文档库 最新最全的文档下载
当前位置:文档库 › 智能材料综述

智能材料综述

智能材料综述
智能材料综述

智能材料综述

机械工程学院09级机电班曹瑞珉

前言

当初对智能材材料感兴趣是因为这是一个逐渐兴起的和很快会成为主流的材料学分枝,感觉很神奇,和现实差距很大,心中有很多疑问,又觉得这种材料有很大的发展前途,便结合自己听课的内容及网上资料的查阅写下对智能材料的认识。我写这篇综述,一是为了扩展知识面,想要多了解一下有关的知识,二是为了锻炼自己写综述的能力,为以后的工作奠定基础。

1 概述

智能材料的构想来源于仿生学,它的目标就是想研制出一种材料,使它成为具有类似于生物的各种功能的“活”的材料。因此智能材料必须具备感知、驱动和控制这三个基本要素。但是现有的材料一般比较单一,难以满足智能材料的要求,所以智能材料一般由两种或两种以上的材料复合构成一个智能材料系统。这就使得智能材料的设计、制造、加工和性能结构特征均涉及到了材料学的最前沿领域,使智能材料代表了材料科学的最活跃方面和最先进的发展方向。

纵观材料发展,经历了单一型、复合型和杂化型,进而发展为异种材料间不分界的整体式融合型材料,最近几年兴起的智能材料是受集成电路技术的启迪而构思的三维组件式融合

性材料[图1]。它是通过在原子、分子及其团簇等微观、亚微观水平上进行材料结构设计和控制,赋予材料自感知(传感功能)判断、自结构(处理功能)和自指令(相应功能)等智能性。

由此可知,智能材料不同于以往的传统材料,它模仿生命系统,具有传感、处理和响应功能,而且较机敏材料(只能进行简单线性响应)更近于生命系统,它能根据环境条件的变化程度实现非线性响应已达到最佳适应效果。智能化概念实际上是把信息科学里德软件功能引入到材料、系统和新材料的产生,本文将就有关科学问题进行研讨,以期对这门必将在21世纪大放异彩的智能材料科学的发展有所裨益【1】。

2 定义

智能材料问世于80 年代末, 关于其定义至今尚无统一的定论。不过, 对以下提法, 学者们似乎不持异议。智能材料是一种能从自身的表层或内部获取关于环境条件及其变化的信息,随后进行判断、处理和作出反应,以改变自身的结构与功能,并使之很好地与外界相协调的具有

自适应性的材料系统。或者说,智能材料是指在材料系统或结构中,可将传感、控制和驱动种职能集于一身,通过自身对信息的感知、采集、转换、传输和处理,发出指令,并执行和完成相应的动作,从而赋予材料系统或结构健康自诊断、工况自检测、过程自监控、偏差自校正、损伤自修复与环境自适应等智能功能和生物特征,以达到增强结构安全、减轻构件重量、降低能量消耗和提高整体性能之目的的一种材料系统与结构。

具体来说,智能材料需具备以下内涵:

(1)具有感知功能,能够检测并且可以识别外界(或者内部)的刺激强度,如电,光,热,应力,应变,化学,核辐射等;

(2)具有驱动功能,能够响应外界变化;

(3)能够按照设定的方式选择和控制响应;

(4)反应比较灵敏,及时和恰当;

(5)当外部刺激消除后,能够迅速恢复到原始状态。

发展历史

材料的发展已由石器材料、钢铁材料、合金高分子材料、人工设计材料进入智能材料,即进入第5代材料。智能材料的特点是它的特性可随环境和空间而变化,它是最近几年颇受重视的高技术尖端材料。

目前智能材料正在形成新材料领域的一门新的分支学科,国际上一大批专家学者,包括化学家、物理学家、材料学家、生物学家、计算机专家、海洋工程专家、航空以及其他领域的专家对智能材料这一学科的潜力充满了信心,正致力于发展这一学科。1992 年2月,英国斯特拉克莱德大学成立了机敏结构材料研究所。在此之前,美国弗吉尼亚理工学院和弗吉尼亚州立大学成立了智能材料研究中心,密执安州立大学成立了智能材料和结构实验室。日本东北大学、三重大学、信州大学、日立造船技术研究所、金泽大学工学院等学校和研究单位的各学科的教授和研究人员都在研究各自感兴趣的仿生智能材料。世界范围的智能材料研讨会也开始增多。1992年1月,在苏格兰召开了第一届欧洲机敏材料和结构讨论会。1992年3月,日本科技厅主办了第一届国际智能材料研讨会。第一份专门介绍这一学科的刊物《智能材料系统和结构杂志》已经出版。

我国对智能材料的研究也十分重视,1991年国家自然基金会将智能/灵巧材料列入国家高技术研究发展计划纲要的新概念、新构思探索课题,智能灵巧材料及其应用直接作为国家高技术研究发展计划(863计划)项目课题。为推进我国智能材料的研究,国家自然科学基金委员会材料与工程科学部于1992年成立了“智能材料”集团。目前从事智能材料研究的单位和个人已逐渐增多。

智能材料的构成

一般来说智能材料由基体材料、敏感材料、驱动材料和信息处理器四部分构成。

(1)基体材料

基体材料担负着承载的作用,一般宜选用轻质材料。一般基体材料首选高分子材料,因为其重量轻、耐腐蚀,尤其具有粘弹性的非线性特征。其次也可选用金属材料,以轻质有色合金为主。

(2)敏感材料

敏感材料担负着传感的任务,其主要作用是感知环境变化(包括压力、应力、温度、电磁场、PH值等)。常用敏感材料如形状记忆材料、压电材料、光纤材料、磁致伸缩材料、电致变色材料、电流变体、磁流变体和液晶材料等。

(3)驱动材料

因为在一定条件下驱动材料可产生较大的应变和应力,所以它担负着响应和控制的任务。常用有效驱动材料如形状记忆材料、压电材料、电流变体和磁致伸缩材料等。可以看出,这些材料既是驱动材料又是敏感材料,显然起到了身兼二职的作用,这也是智能材料设计时可采用的一种思路。

(4)其它功能材料

包括导电材料、磁性材料、光纤和半导体材料等。

(5)信息处理器

信息处理器是核心部分,他对传感器输出信号进行判断处理。

智能材料的基本构成和工作原理

智能材料分类

智能材料的分类方法有很多种。根据材料的来源,智能材料包括金属系智能材料、非金属系智能材料以及高分子系智能材料。

金属系智能材料

金属材料因强度大、耐热且耐腐蚀,常在航空航天和原子能工业中用作结构材料。金属材料在作用过程中会产生疲劳龟裂及蠕变变形而损伤。期望金属系智能结构材料不但可以检测自身的损伤,而且可将其抑制,具有自我修复功能,从而确保结构物的可靠性。目前研究和开发的金属系智能材料主要有以下两类。

1.形状记忆合金

形状记忆合金是利用应力和温度诱发相变的机理来实现形状记忆功能的一类材料。其特点是:将已在高温下定型的形状记忆合金,置于低温或常温下使其产生塑性变形,当环境温度升高到临界温度(相变温度) 时,合金变形消失并可恢复到定型时的原始状态。在此恢复过程中,合金能产生与温度呈函数关系的位移或力,或者二者兼备。合金的这种升温后变形消失、形状复原的现象称为形状记忆效应( SME) 。形状记忆合金是集“感知”与“驱动”于一体的功能材料。若将其复合于其它材料中,便可构成在工业、科技、国防等领域中拥有巨大应用潜力的智能材料。国外学者普遍认为,形状记忆合金可感知复合材料结构件中裂纹的产生与扩展,并可主动地控制构件的振动,抑制裂纹的延伸与扩张,同时还可自动改变结构的外形等。基于这些原因,有人建议将形状记忆合金、压电聚合物等功能材料制成传感器和驱动器,置于先进的复合材料中,以便实现对材料性能、结构振动与噪音吸收等的主动控制,或对材料的损伤进

行自愈合。

形状记忆合金,通常可分为非铁基和铁基两类。非铁基形状记忆合金有Ni-Ti,Cu-Zn-Al和Cu-Ni-Al; 而铁基形状记忆合金有Fe-Pt,Fe-Ni-C和Fe-Ni-Co-Ti等。

高后秀等对铜基形状记忆合金进行了合金化元素及其细化晶粒的研究,提高了铜基形状记忆合金的机械性能,现已用于热水器温控阀并申请了专利。刘西文等将铁基形状记忆合金用于管道连接,所开发的新型铁基形状记忆合金的记忆幅度达 3.2% ,连接管道耐压达58.8MPa ,为国际报道同类接头耐压值的10倍,并已获准3 项专利权,其同步记忆固化管道连接技术和新型铁基形状记忆复合材料形状记忆合金的开发均属国际首创。

形状记忆合金的应用十分广泛,而且在某些领域已达到了实用化的程度,但在多数领域仍有待进一步完善。形状记忆合金在智能材料与机构中,主要用作驱动器(执行器) 。这种驱动器具有不少优点:其一,由于形状记忆合金集“感知”与“驱动”于一体,所以便于实现小型化;其二,元件动作不受温度以外的环境条件的影响,故可用于某些特殊场合;其三,可产生较大的形变量和驱动力。

形状记忆合金的应用主要在以下6 个方面:

(1)机械器具:如潜艇用油压管、水管及其它各种管件接头、机器人用微型调节器、热敏阀门、机器人手、脚、工业内窥镜、可变路标等。

(2) 汽车部件:如汽车发动机防热风扇离合器、汽车排气自动调节喷管、柴油机卡车散热器孔自动开关、汽车易损件如外壳和前后缓冲器等。

(3) 能源开发:如固体发动机、太阳能电池帆板、温室窗户自动调节弹簧、住宅暖房用温水送水管阀门、汲地下油的机器、喷气发动机内窥镜等。

(4) 电子仪器:如温度自动调节器、光纤通讯用纤维连接器、空调风向自动调节器、咖啡牛奶沸腾感知器、双金属代用开头等。

(5) 医疗器械:如人工肾脏泵、人工心脏活动门、人工关节、人工骨、避孕器具、脊椎矫正棒、脑动脉瘤手术用固定器、牙科矫形丝、医用内窥镜等。

(6) 空间技术:

如卫星仪器舱门自动启闭器、人造卫星天线,即“智能天线”等。

2.形状记忆复合材料

形状记忆高分子聚合物是指具有初始形状,经行变并固定之后,可以通过加热等方法改变外部条件,使其恢复初始形状的聚合物。日本十年前率先开发出来的,属于弹性记忆材料。这类材料,当其温度达到相变温度时,便从玻璃态转变为橡胶态。此刻材料的弹性模量发生大幅度变化,并伴随产生很大变形。即:随着温度的增加,材料变得很柔软,加工变形很容易;反之,温度下降时,材料逐渐硬化,变成持续可塑的新形状。本材料价格低廉,可以大量用于碳纤维复合材料基的热驱动型形状记忆聚合物进行了温度与力学参数之间的关系分析研究【2】。

利用对电磁场敏感的铁氧体包复TiNi 形状记忆合金可制备纤维增能型复合材料。先在Al 基材中排列TiNi 形状记忆合金的长纤维,且在其形状记忆范围内进行拉拨、压延加工;然后对此复合材料进行适当热处理,使形状记忆合金产生收缩变形,利用Al基材中所产生的残留压缩应力,控制复合材料的热膨胀,使裂缝闭合,防止破裂,从而达到强韧化的目的,使材料可传感外部磁场和温度的变化,自身可变形并自动修复。这类形状记忆复合功能元件可与金属、高分子材料及混凝土等各种复合材料组成机敏结构材料.

