文档库 最新最全的文档下载
当前位置:文档库 › 基于经验模态分解自适应滤波的胎儿心电信号提取

基于经验模态分解自适应滤波的胎儿心电信号提取

基于经验模态分解自适应滤波的胎儿心电信号提取
基于经验模态分解自适应滤波的胎儿心电信号提取

基于经验模态分解的探地雷达信号去噪处理(精)

基于经验模态分解的探地雷达信号去噪处理 杨建军刘鸿福 (太原理工大学太原 030024 【摘要】探地雷达作为一种先进的地球物理探测方法,具有探测效率高、操作简单、采样迅速、无损伤探测、探测分辨率高等优点。探地雷达的信号的去噪问题已成为一个公认的技术难题。本文用经验模态分解的方法对探地雷达信号进行信号去噪处理,并取得了良好的效果。 【关键词】探地雷达;经验模态分解;信号去噪 1引言 探地雷达又称地质雷达 ,是近几年迅速发展起来的一种高分辨高效率的无损探测技术。探地雷达通过天线向地下发射高频电磁脉冲波 ,电磁波在地下介质传播过程中 ,当遇到存在电性差异的地下目标体,如空洞和分界面时,电磁波便会发生反射,返回到地面时由接收天线所接收。在对接收到的雷达波信号处理和分析的基础上,根据信号的波形、振幅和双程走时等参数便可推断地下目标体的空间位置、结构、电性及几何形态,从而达到对地下隐蔽目标体的探测目的。 信号处理是探地雷达技术中的研究重点之一, 其目的是以高的分辨率在探地雷达显示设备上显示反射波图像,提取反射波的振幅、相位和频率等各种有用的参数,帮助解释地质结构信息。 2固有模态函数 由于大多数信号或数据不是固有模态函数, 在任意时刻数据可能包含多个振荡模式, 这也解释了为什么简单的 Hilbert 变换不能给出一个普通信号的频率内容的完整描述。所以必须把数据分解成固有模态函数,从物理上定义一个有意义的瞬时频率的必要条件是:函数对称于局部零均值,且有相同的极值和过零点。据此,Huang 提出了固有模态函数的定义。一个固有模态函数是满足如下两个条件的函数:

(1在整个数据序列中,极值点的数量与过零点的数量必须相等,或最多相差不能多于一个。 (2在任一时间点上,信号的局部极大值和局部极小值定义的包络平均值为零。 第一个限定条件是非常明显的;它近似于传统的平稳高斯过程关于窄带的定义。第二个条件是一个新的想法;它把传统的全局限定变为局部限定。这种限定是必须的,它可去除由于波形不对称而造成的瞬时频率的波动。采用固有模态函数(以下简称 IMF这个名称是因为它代表了信号数据中的振荡模式。IMF 在按过零点定义的每一个周期中,只包括一个本征模态的振荡,没有复杂的叠加波存在。如此定义,一个基本的 IMF 并不限定为窄带信号,也可以是幅度调制和频率调制的。事实上,它可以是非平稳的。图 1是一个典型的 IMF 。固有模态函数(IMF概念的提出使得用 Hilbert 变换定义的瞬时频率具有实际的物理意义, 而提出 IMF 分量的 EMD 分解方法的出现则使瞬时频率可用于复杂的非平稳信号的分析。图 1所示为一典型的固有模态函数,具有相同数目的过零点和极值点,上下包络关于零值对称。 图 1一个典型的固有模态函数(Huang 3经验模态分解

EMD经验模式分解信息汇总资料

EMD Empirical Mode Decomposition 经验模态分解 美国工程院院士黄锷1998年提出 一种自适应数据处理或挖掘方法,适用于非线性、非平稳时间序列的处理。 1.什么是平稳和非平稳 时间序列的平稳,一般是宽平稳,即时间序列的方差和均值是和时间无关的常数,协方差与与时间间隔有关、与时间无关。未来样本时间序列,其均值、方差、协方差必定与已经获得的样本相同,理解为平稳的时间序列是有规律且可预测的,样本拟合曲线的形态具有“惯性”。 而非平稳信号样本的本质特征只存在于信号所发生的当下,不会延续到未来,不可预测。 严格来说实际上不存在理想平稳序列,实际情况下都是非平稳。 2.什么是EMD经验模态分解方法? EMD理论上可以应用于任何类型时间序列信号的分解,在实际工况中大量非平稳信号数据的处理上具有明显优势。这种优势是相对于建立在先验性假设的谐波基函数上的傅里叶分解和小波基函数上的小波分解而言的。EMD分解信号不需要事先预定或强制给定基函数,而是依赖信号本身特征自适应地进行分解。 相对于小波分解:EMD克服了基函数无自适应性的问题,小波分析需要选定一个已经定义好的小波基,小波基的选择至关重要,一旦选定,在整个分析过程中无法更换。这就导致全局最优的小波基在局部的表现可能并不好,缺乏适应性。而EMD不需要做预先的分析与研究,可以直接开始分解,不需要人为的设置和干预。 相对于傅里叶变换:EMD克服了传统傅里叶变换中用无意义的谐波分量来表示非线性、非平稳信号的缺点,并且可以得到极高的时频分辨率。 EMD方法的关键是将复杂信号分解为有限个本征模函数IMF,Intrinsic Mode Function。分解出来的IMF分量包含了原信号的不同时间尺度上的局部特征信号。 这句话中:不同时间尺度=局部平稳化,通过数据的特征时间尺度来获得本征波动模式,然后分解or筛选数据。 本质上,EMD将一个频率不规则的波化为多个单一频率的波+残波的形式。 原波形=ΣIMFs+余波 信号()t f 筛选出的本征模函数IMF包括余波,对应有实际的物理成因。 现实中的信号分量IMF不会保持完全稳定的频率和振幅,也常常无法从各个分量中直接看出信号规律。EMD分解经常被用作信号特征提取的一个预先处理手段,将各IMF分量作为后续分析方法的输入,以完成更加复杂的工作。 3.IMF的筛选过程 第一步: Get原数据曲线f(t)所有极大值点,三次样条插值函数拟合成原数据的上包络线; Get原数据曲线f(t)所有极小值点,三次样条插值函数拟合成原数据的下包络线。

