文档库 最新最全的文档下载
当前位置:文档库 › 油品介绍及HYDOC相关产品

油品介绍及HYDOC相关产品

油品介绍及HYDOC相关产品
油品介绍及HYDOC相关产品

Fluidcontrolling

Kontaminationsfibel Contamination handbook Abécédaire de la contamination

1987/1999 Bestimmung des ISO-Codes 1987/1999 determination of ISO code

Classification de pollution suivant ISO 4406 -1987/1999 détermination du code ISO

P a r t i c l e c o u n t p e r 100m l >l a r g e r t h a n i n d i c a t e d s i z e

46101420

105

104

103

102

101

1

particle size in m m

108107

106

Verschmutzungsklassifikation nach ISO 4406:1987/1999Contamination classification in accordance with ISO 4406: 1987/1999Classification de pollution suivant ISO 4406 : 1987/1999

NAS 1638Klasse 3

ISO 4406: 1999Klasse 14/12/9 SAE AS 4059Klasse 4

Vergr??erung: 100-fach

1 Skalenstrich = 10 μm

Comparison photograph for

fluid contamination class

NAS 1638Class 3

ISO 4406: 1999Class 14/12/9 SAE AS 4059Cl

a ss 4 Magnification: x100

1 scale mark = 10 μm

Photo pour comparaison,

classe de pollution:

NAS 1638Classe 3

ISO 4406: 1999Classe 14/12/9 SAE AS 4059Classe 4 Agrandissement: 100 fois

1 Graduation = 10 μm

NAS 1638Klasse 4

ISO 4406: 1999Klasse 15/13/10 SAE AS 4059Klasse 5

Vergr??erung: 100-fach

1 Skalenstrich = 10 μm

Comparison photograph for

fluid contamination class:

NAS 1638Class 4

ISO 4406: 1999Class 15/13/10 SAE AS 4059Cl

a ss 5 Magnification: x100

1 scale mark = 10 μm

Photo pour comparaison,

classe de pollution:

NAS 1638Classe 4

ISO 4406: 1999Classe 15/13/10 SAE AS 4059Classe 5 Agrandissement: 100 fois

1 Graduation = 10 μm

NAS 1638Klasse 5

ISO 4406: 1999Klasse 16/14/11 SAE AS 4059Klasse 6

Vergr??erung: 100-fach

1 Skalenstrich = 10 μm

Comparison photograph for

fluid contamination class:

NAS 1638Class 5

ISO 4406: 1999Class 16/14/11 SAE AS 4059Cl

a ss 6 Magnification: x100

1 scale mark = 10 μm

Photo pour comparaison,

classe de pollution:

NAS 1638Classe 5

ISO 4406: 1999Classe 16/14/11 SAE AS 4059Classe 6 Agrandissement: 100 fois

1 Graduation = 10 μm

NAS 1638Klasse 6

ISO 4406: 1999Klasse 17/15/12 SAE AS 4059Klasse 7

Vergr??erung: 100-fach

1 Skalenstrich = 10 μm

Comparison photograph for

fluid contamination class

NAS 1638Class 6

ISO 4406: 1999Class 17/15/12 SAE AS 4059Cl

a ss 7 Magnification: x100

1 scale mark = 10 μm

Photo pour comparaison,

classe de pollution:

NAS 1638Classe 6

ISO 4406: 1999Classe 17/15/12 SAE AS 4059Classe 7 Agrandissement: 100 fois

1 Graduation = 10 μm

NAS 1638Klasse 7

ISO 4406: 1999Klasse 18/16/13 SAE AS 4059Klasse 8

Vergr??erung: 100-fach

1 Skalenstrich = 10 μm

Comparison photograph for

fluid contamination class

NAS 1638Class 7

ISO 4406: 1999Class 18/16/13 SAE AS 4059Cl

a ss 8 Magnification: x100

1 scale mark = 10 μm

Photo pour comparaison,

classe de pollution:

NAS 1638Classe 7

ISO 4406: 1999Classe 18/16/13 SAE AS 4059Classe 8 Agrandissement: 100 fois

1 Graduation = 10 μm

NAS 1638Klasse 8

ISO 4406: 1999Klasse 19/17/14 SAE AS 4059Klasse 9

Vergr??erung: 100-fach

1 Skalenstrich = 10 μm

Comparison photograph for

fluid contamination class:

NAS 1638Class 8

ISO 4406: 1999Class 19/17/14 SAE AS 4059Cl

a ss 9 Magnification: x100

1 scale mark = 10 μm

Photo pour comparaison,

classe de pollution:

NAS 1638Classe 8

ISO 4406: 1999Classe 19/17/14 SAE AS 4059Classe 9 Agrandissement: 100 fois

1 Graduation = 10 μm

NAS 1638Klasse 9

ISO 4406: 1999Klasse 20/18/15 SAE AS 4059Klasse 10

Vergr??erung: 100-fach

1 Skalenstrich = 10 μm

Comparison photograph for

fluid contamination class:

NAS 1638Class 9

ISO 4406: 1999Class 20/18/15 SAE AS 4059Cl

a ss 10 Magnification: x100

1 scale mark = 10 μm

Photo pour comparaison,

classe de pollution:

NAS 1638Classe 9

ISO 4406: 1999Classe 20/18/15 SAE AS 4059Classe 10 Agrandissement: 100 fois

1 Graduation = 10 μm

NAS 1638Klasse 10

ISO 4406: 1999Klasse 21/19/16 SAE AS 4059Klasse 11

Vergr??erung: 100-fach

1 Skalenstrich = 10 μm

Comparison photograph for

fluid contamination class

NAS 1638Class 10

ISO 4406: 1999Class 21/19/16 SAE AS 4059Cl

a ss 11 Magnification: x100

1 scale mark = 10 μm

Photo pour comparaison,

classe de pollution:

NAS 1638Classe 10

ISO 4406: 1999Classe 21/19/16 SAE AS 4059Classe 11 Agrandissement: 100 fois

1 Graduation = 10 μm

NAS 1638Klasse 11

ISO 4406: 1999Klasse 22/20/17 SAE AS 4059Klasse 12

Vergr??erung: 100-fach

1 Skalenstrich = 10 μm

Comparison photograph for

fluid contamination class:

NAS 1638Class 11

ISO 4406: 1999Class 22/20/17 SAE AS 4059Cl

a ss 12 Magnification: x100

1 scale mark = 10 μm

Photo pour comparaison,

classe de pollution:

NAS 1638Classe 11

ISO 4406: 1999Classe 22/20/17 SAE AS 4059Classe 12 Agrandissement: 100 fois

1 Graduation = 10 μm

NAS 1638Klasse 12

ISO 4406: 1999Klasse 23/21/18 SAE AS 4059Klasse 13

Vergr??erung: 100-fach

1 Skalenstrich = 10 μm

Comparison photograph for

fluid contamination class:

NAS 1638Class 12

ISO 4406: 1999Class 23/21/18 SAE AS 4059Cl

a ss 13 Magnification: x100

1 scale mark = 10 μm

Photo pour comparaison,

classe de pollution:

NAS 1638Classe 12

ISO 4406: 1999Classe 23/21/18 SAE AS 4059Classe 13 Agrandissement: 100 fois

1 Graduation = 10 μm

Alle Bilder 48-fache Vergr??erung 1 Teilstrich = 45 μm All photos x48 magnification

1 scale mark = 45 μm Agrandissement des images 48X

1 graduation = 45 μm

Particle type Oil ageing products

Effect:

Blocking of filters Silting-up of system

Type de particules

Vieillissement important de l'huile

Conséquences:

Blocage du filtre

Colmatage du système

Art der Partikel

überwiegend Rost;wei?e Partikel:Additive

Auswirkung:

Starke ?lalterung Funktionsst?rungen an Pumpen, Ventilen. Verschlei?, meist Wasser in ?l

Particle type

Mainly rust; white particles:additives

Effect:

Rapid oil ageing

Breakdowns in pumps,valves

Wear and tear,

Type de particules

En majorité de la rouille;Particules blanches:Additifs

Conséquences:

Vieillissement

important de l'huile Défaillances des pompes, valves

Usure, généralement eau dans l huile

Art der Partikel

?lalterungsprodukte

Auswirkung:

Filterverblockung System-verschlammung

generally water in oil

Art der Partikel Metallspan (Flie?span) Auswirkung: Funktionsst?rungen an Pumpen, Ventilen. Dichtungsverschlei? Leckage

?lalterung Particle

type

Metal swarf

Effect:

Breakdowns in pumps,

valves

Wearing of seals

Leakage

Oil ageing

Type de

particules

Copeaux métalliques

Conséquences:

Défaillance des

pompes, valves

Usure des joints

Fuites

Vieillissement de l'huile

Art der Partikel Partikel bzw. Sp?ne aus Bronze, Messing oder Kupfer Auswirkung: Funktionsst?rungen an Pumpen, Ventilen ?lalterung

Leckagen

Dichtungsverschlei?Particle

type

Particles and swarf

in bronze, brass and

copper

Effect:

Breakdowns in pumps,

valves

Oil ageing

Leakage

Wearing of seals

Type de

particules

Particules de métal ou

copeaux de bronze, laiton

ou cuivre

Conséquences:

Défaillance des

pompes, valves

Vieillissement de l'huile

Fuites

Usure des joints

Art der Partikel Gelartiger

Rückstand Auswirkung: Filterverblockung Schlammbildung Particle

type

Gel-type residue from

filter element

Effect:

Blocking of filter

Silting-up

Type de

particules

Résidus

gélatineux

Conséquences:

Blocage du filtre

Formation de boues

Art der Partikel

Silikate aufgrund fehlender oder unzureichender

Belüftungsfilter Auswirkung: Starker Verschlei? an Komponenten

Funktionsst?rungen an Pumpen, Ventilen. Dichtungsverschlei?Particle

type

Silicates due to lack of,

or inadequate, air

breather filter

Effect:

Heavy wear on

components

Breakdowns in pumps,

valves

Wearing of seals

Type de

particules

Silicates en raison

d'absence ou

insuffisance du filtre à air

Conséquences:

Importante usure des

composants

Défaillance des

pompes et des valves

Usure des joints

Art der Partikel Farbpartikel

(rot-braun) Kunststoffpartikel (blau) Auswirkung: Funktionsst?rungen an Pumpen, Ventilen Dichtungsverschlei?Particle

type

Coloured particles

(red/brown)

Synthetic particles

(blue)

Effect:

Breakdowns in pumps,

valves

Wearing of seals

Type de

particules

Particules de couleur

(rouge-brune)

Particules en plastique

(bleu)

Conséquences:

Défaillance des

pompes, valves

Usure des joints

Art der Partikel Fasern durch Initialverschmutzung, offenen Tank; Putzlappen etc. Auswirkung: Verstopfung von

Düsen

Leckagen von Sitzventilen Particle

type

Fibres due to initial

contamination, open tank,

cleaning cloths

etc.

Effect:

Blocking of nozzles

Leaking from seat

valves

Type de

particules

Fibres suite au colmatage

initial réservoir ouvert

chiffon de nettoyage

etc.

Conséquences:

Bouchage des buses

Fuite des soupapes à

siège

Fluid Analyse Set FAS

zur Visualisierung der Art und Menge der Verschmutzung in einer ?lprobe.

MM-S5-M-U

MM-S5-M-U

made from oil samples.

processing on PC or laptop.

Microscope MM-S5-M-U

utilisation portable éclairage inclus.

FluidEntnahme Set FES

zur statischen und dynamischen Probenentnahme aus dem Hydrauliksystem.

Fluid Sampling Set FES

for taking static and dynamic samples from the hydraulic system.

Set de Prélèvement de fluide FES

pour le prélèvement statique et dynamique d un échantillon sur un système hydraulique.

液化石油气的物理特性(2021新版)

( 安全管理 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 液化石油气的物理特性(2021新 版) Safety management is an important part of production management. Safety and production are in the implementation process

液化石油气的物理特性(2021新版) 一、液化石油气的状态参数 液化石油气所处的状态,是通过压力、温度和体积等物理量来反映的,这些物理量之间彼此有一定的内在联系,称为状态参数。 1.压力 压力是一物体垂直均匀地作用于另一物体壁面单位面积上力的量度。物理上用物体单位面积上受到的垂直压力来表示,称为压强,用符号p表示。 p=F/A(1-2-1) 式中p——压强,Pa; F——均匀垂直作用在容器壁面的力,N; A——容器壁面的总面积,m2 。 由于在工程实际中习惯地将压强称作压力,因此,本书中后面

提到的压力,即指压强。 测量压力有两种标准方法:一种是以压力等于零作为测量起点,称为绝对压力,用符号“P绝”表示;另一种是以当时当地的大气压力作为测量起点,也就是压力表测量出来的数值,称为表压力,或称相对压力,用符号“P表”表示。液化石油气储灌工艺所讲的压力都是指表压力。 绝对压力与表压力之间的关系为 绝对压力=表压力+当时当地大气压力 (1)压力的单位我国现行的法定压力计量单位是国际单位制导出的压力单位,即:帕斯卡(Pa),1Pa=1N/m2 。由于帕斯卡的单位太小(如:一粒西瓜子平放时对桌面的压力约为20Pa,在实际中常使用兆帕斯卡(MPa)、千帕斯卡(kPa)。其关系为 1MPa=103 kPa=106 Pa

液化气的物理特性

液化气的物理特性 表示液化气物理特性的项目有沸点、熔点、临界参数、密度、比容、相对密度、蒸气压、露点、蒸发潜热、粘度、溶解度。 1、沸点 液体沸腾时的温度称为沸点。沸点和蒸发虽同属于气化现象,但蒸发只是在液体表面上进行,且在任何温度下都有蒸发现象,只不过是蒸发有快慢而已,而沸腾则是在液体内部和表面都同时发生,但必须达到一定条件才会发生,这个条件就是液体内的饱和蒸气压和外界压力相等时,才会发生液体沸腾现象。 液化气的沸点与外界压力有关,外界压力增大,沸点升高,压力减小,沸点降低。我们通常所说的沸点是规定在101.33KPa(1atm)下的液体沸腾的温度。例如:丙烯在101.33KPa下沸点为-42.05℃,压力增大到0.8MPa时,沸点会上升到20℃。为了液化气储运安全使其沸点控制到常温以下,所以液化气工作压力多定为0.7MPa。 液化石油气各组分在101.33KPa下的沸点参数见表1。 2、气体、液体密度 密度是指单位体积的物质所具有的质量,用ρ表示,单位为Kg/m3。 气体密度是随温度和压力的不同而有很大变化。因此,表示气体密度时,必须规定温度和压力条件。通常以压力为101.33KPa、温度为0℃时的数值,作为标准状态下密度值。 液化气主要成分气体密度见表2