非金属系智能材料

非金属智能材料的初步智能性是考虑局部可吸收外力以防材料整体破坏。近几年来,以下几类非金属系智能材料发展较快:

1.电(磁) 致流变流体材料

电致流变流体(简称电流变体ERF : Electro - rheological flu2ids) 材料和磁致流变流体(简称磁流变体MRF :Magneto - rheo2logical fluids) 材料都是智能系统与机构中执行器的主选材料,由于它们具有响应快速、连续可调、能耗低等优点,故其应用无疑会给许多新技术和新学科的发展带来革命性的变化。据报导,电(磁) 流变体的出现,已导致全世界50 %以上的液压系统和器件需待重新设计。

电流变体与磁流变体均系用人工方法合成,并集固体的属性与液体的流动性于一体的胶体分散体。确切地说,它们都是微米尺寸的介电颗粒均匀弥散地悬浮于另一种互不相溶的绝缘载液中时所形成的悬浮液体,而且,在外加电场或磁场作用下,胶体粒子将被极化并沿电场方向呈有序链状排列,从而使其流变特性如粘性、塑性、弹性等发生迅速而巨大的变化,或者由粘滞性液体转变成固态凝胶,或者其流体阻力发生难以想像的变化(剧增) 。

无论是电流变体还是磁流变体,其组成通常包含有如下几种成分:

(1) 连续介质(或称溶剂、载液) :为低粘度液体,如硅油、石腊油、橄榄油、变压器油以及煤油、润滑油或真空油等矿物油,还包括辛烷、甲苯、水银、烃类、酯类、聚苯醚等。一般来说,这些液体应具备高密度、高沸点、高燃点、低冻点、低粘度、疏水性以及电阻大、介电强度高、化学稳定性好、无毒、价廉等特点。通常,其冻点为- 40 ℃左右。粘度为0. 01~10Pa·s ,介电常数为2~15。

(2) 粒子介质(或称溶质、介电微粒) :主要有三类:金属类(如铁、钴、镍、铜、铁氧体、氧化铁、四氧化三铁等) 、陶瓷类(如压电陶瓷、高岭土、硅藻土、硅石、沸石等) 、半导体高分子材料(如明胶、淀粉等) 。粒子介质通常具有亲水性、多孔性。并且,在稀流体中,在电场或磁场作用下呈分立的球形颗粒,各向异性。粒子的直径一般为0. 01~10μm ,表面积约为400m2/ g。由介电粒子及其表面包覆层所构成的分散相,其介电常数多数在2~40 的范围内取值。一般情况下,粒子介质的体积约占连续介质的15 %~45 %。

(3) 稳定剂:主要有油酸、亚油酸等不饱和脂肪酸、酒精、胺、聚胺类、磷酸衍生物、盐类、皂类、长链状高聚物等。其作用是增加悬浮粒子的稳定性或产生粒子间的胶态分子团桥,让粒子既不产生沉淀又不出现絮凝,从而使流体始终处于溶胶或凝胶态。换言之,稳定剂的存在,使得分散粒子与连续介质之间形成许多亚微粒群,且这些群体的空隙中含有大量的流体。无论对何种流变体而言,稳定剂的恰当用量都是极其关键的,量少则粒子产生沉淀。量多则流体呈浆糊状,一般用量为粒子重量的0. 05 %~0. 03 %。

(4) 添加剂:指有机活性化合物、非离子表面活化剂和水等,通常也是流变体的重要组成部分。对于电流变体而言,在许多场合下,是用水作添加剂。由于添加剂的含量直接并且显著影响电流变效应,太高或太低都会使电流变效应明显减弱. 所以,应严格控制水含量,一般其含量应占固体粒子重量的5 %~10 %。此外,甘油、油酸、洗涤剂等有时亦可用作添加剂。

目前,电(磁) 流变体在国外已被广泛应用于航天、航空等诸多领域,尤其是在自动化设备、通用与未来机械、石油化工与交通运输等方面应用价值极大,故其市场前景甚好。1994 年前就有专家预测:到1995 年,ERF 在美国和世界范围内的市场规模将分别高达35 亿和200 亿美元;并且此后全球每年将超过或大大超过200 亿美元。至于目前市场的实际状况,因资料所限,笔者无法提供确切数据,但形势喜人则是无须置疑的。与此同时,在国内,这方面的工作尚处于起步阶段,亟待深入。电流变体主要用于制造各种力学元器件,如:离合器(具有无级可调、容易控制、响应速度高的特点) 、减震器(可在约lms 内实现由低粘度到高粘应的变化,从而可独立而迅速地实现减震) 、液压阀等,此外,电流变体还可用于制造振动隔离系统,亦可用于有关胶体系统传热与传质现象的研究。开发双热管交换器和再生热交换器等。

尤其值得介绍的是,电流变体对于各种构件与建筑物的智能化有着突破性的重大贡献。例如,若将ERF 材料通过复合置于直升飞机的旋翼叶片中,便可实现叶片刚度的自动调节,以克服由于温度变化与水气凝固所带来的负面影响,并可抑制机翼翼面的振动。又如,若在注满电流

变体材料的空心复合梁两端加上一个外加电场,则由于电流变体的固化,梁的强度会大大提高。如果将这个系统与传感器结合起来,就可使梁的性能随其负载而变化。此外,若将电流变体材料用来制作建筑物的基础,则在地震出现时便可实现建筑物的自动加固。磁流变体的用途亦很广泛,特别是在机电工业中,例如,制造磁液陀螺、磁液驱动装置;制作包括光传感器、温度传感器在内的各种传感器;机器人肌肉、工业机械手、外科手术“磁刀”等。需要指出: (1) 鉴于含水电流变体的诸多不足,无水电流变体随之面世,并以其温度范围宽、能耗较小、性能较稳定等特点使电流变体材料的研究出现了一个新的转机,因寻求性能更优的无水电流变体材料,高分子聚合物受到人们的广泛青睐。(2) 磁流变体比电流变体在应用时更方便、更有效,因而更有发展前景。因为要将电流变体从液体变为固体,通常需要外加2000V 以上的高压;而对磁流变体而言,要使悬浮液呈粘滞状,并进一步变为固体,只需改变磁场。显然,后者操作起来简便得多,因此,磁流变体更为适用。

2.电致伸缩材料

压电效应是对某种电介质施加压力则出现与应力量相应的极化,反之施加电场则产生应变的现象。压电材料的特点在于其可作感测器、制动器。压电陶瓷已成功地用于各种光跟踪系统、机器人的定位器、喷墨打印机以及噪声和振动的主动控制系统等。

电致伸缩材料,从某种意义上可以说就是指或主要是指压电材料。因为,就物理实质而言,压电材料与电致伸缩材料并没有根本区别,只不过前者强调的是利用正压电效应,后者强调的是利用逆压电效应。事实上,压电材料是一种同时兼具正逆电机械耦合特性的功能材料,若对其施加作用力,则在它的两个电极上将感应产生等量异号电荷;反之,当它受到外加电压的作用时,便会产生机械变形。基于这一原因,压电材料在智能机构中被广泛地用作传感器和驱动器(即执行器) 。并且。这类传感器和驱动器比其他类型的传感器和驱动器具有更为优良的频率特性和可集成特性。若将它们与其他组元有效地组合起来,则可构成一个对结构控制极为有效的智能材料系统。这个系统几乎可以完全根据设计者的意图调整结构的阻尼与自振频率等动力学特性,同时还可对结构的位移、应变、应力、加速度和破坏情况进行自动监测。

常用的压电材料大致可分为三类。

第一类是无机压电材料,如压电晶体(石英SiO2 ) 和压电陶瓷(钛酸钡BT、锆钛酸铅PZT、改性锆钛酸铅、偏铌酸铅PN、铌酸铅钡锂PBLN、改性钛酸铅PT) 等。这类材料的研制成功,促进了声换能器、压电传感器等各种压电器件性能的改善和提高。

第二类是有机压电材料,又称压电聚合物,如偏聚氟乙烯( PVDF) (薄膜) 及以它为代表的其他有机压电(薄膜) 材料。这类材料以其材质柔韧、低密度、低声阻抗和高压电电压常数( g) 等优点为世人瞩目,且发展十分迅速,现已在水声、超声测量、压力传感、引燃引爆等方面获得应用。不足之处是压电应变常数( d)偏低,使之作为有源发射换能器受到很大的限制。

第三类是复合压电材料,这类材料是在有机聚合物基底材料中嵌入片状、棒状、杆状或粉末状无机压电材料构成的,可以说是第一类与第二类压电材料相结合的产物,但这种结合并非是单纯地按比例机械混合,而是在材料设计中充分考虑两者之间的“耦合效应”后所实现的最佳组合。这类材料,既具有高的耦合系数、压电常数,又具有低密度、低声阻抗和良好的柔韧性,至今已在水声、电声、超声、医学等领域得到广泛应用。如用它制成水声换能器不仅具有高的静水压响应速率,而且耐冲击,不易受损且可用于不同的深度。

目前,关于压电材料的研究与应用工作,仍在继续深入。北京航空航天大学曾对性能优良的37. 5Pb (Mg1/ 3Nb2/ 3 ) O3- 25PbZrO3 - 37. 5PbTiO3 三元系压电材料进行了系列掺杂试验。研究结果表明:多种添加剂的复合加入有可能实现材料Kp 与Qm 之间的优化组合。在上述三元系材料中添加2mol %的NiO、2mol %的Nb205 和0. 5 %(质量分数) 的MnO2 后,材料显示优异的压电性能:机电耦合系数Kp = 0. 62、机械品质因数Qm = 300、介电常数εr = 2400。武汉工业大学为提高压电陶瓷的压电与机械性能,拓宽应用领域,通过采用预先合成PZT(以

确保基体具有单一的四方相钙钛矿结构) 、多次预烧,以及加入过量的PbO、掺入若干微量元素等方法成功地研制出PZSN 系材料,即Pb[ ( Zn1/ 3Nb2/ 3) ( Sn1/ 3Nb2/ 3) ] (ZrTi) O3 系材料。实验表明,这类材料具有优良的压电性能,尤其是微量元素Mn、Sb、Ba 、Sr 等的掺入,可使其压电系数、机电耦合系数和机械品质因素得到大幅度的提高;控制掺杂元素与掺杂量,可使材料适用于多个领域:既可用作接触与听觉传感元件,亦可制作超声波压电换能器;不但可作为压电变压器材料用于电视机显像管、雷达显示管、小功率激光管、离子发生器、静电印刷与静电除尘等各种高压设备,而且可直接利用其正压电效应产生高压,用于引燃和引燃装置。此外,还可用于铁电存储与记忆等智能元件中。

3.光致变色和电致变色材料

电致变色机敏窗(ESW)是一种可以改变入射辐射线吸收谱的多层膜结构装置。若其吸收谱处于可见光波段时,则可显示颜色变化。此类EWS可用于建筑物和车辆窗户的调光。陈艾等利用溶胶--凝胶法,以MnO3 和WO3复合制备电致变色薄膜,使混合膜的光吸收峰向高光子能量方向迁移。生物界的变色龙能够在不同环境下变幻出五彩缤纷的颜色,如今,一种如变色龙般敏感的材料由复旦大学高分子科学系聚合物分子工程教育部重点实验室、先进材料实验室研制成功。这种具有电致变色的新型智能材料将环境敏感的高分子材料聚二炔与碳纳米管形成符合纤维,通过电刺激能迅速改变或还原颜色。变色纤维可能取代现有的跑车塑料外壳,省油,耐用,美观,可作为霓虹灯的材料,还可以应用到电子安全开关、显色器、智能窗、敏感器件等多个领域【3】

光致变色现象是指一个化合物A受到一定波长的光照射时,发生特定的化学反应,获得产物B,由于结构的改变导致其可见部分的吸收光谱发生明显变化,从而发生颜色变化。而在另一波长的光照射或热的作用下,又能恢复到原来的状态,其典型的紫外-可见吸收光谱和光致变色反应原理可用下图定性描述【4】。

