文档库 最新最全的文档下载
当前位置:文档库 › 布丰试验及其拓广

布丰试验及其拓广

布丰试验及其拓广
布丰试验及其拓广

布丰的投针试验

公元1777年的一天,法国科学家布丰(D.Buffon1707-1788)的家里宾客满堂,原来他们是应主人的邀请前来观看一次奇特试验的。

试验开始,但见年已古稀的布丰先生兴致勃勃地拿出一张纸来,纸上预先画好了一条条等距离的平行线。接着他又抓出一大把原先准备好的小针,这些小针的长度都是平行线间距离的一半。然后布丰先生宣布:“请诸位把这些小针一根一根往纸上扔吧!不过,请大家务必把扔下的针是否与纸上的平行线相交告诉我。”

客人们不知布丰先生要干什么,只好客随主意,一个个加入了试验的行列。一把小针扔完了,把它捡起来又扔。而布丰先生本人则不停地在一旁数着、记着,如此这般地忙碌了将近一个钟头。最后,布丰先生高声宣布:“先生们,我这里记录了诸位刚才的投针结果,共投针2212次,其中与平行线相交的有704次。总数2212与相交数704的比值为3.142。”说到这里,布丰先生故意停了停,并对大家报以神秘的一笑,接着有意提高声调说:“先生们,这就是圆周率π的近似值!”

众宾哗然,一时议论纷纷,个个感到莫名其妙。“圆周率π?这可是与圆半点也不沾边的呀!”

布丰先生似乎猜透了大家的心思,得意洋洋地解释道:“诸位,这里用的是概率的原理,如果大家有耐心的话,再增加投针的次数,还能得到π的更精确的近似值。不过,要想弄清其间的道理,只好请大家去看敝人的新作了。”说着布丰先生扬了扬自己手上的一本《或然算术试验》的书。

π在这种纷纭杂乱的场合出现,实在是出乎人们的意料,然而它却是千真万确的事实。由于投针试验的问题,是布丰先生最先提出的,所以数学史上就称它为布丰问题。布丰得出的一般结果是:如果纸上两平行线间相距为d,小针

长为l,投针的次数为n,所投的针当中与平行线相交的次数是m,那么当n相当大时有:

在上面故事中,针长l等于平行线距离d的一半,所以代入上面公式简化

我想,喜欢思考的读者,一定想知道布丰先生投针试验的原理,下面就是一个简单而巧妙的证明。

找一根铁丝弯成一个圆圈,使其直径恰好等于平行线间的距离d。可以想象,对于这样的圆圈来说,不管怎么扔下,都将和平行线有两个交点。因此,如果圆圈扔下的次数为n次,那么相交的交点总数必为2n。

现在设想把圆圈拉直,变成一条长为πd的铁丝。显然,这样的铁丝扔下时与平行线相交的情形要比圆圈复杂些,可能有4个交点、3个交点、2个交点、1个交点,甚至于都不相交。

由于圆圈和直线的长度同为πd,根据机会均等的原理,当它们投掷次数较多,且相等时,两者与平行线组交点的总数可望是一样的。这就是说,当长为πd的铁丝扔下n次时,与平行线相交的交点总数应大致为2n。

现在再来讨论铁丝长为l的情形。当投掷次数n增大的时候,这种铁丝跟平行线相交的交点总数m应当与长度l成正比,因而有:m=k l式中k是比例系数。

为了求出k来,只需注意到,对于l=πd的特殊情形,有m=2n。

2nl m

=

这便是著名的布丰公式。

亲爱的读者,你不妨一试。

课本P187-2

随便说出3个正数,以这3个数为边长一定能围成一个三角形吗?一定能围成一个钝角三角形(其中最大边的平方

大于另两边的平方和)吗?估计能围成一个钝角三角形的概率.

本题仍是利用试验的方法估计随机事件发生的概率,随便说出三个正数,以这三个正数为边不一定能组成一个三角形,如不能以1,3,5三个数为边长组成三角形;当然也不一定能组成一个钝角三角形;能围成一个钝角三角形的概率的估计值因人而异,因试验次数而异.事实上,不妨设所取三数为(a ,b ,c(0

应满足:a+b>c ,a2+b2

c

a +>1,2

22

2c

b c

a

+

<1.

设,

,

a b x y c

c ==则有x+y>1,x2+y2<1,其中0<x ≤1,0<y ≤1

在直角坐标系中,任意a ,b ,c 所对应的图形为正方形OABC 及其内部,而能构成钝角三角形的a ,b ,c 对应的图形是图中的阴影部分。

因此,所求概率为11

4

21

π-

=42

抓阄中的概率问题

日常生活中,人们经常通过抓阄对一些事情作出决策。例如,现在有一张去科学宫的参观券,小明、小华、小彬3

个同学都想去,为了公平,可以做3个阄,其中一个阄做上标记,谁抓中做了标记的阄即可得到去科学宫的参观券。可他们3人认为最后抓阄的人没有任何选择的余地,认为抓阄对后抓的人不利,都不愿意最后抓阄。他们的想法正确吗?

这个问题挺复杂。对于复杂问题,不妨先动手试一试,亲身感受一下,或许能得出问题的结论呢!