液体的密度受温度影响较大,温度升高时,体积膨胀,密度减小。但密度受压力影响却很小,可以不予考虑。表3列出了丙烷的密度与温度的关系,由表3可知液体丙烷受温度使其密度和体积变化情况。如在15℃时,丙烷体积为100%,当温度升高30℃时,体积膨胀到105%。即比原来增加了5%。 丙烷的密度与温度的关系表3 1、气体、液体相对密度 物质的密度与某一标准物质的密度之比称为该物质的相对密度,相对密度没有单位。 气体的相对密度是指在标准状态下,气体的密度与空气密度的比值,用S表示,即: S=ρ/ρ 空 式中S——某气体的相对密度; ρ——标准状态下某气体的密度,Kg/m3。 ——标准状态下空气的密度,其值为1.293Kg/m3。 ρ 空 另一种简单方法,是用液化石油气分子量与空气量即:S=M/M 空 式中M——液化石油气的分子量; ——空气分子量,其值为29。 M 空 液体的相对密度是液体的密度与同体积4℃纯水的密度之比,用d表示,没有单位。即: d=ρ/ρ 水 式中d——某液体相对密度; ρ——某液体的密度,g/cm 2 ——在101.33Kma和4℃下,纯水的密度,其值为1 g/cm2ρ 水 液态液化气的相对密度是以0℃的数值作为标准,但操作和实际中都是在常温下进行的。液态液化气相对密度在0.5~0.6之间,即比水轻得多。气态液化

油品分析实训总结

10--11学年第二学期《油品分析》实训总结《油品分析》实训的教学目的是培养学生将已学的专业理论知识和专业基础知识与实际生产相结合,以处理实际生产过程问题。通过学习了解油品分析的特点、原料资源和主要产品。要求学生了解油品分析的概述、油品取样、常见油品技术要求及其标准分析方法和油品化验等,重点掌握汽油、柴油、喷气燃料等燃料油,润滑油,润滑脂,天然气,液化石油气,溶剂油,石蜡油,石油沥青等石油产品的主要技术要求及其分析检验方法,注重操作技能的训练。 通过实训能够使学生受到系统的学习和训练,进一步加深对理论知识的理解,培养他们独立学习的能力和综合思考能力,使学生养成实事求是的学习态度和综合思维能力。 这一学期针对与09级学生共开设了三个实训项目,3个教学班,总的来看实训进行得非常顺利,效果也比较好。 实训项目一汽油、柴油、煤油酸度的测定法 1、实验内容:汽油、煤油、柴油酸度测定法 2、实验基本要求: (1)汽油酸度测定 (2)柴油酸度测定 (3)煤油酸度测定 实训项目二汽油技术要求的分析检验 1、实验内容:汽油技术要求的分析检验 2、实验基本要求: (1)蒸发性 (2)抗爆性 (3)腐蚀性 (4)安定性 实训项目三石油沥青质量标准测定 1、实验内容:石油沥青质量标准测定 2、实验基本要求: (1)沥青延度的测定

(2)沥青软化点的测定 (3)沥青针入度的测定 本次实训,重点培养学生的提出问题、分析问题和解决问题的能力,加强他们的动手操作能力,规范实验操作。使他们能真正学到有用的知识,扩大他们的视野,同时也有意增强他们对理论知识的理解和应用。 当然,在实训过程中,也难免存在许多问题:比如学生预习情况不好,以致实训过程中时常弄得措手不及,影响实训进度的进行和实训效果的准确性。再比如有的学生动手操作能力太差,操作不规范,少数同学实验中还出现一些低级的错误;实训过程经常丢三落四等等。这些都是在所难免的,针对这些问题,应在教学过程中采取具有一定针对性的措施,尽量克服各种困难,改进实训方案,提高实验水平,尽可能使每一个学生都能得到很好的锻炼,使实验室真正成为他们掌握技能知识的地方。

液化石油气的理化性质表

液化石油气理化特性表 识中文名:液化石油气;压凝汽油 分子式:C 3H 8-C 3H 6-C 4H 10-C 4h 8(混合物) 危规号:21053 性状:无色气体或黄棕色油状液体,有特殊 理 化 性臭味。 熔点°C :英文名:Liquefied petroleum gas分子量: RTECS号:UN编号:1075CAS号:68476-85-7溶解性:在水上漂浮并沸腾,不溶于水。可产生易燃的蒸气团。 饱和蒸汽压kPa: 4053 (16.8C )相对密度(水=1): 相对密度(空气=1):

燃烧热kJ/mol: 最小点火能mJ: 燃烧分解产物:一氧化碳、二氧化碳。聚合危险:不聚合 稳定性:不稳定禁忌物:强氧化剂、卤素。 质沸点c : 临界温度c : 临界压力MPa: 燃烧性:易燃 闪点c :-74 燃 烧 爆 炸 危 险爆炸极限%: 1.63?9.43 自燃温度c:450 危险性分类:第2.1 类易燃气体甲类 危险特性:极易燃,与空气混合能形成爆炸性混合物。遇热源和明火有燃烧爆炸的危险。 与氟、氯等接触会发生剧烈的化学反应。其蒸气比空气重,能在较低处扩散到相当远的灭火方法:切断气源。若不能切断气源,则不允许熄灭泄漏处的火焰。喷水冷却容器,可能的话将容器从火场移至空旷处。灭火剂:雾状水、泡沫、二氧化碳。

毒性:属微毒类 接触限值:中国MAC(mg/m )1000 3 性地方,遇火源会着火回燃。 毒健康危害:本品有麻醉作用。急性中毒:有头晕、头痛、兴奋或嗜睡、恶心、呕吐、脉响:长期接触低浓度者,可出现头痛、头晕、睡眠不佳、易疲劳、情绪不稳以及植物神经功能紊乱等。 脱去并隔离被污染的衣服和鞋。接触液化气体,接触部位用温水浸泡复温。注意患者保暖并且保持安静。确保医务人员了解该物质相关的个体防护知识,注意自身防护。迅速吸。就医。 密闭操作,全面通风。密闭操作,提供良好的自然通风条件。操作人员必须经过专门培训,严格遵守操作规程。建议操作人员佩戴过滤式防毒面具(半面罩),穿防静电工作服。 性 缓等;重症者可突然倒下,尿失禁,意识丧失,甚至呼吸停止。可致皮肤冻伤。慢性影急 救脱离现场至空气新鲜处。注意保暖,呼吸困难时给输氧。呼吸停止时,立即进行人工呼防远离火种、热源,工作场所严禁吸烟。使用防爆型的通风系统和设备。防止气体泄漏到接,防止产生静电。搬运时轻装轻卸,防止钢瓶及附件破损。配备相应品种和数量的消防器材及泄漏应急处理设备。 护工作场所空气中。避免与氧化剂、卤素接触。在传送过程中,钢瓶和容器必须接地和跨泄 漏 处迅速撤离泄漏污染区人员至上风处,并进行隔离,严格限制出入。切断火源。建议应急处理人员戴自给正压式呼吸器,穿防静电工作服。不要直接接触泄漏物。尽可能切断泄漏源。用工业覆盖层或吸附/ 吸收剂盖住泄漏点附近的下水道等地方,防止气

油品分析习题集及参考答案(大学期末复习资料)