常见的光致变色材料:(1)无机光致变色材料如WO3(2)有机光致变色材料,如紫罗精【5】。目前,官至变色材料在防伪中已有应用,是通过制成光致变色防伪纸张及防伪油墨来实现的。光致变色防伪纸是将具有光色效应的材料通过混合于树脂液等粘合剂中,然后再涂布在纸基上,利用光致变色材料的可逆变色特性来鉴别真伪。

4.磁致伸缩材料

磁致伸缩材料是一种同时兼具正逆磁机械耦合特性的功能材料。当它受到外加磁场作用时,便会产生弹性变形;若对其施加作用力,则其形成的磁场将会发生相应的变化。故磁致伸缩

材料在智能系统或结构中,常被用作传感器和驱动器(执行器) 。早期磁致伸缩材料的代表合金是Ni、NiCo 、FeCo 、镍铁氧体,其磁致伸缩系数λs 大多很低,一般小于50 ×10 - 6 。后因稀土元素的磁致伸缩效应很大,又研制出了稀土化合物,其λs 可达(100~1000) ×l0 - 6 ,

称为巨磁致伸缩材料。这类材料通常含有铽、钐、镝等稀土元素,如TbFe2 、SmFe2 等。不过它们的饱和磁场都较高( ≥1T) 。为降低工作磁场,随后又开发了多元稀土化合物,如(Tb ,Dy) Fe2 其λs 为(1100~1400) ×10 - 6 ,饱和(工作) 磁场也降低到0. 15T 或更低。最近又有人研究出两种新的磁致伸缩多层膜材料———TbCo/ FeCo 与TbFe/ Fe ,它们是交换耦合巨磁致伸缩材料与高磁极化强度材料的复合材料,可在低磁场下工作。

典型的巨磁致伸缩材料是以具有RFe2 Lave s 相为其结构特征的(Tb0. 27Dy0. 73) Fe2 合金。这类材料的特点是:在磁场的作用下,其长度、应力、弹性模量与声速均会发生变化,同时,因其磁畴呈直线,故可承受大致1400με的应变,与压电陶瓷相比高一个数量级,并且具有高的机电耦合系数和宽的工作温区。

目前, (Tb0. 27Dy0. 73) Fe2 合金已成为一种引人注目的高新技术材料,各国都在竞相研究开发并已进入商品化阶段。美国边缘公司( ETI) 的产品牌号为Tefenol - D ;瑞典菲勒汀公司( Fere2dyn - AB) 的产品牌号为MAGMEK86 ,成分为Tb0. 27Dy0. 73 Fe1. 95 ,尺寸为a6~30 ×200mm;英国最早生产的企业是稀土制品公司(REP) ,时间是1990 年;北京钢铁研究总院现可提供尺寸为( a8~20) ×200mm 的批试产品。应该指出,巨磁致伸缩材料的用量并不大,估计到2000 年全世界也不足200 吨,但因其价格昂贵,故产值仍相当高。目前这类材料的实用性能水平为:λs = 1800 ×10 - 6 ,磁各向异性E = 20. 24kJ / m3 ;实验室性能水平可达:λs =2400 ×10 - 6 , E = 36kJ / m3 。这类材料现阶段的研究目标主要集中在提高性能、改善工艺和降低成本三个方面。

高分子系智能材料

高分子系智能材料的范围很广。作为智能材料的高分子凝胶的研究与开发十分活跃,其次还有智能高分子膜材、智能高分子粘合剂、智能药物释放体系和智能高分子复合材料【6】。1. 智能高分子膜材

高分子膜材具有物质渗透和分离功能,现正构象及分子聚集体变化,制成稳定性优异的膜材,它对以生体膜为模型研究开发刺激响应性多肽膜,利用可逆的构象及分子聚集体变化,制成稳定性优异的膜材,它对物质的渗透作用可随钙离子浓度、pH值及电场刺激而变化。目前研究主要集中于增大响应感度和改善其通--断控制等。

2.智能高分子粘合剂

高分子材料与金属和无机非金属材料不同,属于链段可随环境变化而重排、改组。利用这种界面的刺激响应性,姚康德等设计了智能高分子粘合剂,它可用来粘合极性和非极性的基材。这是由于粘极性材料时它表面层的极性部分响应,而粘非极性材料时它表面层的非极性部分响应的缘故。

3.智能药物释放体系

智能高分子材料作为生物医用材料,其应用前景十分广阔。如以其制成药物释放体系(DDS)载体材料,则这类DDS可依据病灶所引起的化学物质或物理量(信号)的变化,自反馈控制药物释放的通断特性。如血液浓度响应的胰岛素释放体系可有效地把糖尿病患者的血糖浓度维持在正常水平,这是利用多价羟基与硼酸基的可逆键合作为对葡萄糖敏感的传感部分。这种药物释放体系有助于避免产生与疾病有关的并发症。

Ronald A.Siegel等已发现了一种从敌对的胃环境中保护酸敏感药物的简单凝胶基体系,当凝胶置于酸性环境时收缩,但在大肠的碱性环境中膨胀并具有渗透性,允许胶囊药物在适当条件下扩散。

姚康德等以醋酸洗必泰为模型药物,组成基材型药物释放体系,释放行为特征为药物在酸性条件下可达到稳态释放,而在pH值= 7 . 8时,因溶胀而限制药物几乎不释放。他

们现正探索靶向癌细胞的DDS, 如从对细胞无毒、无抗原性且可降解的支链淀粉Pul-lukn 出发,将其亲水性多糖部分以疏水性胆固醇取代,以提高它和癌细胞的相容性;而癌细胞则可作为该疏水化多糖的感受器。用此疏水化支链淀粉和抗癌药物复合,则得到能识别癌细胞,而不影响正常细胞的DDS.

4. 智能高分子复合材料

利用智能材料的概念可开发断裂传感器,使结构材料具有断裂自诊断性。测定碳纤维/玻璃纤维增强塑料的荷载--应变--电阻值,绘制成L-S-R曲线,发现电阻随形变增大,卸载有残留电阻的特点,表明纤维间及纤维界面会产生滞后,这是复合材料对过去承受最大变形的记忆功能。由此可以通过电阻变化预测破坏,从而预防材料断裂。可将所研究的表面形变感器用于一般结构材料。

5.光导纤维

光导纤维,有时亦可称为智能光纤。众所周知,智能材料系统必须具备的最关键的功能之一是“传感”。由于光纤具有其它任何材料都无法比拟的优异的传输功能,可以随时提供描述系统状态的准确信息,因此理所当然地成了最重要的信息传输材料,广泛地应用于各通信领域,并充任了智能材料系统中“神经网络”的关键角色。同时,又由于通过分析光的传输特性(强度、位相等) ,可获知光纤周围的密度、温度、压力、压强、电场、磁场、化学成分、X 射线、γ射线、光电子流等物理特性与环境条件的变化情况,故光纤还可用作传感元件或智能材料系统中的“神经单元”。

光纤直径细、易弯曲、体积小、重量轻、韧性好、埋入性佳,并且能耗低、频带宽、传输速率高、反应灵敏、抗电磁干扰能力强,加之兼具信息感知与信息传输的双重功能,便于波分与时分复用、分布传感与传感器复用,同时还耐高温、耐腐蚀,因此被世界公认为智能材料系统与结构首选的传感材料。近年来,在碳纤维或有机纤维/ 树脂基复合体中埋入光纤传感系统已成为智能材料研究领域的重要手段和研究热点。由于用于智能材料的光纤传感器与用于一般场合的传统传感器不尽相同———前者系嵌镶在智能机构内,后看是处于自由空间中,因此对前者的尺寸、结构、涂层等均有不少特殊的要求,基于这一情况,电子部四十六所研制出了新型的涂碳密封被覆光纤和细径保偏光纤。实验与应用表明,这两种光纤性能优良,有重要的实用价值。今后,随着智能材料实用化进程的推进与对智能材料性能要求的扩展,世界各国无疑会加大对智能光纤的研究投入与力度。

6.功能凝胶

功能凝胶,又称愈合材料。这是一类具有特异功能与极强粘合力的高分子材料。或者说,它是一类其状态可随环境条件(如温度、压力等) 而变化,并能及时向结构供给能量与物质的强力粘合材料,其大分子主链或侧链上有离子解离性、极性和疏水基团,类似于生体组织。此类高分子凝胶可因溶剂种类、盐浓度、pH值、温度的不同以及电刺激和光辐射而产生可逆的、非连续的体积变化。若将它装在脆性管道中埋入结构内部,那么,当结构严重超载、地震、强台风等原因造成应力过大出现局部裂纹时,脆性管道就能自行断开。呈液态的“愈合剂”便会自动渗进裂缝与微裂缝的各个部位,并在极短的时间内迅速凝固,将裂缝牢牢粘合,从而达到结构自修复与环境自适应的目的。目前,可供采用的功能凝胶有:聚酸乙烯乳液、氯丁- 酚醛、聚乙烯醇缩醛等。功能凝胶具有广阔的应用领域和前景,主要用于各类重要结构的新建、改建、维修与加固,尤其是用于国家重大基础工程结构中。

智能材料的功能

因为设计智能材料的两个指导思想是材料的多功能复合和材料的仿生设计,所以智能材料系统具有或部分具有如下的智能功能和生命特征:

(1)传感功能

能够感知外界或自身所处的环境条件,如负载、应力、应变、振动、热、光、电、磁、化学、核辐射等的强度及其变化。

(2)反馈功能

可通过传感网络,对系统输入与输出信息进行对比,并将其结果提供给控制系统。

(3)信息识别与积累功能

能够识别传感网络得到的各类信息并将其积累起来。

(4)响应功能

能够根据外界环境和内部条件变化,适时动态地作出相应的反应,并采取必要行动。

(5)自诊断能力

能通过分析比较系统目前的状况与过去的情况,对诸如系统故障与判断失误等问题进行自诊断并予以校正。

(6)自修复能力

能通过自繁殖、自生长、原位复合等再生机制,来修补某些局部损伤或破坏。

(7)自调节能力

对不断变化的外部环境和条件,能及时地自动调整自身结构和功能,并相应地改变自己的状态和行为,从而使材料系统始终以一种优化方式对外界变化作出恰如其分的响应。

智能材料的应用

在建筑方面,科学家正集中力量研制使桥梁、高大的建筑设施以及地下管道等能自诊其“健康”状况,并能自行“医治疾病”的材料。英国科学家已开发出了两种“自愈合”纤维。这两种纤维能分别感知混凝土中的裂纹和钢筋的腐蚀,并能自动粘合混凝土的裂纹或阻止钢筋的腐蚀。粘合裂纹的纤维是用玻璃丝和聚丙烯制成的多孔状中空纤维,将其掺入混凝土中后,在混凝土过度挠曲时,它会被撕裂,从而释放出一些化学物质,来充填和粘合混凝土中的裂缝。防腐蚀纤维则被包在钢筋周围。当钢筋周围的酸度达到一定值时,纤维的涂层就会溶解,从纤维中释放出能阻止混凝土中的钢筋被腐蚀的物质。

在飞机制造方面,科学家正在研制具有如下功能的智能材料:当飞机在飞行中遇到涡流或猛烈的逆风时,机翼中的智能材料能迅速变形,并带动机翼改变形状,从而消除涡流或逆风的影响,使飞机仍能平稳地飞行。利用智能材料弯曲变形可以改变翼形弦向、展向形状。如图1所示,在翼面前缘或后缘采用智能材料,利用智能材料改变翼形弯度。在此方案中, 翼面前缘一般在飞行过程中受较大的气动载荷,因此,在智能材料选用上,要选取在较低能量下, 能够提供较大驱动应力的材料。后缘相对气动力较小, 此方案更易实现。另外, 翼面前缘为雷达波主要散射源,因此选用轻质具有隐身效果的复合材料, 有助于提高翼面设计的功能拓展性。其次,如图2所示, 在翼面蒙皮内埋入智能材料,利用智能材料的弯曲变形, 改变翼面扭曲分布,减小诱导阻力,改善飞行器机动能力【7】。

