detail the idea of the programming and how to make it. Key words:PWM signal,tachogenerator,PI calculation 2

直流电机调速控制系统设计

成绩 电气控制与PLC 课程设计说明书 直流电机调速控制系统设计 . Translate DC motor speed Control system design 学生姓名王杰 学号20130503213 信电工程学院13自动 学院班级 化 专业名称电气工程及其自动化 指导教师肖理庆

201 6年 6 月 14 日

目录 1 直流电机调速控制系统模型 0 1.1 直流调速系统的主导调速方法 0 因此,降压调速是直流电机调速系统的主导调速方法。 0 1.2 直流电机调速控制的传递函数 0 1.2.1 电流与电压的传递函数 (1) 1.2.2 电动势与电流的传递函数 (1) 由已学可知,单轴系统的运用方程为: (1) 1.3 直流调速系统的控制方法选择 (3) 1.3.1 开环直流调速系统 (3) 1.3.2 单闭环直流调速系统 (3) 由前述分析可知,开环系统不能满足较高的调速指标要求,因此必须采取闭环控制系统。图1-4所示的是,转速反馈单闭环调速系统,其是一种结构相对复杂的反馈控制系统。转速控制是动态性能的控制,相比开环系统,速度闭环控制的控制精度及控制稳定性要好得多,但缺乏对于静态电流I的有效控制,故这类系统被称之为“有静差”调速系统。 (4) 1.3.3 双闭环直流调速系统 (4) 图1-4 双闭环控制直流调速控制系统 (4) 1.3.3.1 转速调节器(ASR) (4) 1.3.3.1 电流调节器(ACR) (4) 1.4 直流电机的可逆运行 (5) 1.2 ×××××× (7) 1.2.1 电流与电压的传递函数 (7) (8) 3 PLC在直流调速系统中的应用 (8) 2 ××××× (9) 2.1 ×××××× (9) 2.1.1 ×××× (9) 3 ××××× (11) 3.1 ×××××× (11) 3.1.1 ×××× (11) 参考文献 (12) 附录 (13) 附录1 (13)

单片机课程设计完整版《PWM直流电动机调速控制系统》

单片机原理及应用课程设计报告设计题目: 学院: 专业: 班级: 学号: 学生姓名: 指导教师: 年月日 目录

设计题目:PWM直流电机调速系统 本文设计的PWM直流电机调速系统,主要由51单片机、电源、H桥驱动电路、LED 液晶显示器、霍尔测速电路以及独立按键组成的电子产品。电源采用78系列芯片实现+5V、+15V对电机的调速采用PWM波方式,PWM是脉冲宽度调制,通过51单片机改变占空比实现。通过独立按键实现对电机的启停、调速、转向的人工控制,LED实现对测量数据(速度)的显示。电机转速利用霍尔传感器检测输出方波,通过51单片机对1秒内的方波脉冲个数进行计数,计算出电机的速度,实现了直流电机的反馈控制。 关键词:直流电机调速;定时中断;电动机;波形;LED显示器;51单片机 1 设计要求及主要技术指标: 基于MCS-51系列单片机AT89C52,设计一个单片机控制的直流电动机PWM调速控制装置。 设计要求 (1)在系统中扩展直流电动机控制驱动电路L298,驱动直流测速电动机。 (2)使用定时器产生可控的PWM波,通过按键改变PWM占空比,控制直流电动机的转速。 (3)设计一个4个按键的键盘。 K1:“启动/停止”。 K2:“正转/反转”。 K3:“加速”。 K4:“减速”。 (4)手动控制。在键盘上设置两个按键----直流电动机加速和直流电动机减速键。在