经验模态分解和算法

经验模态分解和算法 摘要——黄提出了经验模态分解(EMD)的数据处理方法,也对这种技术应用的有效性进行了讨论。许多变种算法(新的停止准则,即时版本的算法)也产生出来。数值模拟用来作经验性的评估执行单元运用于语音识别和分离方面,得出的实验结果认为这种方法是根据自适应的常数Q的滤波器组提出的。 1.介绍 近来,一种被称为EMD的新的非线性方法被黄等人提出,这种方法能够自适应的把非平稳信号分解成一系列零均值的AMFM信号(调频调幅) 的总和。尽管这种方法经常有着显著的效果,但是这个方法在算法方面的定义是困难的,因此这种方法没有作为一种分析方法得到承认,一般一种分析方法是需要有理论分析和性能评估。因此本文的目的是用实验的方式使得该算法更容易理解,并且提出了基于原算法的各种各样的改进的算法。设置实验性能评估的许多初始条件是为了获取一种有效的分解并且使得该算法更容易理解。 2.EMD基础 EMD的出发点是把信号内的震荡看作是局部的。实际上,如果我们要看评估信号x(t)的2个相邻极值点之间的变化(2个极小值,分别在t-和t+处),我们需要定义一个(局部)高频成分{d(t),t-<=t<=t+}(局部细节),这个高频成分与震荡相对应,震荡在2个极小值之间并且通过了极大值(肯定出现在2极小值之间)。为了完整这个图形,我们还需要定义一个(局部)低频成分m(t)(局部趋势),这样x(t)=m(t)+d(t),(t-<=t<=t+)。对于整个信号的所有震动成分,如果我们能够找到合适的方法进行此类分解,这个过程可以应用于所有的局部趋势的残余成分,因此一个信号的构成成分能够通过迭代的方式被抽离出来。 对于一个给定的信号x(t),进行有效的EMD分解步骤如下: 1)找出想x(t)的所有极值点 2)用插值法对极小值点形成下包络emint(t),对极大值形成上包络emax(t) 3)计算均值m(t)=(emint(t)+emax(t))/2 4)抽离细节d(t)=x(t)-m(t) 5)对残余的m(t)重复上诉步骤 在实际中,上述过程需要通过一个筛选过程进行重定义,筛选过程的第一个迭代步骤是对细节信号d(t)重复从1-4步,直到d(t)的均值是0,或者满足某种停止准则才停止迭代。一旦满足停止准则,此时的细节信号d(t)就被称为IMF,d(t)对应残量信号用第5步计算。通过以上过程,极值点的数量伴随着残量信号的产生而越来越少,整个分解过程会产生有限个模函数(IMF)。 模函数和残量信号可以进行谱分析,但是这个谱分析不能从狭隘的角度来看。首先,需要强调一下,即使是谐振荡,应用上述方法产生的高频和低频也只是局部的,没办法产生一个预设的频带过滤(例如小波变换)进行辨识。选择的模函数对应了一个自适应(依赖于信号自身的)的时变滤波器。一个这方面的例子:一个信号由3个部分组成(这3个部分是时间频率上都明显叠加的信号),用上述方法成功的分解了。分解如图1所示。这个例子的程序是emd_fmsin2.m 另外一个例子(emd_sawtooth.m)强调了EMD潜在的非谐振性质如图2所示。在这些例子中,线性的非线性的震荡都能被有效的识别和分离。因而,任何谐振分析(傅里叶,小波,…)可能结束在同类文章中,更少的紧凑和更少的实际意义的分解。 3.算法的改进 正如第二部分所定义的,EMD算法依赖于一系列的选项,这些选项需要用户控制,并且需要专业的知识。在此我们的目的找出更准确的选项,并且给予原来的算法进行改进。3.1采样率,插值方法和边缘效应