试题答案(第一章油品分析概述) 1.名词解释 (1)油品分析(2)石油产品标准(3)试验方法标准(4)国际标准 (5)区域标准(6)国家标准(7)行业标准(8)地方标准 (9)企业标准(10)国外先进标准(11)原始记录(12)再现性 (1)答:油品分析是用统一规定或公认的方法,分析检验石油和石油产品理化性质和使用性能的科学试验。 (2)答:石油产品标准是将石油产品质量规格按其性能和使用要求规定的主要指标。 (3)答:石油产品试验方法标准就是根据石油产品试验多为条件性试验的特点,为方便使用和确保贸易往来中具有仲裁和鉴定法律约束力而制定的一系列分析方法标准。 (4)答:国际标准是国际标准化组织(ISO)制定以及由其公布的其他国际组织制定的标准。 (5)答:区域标准是世界某一区域标准化组织制定并通过的标准。 (6)答:国家标准是在全国范围内统一技术要求而制定的标准,是由国家指定机关制定,发布实施的法定性文件。 (7)答:行业标准是在没有国家标准而又需要在全国有关行业范围内统一技术要求所制定的标准。 (8)答:地方标准是在没有国家标准和行业标准而又需要在省、自治区、直辖市范围内统一工业产品要求所制定的标准。 (9)答:企业标准是在在没有相应国家或行业标准时,企业自身所制定的试验方法标准。 (10)答:国外先进标准是指国际上有影响的区域标准,世界主要经济发达国家制定的国家标准和其他某些具有世界先进水平的国家标准,国际上通行的团体标准以及先进的企业标准。 (11)答:原始记录为能反映发生在现场最初状态全部信息的记载。 (12)答:再现性是指在不同试验条件(不同操作者、不同仪器、不同实验室)按同一方法对同一试验材料进行正确和正常操作所得单独的试验结果,在规定置信水平(95%置信度)下的允许差值,用R表示。 2.判断题(正确的划“√”,错误的划“3”) (1)组成原油的元素主要是C、H、O、N、S。(√) (2)润滑剂包括润滑油和润滑脂。(√) (3)我国石油产品国家标准是由国务院标准化行政主管部门指派中国石油化工股份有限公司石油化工科学研究院组织制定,目前由中华人民共和国国家质量监督检验检疫总局和国家标准化管理委员会联合发布实施。(√)

水中油类测定分析方法的综述

水中油类测定分析方法的综述 李海州 (浙江海洋学院海洋与技术学院,浙江舟山316004) [摘要]:本文对国内外学者有关水中油类的测定方法做了比较系统的综述。对几种水中油类的常用方法,重量法、紫外分光光度法、荧光分光光度法、红外分光光度法和非分散红外光度法做了简要介绍,并对其优劣进行了评价。另外,介绍了测定水中油类含量存在的难点、发展趋势和技术改进等。 关键词:水;油类;测定分析 油类是指任何类型的(矿物油、植物油等)及其炼制品(汽油、柴油、机油、煤油等)、油泥和油渣[1]。油类主要有漂浮油、分散油、乳化油、溶解油和油类附着在固体悬浮物表面而形成油膜---固体物 5种形式。全世界每年至少有500—1000吨油类通过各种途径进入水体,由于漂浮于水体表面的油将会影响空气和水体表面氧的交换,而分散于水体中以及吸附于悬浮颗粒上或以乳化状态存在于水体的油易被微生物氧化分解,并将消耗水中的溶解氧,从而使水质恶化;油膜还能附着于鱼鳃上,使鱼类窒息而死;当鱼类产卵期,在含有油类污染物质废水中孵化的鱼苗,多数为畸形,生命力低下,易于死亡;含有油类污染物的废水进入水体后,造成的危害很为严重,

不仅影响水生生物的生长,降低水体的自我净化能力,而且影响水体附近的环境,因此,油类是水体环境中的主要污染物之一,在水质监测中,也是一项重要的监测项目。要消除油类对环境的污染和危害,首先就必须能够准确的测定水中油类的含量。 然而,水中油类含量测定又是比较复杂的,因为水中的油类成分是相当复杂的,此外不同地区、不同行业水体中油类污染的成分也不同,无法有用单一的油标准进行对照,无法准确测定,所以水体中油类物质含量的测定问题是环境分析化学一个古老、重要而又困难的问题。目前水体中油类测定常用的方法有重量法、紫外分光光度法、荧光分光光度法、非分散红外光度和国家最新颁布的国家标准方法红外分光光度法等[2],本文简要介绍以上几种方法的原理和优劣,及人们对水体中油类监测分析方法的创新和改进。 1.重量法 重量法是用有机萃取剂(石油醚或正己烷)提取酸化了的样品中的油类,将溶剂蒸发掉后,称重后计算油类含量。重量法应用范围不受油品的限制,可测定含油量较高的污水,不需要特殊的仪器和试剂,测定结果的准确度较高、重复性较好。缺点是损失了沸点低于提取剂的油类成分,方法操作复杂,灵敏度低,分析时间长,并要耗费大量的提取剂,而且方法的精密度随操作条件和熟练程度不同差异很大。 因此,水体中动植物油含量较高的,采用该方法较适合,可以得到

油品质量管理

11.《中华人民共和国产品质量法》在“销售者的产品质量责任和义务”中规定,销售者应当建立并执行______制度,验明______证明和其他标识。销售者不得销售______的产品和______的产品。销售者销售产品,不得______、不得__________,不得以______产品冒充______产品。 进货检查验收;产品合格;国家明令淘汰并停止销售;失效、变质;掺杂、掺假;以假充真、以次充好;不合格;合格 20.油品质量事故种类有。 采购事故、储存事故、销售事故、运输事故 21.油品质量事故处理坚持的“四不放过”原则是, ,,。 事故原因分析不清不放过;事故责任人和群众没有受到教育不放过;没有防范改进措施不放过;事故责任人没有严肃处理不放过 22.销售系统质检工作规范化管理的依据是。 《中国石油化工股份有限公司销售企业质检室工作规范》 3.产品质量法规定销售者为何要履行进货检查验收制度? 答:产品进货检查验收制度是法律对销售者规定的一项重要义务,是销售者与生产者在交接产品时所建立的管理制度,目的是严格把好产品进货质量关,保证进货渠道的质量。销售者完成进货检查验收之后的产品,产品的所有权由生产者,供货者转移至销售者,销售者应当对其销售的产品质量负责,依法承担产品质量责任。 4.企业对国家或地方监督抽查的检验结果有异议怎么办? 答:被抽查企业对检验结果有异议,应当在收到检验结果通知单之日起15日内提出。确认异议存在的,应依法提请复检或仲裁,维护本企业利益。 5.抽检轻质油品容器有何要求?样品的抽取量是多少? 答:抽检轻质油品,使用1L或2L洁净干燥棕色磨口玻璃瓶或铁质容器。每个样品至少同时抽取两份,一份为检测样,一份为保留样。抽样量满足检测项目要求。 6.油品质量事故应急预案的原则是什么? 答:客户第一,减少危害;居安思危,预防为主;统一领导,分级负责;快速反应,科学应对;依法规范,加强管理;整合资源,协同应对。