智能材料可进行损伤评估和寿命预测的飞机自诊断监测系统。该系统可自行判断突然的结构损伤和累积损伤,根据飞行经历和损伤数据预计飞机结构的寿命,从而在保证安全的情况下,大大减少停飞检修次数和常规维护费用,使商业飞机能获得可观的经济效益。此外,还有人设想用智能材料制成涂料,涂在机身和机翼上,当机身或机翼内出现应力时,涂料会改变颜色,以此警告。智能材料在直升机的设计上有很大的应用潜力,他的优异性能带给直升机设计者很多新的思路与启发,它的研究、开发及利用必将对未来直升机的发展产生深远的影响,从旋翼、发动机等主要结构体材料到减震降噪、实时监测等功能元件,智能材料都可大显身手。智能材料的仿生性以及智能化特点符合当前技术发展的潮流,尤其是多个国家已将中鞥材料的研究发展列为科研的重点内容,势必会给直升机制造业的突破性发展带来重大机遇。

在医疗方面,智能材料和结构可用来制造无需马达控制并有触觉响应的假肢。这些假肢可模仿人体肌肉的平滑运动,利用其可控的形状回复作用力,灵巧地抓起易碎物体,如盛满水的纸杯等。药物自动投放系统也是智能材料一显身手的领地。日本推出了一种能根据血液中的葡萄糖浓度而扩张和收缩的聚合物。葡萄糖浓度低时,聚合物条带会缩成小球,葡萄糖浓度高时,小球会伸展成带。借助于这一特性,这种聚合物可制成人造胰细胞。将用这种聚合物包封的胰岛素小球,注入糖尿病患者的血液中,小球就可以模拟胰细胞工作。血液中的血糖浓度高时,小球释放出胰岛素,血糖浓度低时,胰岛素被密封。这样,病人血糖浓度就会始终保持在正常的水平上。智能材料可以大量用于生物医学的各个方面。在药物释放体系方面,除上面提到的例子外,烯酸氢乙基酯(HEMA)的水合型共聚物水凝胶作成的可移

植的药物释放体系可治疗前列腺癌、性早熟以及作男性避孕装置。另外,热可逆聚合物凝胶可作生物杂交人工胰脏以及细胞固定体系等:K 利用改性聚合物凝胶制成的凝胶“手”通过温度的调整可以抓住或释放物体。生物医学材料指的是一类具有特殊性能、特种功能,用于人工器官、外科修复、理疗康复、诊断、治疗疾患,而对人体组织不会产生不良影响的材料。现在各种合成材料和天然高分子材料、金属和合金材料、陶瓷和碳素材料以及各种复合材料,其制成产品已经被广泛地应用于临床和科研。生物医学材料得以迅猛发展的主要动力来自人口老龄化、中青年创伤的增多、疑难疾病患者的增加和高新技术的发展。人口老龄化进程的加速和人类对健康与长寿的追求,激发了对生物材料的需求。作为世界人口最多的国家,中国已进入老龄化国家行列,生物材料的市场潜力将更加巨大。随着生物技术的发展,不同学科的科学家进行了广泛合作,从而使制造具有完全生物功能的人工器官展示出美好的前景。

军事方面,在航空航天器蒙皮中植入能探测激光、核辐射等多种传感器的智能蒙皮,可用于对敌方威胁进行监视和预警。美国正在为未来的弹道导弹监视和预警卫星研究在复合材料蒙皮中植入核爆光纤传感器、X射线光纤探测器等多种智能蒙皮。这种智能蒙皮将安装在天基防御系统平台表面,对敌方威胁进行实时监视和预警,提高武器平台抵御破坏的能力。智能材料还能降低军用系统噪声。美国军方发明出一种可涂在潜艇上的智能材料,它可使潜艇噪声降低60分贝,并使潜艇探测目标的时间缩短100倍。在未来高技术局部战争中系统中飞行器的重要特征。各种飞行器系统向着,多维一体的信息化体系作战与智能化的远程精确定位能力将成为国防“大航程、高突防、智能化”方向发展, 提高武器系统的攻防对抗、精确打击能力,具备多种作战任务的执行能力。飞行器翼面结构也因此有了新的发展方向, 例如,飞机机翼能够根据飞行条件弯曲变形,保持最佳巡航效率;导弹可以通过改变升力面,实现多种任务剖面的飞行模式;某些飞行器可以通过翼面形状变化, 实现从亚声速飞行变为超声速飞行。

航空航天方面,随着压电材料结构在航空航天结构控制领域的广泛应用,压电驱动器与主题结构间的应变传递问题的研究日益重要【8】。智能材料能经受恶劣环境,同时能对自己的状况进行自我诊断,并能阻止损坏和退化,能自动加固或自动修补裂痕和裂纹的材料,从而防止许多灾难性事故的发生。

产品设计方面,主要体现为4个方面:情趣的智能、处理的智能、适应的智能、交流的智能。除上述几个方面外,智能材料的再一个重要进展标志就是形状记忆合金,或称记忆合金。这种合金在一定温度下成形后,能记住自己的形状。当温度降到一定值(相变温度)以下时,它的形状会发生变化;当温度再升高到相变温度以上时,它又会自动恢复原来的形状。目前记忆合金的基础研究和应用研究已比较成熟。一些国家用记忆合金制成了卫星用自展天线。在稍高的温度下焊接成一定形状后,在室温下将其折叠,装在卫星上发射。卫星上天后,由于受到强的日光照射,温度会升高,天线自动展开。除此之外,还有人用记忆合金制成了窗户自动开闭器。当温度升至一定程度后窗户自动打开,温度下降时自动关闭。

在土木建筑领域,除上已提到的能自行愈合的混凝土外,日本一家公司现正研制一种强化混凝土。他们将碳纤维和玻璃纤维强化的树脂置于其中,碳纤维是导电体,假如混凝土受压爆裂,切断碳纤维,整个建筑物的电阻增加,导电量改变,成为建筑物出现问题的信号,玻璃纤维却仍保持完好,使建筑物不至于全面崩溃。这种强化混凝土适合于海底建筑物用,也可用于建筑高速公路和跨海大桥【9】。

高精密仪器以及其自动化生产方面,利用以前的压电聚合物或聚电解质凝胶制成了新“似皮”触觉传感器和类似肌肉的执行器。Yoshihito Osada和Mariko Hasebe 用聚电解质凝胶组成了自动动力化学模型,利用凝胶收缩、振动并可逆地弯曲,发明了在电等刺激下工作的“化学阀”,这种阀每分钟切换、振动15-100次,像“双金属”似的复合弯曲。

这种动力化学设备还可用作pH敏感电极、传感器、执行器等。Adachi用在转变温度等变形的成形记忆树脂或塑料作为温度显示仪上热敏感元件。在室温和冷冻防腐温度间的成形记忆聚合物作冷冻防腐传感器。改性的凝胶可应用于凝胶显示设备,如开关或阀门上,还可用作核磁控制剂。

机械工业方面,A Kaychalsky 制备了一种以膜或纤维形式存在的聚丙烯酸或聚甲基丙烯酸的三网网格,它能在水中溶胀,这样的一块薄膜能举起一个相当重的物体。Tatara发现了一种化学动力活塞和冲头,在其中填上840mL 树脂,被用作起重机。同时在溶胀状态的树脂产生的压力使活塞能用作“锭子”或“刹车”。

抑制振动和噪声方面,将压电材料置于结构表面或内部以感测振动,利用经过放大的输出功率去驱动另一个粘贴于不同区域的压电材料,以减少振动反应。此法已成功地应用于降低圆柱形卫星天线桅杆的振动;同时已研制出具有自行调整外形功能的直升机推进叶片,以降低不必要的噪声和振动【10】。

智能材料今后的研究方向

智能材料已成为当今世界高度关注的热点和焦点,自1990年以来,各种有关智能材料的学术团体、研究机构相继成立;有关智能材料的国际研讨会几乎年年举行;并且创办了两种专业性学术期刊。世界各国,特别是工业发达国家,纷纷将之列为国家重大科研项目,加大投入,竞相发展。美国已将智能材料定为具有战略意义、优先发展的研究领域之一;日本通产省工技院把它列入1995 年开始实施的基础科学先导研究的七项重大项目之一,并从1998 年开始,将之作为大学合作型产业科学技术研究开发项目和国家21 世纪创新产业的加强支持项目;欧洲亦提出并正在加紧实施智能复合材料结构研究计划。我国航天工业总公司也将智能材料列入九五及中长期发展规划。尤其需要提到的是:近年来,美国的一些政府机构,包括高级研究计划局、国家航空航天局、陆军研究局、空军与海军研究局等,在智能材料的研究方面,每年都投入了大量的资金。据粗略估计,这些机构每年总投资均在4000 万美元以上。其中,仅高级研究计划局1993 年就制订了一个为期6 年、费用高达5740 万美元的研究计划,用于智能材料与结构的研究开发。目前,国际上有关智能材料的研究重点集中在生物智能材料与关键工程结构件材料的智能化两大方面,具体的研究热点亦不少,主要包括:机敏材料、机敏传感器、机敏执行器以及智能控制理论与关键共性技术、智能结构数学力学、智能结构设计理论与方法、智能材料系统与结构的应用等。

智能材料是一种集材料与结构、智然处理、执行系统、控制系统和传感系统于一体的复杂的材料体系。它的设计与合成几乎横跨所有的高技术学科领域。构成智然材料的基本材料组元有压电材料、形状记忆材料、光导纤维、电(磁)流变液、磁致伸缩材料和智然高分子材料等。智然材料的出现将使人类文明进入一个新的高度,但目前距离实用阶段还有一定的距离。今后的研究重点包括以下六个方面:

(1)智能材料概念设计的仿生学理论研究

(2)材料智然内禀特性及智商评价体系的研究

(3)耗散结构理论应用于智能材料的研究

(4)机敏材料的复合-集成原理及设计理论

(5)智能结构集成的非线性理论

(6)仿人智能控制理论

开发智能材料的战略意义

开发智能材料,无论对于推动科学技术的进步,还是促进国民经济的发展,都具有重大的战略意义。具体地说:

(1) 、由于智能材料是一门多门类、多学科交*的科学,与物理学、材料力学、电子学、化学、仿生学、生命科学、控制理论、人工智能、信息技术、生物技术、计算机技术、材料合成与加工等诸多的前沿科学及高新技术戚戚相关、紧紧相连,因此,它一旦有所突破,便会导致众多学科的理论创新和许多领域的技术变革,大大地推动国家科学技术的进步和综合实力的提高。

(2) 、智能材料具有十分重要的现实用途和极为广阔的应用前景。从高精尖的宇宙探索,直到普通人的日常生活,智能材料都起着重要的作用。例如,在各种关键装备设施和大型重要工程中,智能材料能够在线、动态、及时、主动地“感知”自身的受力、受冲击、振动、温度、裂纹等情况,以及受损伤的程度等,并可通过预警、自适应调整、自修复补救等方式,预报以至消除危害,从而极大地提高工程结构的安全性和可*性,避免灾难性事故的发生。反过来,这一切“病兆”的预报与事故的避免,又将导致现行结构安全监控概念的根本变化,并引起一场关于工程构造设计思想的深刻革命。