手动状态下,每按一次键,电动机的转速按照约定的速率改变。 (5)*测量并在LED显示器上显示电动机转速(rpm). (6)实现数字PID调速功能。 主要技术指标 (1)参考L298说明书,在系统中扩展直流电动机控制驱动电路。 (2)使用定时器产生可控PWM波,定时时间建议为250us。 (3)编写键盘控制程序,实现转向控制,并通过调整PWM波占空比,实现调速; (4)参考Protuse仿真效果图:图(1) 图(1) 2 设计过程 本文设计的直流PWM调速系统采用的是调压调速。系统主电路采用大功率GTR为开关器件、H桥单极式电路为功率放大电路的结构。PWM调制部分是在单片机开发平台之上,运用汇编语言编程控制。由定时器来产生宽度可调的矩形波。通过调节波形的宽度来控制H电路中的GTR通断时间,以达到调节电机速度的目的。增加了系统的灵活性和精确性,使整个PWM脉冲的产生过程得到了大大的简化。 本设计以控制驱动电路L298为核心,L298是SGS公司的产品,内部包含4通道逻辑驱动电路。是一种二相和四相电机的专用驱动器,即内含二个H桥的高电压大电流双全桥式驱动器,接收标准TTL逻辑电平信号,可驱动46V、2A以下的电机。可驱动2个电机,OUTl、OUT2和OUT3、OUT4之间分别接2个电动机。5、7、10、12脚接输入控制电平,控制电机的正反转,ENA,ENB接控制使能端,控制电机的停转。 本设计以AT89C52单片机为核心,如下图(2),AT89C52是一个低电压,高性能 8位,片内含8k bytes的可反复擦写的只读程序存储器和256 bytes的随机存取数据存储器(),器件采用的高密度、非易失性存储技术生产,兼容标准MCS-51指令系统,片内置通用8位中央处理器和Flash存储单元,AT89C52单片机在电子行业中有着广泛的应用。 图(2) 对直流电机转速的控制即可采用开环控制,也可采用闭环控制。与开环控制相比,速度控制闭环系统的机械特性有以下优越性:闭环系统的机械特性与开环系统机械特性相比,其性能大大提高;理想空载转速相同时,闭环系统的静差(额定负载时电机转速降落与理想空载转速之比)要小得多;当要求的静差率相同时, 闭环调速系统的调速范

直流电动机无级调速毕业设计

毕业设计(论文)任务书 设计(论文)题目:直流电动机无级调速 1.设计(论文)的主要任务及目标 (1) 本次的设计任务就是直流电动机无级调速的设计,使其能更好的为我们的生产和生活服务。 (2) 本次的设计目的就是要求设计要使得电动机转速可以由零平滑调至额定转速,能实现高速起动,具有较高的调速精度。 2.设计(论文)的基本要求和内容 (1) 直流电动机的基本知识 (2) 直流电动机的运行原理 (3) 主电路以及控制电路的设计 3.主要参考文献 [1] 张家生.电机原理与拖动基础.北京邮电学院出版社,2006年 [2] 唐介.电机与拖动. 北京:高等教育出版社,2003年 [3] 陈世元.电机学.中国电力出版社,2004年 [4] 徐邦荃.直流调速系统与交流调速系统.华中科技大学出版社,2008年 [5] 赵影.电机与电力拖动. 北京:国防工业出版社,2006年 4.进度安排 设计(论文)各阶段名称起止日期 1 论文初稿2012年12月27日 2 第一次修改2012年12月30日 3 第二次修改2013年01月08日 4 第三次修改2013年02月17日 5 论文终稿2013年03月16日 I

直流电动机无极调速 摘要 本设计主要是运用调速系统对直流电动机进行调速,使其实现无级的效果。此调速系统由主电路和控制电路两部分组成:主电路是采用晶闸管可控整流装置进行调速;控制电路是采用双闭环速度电流调节方法进行反馈。系统采用调压调速的调速方法可以获得与电动机固有机械特性相互平行的人为机械特性,调速方向是基速以下,只要输出的电压是连续可调的,即可实现电动机的无级调速。双闭环速度电流调节这种方法虽然初次头次成本相对而言较高,但它保证了系统的性能,保证了对生产工艺要求的满足,它既兼顾了启动时的电流的动态过程,又保证稳态后速度的稳定性,在起动过程的主要阶段,只有电流负反馈,没有转速负反馈。达到稳态后,只要转速负反馈,不让电流负反馈发挥主要作用很好地满足了生产需要。 关键词:无级调速;双闭环;晶闸管 II

课程设计报告直流电机调速系统(单片机)

专业课程设计 题目三 直流电动机测速系统设计 院系: 专业班级: 小组成员: 指导教师: 日期:

前言 1.题目要求 设计题目:直流电动机测速系统设计 描述:利用单片机设计直流电机测速系统 具体要求:8051单片机作为主控制器、利用红外光传感器设计转速测量、检测直流电机速度,并显示。 元件:STC89C52、晶振(12MHz )、小按键、ST151、数码管以及电阻电容等 2.组内分工 (1)负责软件及仿真调试:主要由完成 (2)负责电路焊接: 主要由完成 (3)撰写报告:主要由完成 3.总体设计方案 总体设计方案的硬件部分详细框图如图一所示: 单片机 PWM 电机驱动 数码管显示 按键控制