第一章 油品分析概述

第一章油品分析概述 1.判断题(正确的画“√”,错误的画“×”) (1)组成原油的元素主要是C,H,O,N,S。(对) (2)润滑剂包括润滑油和润滑脂。( 对 ) (3)我国石油产品国家标准是由国务院标准化行政主管部门指派中国石油化工股份有限公司石油化 工科学院研究组织制定,目前由国家质量监督检验检疫总局和国家标准化管理委员会联合发布实施 ( 对 )。 (4)国内油品分析标准部分为推荐性标准和强制性标准。( 对) (5)在相同的试验条件下(同一操作者、同一仪器、同一实验室),在短时间间隔,按同一方法对同 一实验材料进行正确和正常操作所得独立结果在规定置信水平(95%置信度)下的允许差值称为重复 性。(对 ) (6)进行在线性分析时,当两次实验结果之差大于或等于95%置信水平下的R值时,则认为两个结果 均不可靠,数据无效,不能将其平均值作为测定结果。( ) (7)油品分析报告包括分析报告和产品合格证两种。( ) 2.填空题 (1)我国石油产品按GB/T498-1987《石油产品及润滑剂的总分类》将石油产品按主要特征划分为 燃料、溶剂和化工原料、润滑剂及有关产品、蜡、沥青以及焦六大类,各类的代号依次为 1F 2S 3L 4W 5B 6C (2)石油燃料包括车用汽油、柴油、喷气燃料和。 (3)在SH/T 0185-1992(2000)中画线的含义依次为、、、。 (4)我国采用国家标准或先进标准的方式通常有采纳、应用、直接应用、间接应用都 和。 3.选择题 (1)下列石油馏分中,不属于燃料油的是(B ) A汽油 B 润滑剂 C 轻柴油 D喷气燃料 (2)下列国外先进标准中,表示美国实验与材料协会标准的是(C ) A ISO B BS C ASTM D API (3)下述标准等级属于地方标准的是( D ) A GB/T B SH C GJB D DB 4.简答题 (1)举例说明什么是油品。 原油经过石油炼制而得到的各种商品统称为石油产品,简称油品,有车用汽油,车用柴油,喷气燃料 或煤油,润滑油,石蜡,沥青,石油焦及炼厂气等 (2)简述油品分析的主要任务。 1.①为确定加工方案而提供基础数据②为控制工艺条件提供数据③检验出厂油品质量④评定油品使 用性能⑤对油品质量仲裁 (3)简述目前我国采用与执行油品分析标准,按适用领域和有效范围划分哪几类? 2.①国际标准②区域标准③国家标准④行业标准⑤地方标准⑥企业标准 (4)简述我国采用国际标准或国外先进标准方式含义、表示符号及缩写字母。 3.等同采用(符号≡,缩写字母idt),其技术内容完全相同,没有或仅有编辑性修改,编写方法完全 对应;等效采用(符号=,缩写字母eqv),其技术内容基本相同,个别条款结合我国情况稍有差异, 但可被国际标准接受,编写方法不完全对应;非等效采用(即参照采用,符号≠,缩写字母nev),其 技术内容有重大差异,有互不接受的条款。 第二章油品取样 1.判断题(正确的画“√”,错误的画“×”) (1)点样的测定结果能够代表试样的整体性质。( T ) (2)采取单个试样越多,组合后试样的代表性好,越有利于分析。(T ) (3)一般要求将采取的试样分为两份,一份用来分析,另一分则保存,以备仲裁分析。(T ) (4)抽样检查的主要目的是挑选每个产品是否合适。(F ) (5)为减少取样误差,取样时可以多取样,以保证试样的代表性T (6)天然气容器中的压力等于或低于大气压力时采用抽空容器法取样。(T ) 2.填空题 (1)液体沥青试样量,常规检验试样从桶中取样为 1 L,从贮罐中取样4 L。 (2)油品组合样有若干个点样按规定比例合并而成。 (3)常用来装试样的容器有玻璃瓶、油听和聚四氟乙烯或高密度聚乙烯塑料瓶等。 (4)天然气常用取样方法有液化石油取采样、石油沥青取样法、固体和半固体油品的取样 (5)盛样容器应清洁、干燥并备有能密封的塞子,挥发性液体不应使用软木塞。 (6)液化石油气所采取的试样只能是液相,而且要避免从容器底部取样。 3.选择题 (1)在有搅拌设备的沥青罐中取样时,经充分搅拌后,作为分析试样应取( A ) A中部样 B上部、中部、下部组合样 C表面样 D底部样 (2)润滑脂类膏状试样混合的方法是( C ) A 加热,溶化 B加热,搅拌 C 搅拌 D 铸模

油品指标基础知识介绍

油品指标基础知识介绍 粘度(VISCOSITY) 对于燃料油,我们经常会见到诸如180cSt、380cSt这样的分类。这里我们对所有油品经常会用到的各项指标做简单的介绍。 cSt为Centistoke(厘沲)的缩写,cSt是运动粘度(Kinemetic Viscosity)单位“沲”(Stoke)的百分之一,简写cSt。 粘度(VISCOSITY)是油品流动性的一种表征,它反映了液体分子在运动过程中相互作用的强弱,作用强(粘度大),流动难。石蜡基型原油含烷烃成份较多,分子间力的作用相对较小,粘度较低,环烷基原油含脂环、芳香烃较多,粘度一般较大。但需注意的是油品的流动性并非单决定于粘度,它还与油品的倾点(或凝点)有关。 流体的粘度明显受环境温度的影响(压力也有一定影响,但一般可忽略不计),这种影响也是通过分子间的相互作用来实施的:通常的概念是温度升高流体体积膨胀,分子间距离拉远,相互作用减弱,粘度下降;温度降低,流体体积缩小,分子间距离缩短,相互作用加强,粘度上升。由于粘度与温度关系密切,因此任何粘度数据都需注明测定时的温度。通常在低温区域温度对粘度的效应尤其显著。 粘度的测定方法,表示方法很多。在英国常用雷氏粘度(Redwood Viscosity),美国惯用赛氏粘度(Saybolt Viscosity),欧洲大陆则往往使用恩氏粘度(Engler Viscosity),但各国正逐步更广泛地采用运动粘度(Kinemetic Viscosity),因其测定的准确度较上述诸法均高,且样品用量少,测定迅速。各种粘度间的换算通常可通过已预先制好的转换表查得近似值。 粘度对于各种油品都是一重要参数。内燃机及喷气发动机燃料的汽化性能、锅炉用燃料雾化的好坏均直接与各油品的粘度相关,而油品的输送性能亦与粘度有密切关系。由于粘度在油品实际应用中表现出的重要性,因此不少油品,诸如残渣燃料油、某些润滑油等往往以粘度作为其分级的依据。此外通过对使用过程中的润滑油的粘度的测定更可提供该油品是否已经变质而需加以更换的信息。 运动粘度(KINEMETIC VICOSITY)υ是油品的动力粘度(Dynamic Viscosity)η与同温度下的油品密度ρ之比: υ=η/ρ 单位,沲(Stoke)= 厘米2/秒,通常以其百分之一——厘沲cSt表示。 具体是测定一定量的试样在规定的温度下(如40℃,50℃)流过运动粘度计之毛细管

油品分析

1.名词解释 1. 油品分析:用统一规定或公认的方法,分析检验石油和石油产品理 化性质和使用性能的科学试验。 2. 再现性:在不同试验条件按同一方法对同一试验材料进行正确和正 常操作所得单独的试验结果,在规定置信水平下的允许差值,用R 表示。 3. 点样:从油罐内规定位置或在泵送操作期间按规定时间从管线中采 取的试样。 4. 组合样:按规定比例合并若干个点样,用以代表整个油品性质的试 样。 5. 初馏点:蒸馏时,冷凝管较低的一端滴下滴下第一滴冷凝液时的温 度计读数。 6. 终馏点:蒸馏过程中,温度计最高读数。 7. 油品安定性:油品在贮存,运输及使用过程中,保持其性质不发生 永久变化的能力。 8. 油品腐蚀性:石油产品在贮存,运输和使用过程中,对所接触的机 械设备,金属材料,塑料及橡胶制品等引起破坏的能力。 9. 闪点:石油产品在规定条件下,加热到其蒸气与空气形成的混合气 接触火焰能发生瞬间闪火的最低温度。 10. 凝点:油品在规定条件下,冷却至液面不移动时的最高温度。 11. 冷滤点:在规定条件下,柴油试样在60s内开始不能通过过滤器 20ml时的最高温度。 12. 灰分:油品在规定条件下灼烧后,所剩的不燃物质。 13. 残炭:油品在规定的仪器中隔绝空气加热,使其蒸发,裂解及缩合 所形成的残留物。 14. 烟点:在规定的条件下,试样在标准灯具中燃烧时,不冒黑烟火焰 的最大高度。 15. 结晶点:试样在规定的条件下冷却,出现肉眼可见结晶时的最高温 度。 16. 冰点:试样在规定条件下,冷却到出现结晶后,再升温至结晶消失 时的最低温度。 17. 润滑脂:由一种或多种稠化剂和一种(或多种)润滑液体形成的一 种塑性润滑剂。 18. 溴指数:在规定试验条件下,与100g试样反应所消耗溴的质量。 19. 溴值:在规定条件下,与100g试样反应所消耗单质溴的质量。 20. 碘值:在规定条件下,与100g试样反应所消耗单质碘的质量。 21. 滴熔点:在规定条件下,将已冷却的温度计垂直侵入试样中,使试