可以做3个阄(其中一个阄做上标记),3个同学为一组,安排好抓阄顺序,具体地抓抓看。多抓几次,统计一下各人抓中有标记的阄的次数,看看3人抓中有标记的阄的概率如何?当然,时间长了,同学们可能“无意”中会记得各个阄的特征,为了保证抓阄的随机性,可以通过摸球或计算器出示的随机数等进行模拟试验。

通过模拟试验,同学们也许已经得到了问题的结论。但这毕竟是一种感性的认识,能否对此进行理性的分析呢? “可这个问题挺复杂的。”

“是的,但我们可以先考虑一个简单的情况呀!”试想只有2人抓阄,同学们不难明白,不管谁先抓,2人抓中有

标记的阄的概率应都是21

“那3个人抓阄呢?”不妨依小华、小彬、小明的顺序抓阄,显然原来有3个阄,其中一个做了标记,小华抓中

有标记阄的可能性是31

,抓不中的可能性是32

,可用图1表示。只有在小华抓不中的情况下,小彬才有可能抓得有标

记的阄,而且这时他抓得有标记的阄的可能是50%,因此,小彬抓得有标记的阄的可能性是这32

可能性下的21

,即

31

2132=?。同样,小明得到有标记的阄的可能性也是31

,如图2。

31 32 31 31 31

图1 图2

可见,3个人抓阄,抓中有标记的阄的可能性与抓阄的顺序并无关系,那n 个人抓阄呢?有兴趣的同学可以通过模拟试验感受一下,也可以仿照上面的思路分析分析。

生活与概率

公元1052年4月,侬智高起兵反宋。当朝皇帝宋仁宗决定派遣大将狄青去平定叛乱。当时路途艰险,军心不稳,狄青取胜的把握不大。为了鼓舞士气,狄青便设坛拜神,说:“这次出兵讨伐叛军,胜败没有把握,是吉是凶,只好由神明决定了。是吉的话,那我随便掷100个铜钱,神明保佑,正面定然会全部朝上;只要有一个背面朝上,那我们就难以制敌,只好回朝了。”

左右官员诚惶诚恐,劝道:“大将军,运气再好,100个铜钱,总不会个个正面朝上,如果有背面朝上,岂不动摇军心?如果不战而回朝,那更是违抗圣旨。请大将军三思而行!”此时的狄青已是胸有成竹,叫心腹拿来一袋铜钱,在千万人的注视下,举手一挥,把铜钱全部抛向空中,100个铜钱居然鬼使神差地全部朝上。顿时,全军欢呼,声音响彻山野。由于士兵个个认定神灵护佑,战斗中奋勇争先,仅一次战役,就收回了失地,大功告成。

那么,那100个铜钱究竟是怎么回事呢?原来,狄青那100个铜钱正反两面都是正面的图案,使得正面朝上的机会为100%,从而鼓舞了士气,大军获胜。

以上只是古人利用简单的概率知识获利。其实,从古到今,概率就与人们的生活息息相关。如今,还有许多不法分子利用人们对概率的不了解牟取暴利。下面,我们就以“机会型”赌博,简要地讲一下如何计算概率以及概率的重要性。

“机会型”赌博规则如下:每个参加者每次先付赌金1元,然后将3枚骰子一起掷出。他可以赌某一个点数,譬如赌“1”点。如果三枚骰子中出现一个“1”点,庄家除把赌金发还外,再奖一元;如果出现两个“1”点,发还赌金外,再奖两元;如果全是“1”,那么发还赌金,再奖三元。

看起来,一枚骰子赌“1”点,取胜的可能性是61

;那么两枚骰子就是31

的可能性,三枚就是21

。即使是一元对一元的奖励,机会也是均等的,何况还可能是2倍、3倍奖励的可能性,自然对参加者有利。其实,这只是一个假象。

我们来计算一下,三枚骰子一起掷,会出现怎样的情况。见表1。 表1

1”点的情况:出现“1”点的骰子可能是第一枚,也可能是第二枚或第三枚,共有三种可能;而其余两枚不出现“1”点的可能性有5×5=25种,所以共有3×25=75种可能。这75种可能出现时,它可获2元,那么总共可获75×2=150元。再来看出现两枚“

1”点的可能性:可以出现在第一枚和第二枚,也可以是第一枚和第三枚,还可以是第二枚和第三枚,也是三种可能;而另一枚骰子不出现“1”点只有5种可能,所以共有15种可能。这时,每次他可获3元,共45元。最后,三枚都出现“1”点的只有一种可能,这时,它可获4元。

这样,216次,他共获150+45+4=199元。但每次先付一元,他一共付了216元。所以,一般来说,他会输216-199=17元,占总金额的7.9%。

我们再来看看庄家的情况。根据前面的分析过程,假使有6人参加赌博,每人分别赌“1”、“2”、……“6”点,并假定每人进行了216次,则庄家共收了6×216=1296元,一共付出了720+450+24=1194元,净赚1296-1194=102元,占总金额的7.9%。

通过概率的计算,我们看到赢的一定是庄家。看清了赌博的真面目,我们就应该抵制赌博。

同样我们可以利用概率计算动物的寿命,以乌龟的寿命为例,如表2:

根据表2内容,再计算出,活满20岁的乌龟有0.87÷0.92×100%=95%的概率可活到80岁,活满120岁的乌龟有0.39÷0.87×100%=50%的概率可活到200岁。

同理,通过大量调查数据获得人类的寿命表,保险公司便可算出保险费率。

以上两个例子说明,概率与人们的生活息息相关,只要你熟练地掌握了概率的知识,并应用到日常生活中去,我想你就能做到较好地把握机会,将胜算牢牢地掌握在自己的手中。

——选自首届初中生数学学习《“时代之星”实践与创新论文大赛》江苏教育出版社(有改动)

象棋比赛阵容

少年宫请来了一位象棋大师,他对少年象棋队的队员们做了一些辅导之后,决定与少年棋手来几盘棋赛。大师的棋艺高出少年棋手好多好多,怎么能比呢?不要紧,大师下的是盲棋——不看棋盘,由别人将对手的走着告诉大师,大师再把自己的走着告诉这个人,由他代走。

比赛作了这样的约定:由少年象棋队挑出两名队员,轮流与大师赛棋,共赛三盘。如果能连胜大师两盘,就算少年棋队胜。注意:是连胜两盘,不是共胜两盘。

假定少年棋手甲能胜大师的概率是0.75,乙能胜大师的概率是0.5,那么少年棋队应该用“甲—乙—甲”,还是用“乙—甲—乙”的阵容来对付大师呢?