心电信号的计算机分析final

心电信号的计算机分析 【实验目的】: 通过理论结合实际,用C语言编程对MIT心电信号数据进行分析,实现低通滤波、高通滤波、QRS检测、特征提取、心律失常分析,从中了解和掌握数字信号处理的方法和应用。 【实验要求】 1读取数据 2 QRS检测 3 特征参数提取 4 心率失常分析 5 功率谱分析 【实验报告】 一实验介绍 心脏在有节律的活动过程中,能在人体表面产生微弱的电信号,如果我们在人体表面的特定部位安放电极,就能在电极上获得微弱的心电信号,此信号经放大、处理后,描记在记录纸上就是心电图,它能够反映心脏的功能及病情。 在获取心电图的过程中,由于心电信号比较微弱,仅为毫伏(mV)级,所以极易受环境的影响。对心电信号引起干扰得主要因数有:工频干扰、电极接触噪声、运动伪迹、呼吸引起的基线漂移和心电幅度变化、信号记录和处理中电子设备产生的干扰、电外科噪声等。 为了增强心电信号中的有效成分,抑制噪声和伪迹,提高波形检测准确率,除了对心电记录仪的硬件抗干扰能力有较高的要求外,心电信号A/D 变换后的处理也至为重要。 用于心电信号数字处理的方法主要有:消除电源干扰的工频滤波器,消除采样时间段引起信号失真的汉宁平滑滤波器,消除高频肌电的低通滤波器,消除直流偏移和基线漂移等低频噪声的高通滤波器,以及用于QRS 波检测的带通滤波器。本实验利用MIT心电信号数据库,简单设计了对心电信号进行计算机分析的实验,实验主要分成两部分:信号处理和心电参数分析;信号处理的方法有低通滤波、高通滤波、微分(查分运算):,对处理后的信号进行如下分析:QRS检测心率失常分析参数提取功率谱分析。 本实验的整个过程是:先读取文件数据,将数据显示在计算机屏幕上,并可进行翻页显示,然后对所读心电数据进行低通滤波、高通滤波、微分(查分运算)等处理,同时将处理后的数据显示在屏幕上;对心电信号的分析是采用处理后的的数据,先对QRS波进行检测,然后计算特征参数,

二维经验模态分解的关键问题

Key Problems of Bidimensional Empirical Mode Decomposition Guangtao Ge School of Information and Electronic Engineering Zhejiang Gongshang University Hangzhou, China ggtggtggt@https://www.wendangku.net/doc/4d8790290.html, Guangtao Ge Department of Information Science & Electronic Engineering Zhejiang University Hangzhou, China ggtggtggt@https://www.wendangku.net/doc/4d8790290.html, Abstract—In recent years , an emerging theory of Empirical Mode Decomposition (EMD) is an important breakthrough in the field of signal processing. This paper reviews three key problems in the development of the Bidimensional Empirical Mode Decomposition (BEMD) theory and introduces the latest developments of surface-fitting algorithms, boundary corruption solution methods and the BEMD criterion for stopping the sifting process. Then this paper also comments several open problems in BEMD theory and discusses the existing difficult problems . Keywords-component; Bidimensional Empirical Mode Decomposition; surface-fitting; boundary corruption; BEMD criterion 二维经验模态分解的关键问题 葛光涛1, 2 1.浙江工商大学信息与电子工程学院,杭州,中国,310018 2. 浙江大学信息与电子工程学系,杭州,中国,310027 ggtggtggt@https://www.wendangku.net/doc/4d8790290.html, 【摘要】近年国际上出现的经验模态分解理论(Empirical Mode Decomposition , EMD)是信号处理领域的一个重大突破。本文综述了二维经验模态分解(Bidimensional Empirical Mode Decomposition , BEMD)理论发展过程中涉及的三个关键问题,并着重介绍了曲面拟合、边界污染处理和停止准则制定这三个方面的最新进展,评述了其中的公开问题,对研究中现存的难点问题进行了探讨。 【关键词】二维经验模态分解;曲面拟合;边界污染;停止准则 1 引言 1998 年美国国家宇航局(NASA)的Norden E.huang等人首次提出对一列时间序列数据先进行经验模态分解(以Empirical Mode Decomposition表示 , 简写作EMD),然后对各个分量作希尔伯特变换。这种变换被称为希尔伯特黄变换(Hilbert-Huang transform, HHT)[1,3]。这种信号处理方法被认为是近年来对以傅立叶变换为基础的线性和稳态谱分析的一个重大突破。该方法从本质上讲是对一个复杂的信号进行平稳化处理[2],其结果是将信号中不同尺度的波动或趋势逐级分解开来,由于这种分解是基于局部特征尺度,作为一种完全的数据驱动方法,它具有良好的局部适应性,因此,该方法既能对平稳信号进行分析,又能对非平稳信号进行分析。 以往很多的一维信号处理方法被成功地推广到空间二维信号处理领域,被应用于二维图像数据的处理时同样可以得到良好的效果[4]。例如,傅立叶变换、离散余弦变换以及小波变换等信号处理的技术已经广泛应用于数字图像处理领域,具体应用包括图像滤波、图像复原、图像增强、图像拼接、图像压缩以及数字水印等方面。经验模态分解方法在一维信号处理方面已经获得巨大的成功,所以如果能将一维经验模式分解方法推广到二维,将会给图像处理等领域提供一种新的有效的数据处理手段。 二维经验模态分解理论的发展过程中主要涉及以下几个重要问题[5]:曲面的精确拟合,边界污染的克服,合理停止准则的制定等。 2010 International Conference on Remote Sensing (ICRS) 978-1-4244-8729-5/10/$26.00 ?2010 IEEE ICRS2010