液化气的物理特性

液化石油气的物理特性 液化石油气气体的密度其单位是以kg/m3表示,它随着温度和压力的不同而发生变化。因此,在表示液化石油气气体的密度时,必须规定温度和压力的条件。一些碳氢化合物在不同温度及相应饱和蒸气压下的密度见表2-5。 表1-1 一些碳氢化合物在不同温度及相应饱和蒸气压力下的密码(kg/m3) 从表1-1中可以看出,气态液化石油气的密谋随着温度及相应饱和蒸气压的升高而增加。在压力不变的情况下,气态物质的密度随温度的升高而减少,在101.3kPa下一些气态碳氢化合物的密度见表1-2。 表1-2 一些气态碳氢化合物在101.3kPa下的密度/( kg/m3) 液化石油气液体的密度以单位体积的质量表示,即kg/m3。它的密度受温度影响较大,温度上升密度变小,同时体积膨胀。由于液体压缩性很小,因此压力对密度的影响也很小,可以忽略不计。由表1-2可以看出,液化石油气液态的密度随温度升高而减少。 表1-3 液化石油气液态的密度(kg/m3)

相对密度由于在液化石油气的生产/储存和使用中,同时存在气态和液态两种状态,所以应该了解它的液态相对密度和气态的相对密度。 液化石油气的气态相对密度,是指在同一温度和同一压力的条件下,同体积的液化石油气气体与空气的质量比。求液化石油气气体各组分相对密度的简便方法,是用各组分相对密度的简便方法,是用各组分的相对分子质量与空气平均相对分子质量之比求得,因为在标准状态下1mol气体的体积是相同的。液化石油气气态的相对密度见表1-4。 表1-4 液化石油气气态的相对密度(0℃,101.3kpa) 从表1-4中可以看出液化石油气气态比空气重1.5~2.5倍。由于液化石油气比空气重,因此,一旦液化石油气从容器或管道中泄漏出来,不像相对密度小的可燃气体那样容易挥发与扩散,而是像水一样往低处流动和滞存,很容易达到爆炸浓度。因此,用户在安全使用中必须充分注意,厨房不应过于狭窄,通风换气要良好。液化石油气储存场所不应留有井\坑\穴等.对设计的水沟\水井\管沟必须密封,以防聚积,引起火灾。 液化石油气的液态相对密度,指在规定温度下液体的密度与规定温度下水的密度的比值。它一般以20℃或15℃时的密度与4℃与15℃时纯水密度的比值来表示。 液化石油气的液态相对密度,随着温度的上升而变小,见表1-5。 表1-5液化石油气液态各组分相对密度 从表1-5中可看出,在常温下(20℃左右),液化石油气液态各组分的相对密度约为0.5~0.59之间,接近为水的一半。当液化石油气中含有水分时,水汾就沉积在容器的底部,并随着液化石油气一部输送到用户,这样,既增加了用户的经济负担,又会引起容器底部腐蚀,缩短容器的使用期限。因此,液化石油气中的水分要经常从储罐底部的排污阀放出。 体积膨胀系数绝大多数物质都具有热胀冷缩的性质,液化石油气也不例外,受热受膨胀,温度越高,膨胀越厉害。

油品基础知识

油品基础知识 一、石油及石油产品 (一)石油 1、石油 按用途上说是指原油、产品及其衍生物的总称。按化学组成上说,是含碳、氢化合物的复杂混合物。 石油的组成:烃类化合物和非烃类化合物。 烃类化合物:烷烃、环烷烃、芳香烃、不饱和烃(原油中不含不饱和烃)。 非烃类化合物:含硫化合物、含氧化合物、含氮化合物、胶质及沥青质。 2、原油 从地底或海底开采出来未经过任何加工的石油称为原油。我们通常所说的石油,也就是狭义的石油就是指原油。 原油是一种粘稠油状的可燃性液体矿物。早在公元初年,我国劳动人民已经发现并加以利用。颜色多为黑色、褐色或暗绿色,也偶有黄色。一般情况下,原油的密度大部分为0.77~0.96克/厘米3。在原油的组成中,含碳量约为84~85%,含氢量约为12-14%,还有少量含硫、氧、氮的有机化合物。此外,在石油中还发现了少量极少的铁、镍、铜、铅、钒、砷、镁、磷、钾、硅、钙、锰等元素。

(二)石油产品 1、什么是石油产品? 石油产品一般是指经过炼油厂加工所获得的各种产品。 2、石油产品的分类 石油产品按照国标GB498-87可分为如下几类: 1)燃料类(F):汽油、煤油、柴油、重油等; 2)润滑剂和有关产品(L):按GB7631-87又分为19个组别。喷气机润滑油、汽油机油、柴油机油、汽轮机油、冷冻机油、汽缸油、机械油、仪表油等; 3)溶剂油及化工产品(S):石油醚、抽提溶剂油、橡胶溶剂油、溶剂煤油等; 4)蜡及其制品(W):石蜡、高溶点石蜡、工业用石蜡、提纯地蜡等; 5)石油沥青(B):道路石油沥青、建筑石油沥青、专用石油沥青等; 6)石油焦(C): 二、油品的几个常用技术指标 1、油品的馏程 馏程是指以油品在规定条件下蒸馏所得到的以初馏点到终馏点表示蒸发特征的温度范围。主要用来判定油品轻、重馏分组成的多少,控制产品质量和使用性能等。 2、辛烷值

第七章 石油产品分析教案

第七章石油产品分析 教学目标: 掌握石油的组成,油品的基本理化特性;了解油品的理化特性测定基本方法;熟悉油品质量、安定性、腐蚀性等主要指标的表示方法和测定方法。教学重点: 油品基本理化特性、低温流动性、燃烧性能、安定性及腐蚀性的表示及测定方法。 教学难点: 苯胺点、辛烷值、品度值等系列概念的理解和区分。 §7.1概述 一、石油产品分析测定的目的和意义 1、油品分析的概念:用统一规定的或公认的标准试验方法,分析检验油品的理化性质、使用性能和化学组成的分析测试方法。 2、油品分析的目的: (1)对石油加工的原料油和原材料进行检测,制定生产方案,为建厂设计提供依据。 (2)对各炼油装置的生产过程进行分析控制,系统检验各馏出口的中间产品和产品的质量,从而对各生产工序及操作进行及时调整,以防止事故,保证安全生产和产品质量。 (3)对出厂油品进行全分析,为提高产品质量,改进生产工艺、增加品种,提高经济效益提供依据。 (4)对油品使用性能进行评定。 (5)对油品质量进行仲裁。 3、油品分析的意义:油品分析是进行生产装置设计,保证安全生产、提高产量、增加品种、改进质量、完成生产计划的基础和依据,也是储运和使用部门制定合理的储运方案、正确使用油品、充分发挥油品最大效益的依据。 二、石油的组成 1、石油的元素组成 石油的主要组成元素是C和H,其中C含量一般为84.0%~87.0%,H含量为12.0%~14.0%,C、H质量比为6.1~7.1。 2、石油的化合物组成 (1)烃类有机物 (2)非烃类有机物 (3)无机物 三、主要石油产品的组成和特性 我国石油产品按特征分为6类:燃料F、溶剂和化工原料S、润滑剂和有关