“当然用‘甲—乙—甲’阵容啦!甲是我队最好的队员嘛!”少年棋队的队员们一致这样看。

其实,“甲—乙—甲”阵容战胜大师(连胜两盘)的概率比“乙—甲—乙”阵容战胜大师的概率要小一些。

为什么呢?我们在这里只做一些直观的解释。

用“甲—乙—甲”阵容参战,最佳的棋手可以上场两次,看来好像是有利的。但是,我们现在的规则是:连胜两盘才能算少年队赢。用这个阵容,即使甲胜了两盘,也没用,因为不是“连胜”两盘。

要连胜两盘,必须在第二盘比赛中取胜,因此第二盘比赛是关键。而“乙—甲—乙”阵容,就是把最佳选手安排在最关键的场合,所以是较好的方案。

基于MATLAB的布丰投针实验仿真

系统建模与仿真题目:Buffon实验的仿真 院系: 电子工程学院 专业:信息对抗技术 班级:021231 姓名:余颖智 学号:02123021 指导老师:刘洋 完成时间:2015年4月 西安电子科技大学

基于MATLAB的投针实验仿真 摘要 在求证圆周率的过程中经过割圆术后,出现的投针试验以求出圆周率,目前利用MATLAB数学建模的仿真实验,运用到计算机中,简化其随机实验的操作量大,运算慢等特点。不同针距相同实验量运算后得出不同的π,其针距与线间距离相等,所得值接近于π。

目录 摘要 (2) 二、实验内容 (4) 三、建模流程图 (5) 四、程序主要代码 (6) 五、运行结果 (6) 六、结论 (7)

一、实验原理 1777年法国科学家布丰提出的一种计算圆周率的方法——随机投针法,即著名的布丰投针问题。该投针实验主要有如下三个步骤:(一)取一张白纸,在上面画许多条间距为a的平行线;(二)取一根长度为l(l

三、建模流程图

四、程序主要代码 str(handles.edit1,'string'); %取得变量,定义变量,变量初始化 n = str2double(str); str = get(handles.edit2,'string'); l = str2double(str); str = get(handles.edit3,'string'); a = str2double(str); counter = 0; %变量初始化 phi = 0; frequency = 0; Pi = 0; x = unifrnd(0,a/2,1,n);%产生n个(0,a/2)之间均匀分布的随机数,这里a/2是投针的中点到最近的平行线的距离 phi = unifrnd(0,pi,1,n);% 产生n个(0,pi)之间均匀分布的随机数,这里pi是投针与最近平行线的角度 for i=1:n if x(i)

布丰投针实验模拟

系统建模与仿真 基于MATLAB的布丰实验模拟 姓名:石星宇 学号: 02123010 指导教师:刘洋 2015年4月9日

目录 基于MATLAB的布丰实验模拟 .................................................................... - 1 - 一、实验原理......................................................................................... - 1 - 二、编程模拟......................................................................................... - 1 - 1、程序流程图............................................................................... - 1 - 2、程序代码................................................................................... - 2 - 三、实验结果......................................................................................... - 2 -

基于MATLAB 的布丰实验模拟 一、实验原理 找一根铁丝弯成一个圆圈,使其直径恰恰等于平行线间的距离a 。可以想象得到,对于这样的圆圈来说,不管怎么扔下,都将和平行线有两个交点。因此,如果圆圈扔下的次数为n 次,那么相交的交点总数必为n 2。现在设想把圆圈拉直,变成一条长为a π的铁丝。显然,这样的铁丝扔下时与平行线相交的情形要比圆圈复杂些,可能有4个交点,3个交点,2个交点,1个交点,甚至于都不相交。由于圆圈和直线的长度同为a π,根据机会均等的原理(即等概率事件),当它们投掷次数较多,且相等时,两者与平行线组交点的总数期望也是一样的。这就是说,当长为a π的铁丝扔下n 次时,与平行线相交的交点总数应大致为n 2。现在转而讨论铁丝长为l 的情形。当投掷次数n 增大的时候,这种铁丝跟平行线相交的交点总数k 应当与长度l 成正比,因而有:l k λ=,式中λ是比例系数。为了求出λ来,只需注意到,对于a l π=的特殊情形,有n k 2=。于是求得a n πλ2=。代入前式就有:a m πln 2≈从而ak nl 2≈π。 二、编程模拟 1、程序流程图 参数初始化 产生位置随机数; 产生角度随机数 判断相交 1+=k k 1+=n n 是 否 判断结束

苏科版-数学-九年级上册-知识拓展 布丰的投针试验

公元1777年的一天,法国科学家D·布丰(D·buffon,1707~1788)的家里宾客满堂,原来他们是应主人的邀请前来观看一次奇特试验的. 试验开始,但见年已古稀的布丰先生兴致勃勃地拿出一张纸来,纸上预先画好了一条条等距离的平行线.接着他又抓出一大把原先准备好的小针,这些小针的长度都是平行线间距离的一半.然后布丰先生宣布:“请诸位把这些小针一根一根往纸上扔吧!不过,请大家务必把扔下的针是否与纸上的平行线相交告诉我.” 客人们不知布丰先生要干什么,只好客随主意,一个个加入了试验的行列.一把小针扔完了,把它捡起来又扔.而布丰先生本人则不停地在一旁数着、记着,如此这般地忙碌了将近一个钟头.最后,布丰先生高声宣布:“先生们,我这里记录了诸位刚才的投针结果,共投针2212次,其中与平行线相交的有704次.总数2212与相交数704的比值为3.142.”说到这里,布丰先生故意停了停,并对大家报以神秘的一笑,接着有意提高声调说:“先生们,这就是圆周率π的近似值!” 众宾哗然,一时议论纷纷,个个感到莫名其妙;“圆周率π?这可是与圆半点也不沾边的呀!” 布丰先生似乎猜透了大家的心思,得意洋洋地解释道:“诸位,这里用的是概率的原理,如果大家有耐心的话,再增加投针的次数,还能得到π的更精确的近似值.不过,要想弄清其间的道理,只好请大家去看敝人的新作了.”随着布丰先生扬了扬自己手上的一本《或然算术试验》的书. π在这种纷纭杂乱的场合出现,实在是出乎人们的意料,然而它却是千真万确的事实.由于投针试验的问题,是布丰先生最先提出的,所以数学史上就称它为布丰问题.布丰得出的一般结果是:如果纸上两平行线间相距为d,小针长为l,投针的次数为n,所投的 针当中与平行线相交的次数是m,那么当n相当大时有:π≈2ln dm .在上面故事中,针长l 等于平行线距离d的一半,可以代入上面公式简化.我想,喜欢思考的读者一定想知道布丰先生投针试验的原理,下面就是一个简单而巧妙的证明. 找一根铁丝弯成一个圆圈,使其直径恰恰等于平行线间的距离d.可以想象得到,对于这样的圆圈来说,不管怎么扔下,都将和平行线有两个交点.因此,如果圆圈扔下的次数为n次,那么相交的交点总数必为2n. 现在设想把圆圈拉直,变成一条长为πd的铁丝.显然,这样的铁丝扔下时与平行线相交的情形要比圆圈复杂些,可能有4个交点,3个交点,2个交点,1个交点,甚至于都不相交. 由于圆圈和直线的长度同为πd,根据机会均等的原理,当它们投掷次数较多且相等时,两者与平行线组交点的总数可望是一样的.这就是说,当长为πd的铁丝扔下n次时,与平