参考文献

【1】电致变色的新型智能材料——变色纤维浙江纺织服装职业技术学院学报2010年03期

【2】压电驱动器应变传递模型分析作者:贾丽杰李敏陈伟民《工程力学》2010年08期

【3】光致变色防伪材料及其应用作者:马先锋《广东科技》2010年14期

【4】智能高分子材料的研究进展作者:陈秀丽裴先茹《化学工程与装备》2010年03期

【5】形状记忆聚合物的力学性能研究作者:童世虎董雷徐志宏《工程与实验》2009年03期

【6】智能材料在直升机上的应用作者:李辉裴鑫杨而蒙《中国科技信息》2009年01期

【7】智能材料与产品设计作者:聂桂平丁超《东华大学学报(自然科学版)》2008年03期

【8】智能材料在飞行器机翼面结构中的应用探索作者:蒋海涛颜凌晖《飞航导弹》2008年1期

【9】电致变色材料的变色机理及其研究进展作者:沈庆月陆春华许仲梓《材料导报》2007年S1期

【10】智能材料的现状及发展趋势作者:张胜兰沈新元杨庆《中国纺织大学学报》2000年03期

【11】智能材料发展概述作者:姚康德许美萱成国祥《智能材料》1990年

功能材料文献综述

聚丙烯酸系高效减水剂在高强高性能混凝土中的作用 摘要:高效减水剂是指在保持混凝土坍落度基本相同的条件下能大幅度减少拌和用水量的外加剂。聚丙烯酸高效减水剂具有强度高、耐热性、耐久性、耐候性等优异性能,正是由于聚丙烯酸高效减水剂的这些优良特性而使它成为世界性的研究热点。本文则通过查阅国内外文献,总结阐述聚丙烯酸系减水剂在高强高性能混凝土中的作用,它的研究进展,以及未来发展方向。 关键字:聚丙烯酸系高效减水剂高强混凝土高性能混凝土 一、前言 高性能混凝土是指符合特殊性能组合和匀质性要求的混凝土,当混凝土的某些特征是为某一特定的用途和环境而设定时,这就是高性能混凝土。而高强混凝土是以混凝土的抗压强度指标为特征而命名的,我国现阶段通常将强度等级达到或超过C60的混凝土称为高强混凝土。可以看出当高性能混凝土的强度很高时便是高强混凝土,即高强混凝土是高性能混凝土的一种,故下文将聚丙烯酸系高效减水剂在高强高性能混凝土中的作用统称为在高性能混凝土中的作用。 混凝土与水泥砂浆一样,具有抗压强度高、稳定性好、施工机械简单、成本低廉等优点,是应用最广泛的建筑材料之一。但由于其自身存在诸如坍落度损失大、水泥用量大、耐久性不够好等缺陷,使其功能和使用范围受到一定限制。而外加剂具有改善混凝土拌合物和易性、合理降低水泥用量和提高混凝土抗渗、抗冻性能等优点,所以,利用外加剂改善新拌混凝土的工作性,提高混凝土硬化后的力学性能、体积稳定性和耐久性,是现代高性能混凝土技术发展的方向。在混凝土中减水剂不仅具有改善混凝土拌合物流变性能的作用,同时还具有提高硬化后的混凝土力学性能、体积稳定性和耐久性能的作用。高效减水剂是指在保持混凝土坍落度基本相同的条件下能大幅度减少拌和用水量的外加剂。在这些高效减水剂中,聚丙烯酸系减水剂是当今混凝土高性能减水剂研究中较为前沿的研究课题,该类减水剂具有低掺量、高减水率、抑制坍落度经时损失等特点。本文通过查阅国内外文献,总结阐述聚丙烯酸系减水剂在高强高性能混凝土中的作用,聚丙烯酸系减水剂的研究进展,以及未来发展方向。 二、聚丙烯酸系高效减水剂的作用机理 聚丙烯酸系减水剂由于其优异性能而引起广泛的关注,为了有效研究和开发这一类型的减水剂,对其减水机理的研究非常重要。减水剂的分散减水机理主要包括以下几个方面: 1、聚丙烯酸减水剂可以有效降低水泥颗粒固液界面能 H 聚丙烯酸减水剂由于分子结构中有大分子的主链和侧基- COOH,- OH,- SO 3等,既有亲水性又有亲油性,在水泥- 水界面上具有很强的吸附能力。减水剂吸附在水泥颗粒表面,能够降低水泥颗粒固液界面能,降低水泥- 水分散体系的总能量,从而提高分散体系的热力学稳定性,这样有利于水泥颗粒的分散。 2、聚丙烯酸减水剂静电斥力的作用 新拌混凝土中掺入减水剂后,由于减水剂分子结构中的- COOH、- OH、- SO H 3等极性基团的电离作用,使得水泥颗粒表面带上电性相同的电荷,并且电荷量随

浅析未来材料的发展趋势(1)

北京科技大学 本科生学术报告 题目:________________________ ________________________ 学院:________________________ 专业:________________________ 姓名:________________________ 学号:________________________ 指导教师签字:________________________ 年月日

目录 近现代材料的发展历史和作用 (3) 材料发展历史 (3) 材料的地位和作用 (4) 材料发展分析 (5) 电子材料 (5) 新型战略性材料 (6) 美国材料战略和发展趋势简略分析 (7) 日本材料战略和发展趋势简略分析 (8) 欧盟材料战略简略分析 (10) 其他部分国家材料发展计划 (10) 我国新材料发展战略 (11) 总结 (13) 参考文献 (14)

浅析未来材料的发展趋势 谢帅(北京科技大学,北京 2016) 摘要:步入21世纪后,科技的发展速度变得十分迅速,每时每刻都可能有新的科技成果出现。在这科技爆炸的年代,身为理工人,了解自己学科的发展状况、预测自己未来的发展方向是十分重要的。身为材料专业的学生,如果能很好的预测出未来材料的可能重点发展方向,不仅能够为选专业提供参考,还能更好了解材料这个学科,让自己成为自己未来的“指路人”。,要对材料有较为深刻的认识。材料是人类文明的里程碑,首先,我通过了解材料发展历程和地位,认识材料对国家、世界乃至人类文明发展的重要性。由于国情不同,不同国家会有不同的发展重点。所以之后对美国、日本、欧盟等国家的材料战略和其重点领域进行了解及简略分析,得出这些国家的材料发展趋势。最后当然要了解我国材料领域的重点和国家的关于材料的发展规划,展望新材料领域发展趋势:复合材料、生物材料、纳米材料、制造材料的新工艺、新流程及结构与性能的新测试方法、材料表证和评价科学技术、材料设计与性能预测科学技术。 关键词:新材料材料发展战略性材料 近现代材料的发展历史和作用 材料发展历史 材料是人类文明的里程碑,对材料的认识和能力决定着社会的形态和人类生活的质量。在人类社会发展的历程中,可以发现很多阶段都是以材料为主要标志或是材料起主导作用,如远古的旧石器时期、新石器时代、陶瓷时代、青铜器时代、铁器时代,到近现代的煤炭时代、蒸汽机时代、水泥时代、钢铁时代、石油时代、电气与化工时代、半导体时代,以及发展中的复合材料、纳米材料、绿色环保材料等新时代材料(图1)[1]4图

高分子材料环氧树脂综述

高分子材料环氧树脂综述 摘要:环氧树脂是指分子中含有两个以上环氧基团的一类聚合物的总称。它是环氧氯丙烷与双酚A或多元醇的缩聚产物。由于环氧基的化学活性,可用多种含有活泼氢的化合物使其开环,固化交联生成网状结构,因此它是一种热固性树脂。本文将简单介绍环氧树脂的结构、性能、应用及研究现状,重点介绍环氧树脂的应用前景和研究现状。 关键词:高分子材料;环氧树脂;结构;研究现状 一、前言 在世界范围内, 高分子材料的制品属于最年轻的材料.它不仅遍及各个工业领域, 而且已进入所有的家庭, 其产量已有超过金属材料的趋势, 将是 21 世纪最活跃的材料支柱. 面向21 世纪的高科技迅猛发展, 带动了社会经济和其他产业的飞跃, 高分子已明确地承担起历史的重任, 向高性能化、多功能化、生物化三个方向发展.21 世纪的材料将是一个光辉灿烂的高分子王国. 环氧树脂是指分子中含有两个以上环氧基团的一类聚合物的总称。它是环氧氯丙烷与双酚A或多元醇的缩聚产物。由于环氧基的化学活性,可用多种含有活泼氢的化合物使其开环,固化交联生成网状结构,因此它是一种热固性树脂。双酚A 型环氧树脂不仅产量最大,品种最全,而且新的改性品种仍在不断增加,质量正在不断提高。我国自1958年开始对环氧树脂进行了研究,并以很快的速度投入了工业生产,至今已在全国各地蓬勃发展,除生产普通的双酚A-环氧氯丙烷型环氧树脂外,也生产各种类型的新型环氧树脂,以满足国防建设及国家经济各部门的急需。 二、基本分类 1.分类标准 环氧树脂的分类目前尚未统一,一般按照强度、耐热等级以及特性分类,环氧树脂的主要品种有16种,包括通用胶、结构胶、耐高温胶、耐低温胶、水中及潮湿面用胶、导电胶、光学胶、点焊胶、环氧树脂胶膜、发泡胶、应变胶、软质材料粘接胶、密封胶、特种胶、潜伏性固化胶、土木建筑胶16种。 2.几种分类 对环氧树脂胶黏剂的分类在行业中还有以下几种分法: (1)按其主要组成分为纯环氧树脂胶黏剂和改性环氧树脂胶黏剂; (2)按其专业用途分为机械用环氧树脂胶黏剂、建筑用环氧树脂胶黏剂、电子环氧树脂胶黏剂、修补用环氧树脂胶黏剂以及交通用胶、船舶用胶等; (3)按其施工条件分为常温固化型胶、低温固化型胶和其他固化型胶; (4)按其包装形态可分为单组分型胶、双组分胶和多组分型胶等; 还有其他的分法,如无溶剂型胶、有溶剂型胶及水基型胶等。但以组分分类应用较多。 三、几种常见环氧树脂结构

材料物理与文献综述

提高导电高分子电导率的研究概述 摘要:主要介绍了导电高分子材料的分类情况,针对其分类简介了各类导电高分子材料的导电机理,并利用其导电机理集中概述了几种提高高分子电导率的方法,最后指出了导电高分子目前在电导率方面存在的问题及发展趋 关键词:导电高分子;电导率;引言: 导电高分子材料,也可称作导电聚合物,自从1977年【1】科学家发现晶态聚乙炔具有明显的导电性以来,导电聚合物已不再是一个陌生的名词,作为一类新的材料也引起了化学家和物理学家的重视和兴趣。【2】各国科学家对其合成、结构、导电机理、性能、应用等方面经过多年的研究,导电聚合物已使其成为一门相对独立的学科。人们在制得导电高分子的同时,对其导电机制探索的兴趣也是十分的浓厚。本文将对提高导电高分子的电导率的研究进行简单的概述。 正文: 从导电机理的角度看,导电高分子大致可分为两大类:第一类是复合型导电高分子材料,它是指在普通的聚合物中加入各种导电性填料而制成的;第二类是结构型导电高分子材料,它是指高分子本身或经过“掺杂”(dope)之后具有导电功能的一类材料,这类导电高分子一般为共轭型高聚物。【3】导电聚合物还可以分成以下三类:电子导电聚合物、离子导电聚合物和氧化还原型导电聚合物。【4】所有电子导电聚合物的共同结构特征为分子内有着线性大的共扼π电子体系,即电子聚合物大都为共轭聚合物。目前研究最多的高分子聚合物是:聚对苯(PPP)、聚吡咯(PPY)、聚噻吩(PTH)、聚苯胺(Pan)和聚苯基乙炔(PPV)。下面对导电高分子的电导率进行简单的概述。 1、2结构型导电高分子的导电机理 结构型导电高分子一般为共轭型高聚物,在共轭高聚物中由于价带电子对电导没有贡献,另一方面由于受链规整度的影响,常常使聚合度n不大,使得电子在常温下从P轨道跃迁到P*较难,因而电导率较低。【3】对其导电机理具体分析如下:1、2、1共轭高分子导电应具备的条件 根据能带理论可知,高分子要具有导电性必须满足下列两个条件【7】,才能冲破分子中原子最外层电子的定域,形成具有整个大分子性的能带体系:(1)大分子的分子轨道能强烈地离域;(2)大分子链上的分子轨道间能相互重叠。而能满足上