第1章油品分析概述

教学内容及安排: §1-1 石油及石油产品1学时 教学过程: [板书] 第一章石油产品分析概述 §1-1 石油及石油产品 石油:是一种从地下开采出来的粘稠状可燃液体矿物油。相对密度一般介于0.8~0.98之间。 原油:未经加工的石油。 石油产品:原油经炼制加工后得到的各种商品统称为石油产品。 主要石油产品燃料:各种牌号的汽油,柴油燃料油等;润滑油:各种牌号的内燃机油和机械油有机化工原料:生产乙烯的裂解原料;工艺用油:变压器油,电缆油,液压油;沥青:铺路沥青,建筑沥青,防腐沥青;蜡:食用,化妆品,包装用,药用;石油焦碳:冶炼用焦,燃料焦 一、石油的组成 1. 元素组成 石油主要由五种元素组成。(还有一些微量元素) 碳含量为83~87%;氢含量为10~14%;硫0.05~8%;氮0.02~2%;氧0.05~2% 一、石油的组成 根据产地不同还含有微量的Cl、I、P、As、Si、Na、K、Ca、Mg、Fe、Ni、V等元素,它们均以化合物形式存在于石油中。 2.化合物组成 石油实际上是多种有机化合物的混合体。现已鉴定出上千种有机化合物。各地的石油成分不一,无确定的化学成分和物理常数。主要由烃类和非烃类组成,还有少量无机物。 (1)烃类化合物:是石油的主要成分。烃类数目庞大,主要是:烷烃、环烷烃和芳香烃石蜡基原油:含烷烃较多;环烷基原油:含环烷烃较多;中间基原油:介于两者之间。 (2)烃的衍生物:含硫、含氧、含氮有机化合物及胶状、沥青状物质(胶质、沥青质)占石油总量10%-15%,胶质一般能溶于石油醚(低沸点烷烃)及苯,也能溶于一切石油馏分。胶质有很强的着色力,油品的颜色主要来自胶质。胶质受热或在常温下氧化可以转化为沥青质。沥青质是暗褐色成深黑色脆性的非晶体固体粉末,不溶于石油醚而溶于苯。胶质和沥青质在高温时易转化为焦炭。 (3)无机物 少量无机物主要是水、Na、Ca、Mg的氯化物、硫酸盐、碳酸盐及少量淤泥。危害:增加原油储运的能量消耗、加速设备的腐蚀和磨损,影响深加工催化剂的活性。 二、石油产品分类 分类依据:GB/T 498-87《石油产品及润滑剂的总分类》,按主要用途和特性分为:六类燃料(F)溶剂和化工原料(S)润滑剂及有关产品(L)蜡(W)沥青(B)焦(C) 石油产品分类标准的命名格式 根据GB/T 498—87标准的规定,分类体系中产品是用统一的格式命名的。产品整体名称(用一组符号表示)组成如下: 类别- 品种数字 类别——石油产品的类别用一个字母表示(对润滑剂而言,该字母为“L”),该字母应和其他符号用半字线“-”相隔。

最新整理液化石油气特性及其对安全的影响.docx

最新整理液化石油气特性及其对安全的影响 一、液化石油气的一般特性 液化石油气通常处于饱和状态,既有气相,又有液相,因此,它具有气体和液体的物理特性。液化石油气的主要成分为烷烃和烯烃,因此,它又具有烷烃和烯烃的化学特性。液化石油气的这些特性因其组分不同而异,与其他可燃介质相比,液化石油气的一般特性如下。 1.方便性 液化石油气在常温下为气体,稍加压或冷却即可液化。如丙烷在20℃、0.81MPa压力下即成为液体,这给灌装、运输和使用带来了方便。 2.易燃性 液化石油气和空气混合后,一旦遇到火种,甚至是石头与金属撞击或摩擦静电火花那样微小的火种,都能迅速引起燃烧,释放出能量。这是制造各种燃烧器具和利用液化石油气的根据。 3.易爆性 液化石油气的爆炸极限为1.5%~9.5%,其爆炸范围宽且爆炸下限低,当液化石油气与空气混合达到其爆炸范围时,遇到火种即可发生爆炸。 4.挥发性 储存在容器内的液化石油气如果以液体状态泄漏出来时,于压力降低,便可迅速汽化,其体积将会骤然膨胀为250倍的气态石油气。此时,周围若有火种就会形成燃烧和爆炸。 5.溶解性 液化石油气能溶解水,而且随温度升高其溶解度增大。当温度降低时,原来溶解的水会部分析出,这部分水在温度降低时,因吸收周围的热量使之形成冰塞,造成管道或阀门堵塞,甚至冻裂损坏。 液化石油气能使石油产品溶化。用于液化石油气的阀门填料应采用聚四氟乙烯材料,不应使用油浸石棉盘根作阀门填料和管道密封材料;输送和装卸软管需采用耐油胶管。

6.微毒性 空气中液化石油气浓度低于1%时,对人体健康无害。但是,如果长期接触浓度较高的液化石油气或在燃烧不完全时,对人的神经系统是有影响的,尤其是当空气中含有超过10%的高碳烃类气体或不完全燃烧产生的CO时,还会使人窒息或中毒。 7.腐蚀性 纯净的液化石油气不会对碳钢和低合金钢产生腐蚀。所谓液化石油气的腐蚀是于其中的硫化物杂质所致。如硫化氢在有水的条件下,会对钢材产生应力腐蚀和化学腐蚀。因此,对盛装液化石油气的金属设备,应定期进行缺陷检验。 8.热值高 液化石油气燃烧时,一般每立方米气态液化石油气的低发热量为10×104kJ/m3,相当于每立方米焦炉煤气发热量的1 倍;液态石油气的低发热量为4.5×104kJ/kg,约为每公斤烟煤发热量的2倍。 液化石油气及其他燃气的低热值见表1-2-20。 表1-2-20 液化石油气及其他燃气的低热值 名称液化石油气天然气焦炉煤气空气煤气无烟煤气二甲醚轻烃燃气热值/(kJ/m3)10800035600xxx001050058006680031800 二、液化石油气特性对安全使用的要求 综上所述,液化石油气是一种极易燃烧爆炸的物质,国家标准GB 18218《重大危险源辨识》将其列为重大危险易燃物质。人们在利用液化石油气的有益特性的同时,还应加强安全管理,防止其发生危害作用。液化石油气的安全使用要求如下。 ①严防液化石油气的外泄。凡盛装液化石油气的容器和管道应具有足够的耐压能力和可靠的密封性。与液化石油气相关的设备及其建筑物、构筑物要有满足要求的防范保护设施和防火间距。 ②凡与液化石油气相关的站区和环境要杜绝明火、电火花及静电火花的产生,并应具有良好的通风条件,不得有使液化石油气集聚、存积的地方。 ③储罐、钢瓶等容器储装液化石油气时,要按规定的储装量充装,