蒲丰投针实验模拟

概率论与数理统计实验 蒲丰投针与蒙特卡罗法 班级应数12级01班 学号2012444086 姓名张旭东

蒲丰投针与蒙特卡罗法 张旭东2012444086 (重庆科技学院数学与应用数学,重庆沙坪坝) 【摘要】通过设计一个投针实验使这个事件的概率和未知量π有关,然后通过重复实验,以频率估计概率,即可求得未知参数π的近似解。这种方法称为随机模拟法,也称为蒙特卡罗法。一般来说,实验次数越多所得的近似值就越接近真值。可以利用MATLAB来大量重复地模拟所设计的随机实验。 【关键词】随机模拟;投针实验;重复实验

1 引言 蒲丰投针问题是由法国科学家蒲丰(Buffon)在1777年提出的,它是概率中非常有代表性的问题,它是第一个用几何形式表达概率问题的例子,其结论具有很强的理论与实际意义。蒲丰针问题的解决不仅较典型的反应了集合概率的特征及处理方法,而且还可以由此领略到从“概率土壤”上开出的一朵瑰丽的鲜花——蒙特卡洛(Monte-Carlo)方法。 蒙特卡罗(Monte Carlo)方法,也称计算机模拟方法,是一种基于“随机数”的计算方法,大数定律为近年来发展迅速的随机计算机和随机模拟方法提供了理论基础。 MATLAB是一个适合多学科,具有多种工作平台的功能强大的大型软件。MATLAB已经成为线性代数、自动控制理论、数理统计、数字信号处理、时间序列分析、动态系统仿真等高级课程的进本教学工具,Matlab随机数发生器的种类丰富且用法简便。 本文介绍了利用随机模拟方法和大数定律的相关理论解决蒲丰投针问题计算π的近似值。

2 有关数学实验的有关基础 定理(贝努力大数定律) 设n μ是n 重贝努力实验中事件A 出现的次数,P 是事件A 每次实验中出现的概率,即P(A)=p,则对任意的 ε>0,有 3 实验 蒲丰投针问题 在平面上画有等距离的一些平行线,平行线间的距离为a(a>0),向平面上随机投一长为l(l

蒲丰氏投针问题的模拟过程

蒲丰氏投针问题的模拟过程,随机数发生器也是自编的,以供大家参考和提出建议。谢谢。(seed1和seed2最好选择3和5,为了使投针次数达到1000000,CVF进行如下设置Project->settings->link-> output,将stack allocations reserve:设为1000000000) program getpi implicit none real,parameter::a=5,L=4,pi=3.14159 integer::n1,i,counter=0 real,allocatable::R1(:),R2(:) real::theta,x,pi1 write(*,*) 'input the size of the array:' read(*,*) n1 allocate(R1(n1)) allocate(R2(n1)) call random(n1,R1,R2) do i=1,n1 x=a*(2*R1(i)-1) theta=pi*R2(i) if(abs(x)

Buffon投针实验的理论证明

Buffon投针实验的理论证明 我们知道,当正多边形的边数无限增多时,它的极限是圆。所以“圆”这种图形可以代表弯曲得最厉害的小针。现在假定圆形小针的直径恰好与纸上两条相邻的平行线间的距离相等,那末这个圆形小针投掷下来时,不是和一条直线相交两次,就是和两条相邻的平行线相切。不管怎样,它的相交次数是2。因此,当投掷的次数为n时,碰线的次数便是2n。 现在小针的长度只有两条相邻平行线间距离的一半,所以针的长度只有上述圆形小针长度(即圆周长)的。但是可能碰线的次数是与针的长度成正比的,因此小针的可能碰线的次数k就必须满足下面的比例式: 1:(1/2π) =2n: k 于是就得到π=n/k,也就是 π=投掷总次数/碰线次数 这就是上面“投针实验”的理论根据。它又叫莆丰氏实验,在概率论中是很出名的,也可以说是近代的“统计试验法”(又叫“蒙特卡罗法”)的滥觞。 蒲丰(Buffon)投针求π 蒲丰(Buffon)投针问题:在平面上画有等距离的一些平行线,平行线间的距离为a(a>0),向平面上随机投一长为l (l

我们也可以来做这个实验,而且希望做更多次,但是投针又比较费时费力,于是,可以采用另一种设计随机实验的方法,随机模拟的办法来模拟蒲丰投针实验。从而求得π的近似值。 二、实验方法 可以采用MatLAB软件进行模拟实验,即用MATLAB编写程序来进行“蒲丰投针实验”。 1.基本原理:由于针投到纸上的时候,有各种不同的方向和位置(图a),但是,每一次投针时,其位置和方向都可以由两个量唯一确定,那就是针的中点和偏离水平的角度(图b)。 随机投针图