经验模态分解及其雷达信号处理

0引言 当今信息时代,快速、高效的数据处理技术在科学研究、 工程应用乃至社会生活的方方面面都起着重要的作用。伴随着计算机技术的兴起,频谱分析被广泛应用于工程实践。但 Fourier 变换要求信号满足Dirichlet 条件,即对信号进行平稳 性假设,而现实中大量存在的是非平稳信号。针对Fourier 变换的不足,短时Fourier 变换(Short Time Fourier Transform , STFT ),即通过对一个时间窗内的信号进行Fourier 变换,分 析非平稳信号。虽然STFT 具有时频分析能力,但它具有固定 的时频分辨率,且难以找到合适的窗函数。而时频分析方法中的Wigner-Ville 分布存在严重的交叉项,会造成虚假信息的出现。小波变换具有可变的时频分析能力,在图像压缩和边缘检测等领域得到成功应用。但小波基不能自动更换,而且对众多小波基的合理选取也是一个难题。小波变换本质上是一种可变窗的Fourier 变换[1]。总之,这些方法没有完全摆脱 Fourier 变换的束缚,从广义上说都是对Fourier 变换的某种修 正,而且其时频分辨能力受到Heisenberg 不确定原理的制约。 Huang 等[1]在1998年提出了经验模态分解(Empirical 经验模态分解及其雷达信号处理 摘要 为了准确估计信号的瞬时频率,可用经验模态分解(EMD )将信号分解成有限个窄带信号。该方法因具有很强的自适应性及 处理非平稳信号的能力而引起广泛关注,已在众多工程领域得到应用。但EMD 是基于经验的方法,数值仿真和试验研究仍是分析 EMD 算法的主要方法。本文总结了EMD 算法存在的问题,并指出深入挖掘支持该方法的理论基础是消除制约EMD 算法进一步发 展和应用推广的关键。针对所存在的问题,从改进筛分停止准则、抑制端点效应、改进包络生成方法和解决模态混叠问题等诸方面阐述了改进EMD 算法的研究进展。综述了EMD 在雷达信号处理领域的应用。最后分析指出了进一步研究EMD 的几个主要方向。 关键词经验模态分解(EMD );希尔伯特-黄变换(HHT );时频信号分析;雷达信号处理 中图分类号TN911.7文献标识码A 文章编号1000-7857(2010)10-0101-05 杨彦利,邓甲昊 北京理工大学机电学院;机电工程与控制重点实验室,北京100081 Empirical Mode Decomposition and Its Application to Radar Signal 收稿日期:2010-03-24 作者简介:杨彦利,博士研究生,研究方向为探测、制导与控制,电子信箱:yyl070805@https://www.wendangku.net/doc/4d8790290.html, ;邓甲昊(通信作者),教授,研究方向为中近程目标探测、 信号处理及感知与自适应控制,电子信箱:bitdjh@https://www.wendangku.net/doc/4d8790290.html, YANG Yanli,DENG Jiahao Laboratory of Mechatronic Engineering &Control,School of Mechatronical Engineering,Beijing Institute of Technology,Beijing 100081,China Abstract In order to better estimate the instantaneous frequency of signals,the empirical mode decomposition (EMD)algorithm,proposed by Huang et al.,is used to break multi-component signals into several narrow subbands.EMD is an adaptive method and can be used to analyze nonstationary signals,so it has been widely applied to many engineering fields.However,EMD is still considered as an empirical method because it lacks a rigorous mathematical foundation,and its analysis depends largely on numerical simulations and experimental investigations.In this paper,related problems of the EMD algorithm are discussed,including its theoretical foundation and its applications.Some modified EMD algorithms are considered to overcome problems,such as stopping criterion,end effect,envelope of signals and mode aliasing.The applications of EMD to the processing of radar signals are reviewed.Some directions for further research on the EMD algorithm are suggested. Keywords empirical mode decomposition (EMD);Hilbert-Huang transform (HHT);time-frequency signal processing;radar signal processing 综述文章(Reviews )

经验模态分解(EMD)在地球物理资料中的应用(附MATLAB程序)

经验模态分解(EMD)在地球物理资料中的应用(附MATLAB程序) 摘要经验模态分解(EMD)是由Huang等人提出的一种新的分析非线性、非平稳信号的方法。本文研究经验模态分解原理及其在地球物理资料中的应用。首先研究经验模态分解的基本原理和算法,对地球物理资料(地震资料,重磁资料)进行EMD分解试验分析,然后研究基于...

摘  要
经验模态分解(EMD)是由Huang等人提出的一种新的分析非线性、非平稳信号的方法。本文研究经验模态分解原理及其在地球物理资料中的应用。首先研究经验模态分解的基本原理和算法,对地球物理资料(地震资料,重磁资料)进行EMD分解试验分析,然后研究基于EMD的Hilbert变换原理及其在提取地震属性信息中的应用,对实际地震时间剖面和时间切片进行EMD时频分析试验。
本文的方法研究和数据试验分析表明:经EMD分解变换得到的IMF序列是直接从原始时序数据中分离出来的,事先无需确定分解阶次,能更好反映原始数据固有的物理特性,每阶IMF序列都代表了某种特定意义的频带信息;EMD分解获得的IMF序列具有稳态性,对IMF进行Hilbert变换,就可以得到单个固有模态函数的瞬时振幅、瞬时相位和瞬时频率,这些信息可以清楚的显示信号的时频特征;EMD分析方法用于分解地球物理资料和作时频分析是有效的。
关键词:经验模态分解;地球物理;Hilbert变换;固有模态函数;时频分析
 
ABSTRACT
Empirical Mode Decomposition(EMD), which was developed by huang, is a new method to analyse nonlinear and nonstationary signals. In this paper, we study the theory of EMD and its applications in handling geophysical data. Firstly, we introduce the theory and the Methodology about EMD ,then we will use this method to analyse the geophysical information, including the g ravity anomaly data and seism’s data. Based on the EMD, we will study the theory of the Hilbert transform, and then use it to obtain the images,from which we can deal with the seism’s slice by time- frequency analysis in order to distill the seism’s information.