非晶态金属材料综述

非晶态金属材料 一,非晶态金属材料 非晶态金属材料是指在原子尺度上结构无序的一种金属材料。大部分金属材料具有很高的有序结构,原子呈现周期性排列(晶体),表现为平移对称性,或者是旋转对称,镜面对称,角对称(准晶体)等。而与此相反,非晶态金属不具有任何的长程有序结构,但具有短程有序和中程有序(中程有序正在研究中)。一般地,具有这种无序结构的非晶态金属可以从其液体状态直接冷却得到,故又称为“玻璃态”,所以非晶态金属又称为“金属玻璃”或“玻璃态金属”。 制备非晶态金属的方法包括:物理气相沉积,固相烧结法,离子辐射法,甩带法和机械法。 二,非晶态金属的特点 由于传统的金属材料都以晶态形式出现。但这类金属熔体,由于极快的速率急剧冷却,例如每秒钟冷却温度大于100万度,冷却速度极快,而高温下液态时原子呈无序状态,因被迅速“冻结”而形成无定形的固体,此时这称为非晶态金属;由于其内部结构与玻璃相似,故又称金属玻璃。 这种材料强度和韧性兼具,即强度高而韧性好,一般的金属在两点上是相互矛盾的,即强度高而韧性低,或与此相反。而对于非晶态金属,其耐磨性也明显地高于钢铁材料。 非晶态金属还具有优异的耐蚀性,远优于典型的不锈钢,这可能是因为其表面易形成薄而致密的钝化膜;同时由于其结构均匀,没有金属晶体中经常存在的晶粒、晶界和缺陷,所以不易产生引起电化学腐蚀 并且非晶态金属还具有优良的磁学性能;由于其电阻率比一般金属晶体高,可以大大减少涡流损失,低损耗、高磁导,故使其成为引人注目的新型材料,也被誉为节能的“绿色材料”。 另外,非晶态金属有明显的催化性能;它还可作为储氢材料。 但是非晶态合金也有其致命弱点,即其在500度以上时就会发生结晶化过程,因而使材料的使用温度受到限制。还有其制造成本较高,这点也限制非晶态金属广泛应用。

有机光电材料综述

有机小分子电致发光材料在OLED的发展与应用的综述电致发光(electroluminescence,EL),指发光材料在电场的作用下,受到电流或电场激发而发光的现象,它是一个将电能直接转化为光能的一种发光过程。能够产生这种电致发光的物质有很多种,但目前研究较多而且已经达到实际应用水平的,主要还是无机半导体材料,无机 EL 器件的制作成本较高,制作工艺困难,发光效率低,发光颜色不易实现全色显示,而且由于很难实现大面积的平板显示,使得这种材料的进一步发展具有很严峻的局限性。由于现有的显示技术无法满足我们生产生活的需要,因此促使人们不断地寻求制备工艺成本更低、性能更好的发光材料。有机电致发光材料(organic light-emitting device,OLED)逐渐的进入了人们的视野,人们发现它是一种很有前途的、新型的发光器件。有机电致发光就是指有机材料在电流或电场的激发作用下发光的现象。根据所使用的有机材料的不同,我们将有机小分子发光材料制成的器件称为有机电致发光材料,即 OLED;而将高分子作为电致发光材料制成的器件称为高分子电致发光材料,即 PLED。不过,通常人们将两者笼统的简称为有机电致发光材料 OLED。 一.原理部分 与无机发光材料相比,有机电致发光材料具有很多优点:光程范围大、易得到蓝光、亮度大、效率高、驱动电压低、耗能少、制作工艺简单以及成本低。综上所述,有机电致发光材料在薄膜晶体管、

太阳能电池、非线性发光材料、聚合物发光二极管等方面存在巨大的需求,显示出广泛的应用前景,因而成为目前科学界和产业界十分热门的科研课题之一。虽然,世界上众多国家投入巨资致力于有机平板显示器件的研究与开发,但其产业化进程还远远低于人们的期望,主要原因是器件寿命短、效率低等。目前有很多关键问题没有解决:1. 光电材料分子结构、电子结构和电子能级与发光行为之间的关系,这是解决材料合成的可能性、调控材料发光颜色、色纯度、载流子平衡及能级匹配等关键问题的理论和实验依据; 2. 光电材料和器件的退化机制、器件结构与性能之间的关系、器件中的界面物理和界面工程等,这是提高器件稳定性和使用寿命的理论和实验基础,也是实现产业化、工业化的根本依据。 1.基态与激发态 “基态”在光物理和光化学中指的是分子的稳定态,即能量最低的状态。如果一个分子受到光或电的辐射使其能量达到一个更高的数值后,分子中的电子排布不完全遵从构造原理,这时这个分子即处于“激发态”,它的能量要高于基态。基态和激发态的不同并不仅仅在于能量的高低上,而是表现在多方多面,例如分子的构型、构象、极性、酸碱性等。在构型上主要表现在键长和二面角方面,与基态相比,激发态的一个电子从成键轨道或非成键轨道跃迁到反键轨道上,使得键长增长、键能级降低;同时,由于激发后共轭性也发生了变化,所以二面角即分子的平面性也发生了明显的改变。 2.吸收和发射

隐身材料发展历史综述和应用前景展望

1.绪论 1.1前言 随着无线电技术和雷达探测技术的迅速发展,电子和通信设备向着灵敏、密集、高频以及多样化的方向发展,这不仅引发电磁波干扰、电磁环境污染,更重要的是导致电磁信息泄漏,军用电子设备的电磁辐射有可能成为敌方侦察的线索。为消除或降低导弹阵地的电磁干扰、减少阵地的电磁泄漏,需要大大提高阵地在术来战争中的抗电磁干扰及生存能力。高放能、宽频带的电磁波吸波/屏蔽材料的研究开发意义重大。 吸波材料是一种重要的军事隐身功能材料,它的基本物理原理是,材料对入射电磁波进行有效吸收,将电磁波能量转化为热能或其他形式的能量而消耗掉。该材料应该具备两个特性,即波阻抗匹配性和衰减特性。波阻抗匹配特性即入射电磁波在材料介质表面的反射系数最小,从而尽可能的从表面进人介质内部;衰减特性指进入材料内部的电磁波被迅速吸收。损耗大小,可用电损耗因子和磁损耗因子来表征。对于单一组元的吸收体,阻抗匹配和强吸收之间存在矛盾,有必要进行材料多元复合,以便调节电磁参数,使它尽可能在匹配条件下,提高吸收损耗能力。吸波材料按材料的吸波损耗机理可分为电阻型、电介质和磁介质型。吸波材料的性能主要取决于吸波剂的损耗吸收能力,因此,吸波剂的研究一直是吸波材料的研究重点。 1.2隐身材料定义 随着人们生活水平的提高,各种电器的频繁使用,使我们周围的电磁辐射日益增强,电磁污染成为世界环境的第五害,严重的危害了人类的身体健康。电磁辐射对人的作用有5种:热效应、非热效应、致癌、致突变和致畸作用。因此,在建筑空间中,各类电子,电器以及各种无线通信设备的频繁使用,无时无刻不产生电磁辐射,电磁污染已经引起人们的广泛关注。 电磁吸波材料即隐身材料最早在军事上隐身技术中应用。隐身材料是实现武器隐身的物质基础。武器系统采用隐身材料可以降低被探测率,提高自身的生存率,增加攻击性,获得最直接的军事效益。因此隐身材料的发展及其在飞机、主战坦克、舰船、箭弹上应用,将成为国防高技术的重要组成部分。对于地面武器

有机高分子磁性材料研究综述

有机磁性材料研究综述 摘要:有机磁性材料是最近二十多年发展起来的新型的功能材料,因为其结构的多样性,可用化学方法合成,相比传统磁性材料具有比重低、可塑性强等等优点,因此在新型功能材料方面有着广阔的应用前景。本文综述了高分子有机磁性化合物的发展和研究近况,及其有机高分子磁性材料的分类及其应用前景。 关键词:有机磁性材料结构型复合型 Review on the research of organic magnetic material Abstract: organic magnetic material is a new functional material in recent twenty years, because of the diversity of its structure, synthetized by chemical method , compared with the traditional magnetic materials with a low specific gravity, high plasticity, and so on, so it has a broad application prospect in the new functional materials.This paper reviews the development and research status of high polymer organic magnetic materials’compounds, classification and its application prospect. Key word: organic magnetic material intrinsic complex

文献综述范例模板

文献综述 学生姓名学号 学院经济与管理学院 专业市场营销 题目关于中华老字号品牌发展的文献综述指导教师 2017 年 6 月

一、前言 中华老字号品牌是我国商业文化中的重要组成部分,他们具有鲜明的民族特色。但如今由于消费行为、传播环境的碎片化与多元化、民族意识的回归等因素,给老字号发展带来了前所未有的机遇和挑战。为了改变当今老字号面临的逐渐衰亡的现象,重振老字号品牌。本文搜集了20篇相关文献并根据各家学者的观点,整理汇总成一篇文献综述。先是对中华老字号的概念和界定做归纳整理,接着对当今中华老字号发展的现状情况进行了搜集整合,着重分析了当下中华老字号面临的问题,如缺乏创新、品牌传播方式落后、商标保护意识薄弱等问题。同时根据各位学者针对问题提出的相关建议做了整理,以便为今后对中华老字号的深入研究提供借鉴作用。 二、正文 (一)、中华老字号的概念和界定 老字号是数百年商业和手工业竞争中留下的珍品,都各自经历了艰苦奋斗的发家史而最终统领一行。中华老字号的定义随着时代的发展也有不同的解释,以下有几种不同的,具有代表性的概念和界定: 熊长博(2011)在《中医药老字号的现代化之路》中指出:2006年商务部官方认定的中华老字号定义是指历史悠久,拥有世代传承的产品、技艺或服务,具有鲜明的中华民族传统文化背景和深厚的文化底蕴,取得社会广泛认同,形成良好信誉的品牌。除此之外,品牌的创建时长不得低于50年。[1]程国鹰(2011)在《中华老字号杏花村“汾酒”品牌创新策略研究》里将中华老字号的界定整理出来,具体为:品牌创立于1956年(含)以前,传承独特的产品、技艺或服务,有传承中华民族优秀传统的企业文化,具有中华民族特色和鲜明的地域文化特征,具有历史价值和文化价值,内地资本和港澳台地区资本相对控股,经营状况良好,且具有较强的可持续发展能力。[2] 刘婧维(2014)在《中华老字号企业网络营销研究》中认为中华老字号是指在长期的生产经营活动中,沿袭和继承了中华民族优秀的文化传统、具有鲜明的地域文化特征和独特的工艺,历史悠久,取得了社会广泛认同,赢得了良好信誉的产品品牌。[3]

(发展战略)光功能高分子材料的研究发展及应用

论光功能高分子材料的研究发展及应用综述 吴俊杰 化工081班 前言:光功能高分子材料研究是光化学和光物理科学的重要组成部分,近年来随着现代科学技术的发展,光功能高分子材料研究在功能材料领域占有越来越重要的地位,光功能高分子材料日益受到重视。光功能高分子材料的应用领域已从电子、印刷、精细化工等领域扩大到塑料、纤维、医疗、生化和农业等方面,正在快速发展之中,光功能高分子材料研究与应用也将越来越广。 1光功能高分子材料及分类 光功能高分子材料是指能够对光进行传输、吸收、储存、转换的一类高分子材料。 表1 光功能高分子材料的分类 剂等构成。 光致抗蚀剂:主要包括正性光致抗蚀剂和负性光致抗蚀剂等。 高分子光稳定剂:主要包括光屏蔽剂、激发态狙灭剂抗氧剂和聚合型光稳定剂等。 光致变色高分子材料:主要包括含硫卡巴腙络合物的光致变色聚合物、含偶氮苯的光致变色高分子和含螺苯并吡喃结构的光致变色高分子等。 光导电高分子材料:由光导电聚合物材料构成。