投针实验计算圆周率的数学分析

投针实验计算圆周率的数学分析 王向东 投针实验计算圆周率的数学证明方法,初中一般是采取假设针弯成直径等于平行线距离的方法巧妙证明。这个方法是基于不管针弯成什么形状,针上的每一个部位与平行线相交的概率相同,但这是感观上的认识,要把其中原因解释清楚不是很容易。笔者从纯数学的角度来推导这个公式。 一、投针问题的由来 1777年法国科学家布丰提出的一种计算圆周率的方法——随机投针法,即著名的蒲丰投针问题。 这一方法的步骤是: 1) 取一张白纸,在上面画上许多条间距为d 的平行线。 2) 取一根长度为()l l d <的针,随机地向画有平行直线的纸上掷n 次,观察针与直线相交的次数,记为m 3)计算针与直线相交的概率. 18世纪,法国数学家布丰和勒可莱尔提出的“投针问题”,记载于布丰1777年出版的著作中:“在平面上画有一组间距为d 的平行线,将一根长度为()l l d <的针任意掷在这个平面上,求此针与平行线中任一条相交的概率。”布丰本人证明了,这个概率是: 2l p d π=,π为圆周率。 二、投针实验的数学证明 投针这个动作是由两个事件构成的。 事件1:针投下后与平行线构成一定的夹角。 我们来分析一下针投下后与平行线之间的成某一特定夹角时的概率。 设针投下后与平行线之间的夹角为θ,则θ在0与π之间。针与平行线之间的夹角在θ到θ+θ?之间的概率为1p θ π?=,当0θ?→时,可看作针投下后与平行线之 间成某一特定夹角为θ的概率。 事件2:针投下后会在平行线垂直的方向形成一个投影,针与平行线相交等于它的垂直投影与平行线相交。这个投影的长度'l 在0到l 之间。

蒲丰投针及蒙特卡罗模拟电子教案模拟

概率模型的随机模拟与蒲丰投针实验 第1章模拟 1.1 模拟的概念 每一个现实系统外部环境之间都存在着一定的数学的或者逻辑的关系,这些关系在系统内部的各个组成部分之间也存在。对数学、逻辑关系并不复杂的模型,人们一般都可用解析论证和数值计算求解。但是,许多现实系统的这种数学、逻辑模型十分复杂,例如大多数具有随机因素的复杂系统。这些系统中的随机性因素很多,一些因素很难甚至不可以用准确的数学公式表述,从而无法对整个系统采用数学解析法求解。这类实际问题往往可以用模拟的方法解决。 模拟主要针对随机系统进行。当然,也可以用于确定性系统。本文讨论的重点是其中的随机模拟。采用模拟技术求解随机模型,往往需要处理大批量的数据。因此,为了加速模拟过程,减少模拟误差,通常借助于计算机进行模拟,因此又称为计算机模拟。 计算机模拟就是在已经建立起的数学、逻辑模型的基础之上,通过计算机试验,对一个系统按照一定的决策原则或作业规则,由一个状态变换为另一个状态的行为进行描述和分析。 1.2 模拟的步骤 整个模拟过程可以划分为一定的阶段,分步骤进行。 (1)明确问题,建立模型。 在进行模拟之前,首先必须正确地描述待研究的问题,明确规定模拟的目的和任务。确定衡量系统性能或模拟输出结果的目标函数,然后根据系统的结构及作业规则,分析系统各状态变量之间的关系,以此为基础建立所研究的系统模型。为了能够正确反映实际问题的本质,可先以影响系统状态发生变化的主要因素建立较为简单的模型,以后再逐步补充和完善。 (2)收集和整理数据资料。 模拟技术的正确运用,往往要大量的输入数据。在随机模拟中,随机数据仅靠一些观察值是不够的。应当对具体收集到的随机性数据资料进行认真分析。确定系统中随机性因素的概率分布特性,以此为依据产生模拟过程所必需的抽样数

投针实验详解

一、问题的提出 在人类数学文化史中,对圆周率π精确值的追求吸引了许多学者的研究兴趣。在众多的圆周率计算方法中,最为奇妙的是法国物理学家布丰(Boffon)在1777年提出的“投针实验”。与传统的“割圆术”等几何计算方法不同的是,“投针实验”是利用概率统计的方法计算圆周率的值,进而为圆周率计算开辟了新的研究途径,也使其成为概率论中很有影响力的一个实验。 本节我们将借助于MATLAB仿真软件,对“投针实验”进行系统仿真,以此来研究类比的系统建模方法和离散事件系统仿真。 二、系统建模 “投针实验”的具体做法是:在一个水平面上画上一些平行线,使它们相邻两条直线之间的距离都为a;然后把一枚长为l(0

另一个是如何判断钢针与平行线的位置关系。这里,设O 为钢针中点,y 为O 点与最近平行线之间的距离,θ为钢针与平行线之间的夹角(0180θ≤<)。 首先,由于人的投掷动作是随机的,钢针落下后的具体位置也是随机的,因此可用按照均匀分布的两个随机变量y 和θ来模拟钢针投掷结果。 其次,人工实验时可以用眼睛直接判断出钢针是否与平行线相交,而计算机仿真实验则需要用数学的方法来判别。如下图所示,如果y 、l 和θ满足关系式 1sin 2 y l θ≤,那么钢针就与平行线相交,否则反之,进而可以判断钢针与平行线的位置关系。 三、 基于MATLAB/SIMULNIK 的仿真实验 在系统模型基础上,我们可以绘制出程序的流程图如下所示。 根据流程图,在MATLAB 环境下可编写程序完成计算机系统仿真实验,在这