The studying of EMD and the data testing in this paper indicate: intrinsic mode functions(IMF) is comes from the original signal by the EMD, in this course, we need not fix on the Decomposition number and would not influenced by some men’s factors. Every intrinsic mode function stand for some given information and can reflect the

脑电信号特征提取及分类

脑电信号特征提取及分类

第 1 章绪论 1.1引言 大脑又称端脑,是脊椎动物脑的高级的主要部分,由左右两半球组成及连接两个半球的中间部分,即第三脑室前端的终板组成。它是控制运动、产生感觉及实现高级脑功能的高级神经中枢[1]。大脑是人的身体中高级神经活动中枢,控制着人体这个复杂而精密的系统,对人脑神经机制及高级功能进行多层次、多学科的综合研究已经成为当代脑科学发展的热点方向之一。 人的思维、语言、感知和运动能力都是通过大脑对人体器官和相应肌肉群的有效控制来实现的[2]。人的大脑由大约1011个互相连接的单元体组成,其中每个单元体有大约104个连接,这些单元体称做神经元。在生物学中,神经元是由三个部分组成:树突、轴突和细胞体。神经元的树突和其他神经元的轴突相连,连接部分称为突触。神经元之间的信号传递就是通过这些突触进行的。生物电信号的本质是离子跨膜流动而不是电子的流动。每有一个足够大的刺激去极化神经元细胞时,可以记录到一个持续1-2ERP的沿轴突波形传导的峰形电位-动作电位。动作电位上升到顶端后开始下降,产生一些小的超极化波动后恢复到静息电位(静息电位(Resting Potential,RP)是指细胞未受刺激时,存在于细胞膜内外两侧的外正内负的电位差)。人的神经细胞的静息电位为-70mV(就是膜内比膜外电位低70mV)。这个变化过程的电位是局部电位。局部电位是神经系统分析整合信息的基础。细胞膜的电特性决定着神经元的电活动[3]。当神经元受到外界刺激时,神经细胞膜内外两侧的电位差被降低从而提高了膜的兴奋性,当兴奋性超过特定阈值时就会产生神经冲动或兴奋,神经冲动或兴奋通过突触传递给下一个神经元。由上述可知,膜电位是神经组织实现正常功能的基本条件,是兴奋产生的本质。膜电位使神经元能够接收刺激信号并将这一刺激信号沿神经束传递下去。在神经元内部,树突的外形就像树根一样发散,由很多细小的神经纤维丝组成,可以接收电信号,然后传递给细胞体。如果说树突是树根的话,那么细胞体就是树桩,对树突传递进来的信号进行处理,如果信号超过特定的阈值,细胞体就把信号继续传递给轴突。轴突的形状像树干,是一根细长的纤维体,它把细胞体传递过来的信号通过突触发送给相邻神经元的树突。突触的连接强度和神经元的排列方式都影响着神经组织的输出结果。而正是这种错综复杂的神经组织结构和复杂的信息处理机制,才使得人脑拥有高度的智慧。我们的大脑无时无刻不在产生着脑电波,对脑来说,脑细胞就像是脑内一个个“微小的发电站”。早在1857年,英国的青年生理科学工作者卡通(R.Caton)就在猴脑和兔脑上记录

经验模态分解(EEMD)、Fourier变换、HHT

10总体经验模态分解(EEMD)、Fourier变换、HHT EEMD实际就是噪声分析法和EMD方法的结合,抑制模态混叠。 Fourier变换是将任何信号分解为正弦信号的加权和,而每一个正弦信号对应着一个固定的频率(Fourier频率)和固定的幅值,因此,用Fourier 变换分析频率不随时间变化的平稳信号是十分有效的。但对于频率随时间变化的非平稳信号,Fourier 变换就无能为力了。 HHT是历史上首次对Fourier变换的基本信号和频率定义作的创造性的改进。他们不再认为组成信号的基本信号是正弦信号,而是一种称为固有模态函数的信号,也就是满足以下两个条件的信号: (1) 整个信号中,零点数与极点数相等或至多相差1 ; (2) 信号上任意一点,由局部极大值点确定的包络线和由局部极小值点确定的包络线的均值均为零,即信号关于时间轴局部对称。 无论Hilbert谱中的频率还是边际谱中的频率(即瞬时频率) ,其意义都与Fourier分析中的频率(即Fourier 频率) 完全不同,但在Fourier分析中,某一频率处能量的存在,代表一个正弦或余弦波在整个时间轴上的存在,而边际谱h中某一频率处能量的存在仅代表在整个时间轴上可能有这样一个频率的振动波在局部出现过,h越大,代表该频率出现的可能性越大。 11、HHT时频灰度谱转黑白谱 MATLAB作HHT时频谱时出来的是彩色的时频图。请问有办法在MATLAB上面将彩色谱图调成白色底黑色线的黑白图吗哎,因为老师说彩色图普通印出来的话不好看,一片黑的,谢谢大家啊 答:后面加上这个就可以了colormap(flipud(gray)) 12、HHT谱图怎么会这样呢 小弟刚刚接触HHT,也不是学信号的,只是用HHT这个工具处理信号,在处理过程中遇到了这样的问题: 对实测信号直接EMD,然后作HHT谱图如下:

经验模态分解EMD

经验模态分解EMD 经验模态分解是一种基于信号局部特征的信号分解方法。是一种自适应的信号分解方法 任何复杂的信号都是由简单的固有模态函数(intrinsic mode function,IMF)组成,且每一个IMF 都是相互独立的。该方法可以将风速数据时间序列中真实存在的不同尺度或趋势分量逐级分解出来,产生一系列具有相同特征尺度的数据序列,分解后的序列与风速原始数据序列相比具有更强的规律性。 EMD的基本思想认为任何复杂的信号都是由一些相互不同的、简单非正弦函数的分量信号组成。 EMD将非平稳序列分解为数目不多的IMF 分量c和一个趋势项r(残余函数),r是原序列经过逐级分离出IMF 分量后,最终剩下来的“分量”,是单调的和光滑的。 信号的EMD 分解本质上是通过求包络线对信号不断进行移动平均的迭代过程,包络线的不准确将导致信号分解的不完全。传统算法在求包络线时在信号端点处易产生飞翼现象, 即在端点处会产生过大或过小振幅, 若不先对信号进行端点延拓, EMD 分解将无法继续。 确定信号决定了交通流变化的总体趋势,不确定性干扰信号使实际交通流变化在趋势线附近呈现大小不一的波动。 信号从高到低不同频段的成分,具有不等带宽的特点,并且EMD 方法是根据信号本身固有特征的自适应分解。

EMD分解的目的是根据信号的局部时间特征尺度,按频率由高到低把复杂的非线性、非平稳信号分解为有限经验模态函数(IMF)之和 r(t)为残余函数,一般为信号的平均趋势。是非平稳函数的单调趋势项。 风速时间序列的EMD 分解步骤如下: 1)识别出信号中所有极大值点并拟合其包络线eup(t)。 2 )提取信号中的极小值点和拟合包络线elow(t),计算上下包络线的平均值m1(t)。 up low 1 ( ) ( ) ( ) 2 e t e t m t + = (1) 3)将x(t)减去m1(t)得到h1(t),将h1(t)视为新的信号x(t),重复第1)步,经过k 次筛选,直到h1(t)=x(t)?m1(t)满足IMF 条件,记c1(t)=h1(t),则c1(t)为风速序列的第1 个IMF 分量,它包含原始序列中最短的周期分量。从原始信号中分离出IMF 分量c1(t),得

经验模态分解算法

经验模态分解 摘要——黄提出了经验模态分解(EMD)的数据处理方法,也对这种技术应用的有效性进行了讨论。许多变种算法(新的停止准则,即时版本的算法)也产生出来。数值模拟用来作经验性的评估执行单元运用于语音识别和分离方面,得出的实验结果认为这种方法是根据自适应的常数Q的滤波器组提出的。 1.介绍 近来,一种被称为EMD的新的非线性方法被黄等人提出,这种方法能够自适应的把非平稳信号分解成一系列零均值的AMFM信号(调频调幅) 的总和。尽管这种方法经常有着显著的效果,但是这个方法在算法方面的定义是困难的,因此这种方法没有作为一种分析方法得到承认,一般一种分析方法是需要有理论分析和性能评估。因此本文的目的是用实验的方式使得该算法更容易理解,并且提出了基于原算法的各种各样的改进的算法。设置实验性能评估的许多初始条件是为了获取一种有效的分解并且使得该算法更容易理解。 2.EMD基础 EMD的出发点是把信号内的震荡看作是局部的。实际上,如果我们要看评估信号x(t)的2个相邻极值点之间的变化(2个极小值,分别在t-和t+处),我们需要定义一个(局部)高频成分{d(t),t-<=t<=t+}(局部细节),这个高频成分与震荡相对应,震荡在2个极小值之间并且通过了极大值(肯定出现在2极小值之间)。为了完整这个图形,我们还需要定义一个(局部)低频成分m(t)(局部趋势),这样x(t)=m(t)+d(t),(t-<=t<=t+)。对于整个信号的所有震动成分,如果我们能够找到合适的方法进行此类分解,这个过程可以应用于所有的局部趋势的残余成分,因此一个信号的构成成分能够通过迭代的方式被抽离出来。 对于一个给定的信号x(t),进行有效的EMD分解步骤如下: 1)找出想x(t)的所有极值点 2)用插值法对极小值点形成下包络emint(t),对极大值形成上包络emax(t) 3)计算均值m(t)=(emint(t)+emax(t))/2 4)抽离细节d(t)=x(t)-m(t) 5)对残余的m(t)重复上诉步骤 在实际中,上述过程需要通过一个筛选过程进行重定义,筛选过程的第一个迭代步骤是对细节信号d(t)重复从1-4步,直到d(t)的均值是0,或者满足某种停止准则才停止迭代。一旦满足停止准则,此时的细节信号d(t)就被称为IMF,d(t)对应残量信号用第5步计算。通过以上过程,极值点的数量伴随着残量信号的产生而越来越少,整个分解过程会产生有限个模函数(IMF)。 模函数和残量信号可以进行谱分析,但是这个谱分析不能从狭隘的角度来看。首先,需要强调一下,即使是谐振荡,应用上述方法产生的高频和低频也只是局部的,没办法产生一个预设的频带过滤(例如小波变换)进行辨识。选择的模函数对应了一个自适应(依赖于信号自身的)的时变滤波器。一个这方面的例子:一个信号由3个部分组成(这3个部分是时间频率上都明显叠加的信号),用上述方法成功的分解了。分解如图1所示。这个例子的程序是emd_fmsin2.m 另外一个例子(emd_sawtooth.m)强调了EMD潜在的非谐振性质如图2所示。在这些例子中,线性的非线性的震荡都能被有效的识别和分离。因而,任何谐振分析(傅里叶,小波,…)可能结束在同类文章中,更少的紧凑和更少的实际意义的分解。 3.算法的改进 正如第二部分所定义的,EMD算法依赖于一系列的选项,这些选项需要用户控制,并且需要专业的知识。在此我们的目的找出更准确的选项,并且给予原来的算法进行改进。3.1采样率,插值方法和边缘效应