一、转速测量方法 转速是指作圆周运动的物体在单位时间内所转过的圈数,其大小及变化往往意味着机器设备运转的正常与否,因此,转速测量一直是工业领域的一个重要问题。按照不同的理论方法,先后产生过模拟测速法(如离心式转速表) 、同步测速法(如机械式或闪光式频闪测速仪) 以及计数测速法。计数测速法又可分为机械式定时计数法和电子式定时计数法。本文介绍的采用单片机和光电传感器组成的高精度转速测量系统,其转速测量方法采用的就是电子式定时计数法。 对转速的测量实际上是对转子旋转引起的周期脉冲信号的频率进行测量。在频率的工程测量中,电子式定时计数测量频率的方法一般有三种: ①测频率法:在一定时间间隔t 内,计数被测信号的重复变化次数N ,则被测信号的频率fx 可表示为 f x =Nt(1) ②测周期法:在被测信号的一个周期内,计数时钟脉冲数m0 ,则被测信号频率fx = fc/ m0 ,其中, fc 为时钟脉冲信号频率。 ③多周期测频法:在被测信号m1 个周期内, 计数时钟脉冲数m2 ,从而得到被测信号频率fx ,则fx 可以表示为fx =m1 fcm2, m1 由测量准确度确定。 电子式定时计数法测量频率时, 其测量准确度主要由两项误差来决定: 一项是时基误差; 另一项是量化±1 误差。当时基误差小于量化±1 误差一个或两个数量级时,这时测量准确度主要由量化±1 误差来确定。对于测频率法,测量相对误差为: Er1 =测量误差值实际测量值×100 % =1N×100 % (2) 由此可见,被测信号频率越高, N 越大, Er1 就越小,所以测频率法适用于高频信号( 高转速信号) 的测量。对于测周期法,测量相对误差为: Er2 =测量误差值实际测量值×100 % =1m0×100 % (3) 对于给定的时钟脉冲fc , 当被测信号频率越低时,m0 越大, Er2 就越小,所以测周期法适用于低频信号( 低转速信号) 的测量。对于多周期测频法,测量相对误差为: Er3 =测量误差值实际测量值100%=1m2×100 % (4) 从上式可知,被测脉冲信号周期数m1 越大, m2 就越大,则测量精度就越高。

智能电机转速控制显示系统设计

电子技术课程设计 题目:智能电机转速控制显示系统设计 学院计算机与通信工程学院 专业 学号 姓名Lei Ke 指导老师leike

摘要 当今社会,电动机在工农业生产与人们日常生活中都起着十分重要的作用。直流电机作为最常见的一种电机,具有非常优秀的线性机械特性、较宽的调速范围、良好的起动性以及简单的控制电路等优点,因此在社会的各个领域中都得到了广泛的应用。我希望通过对电子电路设计及制作课程设计等环节,力求达到以下作用和目的:即进一步掌握模拟数字电子技术的理论知识,培养工程设计能力和综合分析问题、解决问题的能力;基本掌握常用电子电路的一般设计方法,提高对电子电路的设计和实验能力;熟悉并学会使用电子元器件,为以后从事生产和科研工作打下一定基础。 以下设计是以单片机为核心设计一个电动机转速测定以及数据显示系统,要求对转速范围在0—166r/min的直流调速电动机进行测量并显示,转速数据显示精度要达到转速个位数和加速、减速、定速、电机正转和反转的实时控制。本设计使用12V直流电机,将直流电机测速装置产生的脉冲信号输入到单片机外部中断0口,单片机工作在内部定时器工作方式0,对周期信号进行计数,调用计算公式计算出每秒的转速。调用显示程序在数码管上,其主要内容是单片机部分主要完成转速的测量,数码管显示部分主要把转速显示出来,显示范围在0—166r/min之间。 关键词:直流电机单片机转速控制数据显示

目录 摘要 (2) 目录 (3) 1.引言 (4) 2总体设计 (5) 2.1基本原理 (5) 2.2系统总体框图及设计思路 (6) 3.详细设计 (6) 3.1 硬件设计 (7) 3.2 软件设计. (8) 3.2.1程序设计思路 (8) 3.2.2 程序流程图 (9) 3.2.3 程序代码 (11)

直流电机地PWM电流速度双闭环调速系统课程设计

电力拖动课程设计 题目:直流电机的PWM电流速度双闭环调速系统 姓名:强 学号:U201311856 班级:电气1303 指导老师:徐伟 课程评分:

日期:2016-07-10 目录 一、设计目标与技术参数 二、设计基本原理 (一)调速系统的总体设计 (二)桥式可逆PWM变换器的工作原理(三)双闭环调速系统的静特性分析(四)双闭环调速系统的稳态框图 (五)双闭环调速系统的硬件电路 (六)泵升电压限制 (七)主电路参数计算和元件选择 (八)调节器参数计算