石油及其主要产品化学组成和物理性能

石油及其主要产品化学组成和物理性能 1、石油的化学组成 1.1 颜色与密度 石油(俗称原油)通常是黑色、褐色或黄色的流动或半流动的粘稠液体,由于含有硫等其它物质,一般都有不同程度的臭味。 多数原油的密度集中在750~950kg/m3之间,也有个别原油的密度在1000kg/m3以上或在800 kg/m3以下。 1.2 元素组成 一般而言,原油由以下几种元素或化合物组成:碳——83~87%,氢——11~14%,硫——1~3%(硫化物、二硫化物和单质硫等),氮——低于1%(以带胺基的碱性化合物为主),氧——低于1%(存在于二氧化碳、苯酚、酮和羧酸等有机化合物中),金属和非金属物质——低于1%(镍、铁、钒、铜、砷等)。根据硫含量的不同,可分为低硫原油(硫含量小于0.5%)、含硫原油(硫含量0.5~2.0%)和高硫原油(硫含量大于2.0%)三类。 碳/氢原子比(有时也称氢/碳原子比)是反映原油属性的一个重要参数,与其原有的化学结构有关系。 1.3 烃类组成 原油中的烃类成分主要分为烷烃、环烷烃、芳香烃,这些烃类组成是以气态、液态、固态的化合物存在。根据烃类成分的不同,原油也可分为石蜡基原油、环烷基原油和中间基原油三类。石蜡基原油含烷烃较多;环烷基原油含环烷烃、芳香烃较多;中间基原油介于二者之间。 原油中的烃类含量因为产地种类不同差异很大,相对密度较小的轻质原油中

烃类含量可能大于90%,而相对密度较大的重质原油中的烃类含量甚至可能小于50%。 炼油厂加工的的原油通常为液态。原油中含的液体状态烃按其沸点不同,可以分为低沸点馏分、中间馏分以及高沸点馏分。低沸点馏分,如在汽油馏分中含有C5~C10的正构烷烃、异构烷烃、单环环烷烃、单环芳香烃(苯系)。中间馏分,如在煤油、柴油馏分中含有C10~C20的正异构烷烃、带侧链的单环环烷烃、双环及三环环烷烃、双环芳烃。高沸点馏分,如在润滑油馏分中含有C20~C36左右的正异构烷、环烷烃和芳香烃。 1.4非烃化合物 原油中非烃化合物主要包括含硫、含氮、含氧化合物和胶状沥青状物质等。原油中含硫化合物包括活性硫化物和非活性硫化物。原油中氮的分布随着馏分沸点升高,其氮含量迅速增加,约有80%的氮集中在400℃以上的重油中。在原油中,氧元素都是以有机含氧化合物的形式存在的,主要分为酸性含氧化合物和中性含氧化合物两大类。原油中含氧化合物化合物主要以酸性含氧化合物为主,其中主要是环氧酸,占原油酸性含氧化合物的90%。 2、石油及其主要石油产品的物理性能 2.1 标准密度和相对密度 我国规定20℃时的密度为石油产品(简称油品)的标准密度。原油的相对密度,在我国是指在一个标准大气压下,20℃原油与4℃纯水单位体积的质量比,又称比重。原油相对密度一般在0.75-0.95之间,少数大于0.95或小于0.75。通常相对密度在0.9-1.0的原油称为重质原油,小于0.9的原油称为轻质原油。

液化石油气基本知识复习过程

液化石油气基本知识 一、液化石油气的来源、组成 1、液化石油气的来源 液化石油气是在石油天然气开采和炼制过程中,作为副产品而取得到的以丙烷、丁烷为主要成分的碳氢化合物。在常温常压下为气体,只有在加压或降温的条件下,才变成液体,故称为液化石油气。常温下,液化石油气中的乙烷、乙烯、丙烷、丁烯、丁烷等均为无色无嗅的气体,他们都比水轻,且不溶于水。液化石油气中的刺鼻味是由在运输及储存过程中特意加入的硫醇和醚等成分产生的,便于液化石油气泄漏时使用者察觉判断。 液化石油气,英文Liquefied Petroleum Gas,缩写LPG。 2、液化石油气的组成 主要成分:丙烷(C3H8)、丁烷(C4H10) 少量成分:甲烷、乙烷、丙稀、丁烯。 残液:液化石油气钢瓶里总有微量液体用不完,该部分液体称为残液,其主要成分为戊烷及戊烷以上碳氢化合物。 液化石油气国家标准规定残液含量不大于3%。

二.液化石油气的生产: 主要从炼油厂在提炼石油的裂解过程中产生。在石油炼厂及石油化工厂的常减压蒸馏、热裂化、催化裂化、铂重整及延迟焦化等加工过程中都可以得到液化石油气,一般来讲,提炼1吨原油可产生3%-5%的液化石油气;也可从天然气中回收液化石油气。从油田出来的原油和湿气混合物经气液分离器分离,上部出来的天然气送到一个储气罐中,经过加压(16kg/cm2)再分馏,用柴油喷淋吸收;天然气(干气)从塔顶送出,吸收了液化气的富油经过分馏塔,在16kg/cm2压力下冷凝为液态,形成液化石油气。 LPG的生产主要有3种方法。 1、从油、气田开采中生产 在油田开采时,反携带有原油中的烃类气体或气田开采时,携带在天然气中的其他烃类,经初步分离及处理后,再集中送到气体分离工厂进行加工,最后分别获得丙烷、丁烷。在一定压力下或冷冻到一定的温度将丙烷、丁烷分别进行液化,并分装在不同的储罐内。生产商可分别出售丙烷、丁烷,也可按用户要求,把丙烷、丁烷按一定比例,调配成符合质量标准的LPG再出售。 2、从炼油厂中生产

液化石油气的理化特性表

液化石油气;压凝汽油的主要理化及危险特性表 标识中文名:液化石油气;压凝汽油 英文名:Liquefied petroleum ges;Compressed petroleum gas 分子式:C3H8-C3H6-C4H10-C4h8(混合物) 分子量: CAS号:68476-85-7 RTECS号:SE7545000 UN编号:1075 危险货物编号:21053 IMDG规则页码: 理化性质外观与性状:无色气体或黄棕色油状液体,有特殊臭味。 主要用途:用作石油化工的原料,也可用作燃料。 熔点: 沸点: 相对密度(水=1): 相对密度(空气=1): 饱和蒸汽压(kPa): 溶解性:在水上漂浮并沸腾,不溶于水。可产生易燃的蒸气团。临界温度(℃):无资料 临界压力(MPa):无资料 燃烧热(kj/mol):无资料 燃烧爆炸危险性避免接触的条件: 燃烧性:易燃 建规火险分级:甲 闪点(℃):-74 自燃温度(℃):引燃温度(℃):426-537 爆炸下限(V%): 5 爆炸上限(V%):33 危险特性:与空气混合能形成爆炸性混合物,遇明火、高热极易燃烧爆炸。与氟、氯等能发生剧 烈的化学反应。其蒸气比空气重,能在较低处扩散到相当远的地方,遇明火会引着回 燃。若遇高热,容器内压增大,有开裂和爆炸的危险。 易燃性(红色):4 反应活性(黄色):0 燃烧(分解)产物:一氧化碳、二氧化碳。 稳定性:稳定 聚合危害:不能出现 禁忌物:强氧化剂、卤素。 灭火方法:切断气源。若不能立即切断气源,则不允许熄灭正在燃烧的气体,喷水冷却容器,可 能的话将容器从火场移至空旷处。雾状水、泡沫、二氧化碳。如果该物质或被污染的 流体进入水路,通知有潜在水体污染的下游用户,通知地方卫生、消防官员和污染控 制部门。 包装危险性类别:第2.1类易燃气体危险货物包装标志: 4

相关文档
相关文档 最新文档