根据MATLAB的心电信号分析

计算机信息处理课程设计说明书题目:基于MATLAB的心电信号分析 学院(系): 年级专业: 学号: 学生姓名: 指导教师:

燕山大学课程设计(论文)任务书 院(系):基层教学单位: 说明:此表一式四份,学生、指导教师、基层教学单位、系部各一份。 2014年12月 01日

摘要 心电信号是人们认识最早、研究最早的人体生理电信号之一。目前心电检测已经成为重要的医疗检测手段,但是心电信号的相关试验及研究依然是医学工作者和生物医学工程人员的重要议题。 信号处理的基本概念和分析方法已应用于许多不同领域和学科中,尤其是数字计算机的出现和大规模集成技术的高度发展,有力地推动了数字信号处理技术的发展和应用。心电信号是人类最早研究并应用于医学临床的生物电信号之一,它比其他生物电信号便易于检测,并具有较直观的规律性,对某些疾病尤其是心血管疾病的诊断具有重要意义。它属于随机信号的一种,用数字信号处理的方法和Matlab软件对其进行分析后,可以得到许多有用的信息,对于诊断疾病有非常重要的参考价值。 本课题基于matlab对心电信号做了简单的初步分析。直接采用Matlab 语言编程的静态仿真方式、对输入的原始心电信号,进行线性插值处理,并通过matlab语言编程设计对其进行时域和频域的波形频谱分析,根据具体设计要求完成程序编写、调试及功能测试,得出一定的结论。 关键词: matlab 心电信号线性插值频谱分析

目录 一:课题的目的及意义 (1) 二:设计内容与步骤 (1) 1.心电信号的读取 (1) 2.对原始心电信号做线形插值 (3) 3.设计滤波器 (5) 4.对心电信号做频谱分析 (6) 三:总结 (7) 四:附录 (8) 五:参考文献 (12)

经验模态分解算法中端点问题的处理(1)

x=[0 30 60 90 120 150 180 210 240 270 300 330 360]; y=[-0.0167 -1.0927 -1.8725 -2.3586 -2.3061 -1.9576 -0.9574 -0.0080 0.8896 1.3877 1.1139 0.8517 -0.0167]; fun=@(a,t) a(1)+a(2)*sind(t+a(3)) %matlab7.0以上版本,否则用inline %fun=inline('a(1)+a(2)*sind(t+a(3))','a','t') a0=[-0.5 -1.9 -0.079]; a=nlinfit(x,y,fun,a0) t=0:5:360; yf=fun(a,t); plot(x,y,'o',t,yf) 结果: fun = @(a,t) a(1)+a(2)*sind(t+a(3)) a = -0.5239 -1.8995 -14.2382

经验模态分解算法中端点问题的处理 摘要:经验模态分解(EMD)方法就是对非线性、非平稳信号运用时间区域序列的上下包络线的均值得到瞬时平衡位置,将被分析信号分解成一组相互独立的稳态和线性的固有模态函数(IMF)数集。经验模态分解(EMD)方法是基于原始信号本事出发,经过筛选先把频率高的IMF 分量分离出来,然后在分离频率较低的IMF分量。其实质就是利用时间特征尺度来获取原始信号数据中的振荡模态,本文对经验模态分解算法中端点问题的处理进行研究。 关键词:经验模态分解算法端点函数 经验模态分解(EMD)方法被提出后在各个领域普遍的应用,其具有直观、简单、自适应、完备性和正交性以及调制特性等一系列良好的特点。 (1)自适应性 经验模态分解(EMD)方法的自适应性表现为自适应生成基函数。在整个筛选分解过程中