2光功能高分子材料的类别和应用 表2 光功能高分子材料的类别和应用 3光功能高分子材料的发展概况 1954年,美国柯达公司的Minsk等人开发出光功能高分子聚乙烯醇肉桂酸酯,并成功应用于印刷制版。而现在光功能高分子材料应用领域已从电子、印刷、精细化工等领域扩大到塑料、纤维、医疗、生化和农业等方面,发展之势方兴未艾。 光功能高分子材料能够对光能进行传输、吸收、储存、转换.塑料光导纤维是利用高分子的光曲线传播性而制成的非线性光学元件。塑料光纤一般以有机玻璃为芯材,以含氟透明树脂为皮层,用柔软的有机硅树脂进行一次包覆,然后用硬质高分子材料进行二次包覆。有机玻璃、含氟透明树脂、有机硅树脂都是高分子材料,芯材有高折光率,皮层为低折光率材料。光纤的直径范围为几十到约1000微米,光纤在光纤芯内通过反复反射而向前传输,由于塑料光纤在目前传输损耗仍较高,主要应用于飞机、舰船和汽车内部的短距离光通信系统。此外,还应用于光纤显示器、图像的缩小和放大、火焰及高温监视器、光开关、巨点折象器、阅读穿孔卡片、道路标志和装饰照明等。近来,对有机玻璃采用重氢化技术,已使塑料光纤的传输损耗有所降低,为较长距离应用创造了条件。 以高性能有机玻璃或聚碳酸酯透明塑料的高分子材料为基材制成的光盘,是80年代新开发成功的先进信息、记录、储存元件,适应了激光技术的发展和对大容量、高信息密

最新功能高分子材料综述

功能高分子材料综述

功能高分子材料综述 【文摘】功能高分子材料是高分子学科中的一个重要分支,它是研究各种功能性高分子材料的分子设计和合成、结构和性能关系以及作为新材料的应用技术,它的重要性在于所包含的每一类高分子都具有特殊的功能。它主要包括化学功能高分子材料、光功能高分子材料、电、磁功能高分子材料、声功能高分子材料、高分子液晶、医用高分子材料几部分,这一领域的研究主要包括研究分子结构、组成与形成各种特殊功能的关系,也就是从宏观乃至深入到微观,以及从半定量深入到定量,从化学组成和结构原理来阐述特殊功能的规律性,从而探索和合成出新的功能性材料。本文主要论述了在工程上应用较广和具有重要应用价值的一些功能高分子材料,如吸附分离功能高分子、反应型功能高分子、光功能高分子、电功能高分子、医用功能高分子、液晶高分子、高分子功能膜材料等。 【关键词】材料;高分子;高分子材料;功能材料; 功能高分子材料的定义为:与常规聚合物相比具有明显不同的物理化学性质,并具有某些特殊功能的聚合物大分子(主要指全人工和半人工合成的聚合物)都应归属于功能高分子材料范畴。而以这些材料为研究对象,研究它们的结构组成、构效关系、制备方法,以及开发应用的科学,应称为功能高分子材料科学。 功能高分子材料科学是研究功能高分子材料规律的科学,是高分子材料科学领域发展最为迅速,与其他科学领域交叉度最高的一个研究领域。它是建立在高分子化学、高分子物理等相关学科的基础之上,并与物理学、医学甚至生物学密切联系的一门学科。功能高分子材料是对物质、能量、信息具有传输、

转换或贮存作用的高分子及其复合材料的一类高分子材料,有时也被称为精细高分子或者特种高分子(包括高性能高分子) 。其于20 世纪60年代末迅速发展起来的新型高分子材料,内容丰富、品种繁多、发展迅速,已成为新技术革命必不可少的关键材料。 功能高分子是指具有某些特定功能的高分子材料。它们之所以具有特定的功能,是由于在其大分子链中结合了特定的功能基团,或大分子与具有特定功能的其他材料进行了复合,或者二者兼而有之。例如吸水树脂,它是由水溶性高分子通过适度交联而制得,遇水时将水封闭在高分子的网络内,吸水后呈透明凝胶,因而产生吸水和保水的功能。 在合成或天然高分子原有力学性能的基础上,再赋予传统使用性能以外的各种特定功能(如化学活性、光敏性、导电性、催化活性、生物相容性、药理性能、选择分类性能等)而制得的一类高分子。一般在功能高分子的主链或侧链上具有显示某种功能的基团,其功能性的显示往往十分复杂,不仅决定于高分子链的化学结构、结构单元的序列分布、分子量及其分布、支化、立体结构等一级结构,还决定于高分子链的构象、高分子链在聚集时的高级结构等,后者对生物活性功能的显示更为重要。 1 功能高分子材料研究 1.1 导电高分子材料 近几年来,导电性高分子的研究取得了长足的发展,形成了一个十分活跃的边缘学科领域,它对电子工业、信息工业及新技术的发展具有重大的意义。现有的研究成果表明,发展导电高分子不仅可以满足人们对导电材料的需要,而且由于它兼具有机高分子材料的性能及半导体和金属的电性能,具有重量

功能材料发展趋势

材料】功能材料发展趋势 功能材料发展趋势 功能材料是一大类具有特殊电、磁、光、声、热、力、化学以及生物功能的新型材料,是信息技术、生物技术、能源技术等高技术领域和国防建设的重要基础材料,同时也对改造某些传统产业,如农业、化工、建材等起着重要作用。功能材料种类繁多,用途广泛,正在形成一个规模宏大的高技术产业群,有着十分广阔的市场前景和极为重要的战略意义。功能材料按使用性能分,可分为微电子材料、光电子材料、传感器材料、信息材料、生物医用材料、生态环境材料、能源材料和机敏(智能)材料。由于我们已把电子信息材料单独作为一类新材料领域,所以这里所指的新型功能材料是除电子信息材料以外的主要功能材料。 功能材料是新材料领域的核心,对高新技术的发展起着重要的推动和支撑作用,在全球新材料研究领域中,功能材料约占85%。随着信息社会的到来,特种功能材料对高新技术的发展起着重要的推动和支撑作用,是二十一世纪信息、生物、能源、环保、空间等高技术领域的关键材料,成为世界各国新材料领域研究发展的重点,也是世界各国高技术发展中战略竞争的热点。 鉴于功能材料的重要地位,世界各国均十分重视功能材料技术的研究。1989年美国200多位科学家撰写了《90年代的材料科学与材料工程》报告,建议政府支持的6类材料中有5类属于功能材料。从1995年至2001年每两年更新一次的《美国国家关键技术》报告中,特种功能材料和制品技术占了很大的比例。2001年日本文部省科学技术政策研究所发布的第七次技术预测研究报告中列出了影响未来的100项重要课题,一半以上的课题为新材料或依赖于新材料发展的课题,而其中绝大部分均为功能材料。欧盟的第六框架计划和韩国的国家计划等在他们的最新科技发展计划中,都把功能材料技术列为关键技术之一加以重点支持。各国都非常强调功能材料对发展本国国民经济、保卫国家安全、增进人民健康和提高人民生活质量等方面的突出作用。 1、新型功能材料国外发展现状 当前国际功能材料及其应用技术正面临新的突破,诸如超导材料、微电子材料、光子材料、信息材料、能源转换及储能材料、生态环境材料、生物医用材料及材料的分子、原子设计等

电致发光高分子材料综述

电致发光高分子材料综述 作者:张祺夏沣任彤尧汤伟 摘要:高分子发光二极管(PLED)是由英国剑桥大学的杰里米伯勒德及其同事首先发现的。聚合物大多由小的有机分子以链状方式结合在一起,以旋涂法形成高分子有机发光二极管,因其巨大的科学和商业价值而得到了广泛的关注,是近来国际上的研究热点。对于各种新材料的不断开发和深入研究,PLED器件日益实用化。本文主要综述了近几年国内外关于高分子聚合物在电致发光材料领域的研究进展,介绍了有机高分子发光材料的发展现状,概述了其市场前景及相关的应用,并展望了高分子电致发光材料的发展趋势。 关键词:高分子;电致发光;研究现状 Abstract:Polymer light-emitting diode (PLED) first discovered by Jerry Mibo Lede of the University of Cambridge and his colleagues. Most organic polymer molecules from the small ones to chain together by a spin-coating to form polymer organic light-emitting diodes, because of its great scientific and commercial value ,it has been widespread concerned, and becomes the recent international researchs’ focus. For the continuous development of new materials and in-depth researchs, PLED devices become increasingly practical. This paper mainly overviews the recent years’domestic and foreign polymer progress of research in electroluminescent materials, describes the recent status of the development of organic polymer light-emitting materials, overviews the market prospects and related applications, and prospects of polymer electroluminescent material trends. Keywords:Polymer; EL; Research status

现代高分子材料综述(非常好!!)

现代高分子材料综述 材料学王晓梅学号:112408 摘要 高分子材料作为新时期的全新全能型材料,是现代人类发展的重要支柱,是发展高新科技的基础与先导,高分子材料的应用将会使人类支配改造自然的能力和社会生产力的发展带到一个新的水平,对人类的发展将会出现前所未有的促进。本文将从高分子材料的定义、主要种类、应用和以塑料为例介绍与人类生活息息相关的高分子材料的相关常识。本文综述了各类高分子材料的研究及发展,主要论述了导电高分子材料、功能高分子材料、工程高分子材料、复合高分子材料以及生物高分子材料等应用领域。 前言 高分子材料是由相对分子质量比一般有机化合物高得多的高分子化合物为主要成分制成的物质。一般有机化合物的相对分子质量只有几十到几百,高分子化合物是通过小分子单体聚合而成的相对分子质量高达上万甚至上百万的聚合物。巨大的分子质量赋予这类有机高分子以崭新的物理、化学性质:可以压延成膜;可以纺制成纤维;可以挤铸或模压成各种形状的构件;可以产生强大的粘结能力;可以产生巨大的弹性形变;并具有质轻、绝缘、高强、耐热、耐腐蚀、自润滑等许多独特的性能。于是人们将它制成塑料、橡胶、纤维、复合材料、胶粘剂、涂料等一系列性能优异、丰富多彩的制品,使其成为当今工农业生产各部门、科学研究各领域、人类衣食住行各个环节不可缺少、无法替代的材料[1]。 由于高分子化学反应和合成方法对高分子化学学科发展的推动,促进了高分子合成材料的广泛应用。同时,随着高分子材料的发展,纳米技术与生物技术之间的界限变得越来越小,并与更多的传统分子科学与技术相结合。因此,我们相信,高分子技术的发展促使使各类高分子材料得到更加迅速的发展,推广和应用。 1