三、仿真 (一)仿真原理(含建模及参数) (二)重要仿真结果(目的为验证设计参数的正确性) 四、结论 参考文献 附录1:调速系统总图 附录2:调速系统仿真图 一、设计目标与技术参数 直流电机的PWM电流速度双闭环调速系统的设计目标如下: 额定电压:U N=220V;额定电流:I N=136A;额定转速:n N:=1460r/min; 电枢回路总电阻:R=0.45Ω;电磁时间常数:T l=0.076s;机电时间常数:T m=0.161s; 电动势系数:C e=0.132V*min/r;转速过滤时间常数:T on=0.01s;转速反馈系数α=0.01 V*min/r; 允许电流过载倍数:λ=1.5;电流反馈系数:β=0.07V/A;

电流超调量:σi≤5%;转速超调量:σi≤10%;运算放大器:R0=4KΩ; 晶体管PWM功率放大器:工作频率:2KHz;工作方式:H型双极性。 PWM变换器的放大系数:K S=20。 二、设计基本原理 (一)调速系统的总体设计 在电力拖动控制系统的理论课学习中已经知道,采用PI调节的单个转速闭环直流调速系统可以保证系统稳定的前提下实现转速无静差。但是,如果对系统的动态性能要求较高,例如要求快速起制动,突加负载动态速降小等等,单闭环调速系统就难以满足需要。这主要是因为在单闭环调速系统中不能随心所欲的控制电流和转矩的动态过程。如图2-1所示。 图2-1 直流调速系统启动过程的电流和转速波形 用双闭环转速电流调节方法,虽然相对成本较高,但保证了系统的可靠性能,保证了对生产工艺的要求的满足,既保证了稳态后速度的稳定,同时也兼顾了启动时启动电流的动态过程。在启动过程的主要阶段,只有电流负反馈,没有转速负反馈,不让电流负反馈发挥主要作用,既能控制转速,实现转速无静差调节,又能控制电流使系统在充分利用电机过载能力的条件下获得最佳过渡过程,很好的满足了生产需求。 直流双闭环调速系统的结构图如图2-2所示,转速调节器与电流调节器串极联结,转速调节器的输出作为电流调节器的输入,再用电流调节器的输出去控制PWM装置。其中脉宽调制变换器的作用是:用脉冲宽度调制的方法,把恒定的直流电源电压调制成频率一定、宽度可变的脉冲电压序列,从而可以改变平均输出电压的大小,以调节电机转速,达到设计要求。 直流PWM控制系统是直流脉宽调制式调速控制系统的简称,与晶闸管直流调速系统的区

电动车无刷直流电机 毕业设计论文

毕业设计(论文) 题目:无刷电机驱动的电动自行车 的控制系统设计 专业:数控技术 班级: 学号: 姓名: 指导老师:

摘要 近年来,燃油交通工具因尾气排放问题已造成城市空气的严重污染。于是发展绿色交通工具已经成为一个重要的课题。考虑到我国的国情,发展电动自行车具有重要的环保意义。随着电机技术及功率器件性能的不断提高,电动自行车的控制器发展迅速。本文设计采用无刷直流电机专用控制芯片MC33033为控制芯片,以功率器件MOSFET为开关器件驱动电机,实现对无刷直流电机的控制。设计出了电路原理图、印制板电路图和电路板实物的3维效果图。 关键词:无刷直流电机MC33033 原理图印制板电路图

Abstract In recent years, transportation fuel emission problem has been caused by urban air pollution levels. So the development of green transport has become an important issue. Taking into account China's national conditions, development of electric bicycles has important environmental significance. With the motor technology and continuously improve the performance of power devices, the rapid development of electric bicycle controller. This design uses a brushless DC motor for the control of dedicated control chip MC33033 chip, in order to power MOSFET devices as the switching device drive motor, to achieve control of the electric bike. Design a circuit diagram, PCB circuit diagrams and circuit board real 3-D renderings. Keywords:brushless DC motor MC33033 Schematic PCB circuit

课程设计--直流电机报告--

河南科技大学 课程设计说明书 课程名称现代电子系统课程设计 题目_直流电机控制设计__ 学院_电子信息工程学院 班级_电信科081 学生姓名__ 000__ 指导教师_齐晶晶、张雷鸣___ 日期_ 2011年12月16日____ 课程设计任务书 (指导教师填写) 课程设计名称现代电子系统课程设计学生姓名袁伟伟_专业班级信科081