九年级数学上册第六章《2.投针实验》拓展资料布丰的投针试验

公元1777年的一天,法国科学家布丰(D.Buffon1707-1788)的家里宾客满堂,原来他们是应主人的邀请前来观看一次奇特试验的。 试验开始,但见年已古稀的布丰先生兴致勃勃地拿出一张纸来,纸上预先画好了一条条等距离的平行线。接着他又抓出一大把原先准备好的小针,这些小针的长度都是平行线间距离的一半。然后布丰先生宣布:“请诸位把这些小针一根一根往纸上扔吧!不过,请大家务必把扔下的针是否与纸上的平行线相交告诉我。” 众宾哗然,一时议论纷纷,个个感到莫名其妙。“圆周率π?这可是与圆半点也不沾边的呀!” 布丰先生似乎猜透了大家的心思,得意洋洋地解释道:“诸位,这里用的是概率的原理,如果大家有耐心的话,再增加投针的次数,还能得到π的更精确的近似值。不过,要想弄清其间的道理,只好请大家去看敝人的新作了。”说着布丰先生扬了扬自己手上的一本《或然算术试验》的书。 π在这种纷纭杂乱的场合出现,实在是出乎人们的意料,然而它却是千真万确的事实。由于投针试验的问题,是布丰先生最先提出的,所以数学史上就称它为布丰问题。布丰得出的一般结果是:如果纸上两平行线间相距为d,小针长为,投针的次数为n,所投的针当中与平行线相交的次数是m,那么当n相当大时有: 在上面故事中,针长等于平行线距离d的一半,所以代入上面公式简化 我想,喜欢思考的读者,一定想知道布丰先生投针试验的原理,下面就是一个简单而巧妙的证明。 找一根铁丝弯成一个圆圈,使其直径恰好等于平行线间的距离d。可以想象,对于这样的圆圈来说,不管怎么扔下,都将和平行线有两个交点。因此,如果圆圈扔下的次数为n次,那么相交的交点总数必为2n。

现在设想把圆圈拉直,变成一条长为πd的铁丝。显然,这样的铁丝扔下时与平行线相交的情形要比圆圈复杂些,可能有4个交点、3个交点、2个交点、1个交点,甚至于都不相交。 由于圆圈和直线的长度同为πd,根据机会均等的原理,当它们投掷次数较多,且相等时,两者与平行线组交点的总数可望是一样的。这就是说,当长为πd的铁丝扔下n次时,与平行线相交的交点总数应大致为2n。 现在再来讨论铁丝长为的情形。当投掷次数n增大的时候,这种铁丝跟平行线相交的交点总数m应当与长 度成正比,因而有: m=k 式中k是比例系数。

蒲丰投针问题

蒙特卡罗方法概述 § 8.2 引例:蒲丰投针问题 在用传统方法难以解决的问题中,有很大一部分可以用概率模型进行描述.由于这类模型含有不确定的随机因素,分析起来通常比确定性的模型困难.有的模型难以作定量分析,得不到解析的结果,或者是虽有解析结果,但计算代价太大以至不能使用.在这种情况下,可以考虑采用Monte Carlo 方法。下面通过例子简单介绍Monte Carlo 方法的基本思想. Monte Carlo 方法是计算机模拟的基础,它的名字来源于世界著名的赌城——摩纳哥的蒙特卡洛,其历史起源于1777年法国科学家蒲丰提出的一种计算圆周π的方法——随机投针法,即著名的蒲丰投针问题。这一方法的步骤是: 1) 1) 取一张白纸,在上面画上许多条间距为d 的平行线,见图8.1(1) 2) 2) 取一根长度为)(d l l <的针,随机地向画有平行直线的纸上掷n 次,观察针与直线相交的次数,记为 m 3)计算针与直线相交的概率. 由分析知针与平行线相交的充要条件是 ?sin 21≤ x 其中 π?≤≤≤≤0,2 0d x 建立直角坐标系),(x ?,上述条件在坐标系下将是曲线所围成的曲边梯形区域,见图 8.l (2). 由几何概率知 (*)22 sin 210d l d d G g p ππ??π===?的面积的面积 4)经统计实验估计出概率,n m P ≈由(*)式即?2=?=ππd l n m Monte Carlo 方法的基本思想是首先建立一个概率模型,使所求问题的解正好是该模型的参数或其他有关的特征量.然后通过模拟一统计试验,即多次随机抽样试验(确定m 和n ),统计出某事件发生的百分比.只要试验次数很大,该百分比便近似于事件发生的概率.这实际上就是概率的统计定义.利用建立的概率模型,求出要估计的参数.蒙特卡洛方法属于试验数学的一个分支. ************************************************************************* 提示:设x 是一个随机变量,它服从区间[0,d/2]是的均匀分布,同理,?是一个随机变量,它服从区间],0[π上的均匀分布。按照某种抽样法,产生随机变量的可能取值,例如

“投针实验 ”求圆周率的方法

教材提到了“投针实验”求圆周率的方法。1777年,法国数学家蒲丰取一根针,量出它的长度,然后在纸上画上一组间距相等的平行线,这根针的长度是这些平行线的距离是的一半。把这根针随机地往画满了平行线的纸面上投去。小针有的与直线相交,有的落在两条平行直线之间,不与直线相交。这次实验共投针2212次,与直线相交的有704次,2212÷704≈3.142。得数竟然是π的近似值。这就是著名的蒲丰投针问题。后来他把这个试验写进了他的论文《或然性算术尝试》中。 蒲丰证明了针与任意平行线相交的概率为 p = 2l/πd 。这个公式中l为小针的长,d为平行线的间距。由这个公式,可以用概率方法得到圆周率的近似值。当实验中投的次数相当多时,就可以得到π的更精确的值。 蒲丰实验的重要性并非仅仅是为了求得比其它方法更精确的π值。而在于它是第一个用几何形式表达概率问题的例子。计算π的这一方法,不但因其新颖,奇妙而让人叫绝,而且它开创了使用随机数处理确定性数学问题的先河,是用偶然性方法去解决确定性计算的前导。 找一根粗细均匀,长度为d 的细针,并在一张白纸上画上一组间距为l 的平行线(方便起见,常取l = d/2),然后一次又一次地将小针任意投掷在白纸上。这样反复地投多次,数数针与任意平行线相交的次数, 布丰(Comte de Buffon)设计出他的著名的投针问题(needle problem)。依靠它,可以用概率方法得到π的近似值。假定在水平面上画上许多距离为a的平行线,并且,假定把一根长为l<a的同质均匀的针随意地掷在此平面上。布丰证明:该针与此平面上的平行线之一相交的概率为:p=2l/(api) 把这一试验重复进行多次,并记下成功的次数,从而得到P的一个经验值,然后用上述公式计算出π的近似值,用这种方法得到的最好结果是意大利人拉泽里尼(Lazzerini)于1901年给出的。他只掷了3408次针,就得到了准确到6位小数的π的值。他的试验结果比其他试验者得到的结果准确多了,甚至准确到使人们对它有点怀疑。还有别的计算π的概率方法。例如,1904年,查尔特勒斯(R·Chartres)就写出了应用下列实例的报告:如果写下任意两个整数测它们互素的概率为6/π2。