日本汽车新材料发展综述

日本汽车新材料发展综述 时间:2009-12-19 10:10来源:汽车与配件作者:王建萍 近年来随着全球经济的发展,能源问题和环保问题日益受到人们的关注,汽车行业面临一系列新的问题。诸如,一方面汽油价格在不断地创新高,安全法规越来越多,汽车排放指标的更新版本在不断地发布,另一方面全球化竞争愈演愈烈,降低汽车成 本压力越来越大。面对这些课题,人们对新材料技术研发寄予了厚望。近年来日本汽车行业在材料技术研发方面,诸如钢铁、有色金属、非金属等,出现了一些新的动向。 钢铁材料 1.钢板材料 车身与底盘的轻量化对于提高燃油经济性和削减CO2具有重要意义。目前,解决该问题的有效手段是使用具有高撞击安全性的高强度材料。 从车身高强度材料的应用情况来看,汽车外板如发动机罩、车门、行李箱、侧围外板等处已经应用了340MPa级烘烤硬化型钢板(以下称为BH钢板)和440MPa级高强度材料。车身骨架部件目前流行使用440MPa和590MPa级高强度材料。590MPa级 高强度材料大体分为析出硬化钢、双相钢(以下称为DP饮)和相变诱导塑性钢(以下称为TRIP钢)三种。DP钢比析出硬化钢的屈服强度低、延伸性高;TRIP钢比DP钢的延伸性高、能量吸收性能好。另外,还有一部分780MPa级和980MPa级的高强度材料也被应用,780MPa级高强度材料主要使用DP钢和TRIP钢,980MPa级的高强度材料主要使用DP钢。另外,随着高频淬火和热冲压成型技术等新的热处理技术的应用,零部件高强度化技术得到进一步发展。热冲压成型技术就是对加热的钢板进行冲压的同时 还进行冷却淬火,这样零部件抗拉强度可达1470MPa。 汽车行驶部位的部件形状复杂,强度要求高,焊接性能要求也很高,所以高强度钢板应用很困难。但是近年来人们为了提高成形性,开发了TRIP钢;为了提高扩孔加工性,开发了贝氏体钢;为了确保焊接接头疲劳强度,开发了耐HAZ(保持热影响区性能) 的软化钢板,其强度为590MPa级,有的可达780MPa。 以前汽车的耐腐蚀钢板多为各种镀锌钢板,近年来,热浸镀锌铜板(GA)成为了主流。为了提高冲压成形性,对GA上敷覆无机类或有机类起润滑作用的氧化膜,该工艺得到了推广应用。人们还进一步开发了耐腐蚀性好的Zn-AL—Mg镀锌板,主要为了省略后面的电镀工序,这已在汽车上得到了广泛应用,, 在环保方面,由于EU-ELU对报废汽车的规定)对特定的环境污染物进行了使用限制,人们开发了无六价铬表面处理技术代替以往的电镀钢板中使用含有铬酸盐“钝化”处 理的六价铬。油箱钢板不应含Pb,所以现在不再使用过去的Pb-Sn合金电镀钢板而 采用Sn-Zn电镀钢板、镀铝钢板。

文献综述的特点

1 综述的定义和特点 综述是查阅了某一专题在一段时期内的相当数量的文献资料,经过分析研究,选取有关情报信息,进行归纳整理,作出综合性描述的文章。 综述的特点: ①综合性:综述要"纵横交错",既要以某一专题的发展为纵线,反映当前课题的进展;又要从本单位、省内、国内到国外,进行横的比较。只有如此,文章才会占有大量素材,经过综合分析、归纳整理、消化鉴别,使材料更精练、更明确、更有层次和更有逻辑,进而把握本专题发展规律和预测发展趋势。 ②评述性:是指比较专门地、全面地、深入地、系统地论述某一方面的问题,对所综述的内容进行综合、分析、评价,反映作者的观点和见解,并与综述的内容构成整体。一般来说,综述应有作者的观点,否则就不成为综述,而是手册或讲座了。 ③先进性:综述不是写学科发展的历史,而是要搜集最新资料,获取最新内容,将最新的信息和科研动向及时传递给读者。 综述不应是材料的罗列,而是对亲自阅读和收集的材料,加以归纳、总结,做出评论和估价。并由提供的文献资料引出重要结论。一篇好的综述,应当是既有观点,又有事实,有骨又有肉的好文章。由于综述是三次文献,不同于原始论文(一次文献),所以在引用材料方面,也可包括作者自己的实验结果、未发表或待发表的新成果。 综述的内容和形式灵活多样,无严格的规定,篇幅大小不一,大的可以是几十万字甚至上百万字的专著,参考文献可数百篇乃至数千篇;小的可仅有千余字,参考文献数篇。一般医学期刊登载的多为3000~4000字,引文15~20篇,一般不超过20篇,外文参考文献不应少于1/3。 2 综述的内容要求 选题要新:即所综述的选题必须是近期该刊未曾刊载过的。一片综述文章,若与已发表的综述文章"撞车",即选题与内容基本一致,同一种期刊是不可能刊用的。 说理要明:说理必须占有充分的资料,处处以事实为依据,决不能异想天开地臆造数据和诊断,将自己的推测作为结论写。 层次要清:这就要求作者在写作时思路要清,先写什么,后写什么,写到什么程度,前后如何呼应,都要有一个统一的构思。 语言要美:科技文章以科学性为生命,但语不达义、晦涩坳口,结果必然阻碍了科技知识的交流。所以,在实际写作中,应不断地加强汉语修辞、表达方面的训练。 文献要新:由于现在的综述多为"现状综述",所以在引用文献中,70%的应为3年内的文献。参考文献依引用先后次序排列在综述文末,并将序号置入该论据(引文内容)的右上角。引用文献必须确实,以便读者查阅参考。 校者把关:综述写成之后,要请有关专家审阅,从专业和文字方面进一步修改提高。这一步是必须的,因为作者往往有顾此失彼之误,常注意了此一方而忽视了彼一方。有些结论往往是荒谬的,没有恰到好处地反应某一课题研究的"真面目"。这些问题经过校阅往往可以得到解决。 3 综述的格式和写法 综述一般都包括题名、著者、摘要、关键词、正文、参考文献几部分。其中正文部分又由前言、主体和总结组成。 前言:用200~300字的篇幅,提出问题,包括写作目的、意义和作用,综述问题的历史、资料来源、现状和发展动态,有关概念和定义,选择这一专题的目的和动机、应用价值和实践意义,如果属于争论性课题,要指明争论的焦点所在。 主体:主要包括论据和论证。通过提出问题、分析问题和解决问题,比较各种观点的

完整word版,功能高分子材料综述

功能高分子材料综述 【文摘】功能高分子材料是高分子学科中的一个重要分支,它是研究各种功能性高分子材料的分子设计和合成、结构和性能关系以及作为新材料的应用技术,它的重要性在于所包含的每一类高分子都具有特殊的功能。它主要包括化学功能高分子材料、光功能高分子材料、电、磁功能高分子材料、声功能高分子材料、高分子液晶、医用高分子材料几部分,这一领域的研究主要包括研究分子结构、组成与形成各种特殊功能的关系,也就是从宏观乃至深入到微观,以及从半定量深入到定量,从化学组成和结构原理来阐述特殊功能的规律性,从而探索和合成出新的功能性材料。本文主要论述了在工程上应用较广和具有重要应用价值的一些功能高分子材料,如吸附分离功能高分子、反应型功能高分子、光功能高分子、电功能高分子、医用功能高分子、液晶高分子、高分子功能膜材料等。 【关键词】材料;高分子;高分子材料;功能材料; 功能高分子材料的定义为:与常规聚合物相比具有明显不同的物理化学性质,并具有某些特殊功能的聚合物大分子(主要指全人工和半人工合成的聚合物)都应归属于功能高分子材料范畴。而以这些材料为研究对象,研究它们的结构组成、构效关系、制备方法,以及开发应用的科学,应称为功能高分子材料科学。 功能高分子材料科学是研究功能高分子材料规律的科学,是高分子材料科学领域发展最为迅速,与其他科学领域交叉度最高的一个研究领域。它是建立在高分子化学、高分子物理等相关学科的基础之上,并与物理学、医学甚至生物学密切联系的一门学科。功能高分子材料是对物质、能量、信息具有传输、转换或贮存作用的高分子及其复合材料的一类高分子材料,有时也被称为精细高分子或者特种高分子(包括高性能高分子) 。其于20 世纪60年代末迅速发展起来的新型高分子材料,内容丰富、品种繁多、发展迅速,已成为新技术革命必不可少的关键材料。 功能高分子是指具有某些特定功能的高分子材料。它们之所以具有特定的功能,是由于在其大分子链中结合了特定的功能基团,或大分子与具有特定功能的其他材料进行了复合,或者二者兼而有之。例如吸水树脂,它是由水溶性高分子通过适度交联而制得,遇水时将水封闭在高分子的网络内,吸水后呈透明凝胶,因而产生吸水和保水的功能。 在合成或天然高分子原有力学性能的基础上,再赋予传统使用性能以外的各种特定功能(如化学活性、光敏性、导电性、催化活性、生物相容性、药理性能、选择分类性能等)而制得的一类高分子。一般在功能高分子的主链或侧链上具有显示某种功能的基团,其功能性的显示往往十分复杂,不仅决定于高分子链的化学结构、结构单元的序列分布、分子量及其分布、支化、立体结构等一级结构,还决定于高分子链的构象、高分子链在聚集时的高级结构等,后者对生物活性功能的显示更为重要。 1 功能高分子材料研究 1.1 导电高分子材料 近几年来,导电性高分子的研究取得了长足的发展,形成了一个十分活跃的边缘学科领域,它对电子工业、信息工业及新技术的发展具有重大的意义。现有的研究成果表明,发展导电高分子不仅可以满足人们对导电材料的需要,而且由于它兼具有机高分子材料的性能及半导体和金属的电性能,具有重量轻,易加工成各种复杂的形状,化学稳定性好及电阻率可在较大范围内调节等特点。此外在电子工业中的应用日趋广泛,促进了现代科学技术的发展。因此,自然引起了学术界和工业界的广泛兴趣。 导电高分子材料根据材料的组成可以分成复合型导电高分子材料(composite conductive polymers)和本征型导电高分子材料(intrinsic conductive polymers)两大类。复合型导电高分子材料是由普通高分子结构材料与金属或碳等导电材料,通过分散、层合、梯

材料的发展趋势

材料的发展趋势 装饰材料既是一泞日专统话题,也是一个同现代科技的发展有密切关联的概念。最早的装饰材料有石、木、土、铁、铜、编织物等,随看科技进步和现代工业的发展,装饰材料从品种、规格、档次上都进入了新的时期。 近年来,展示材料总的发展趋势是:品种日益增多,性能越来越好。例如,装饰玻璃品种越来越多,包括复合装饰玻璃、组合装饰玻璃、高虽凹凸装饰玻璃等,这些材料已广泛用于各类展示设计中。日本还推出一种新颖的立体色彩玻璃,这种玻璃在白色光线的照射下,显示出立体感的彩虹色彩,其装饰效果极佳。 墙纸仍是广泛使用的墙面装饰材料,并向多功能方向发展,出现了防污染、防菌、防蛀、防火、隔热、调节湿度、防又对线、抗静电等不同功能的墙纸。欧美发展较快的是织物堆海拜口天然材料作面层的墙纸。 陶瓷面砖正逐步取代塑料、金属等饰面材料。其主要原因是塑料易老化、易燃烧,而金属饰面材料易腐蚀、价格高。陶瓷面砖则具有坚固耐用、易清洗、色彩鲜艳、防火、防水、耐磨和维修费用侃等优点。目前国外的陶瓷面砖品种正朝多样化方向发展。有一种浮雕面砖,艺术效果好、重量轻、隔音保温、长期使用不褪色,很受欢迎。 目前有一种以木头、砂石、玻璃、天然纤维等为原料制成的装饰材料受到月门的青睐,它能产生回归自然感觉。而以合成、化工原料为主的展示装饰材料,相比之下自然显得冷落。 采用金属或镀金属的复合材料也是国外材料的发展方向之一。例如,展示设计中采用不锈钢装饰墙板,立面庄重、质疙躬虽;墙面赐吕台金,装饰效果好、安装简单、成本低、使用寿命长。金属表面经阳极氧化或嚼泰处理,可以得到不同色彩。其他如铜浮雕艺术装饰板、镀金属材料等也开始在各种装饰中使用。 在今后一段时间内装饰材料将向以下几个方向发展:首先,是复合化、多功能、预制化方向。也就是利用复合技术、特殊性能来提高其性能的材料.复合装饰玻璃、组合装饰玻璃、高虽凹凸装饰玻璃、最新开发的i立体影像玻离将成为商家关注的热点。金属或镀金属复合材料成为颇具市场发展潜力的装饰用料。 其次,是向高性能材料方向发展。轻质、高虽度、高耐腐蚀性、高防火性、

相关文档