设计题目直流电机控制设计 一、课程设计目的 学习直流电机PWM的FPGA控制; 掌握PWM控制的工作原理; 掌握GW48_SOPC实验箱的使用方法; 了解基于FPGA的电子系统的设计方法。 二、设计内容、技术条件和要求 利用PWM控制技术实现直流电机的速度控制。 (1)基本要求: a.速度调节:4档,数字显示其档位。 b.能控制电机的旋转方向。 c.通过红外光电电路测得电机的转速,设计频率计用4位10进制显示电机的转速。 (2)发挥部分 a.设计“去抖动”电路,实现直流电机转速的精确测量。 b.修改设计,实现直流电机的闭环控制,旋转速度可设置。 c.其它。 三、时间进度安排 布置课题和讲解:1天 查阅资料、设计:4天 实验:3天 撰写报告:2天 四、主要参考文献 何小艇《电子系统设计》浙江大学出版社2008.1 潘松黄继业《EDA技术实用教程》科学出版社2006.10 齐晶晶《现代电子系统设计》实验指导书电工电子实验教学中心2009.8 指导教师签字:2011年11月28日 摘要 电机是指依据电磁感应定律实现电能转换或传递的一种电磁装

置。电动机也俗称马达,它的主要作用是产生驱动转矩,作为用电器或各种机械的动力源。21世纪,在工业化集成电路设计中,直流电机得到了广泛的应用,直流电动机是依靠直流工作电压运行的电动机,广泛应用于收录机、录像机、电吹风、电子表、玩具等。所以,多功能、人性化、易操作的电机设计成了一个趋势。本文对于直流电机方面的研究,是基于Quartus2软件,利用FPGA器件,通过VHDL语言编程对直流电机进行基本的自动操作控制。 本次直流电机主要有以下功能: 1.转速调节。转速调节通过档位来实现,档位为一、二、三、四档, 每个档位都设定自己的速度,随着档位的的升高速度逐渐增大,速度的改变通过改变PWM信号的占空比来是实现。 2.正反转控制。设置一个按键,调节按键时电机能够改变转动方向。 原理为档按下按键时,改变了加在电机两端电压的极性。 3.转速显示。转机转动时会有一个速度,速度能够正确的显示在数 码管上,并能用实验仪器正确测出。原理为设计一个频率计,测试电机转速。 目录 一、任务解析 (4)

电机调速控制系统设计

一、问题描述 针对电机调速控制系统,设计计算机可实现的PID 控制器,利用simulink 平台实验研究,确定最佳的离散周期并给出实验结果分析和与连续PID 控制器的比较。离散控制器输出连续的受控过程时加零阶保持器。 有余力的同学可尝试设计最小拍无波纹控制器。 二、理论方法分析 离散控制系统所特有的一个参数就是采样周期。可以说离散控制系统的采样周期的选择的基本原则是活的最高的体统性能性价比。 由于采样周期的选择是众多因素的折中考虑,所以一般中有一些近似的计算公式和经验数值可以利用。 在PID 整定完的系统中,对于输入阶跃响应信号可以用两种方法计算出采样周期; ⑴考虑系统阶跃响应的上升时间r t ,则有采样周期24 r s r t T t ≤≤;r t 表示系统的反映速度。 ⑵知道系统是有自平衡的过程,采用过程时间常数 95T ,95T 定义为阶跃响应)(t y 从0变到95%)(∞y 的时间,它综合反映了过程的自平衡能力,其经验公式为 95 9517.007.0T T T s ≤≤。 三、实验设计与实现 搭建Simulink 图后,观测输出波形,发现,上升至95%所需时间约为0.268s

因为959517.007.0T T T s ≤≤。故取Ts 为0.02. 再搭建离散控制系统Simulink 图 四、实验结果与分析 PID 控制器与离散控制比较。见下图:

比较后发现:利用离散控制系统设计的系统性能指标能够达到PID所要求的水平。 五、结论与讨论 利用离散控制系统设计方法设计的离散控制系统与PID整定法设计的连续控制系统性能基本接近。 但在某些场合,特别是现代的工业过程控制中,利用数字电子元件设计的系统有诸多优势:例如方便与计算机相连,便于历史、实时数据存储和传输等 事后感: 由于这部分理论知识学习的不扎实,实验过程中似有“云里雾里”之感…… 参考文献: [1] 杨平等编著,自动控制原理实验与实践. 北京:中国电力出版社,2005 [2] 杨平等编著,自动控制原理理论篇. 北京:中国电力出版社,2009