布丰投针实验原理

布丰投针实验原理 在张远南先生的著作《偶然中的必然》里,有关于“布丰投针实验”的故事。为了增加阅读的趣味性,我稍微做了一点改动。 1777 年的一天,法国科学家布丰的家里宾客满堂,原来他们是应主人的邀请前来观看一次奇特试验的。 试验开始,但见年已古稀的布丰先生兴致勃勃地拿出一张纸来,纸上预先 画好了一条条等距离的平行线。接着他又抓出一大把原先准备好的小针。然后 布丰先生宣布:“请诸位把这些小针一根一根往纸上扔吧!不过,请大家务必 把扔下的针是否与纸上的平行线相交,以及相交的次数告诉我。 客人们不知布丰先生要玩什么把戏,只好客随主意,一个个加入了试验的 行列。一把小针扔完了,把它捡起来再扔。而布丰先生本人则不停地在一旁数着、记着,如此这般地忙碌了将近一个钟头。最后,布丰先生高声宣布:“先 生们,我这里记录了诸位刚才的投针结果,共投针 2212 次,其中与平行线相交的有 704 次。总次数 2212 与相交次数 704 的比值为 3.142。”说到这里,布丰先生故意停了停,并对大家报以神秘的一笑,接着有意提高声调说:“先生们,这就是圆周率π的近似值!” 客人们一片哗然,议论纷纷,大家全都感到莫名其妙:“圆周率π?这可跟投针半点也不沾边呀!” 布丰先生似乎猜透了大家的心思,得意洋洋地解释道:“诸位,这里用的是概率的原理,如果大家有耐心的话,再增加投针的次数,还能得到π 的更精确的近似值呢。” 那么,“布丰投针实验”的依据究竟是什么呢?下面就是书中简单而巧妙 的证明。为了便于理解,我把证明过程说得稍微详细一点。 假设那组平行线的间距等于 d。如果把一个直径为 d 的铁丝圆圈,扔到平行线组上,因为它的周长等于πd,所以,不论怎样扔,每个圆圈都会与平行线有两个交点。因此,如果扔下的次数为 n,交点的总数为 m,必定有 m=2n。 还用那组平行线,不过这回把圆圈剪开拉直,变成长度为πd的直铁丝。显然,直铁丝与平行线相交的情形要比圆圈复杂,最多可能有 4 个交点,也可能有 3 个、2 个、1 个交点,也可能不相交,没有交点。不过,由于圆圈和直铁

蒲丰投针――MonteCarlo算法

蒲丰投针――Monte Carlo 算法 背景: 蒙特卡罗方法(Monte Carlo),也称统计模拟方法,是在二次世界大战期间随着科学技术的发展和电子计算机的发明,而被提出的一种以概率统计理论为基础的一类非常重要的数值计算方法。蒙特卡罗方法在应用物理、原子能、固体物理、化学、生态学、社会学以及经济行为等领域中得到广泛利用。 蒙特卡罗方法的名字来源于世界著名的赌城——摩纳哥的蒙特卡罗。其历史起源可追溯到1777年法国科学家蒲丰提出的一种计算圆周的方法——随机投针法,即著名的蒲丰投针问题。 问题: 设在平面上有一组平行线,间距为d,把一 根长L的针随机投上去,则这根针和平行线相交 的概率是多少?(其中L < d ) 分析:由于L < d,所以这根针至多只能与一条平行线相交。设针的中点与最近的平行线之间的距离为y,针与平行线的夹角为θ (0 ≤θ≤π)。 相交情形不相交情形 易知针与平行线相交的充要条件是: sin 2 L y xθ ≤= 由于 1 [0,],[0,] 2 y dθπ ∈∈,且它们的取值均 满足平均分布。建立直角坐标系,则针与平行线 的相交条件在坐标系下就是曲线所围成的曲边梯 形区域(见右图)。所以有几何概率可知针与平行 线相交的概率是 sin d2 2 1 2 L L p d d π θθ π π == ?

Monte Carlo 方法: 随机产生满足平均分布的 y 和 θ,其中1 [0, ], [0, ]2 y d θπ∈∈,判断 y 是否在曲边梯形内。重复上述试验,并统计 y 在曲边梯形内的次数 m ,其与试验次数 n 的比值即为针与平行线相交的概率的近似值。 clear; n = 100000; L = 1; d = 2; m = 0; for k = 1 : n theta = rand(1)*pi; y = rand(1)*d/2; if y < sin(theta)*L/2 m = m + 1; end end fprintf('针与平行线相交的概率大约为 %f\n', m/n) 计算π的近似值 利用该方法可以计算 π 的近似值: sin d 22 2 2 1n L L m p d m d L d n π θθπππ?≈= =≈? 下面是一些通过蒲丰投针实验计算出来的 π 的近似值: 蒲丰投针问题的重要性并非是为了求得比其它方法更精确的π值,而是在于它是第一个用几何形式表达概率问题的例子。计算π的这一方法,不但因其新颖,奇妙而让人叫绝,而且它开创了使用随机数处理确定性数学问题的先河,是用偶然性方法去解决确定性计算的前导。

布丰投针实验

1777年法国科学家布丰提出的一种计算圆周率的方法——随机投针法,即著名的蒲丰投针问题。 投针步骤 这一方法的步骤是: 1) 取一张白纸,在上面画上许多条间距为d的平行线。 2) 取一根长度为l(lz,x²+y²﹤z²,容易证明这两个式子即为以这3个正数为边长可以围成一个钝角三角形的充要条件,用线性规划可知满足题设的可行域为直线x+y=z与圆x²+y²=z²围成的弓形,总的可行域为一个边长为z的正方形,则可