对心电信号的认识

对心电信号的认识 .......................................... 电气医信41班陈富琴(1043032053) 1.人体心电信号的产生:心脏周围的组织和体液都能导电,因此可将人体看成为一个具有长、宽、厚三度空间的容积导体。心脏好比电源,无数心肌细胞动作电位变化的总和可以传导并反映到体表。在体表很多点之间存在着电位差,也有很多点彼此之间无电位差是等电的。心脏在每个心动周期中,由起搏点、心房、心室相继兴奋,伴随着生物电的变化,这些生物电的变化称为心电。 2.人体心电信号的特点:心电信号属生物医学信号,具有如下特点: (1)信号具有近场检测的特点,离开人体表微小的距离,就基本上检测不到信号; (2)心电信号通常比较微弱,至多为mV量级; (3)属低频信号,且能量主要在几百赫兹以下; (4)干扰特别强。干扰既来自生物体内,如肌电干扰、呼吸干扰等;也来自生物体外,如工频干扰、信号拾取时因不良接地等引入的其他外来串扰等; (5)干扰信号与心电信号本身频带重叠(如工频干扰等)。 3.心电信号的研究:心电信号是人类最早研究并应用于医学临床的生物信号之一,它比其它生物电信号更易于检测,并且具有较直观的规律性,因而心电图分析技术促进了医学的发展。心电图检查是临床上诊断心血管疾病的重要方法。心电图的准确自动分析与诊断对于心血管疾病起着关键的作用,也是国内外学者所热衷的课题。以前的心电图大多采用临床医生手动分析的方法,这一过程无疑是费时费力且可靠性不高。在计算机技术迅速发展的情况下,心电图自动分析得以迅速发展,将医生从繁重的手工劳动中解脱出来,大大提高了工作效率。七十年代后,心电图自动分析技术已有很大发展,并进入实用化和商业化阶段。然而,心电图自动诊断还未广泛应用于临床,从国内外的心电图机检测分析来看,自动分析精度还达不到可以替代医生的水平,仅可以为临床医生提供辅助信息。其主要原因是心电波形的识别不准,并且心电图诊断标准不统一。因此,探索新的方法以提高波形识别的准确率,寻找适合计算机实现又具诊断价值的诊断标准,是改进心电图自动诊断效果,扩大其应用范围的根本途径。如何把心电信号的特征更加精确的提取出来进行自动分析,判断出其异常的类型成了鱼待解决的焦点问题。 4.心电信号的检查意义:用于对各种心率失常、心室心房肥大、心肌梗死、心律失常、 心肌缺血等病症检查。心电图是反映心脏兴奋的电活动过程,它对心脏基本功能及其病理研究方面,具有重要的参考价值。心电图的检查必须结合多种指标和临床资料,进行全面综合分析,才能对心脏的功能结构做出正确的判断。 5.心电信号基本构成:心电信号由P、QRS、T波和静息期组成,如图1,各波具有不同的频率特性,是一种典型的具有明显时频特称与时间—尺度特征的生物医学信号。 P.QRS.T波以及PR,ST,QT间期都不同程度地反应了心脏的功能的变化,因此通过算法实现对心脏功能的自动分析判别已成为一个比较热门的研究方向。

P300脑电信号的特征提取及分类研究

龙源期刊网 https://www.wendangku.net/doc/4d8790290.html, P300脑电信号的特征提取及分类研究 作者:马也姜光萍 来源:《山东工业技术》2017年第10期 摘要:针对P300脑电信号信噪比低,分类困难的特点,本文研究了一种基于独立分量分析和支持向量机相结合的脑电信号处理方法。首先对P300脑电信号进行叠加平均,根据ICA 算法的要求,对叠加平均的信号进行去均值及白化处理。然后使用快速定点的FastICA算法提取P300脑电信号的特征向量,最后送入支持向量机进行分类。采用国际BCI 竞赛III中的DataSetII数据进行验证,算法的最高分类正确率达90.12%。本算法原理简单,能有效提取 P300脑电信号的特征,对P300脑电信号特征提取及分类的任务提供参考方法。 关键词:P300脑电信号;特征提取;独立分量分析;支持向量机 DOI:10.16640/https://www.wendangku.net/doc/4d8790290.html,ki.37-1222/t.2017.10.180 0 引言 近年来随着世界人口的不断增多和老龄化加剧的现象,肌肉萎缩性侧索硬化症,瘫痪,老年痴呆症等患者的基数也相应增长,给社会及病人家属带来了沉重的负担。而近年来出现的涉及神经科学、认知科学、计算机科学、控制工程、医学等多学科、多领域的脑机接口方式应运而生[1]。脑机接口(brain computer interface,BCI)是建立一种大脑与计算机或其他装置联系的技术,该联系可以不通过通常的大脑输出通路(大脑的外周神经和肌肉组织)[2]。这种人 机交互形式可以代替语言和肢体动作,使得恢复和增强人类身体与心理机能、思维意念控制变成为可能。因此在军事目标搜索[3]、飞行模拟器控制[4]、汽车驾驶[5]、新型游戏娱乐[6]以及帮助运动或感觉机能出现问题的残障人士重新恢复信息通信功能[7]等方面均有应用并有巨大 潜能。 脑机接口系统的性能主要由脑电信号处理模块决定。脑电信号处理模块的核心由特征提取和分类识别两部分组成。常见的脑电信号特征提取方法很多,针对不同的脑电信号有不同的方法。例如时域分析方法有功率谱分析及快速傅里叶变换(FFT)等,适用于P300、N400等潜伏期与波形恒定,与刺激有严格锁时关系的诱发脑电信号;频域分析方法有自回归模型及数字滤波器等,适用于频率特征明显的运动想象脑电信号;时频域分析方法有小波变换,适用于时频特性随时间不断改变的脑电信号。上述方法实时性较好,使用较为广泛,但不能直接表达EEG各导联之间的关系。空间域特征提取方法有共空间模式法(CSP)、独立分量分析法(ICA)等,该类方法可以利用各导联脑电信号之间的空间分布及相关性信息,一般用于多通道的脑电信号特征提取。 [8-10]

相关文档