基于单片机的直流电机调速系统的课程设计

一、总体设计概述 本设计基于8051单片机为主控芯片,霍尔元件为测速元件, L298N为直流伺服电机的驱动芯片,利用 PWM调速方式控制直流电机转动的速度,同时可通过矩 阵键盘控制电机的启动、加速、减速、反转、制动等操作,并由LCD显示速度的变化值。 二、直流电机调速原理 根据直流电动机根据励磁方式不同,分为自励和它励两种类型,其机械特性曲线有所不同。但是对于直流电动机的转速,总满足下式: 式中U——电压; Ra——励磁绕组本身的内阻; ——每极磁通(wb ); Ce——电势常数; Ct——转矩常数。 由上式可知,直流电机的速度控制既可以采用电枢控制法也可以采用磁场控制法。磁场控制法控制磁通,其控制功率虽然较小,但是低速时受到磁场和磁极饱和的限制,高速时受到换向火花和换向器结构强度的限制,而且由于励磁线圈电感较大,动态响应较差,所以在工业生产过程中常用的方法是电枢控制法。 电枢控制法在励磁电压不变的情况下,把控制电压信号加到电机的电枢上来控制电机的转速。传统的改变电压方法是在电枢回路中串连一个电阻,通过调节电阻改变电枢电压,达到调速的目的,这种方法效率低,平滑度差,由于串联电阻上要消耗电功率,因而经济效益低,而且转速越慢,能耗越大。随着电力电子的发展,出现了许多新的电枢电压控制法。如:由交流电源供电,使用晶闸管整流器进行相控调压;脉宽调制(PWM)调压等。调压调速法具有平滑度高、能耗低、精度高等优点,在工业生产中广泛使用,其中PWM应用更广泛。脉宽调速利用一个固定的频率来控制电源的接通或断开,并通过改变一个周期内“接通”和“断开”时间的长短,即改变直流电机电枢上的电压的“占空比”来改变平均电. 压的大小,从而控制电动机的转速,因此,PWM又被称为“开关驱动装置”。如 果电机始终接通电源是,电机转速最大为Vmax,占空比为D=t1/t,则电机的平均转速:Vd=Vmax*D,可见只要改变占空比D,就可以调整电机的速度。平均转 速Vd与占空比的函数曲线近似为直线。 三、系统硬件设计

无刷直流电机控制系统的设计——毕业设计

无刷直流电机控制系统的设计——毕业设计

学号:1008421057 本科毕业论文(设计) (2014届) 直流无刷电机控制系统的设计 院系电子信息工程学院 专业电子信息工程 姓名胡杰 指导教师陆俊峰陈兵兵 高工助教 2014年4月

摘要 无刷直流电机的基础是有刷直流电机,无刷直流电机是在其基础上发展起来的。现在无刷直流电机在各种传动应用中虽然还不是主导地位,但是无刷直流电机已经受到了很大的关注。 自上世纪以来,人们的生活水平在不断地提高,人们在办公、工业、生产、电器等领域设备中越来越趋于小型化、智能化、高效率化,而作为所有领域的执行设备电机也在不断地发展,人们对电机的要求也在不断地改变。现阶段的电机的要求是高效率、高速度、高精度等,由此无刷直流电机的应用也在随着人们的要求的转变而不断地迅速的增长。 本系统的设计主要是通过一个控制系统来驱动无刷直流电机,主要以DSPIC30F2010芯片作为主控芯片,通过控制电路采集电机反馈的霍尔信号和比较电平然后通过编程的方式来控制直流无刷电机的速度和启动停止。 关键词:控制系统;DSPIC30F2010芯片;无刷直流电机

Abstract Brushless dc motor is the basis of brushless dc motor, brushless dc motor is developed on the basis of its. Now in all kinds of brushless dc motor drive applications while it is not the dominant position, but the brushless dc motor has been a great deal of attention. Since the last century, constantly improve the people's standard of living, people in the office, industrial, manufacturing, electrical appliances and other fields increasingly tend to be miniaturization, intelligence, high efficiency, and as all equipment in the field of motor is in constant development, people on the requirements of the motor is in constant change. At this stage of the requirements of the motor is high efficiency, high speed, high precision and so on, so is the application of brushless dc motor as the change of people's requirements and continuously rapid growth. The design of this system mainly through a control system to drive the brushless dc motor, mainly dspic30f2010 chips as the main control chip, through collecting motor feedback control circuit of hall signal and compare and then programmatically to control the speed of brushless motor and started to stop. Keywords: Control system; dspic30f2010 chip; brushless DC motor

控制小直流电机转速微机原理课程设计[文档在线提供]

课程设计任务书2009~2010学年第1学期 学院: 信息科学与工程学院 专业年级: 自动化075班 课程: 微机原理与应用 指导教师: 柴琳 学号:200704134117 姓名:王强