投针实验详解

一、 问题的提出 在人类数学文化史中,对圆周率π精确值的追求吸引了许多学者的研究兴趣。在众多的圆周率计算方法中,最为奇妙的是法国物理学家布丰(Boffon )在1777年提出的“投针实验”。与传统的“割圆术”等几何计算方法不同的是,“投针实验”是利用概率统计的方法计算圆周率的值,进而为圆周率计算开辟了新的研究途径,也使其成为概率论中很有影响力的一个实验。 本节我们将借助于MATLAB 仿真软件,对“投针实验”进行系统仿真,以此来研究类比的系统建模方法和离散事件系统仿真。 二、 系统建模 “投针实验”的具体做法是:在一个水平面上画上一些平行线,使它们相邻两条直线之间的距离都为a ;然后把一枚长为l (0

蒲丰氏投针计算圆周率

用C语言计算蒲丰氏投针计算圆周率 #include #include main() { int n1=0,n,i;double rand_num1,rand_num2; printf(" input the n:"); printf("%d"); for(i=0;i1)rand_num1-=2; rand_num2=(double)time(0)*rand(); while(rand_num2>1)rand_num2-=2; if(rand_num1*rand_num1+rand_num2*rand_num2<1) n1++; } printf("π=%f\n",4*n1/n); /* n1/n=π/4 距离小于1就是在圆里,取点范围在(-1,-1)到(1,1)的正方形里*/ }

MATLAB计算蒲丰氏投针计算圆周率(蒙特卡罗方法) clear a=1; l=0.6; counter=0; n=10000000;% 投掷次数 x=unifrnd(0,a/2,1,n);%产生n个(0,a/2)之间均匀分布的随机数,这里a/2是投针的中点到最近的平行线的距离 phi=unifrnd(0,pi,1,n);% 产生n个(0,pi)之间均匀分布的随机数,这里pi是投针到最近的平行线的角度 for i=1:n if x(i)> test Pi = 3.1416

趣味数学132:布丰用投针法得出圆周率的故事

布丰用投针法得出圆周率的故事 1777年的一天,法国科学家布丰的家里宾客满堂,原来他们是应主人的邀请前来观看一次奇特试验的。 试验开始,但见年已古稀的布丰先生兴致勃勃地拿出一张纸来,纸上预先画好了一条条等距离的平行线。接着他又抓出一大把原先准备好的小针。然后布丰先生宣布:“请诸位把这些小针一根一根往纸上扔吧!不过,请大家务必把扔下的针是否与纸上的平行线相交,以及相交的次数告诉我。 客人们不知布丰先生要玩什么把戏,只好客随主意,一个个加入了试验的行列。一把小针扔完了,把它捡起来再扔。而布丰先生本人则不停地在一旁数着、记着,如此这般地忙碌了将近一个钟头。最后,布丰先生高声宣布:“先生们,我这里记录了诸位刚才的投针结果,共投针2212次,其中与平行线相交的有704次。总次数2212与相交次数704的比值为3.142。”说到这里,布丰先生故意停了停,并对大家报以神秘的一笑,接着有意提高声调说:“先生们,这就是圆周率π的近似值!” 客人们一片哗然,议论纷纷,大家全都感到莫名其妙:“圆周率π?这可跟投针半点也不沾边呀!” 布丰先生似乎猜透了大家的心思,得意洋洋地解释道:“诸位,这里用的是概率的原理,如果大家有耐心的话,再增加投针的次数,还能得到π的更精确的近似值呢。” 那么,“布丰投针实验”的依据究竟是什么呢? 假设那组平行线的间距等于d。如果把一个直径为d的铁丝圆圈,因为它的周长等于πd。所以,不论怎样扔,圆圈落到那组平行线上,都会和平行线有两个交点。因此,如果圆圈扔下的次数为n,交点的总数为m,必定有m=2n。 还用那组平行线,不过这回把圆圈剪开,变成长度是πd的直铁丝。显然,直铁丝与平行线相交的情形要比圆圈复杂,最多可能有4个交点,也可能有3个交点、2个交点、1个交点,也可能不相交,没有交点。不过,由于圆圈和直铁丝的长度相同,根据概率学的“机会均等原理”,当

Buffon投针实验报告

Buffon投针实验 一、实验目的: 在计算机上用试验方法求圆周率的近似值。 二、实验原理: 假设平面上有无数条距离为1的等距平行线,现向该平面随机投掷长度为L(L≤1)的针,则针与平行线相交的概率 P=。 设针的中心M与最近一条平行线的距离为x,则x~U(0,1); 针与平行线的夹角为(不管相交与否),则~U(0,) 如图: ()在矩阵上均匀分布,且针与平行线相交的充要条件为 x≤=;P=P{ x=}。 记录≤成立的次数,记为

由-大数定理:≈,则=2。 在计算机上产生 则=~U(0,),i=1,2,…,n; 再产生,则 , i=1,2,…,n 三、实验方法及代码: 在计算机上进行模拟实验,求出的实验值。给定L,在计算机上利用MFC独立随机产生x和,然后判断≤是否成立. 代码如下: #include "stdafx.h" #include "buffon.h" #include "ChildView.h" #include "ChoiceDlg.h" #include #include #ifdef _DEBUG #define new DEBUG_NEW #undef THIS_FILE static char THIS_FILE[] = __FILE__; #endif // CChildView CChildView::CChildView() { Trynum=1000; } CChildView::~CChildView() { } BEGIN_MESSAGE_MAP(CChildView,CWnd ) //{{AFX_MSG_MAP(CChildView)

蒲丰投针问题

蒲丰投针问题 1777年法国科学家布丰提出的一种计算圆周率的方法——随机投针法,即著名的蒲丰投针问题。 投针步骤 这一方法的步骤是: 1) 取一张白纸,在上面画上许多条间距为d的平行线。 2) 取一根长度为l(lz,x²+y²﹤z²,容易证明这两个式子即为以

相关文档