一、设计题目 8086微机应用DAC0832控制小直流电机转速的设计 二、设计目的 巩固“微机原理”课程学过的知识,加强理论与实践的联系。通过本课程设计,使学生初步了解8086系列微机系统的硬件设备,学会8086系列编程指令的基本功能。 三、设计内容与要求 1、内容 采用8086CPU构建微机系统,扩展4K EPROM和2K静态RAM作为存储系统,采用最小模式,利用DAC0832,编制程序输出双极性模拟电压驱动小直流电机,使电机能以不同转速正反向运行。 2、设计要求 (1)、查阅文献资料,了解DAC0832双极性电压输出控制原理,并在报告书中综述之。 (2)、设计系统的硬件连接原理图,对原理图加以说明。 (3)、画出程序框图,并说明。 (4)、编写应用程序,并注解程序。 (5)、提交课程设计说明书。 四、设计资料与参数 1、电机转速由8个按钮开关以补码形式给定输入,并以发光二极管形式显示出来。电机的转速变化范围为反向500 rpm~正向500rpm; 2、DAC0832双极性电压输出控制原理,控制小直流电机以不同转速运行。 3、小直流电机额定电压为5V。电源:5V由外部提供。 五、设计前准备 DAC0832双极性电压输出控制原理自学 DAC0832 是电流形式输出,当需要电压形式输出时,必须外接运算放大器。根据输出电压的极性不同,DAC0832 又可分为单极性输出和双极性输出两种输出方式。

直流电动机调速系统设计方案

课程设计任务书 学生姓名:专业班级: 指导教师:工作单位: 题目: 直流电动机调速系统设计 初始条件: 采用MC787组成触发系统,对三相全控桥式整流电路进行触发,通过改变直流电动机电压来调节转速。 要求完成的主要任务: (1)设计出三相全控桥式整流电路拓扑结构; (2)设计出触发系统和功率放大电路; (3)采用开环控制、转速单闭环控制、转速外环+电流内环控制。 (4) 器件选择:晶闸管选择、晶闸管串联、并联参数选择、平波和均衡电抗 器选择、晶闸管保护设计 参考文献: [1] 周渊深.《电力电子技术与MATLAB仿真》.北京:中国电力出版社, 2005:41-49、105-114 时间安排: 2011年12月5日至2011年12月14日,历时一周半,具体进度安排见下表 指导教师签名:年月日 系主任(或责任教师)签名:年月日

目录 1概述 0 2转速、电流双闭环直流调速系统的组成及其静特性 0 2.1转速、电流双闭环直流调速系统的组成 0 2.2 稳态结构框图和静特性 (1) 3双闭环直流调速系统的数学模型与动态过程分析 (2) 3.1双闭环直流调速系统的动态数学模型 (2) 3.2双闭环直流调速系统的动态过程分析 (3) 4转速电流双闭环直流调速系统调节器的工程设计 (5) 4.1转速和电流两个调节器的作用 (5) 4.2调节器的工程设计方法 (5) 4.2.1设计的基本思路 (6) 4.3 触发电路及晶闸管整流保护电路设计 (6) 4.3.1触发电路 (6) 4.3.2整流保护电路 (7) 4.3.2.1 过电压保护和du/dt限制 (7) 4.3.2.2 过电流保护和di/dt限制 (8) 4.4 器件选择与计算 (8) 5心得体会 (13) 参考文献 (14) 附录:电路原理图 (15)

4kw以下直流电动机的不可逆调速系统课程设计要点

设计任务书 一.题目: 4kw 以下直流电动机不可逆调速系统设计 二.基本参数: 三.设计性能要求: 调速范围D=10静差率s < 10%制动迅速平稳 四.设计任务: 五.参考资料: 1. 设计合适的控制方案。 2. 画出电路原理图,最好用计算机画图(号图纸) 3. 计算各主要元件的参数,并正确选择元器件。 4. 写出设计说明书,要求字迹工整,原理叙述正确。 5. 列出元件明细表附在说明书的后面。 直流电动机:额定功率 Pn=1.1kW 额定电压 Un=110V 额定电流 In=13A 转速 Nn=1500r/min 电枢电阻 Ra=1Q 极数 2p=2 励磁电压 Uex=110V 电流 Iex=0.8A

电动机作为一种有利工具,在日常生活中得到了广泛的应用。而直流电动机具有很好的启动,制动性能,所以在一些可控电力拖动场所大部分都米用直流电动机。 而在直流电动机中,带电压截止负反馈直流调速系统应用也最为广泛, 其广泛应用于轧钢机、冶金、印刷、金属切割机床等很多领域的自动控制。 他通常采用三相全桥整流电路对电机进行供电,从而控制电动机的转速, 传统的控制系统采用模拟元件,比如:晶闸管、各种线性运算电路的等。 虽在一定程度上满足了生产要求,但是元件容易老化和在使用中易受外界干扰影响,并且线路复杂,通用性差,控制效果受到器件性能、温度等因素的影响,从而致使系统的运行特征也随着变化,所以系统的可靠性及准确性得不到保证,甚至出现事故。直流调速系统是由功率晶闸管、移相控制电路、转速电路、双闭环调速系统电路、积分电路、电流反馈电路、以及缺相和过流保护电路。通常指人为的或自动的改变电动机的转速,以满足工作机械的要求。机械特性上通过改变电动机的参数或外加电压等方法来改变电动机的机械特性,从而改变电动机的机械特性和工作特性的机械特性的交点,使电动机的稳定运转速度发生变化 由于本人和能力有限,错误或不当之处再所难免,期望批评和指正

基于PLC的直流电机调速系统设计毕业设计

基于PLC的直流电机调速系统设计毕业设计 目录 1.1 直流调速系统的发展史概述 (2) 1.2 可编程控制器PLC (3) 1.2.1 PLC的发展概述 (3) 1.2.2 PLC的特点 (4) 1.3 选题背景及论文主要内容 (5) 1.3.1 选题背景 (5) 1.3.2 论文的主要内容 (6) 第 2 章直流调速系统 (7) 2.1 调速系统的性能指标 (7) 2.1.1 稳态性能指标 (8) 2.1.2 动态指标 (9) 2.2 PWM直流调速系统 (11) 2.2.1 直流电动机的PWM控制原理 (11) 2.2.2 PWM直流调速系统的组成 (12) 2.2.3 PWM调速系统的主要参数 (18) 2.3 双闭环直流脉宽调速系统 (20) 2.3.1 电流、转速反馈环节 (20) 2.3.2 设计中的调节器计算 (22) 2.3.3 双闭环脉宽调速系统的起动过程 (26) 第 3 章现代PLC控制技术 (28) 3.1 PLC的组成和分类 (28) 3.2 PLC的工作原理 (28) 3.3 PLC电机控制系统设计的基本内容和步骤 (30) 3.3.1 PLC的硬件设计的一般步骤 (30) 3.3.2 PLC软件设计的一般步骤 (31) 3.3.3 设计中用到的模块 (32) 第 4 章基于PLC的直流电机调速系统设计 (34) 4.1 设计任务 (34)

4.2 脉宽调制系统特有部分设计 (34) 4.3 PLC硬件设计 (35) 4.4 PLC 软件设计 (37) 结束语 (40) 致谢 (41) 参考文献(主要及公开发表的文献) (2) 附录 (4) 第 1 章引言 传统直流电动机双闭环调速系统采用的是继电器控制,加PI 调节器及校正装置,实现控制系统稳定运行。但由于继电器,集成运算放大器,电气元件的老化易出故障而损坏,而且结线复杂,使其工作可靠性较差。采用 PLC 设计的直流电动机双闭环调速系统能有效地克服上述缺点,并且具有结构简单,调试修改参数方便,工作可靠,性能价格比较高的优点。同时,PLC 控制的直流电动机双闭环调速系统实现了数字化控制[13][14]。 1.1 直流调速系统的发展史概述 电机调速的发展与电力电子技术的发展是不可分离的,电机调速和电力电子技术相互结合,相互促进,实现了现代的电气传动控制:一弱点检测、判断并发出控制信息,用强电来执行控制的使命。从这个角度上看,可以说,现代电气控制技术是强电与弱点相结合的技术。 早期的电机控制只是利用电器来控制电动机的启动、制动、正反转和分级调速。随着技术的进步,生产工艺对电机控制提出了越来越高的要求,诸如精确稳定的运行速度、无极调速、快速反向、准确定位等等。直流电机变压和弱磁调速可以比较好的满足这些要求,于是诞生了旋转变流机组供电的直流调速系(Ward-Leonard系统),简称G-M系统。对调速性能要求再高时,则引入电机型放大器、磁放大器、电子放大器等放大装置进行反馈控制。到上世纪五十年代,机组供电直流调速系统的控制技术发展到了巅峰的阶段,也正是它的缺点暴露的最充分的时候:它的设备多、体积大、费用高、效率低、安装须地基、运行有噪音、

相关文档
相关文档 最新文档